1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD$
26 */
27
28#ifndef _IPFW2_H
29#define _IPFW2_H
30
31/*
32 * The default rule number.  By the design of ip_fw, the default rule
33 * is the last one, so its number can also serve as the highest number
34 * allowed for a rule.  The ip_fw code relies on both meanings of this
35 * constant.
36 */
37#define	IPFW_DEFAULT_RULE	65535
38
39/*
40 * Default number of ipfw tables.
41 */
42#define	IPFW_TABLES_MAX		65535
43#define	IPFW_TABLES_DEFAULT	128
44
45/*
46 * Most commands (queue, pipe, tag, untag, limit...) can have a 16-bit
47 * argument between 1 and 65534. The value 0 is unused, the value
48 * 65535 (IP_FW_TABLEARG) is used to represent 'tablearg', i.e. the
49 * can be 1..65534, or 65535 to indicate the use of a 'tablearg'
50 * result of the most recent table() lookup.
51 * Note that 16bit is only a historical limit, resulting from
52 * the use of a 16-bit fields for that value. In reality, we can have
53 * 2^32 pipes, queues, tag values and so on, and use 0 as a tablearg.
54 */
55#define	IPFW_ARG_MIN		1
56#define	IPFW_ARG_MAX		65534
57#define IP_FW_TABLEARG		65535	/* XXX should use 0 */
58
59/*
60 * Number of entries in the call stack of the call/return commands.
61 * Call stack currently is an uint16_t array with rule numbers.
62 */
63#define	IPFW_CALLSTACK_SIZE	16
64
65/* IP_FW3 header/opcodes */
66typedef struct _ip_fw3_opheader {
67	uint16_t opcode;	/* Operation opcode */
68	uint16_t reserved[3];	/* Align to 64-bit boundary */
69} ip_fw3_opheader;
70
71
72/* IPFW extented tables support */
73#define	IP_FW_TABLE_XADD	86	/* add entry */
74#define	IP_FW_TABLE_XDEL	87	/* delete entry */
75#define	IP_FW_TABLE_XGETSIZE	88	/* get table size */
76#define	IP_FW_TABLE_XLIST	89	/* list table contents */
77
78/*
79 * The kernel representation of ipfw rules is made of a list of
80 * 'instructions' (for all practical purposes equivalent to BPF
81 * instructions), which specify which fields of the packet
82 * (or its metadata) should be analysed.
83 *
84 * Each instruction is stored in a structure which begins with
85 * "ipfw_insn", and can contain extra fields depending on the
86 * instruction type (listed below).
87 * Note that the code is written so that individual instructions
88 * have a size which is a multiple of 32 bits. This means that, if
89 * such structures contain pointers or other 64-bit entities,
90 * (there is just one instance now) they may end up unaligned on
91 * 64-bit architectures, so the must be handled with care.
92 *
93 * "enum ipfw_opcodes" are the opcodes supported. We can have up
94 * to 256 different opcodes. When adding new opcodes, they should
95 * be appended to the end of the opcode list before O_LAST_OPCODE,
96 * this will prevent the ABI from being broken, otherwise users
97 * will have to recompile ipfw(8) when they update the kernel.
98 */
99
100enum ipfw_opcodes {		/* arguments (4 byte each)	*/
101	O_NOP,
102
103	O_IP_SRC,		/* u32 = IP			*/
104	O_IP_SRC_MASK,		/* ip = IP/mask			*/
105	O_IP_SRC_ME,		/* none				*/
106	O_IP_SRC_SET,		/* u32=base, arg1=len, bitmap	*/
107
108	O_IP_DST,		/* u32 = IP			*/
109	O_IP_DST_MASK,		/* ip = IP/mask			*/
110	O_IP_DST_ME,		/* none				*/
111	O_IP_DST_SET,		/* u32=base, arg1=len, bitmap	*/
112
113	O_IP_SRCPORT,		/* (n)port list:mask 4 byte ea	*/
114	O_IP_DSTPORT,		/* (n)port list:mask 4 byte ea	*/
115	O_PROTO,		/* arg1=protocol		*/
116
117	O_MACADDR2,		/* 2 mac addr:mask		*/
118	O_MAC_TYPE,		/* same as srcport		*/
119
120	O_LAYER2,		/* none				*/
121	O_IN,			/* none				*/
122	O_FRAG,			/* none				*/
123
124	O_RECV,			/* none				*/
125	O_XMIT,			/* none				*/
126	O_VIA,			/* none				*/
127
128	O_IPOPT,		/* arg1 = 2*u8 bitmap		*/
129	O_IPLEN,		/* arg1 = len			*/
130	O_IPID,			/* arg1 = id			*/
131
132	O_IPTOS,		/* arg1 = id			*/
133	O_IPPRECEDENCE,		/* arg1 = precedence << 5	*/
134	O_IPTTL,		/* arg1 = TTL			*/
135
136	O_IPVER,		/* arg1 = version		*/
137	O_UID,			/* u32 = id			*/
138	O_GID,			/* u32 = id			*/
139	O_ESTAB,		/* none (tcp established)	*/
140	O_TCPFLAGS,		/* arg1 = 2*u8 bitmap		*/
141	O_TCPWIN,		/* arg1 = desired win		*/
142	O_TCPSEQ,		/* u32 = desired seq.		*/
143	O_TCPACK,		/* u32 = desired seq.		*/
144	O_ICMPTYPE,		/* u32 = icmp bitmap		*/
145	O_TCPOPTS,		/* arg1 = 2*u8 bitmap		*/
146
147	O_VERREVPATH,		/* none				*/
148	O_VERSRCREACH,		/* none				*/
149
150	O_PROBE_STATE,		/* none				*/
151	O_KEEP_STATE,		/* none				*/
152	O_LIMIT,		/* ipfw_insn_limit		*/
153	O_LIMIT_PARENT,		/* dyn_type, not an opcode.	*/
154
155	/*
156	 * These are really 'actions'.
157	 */
158
159	O_LOG,			/* ipfw_insn_log		*/
160	O_PROB,			/* u32 = match probability	*/
161
162	O_CHECK_STATE,		/* none				*/
163	O_ACCEPT,		/* none				*/
164	O_DENY,			/* none 			*/
165	O_REJECT,		/* arg1=icmp arg (same as deny)	*/
166	O_COUNT,		/* none				*/
167	O_SKIPTO,		/* arg1=next rule number	*/
168	O_PIPE,			/* arg1=pipe number		*/
169	O_QUEUE,		/* arg1=queue number		*/
170	O_DIVERT,		/* arg1=port number		*/
171	O_TEE,			/* arg1=port number		*/
172	O_FORWARD_IP,		/* fwd sockaddr			*/
173	O_FORWARD_MAC,		/* fwd mac			*/
174	O_NAT,                  /* nope                         */
175	O_REASS,                /* none                         */
176
177	/*
178	 * More opcodes.
179	 */
180	O_IPSEC,		/* has ipsec history 		*/
181	O_IP_SRC_LOOKUP,	/* arg1=table number, u32=value	*/
182	O_IP_DST_LOOKUP,	/* arg1=table number, u32=value	*/
183	O_ANTISPOOF,		/* none				*/
184	O_JAIL,			/* u32 = id			*/
185	O_ALTQ,			/* u32 = altq classif. qid	*/
186	O_DIVERTED,		/* arg1=bitmap (1:loop, 2:out)	*/
187	O_TCPDATALEN,		/* arg1 = tcp data len		*/
188	O_IP6_SRC,		/* address without mask		*/
189	O_IP6_SRC_ME,		/* my addresses			*/
190	O_IP6_SRC_MASK,		/* address with the mask	*/
191	O_IP6_DST,
192	O_IP6_DST_ME,
193	O_IP6_DST_MASK,
194	O_FLOW6ID,		/* for flow id tag in the ipv6 pkt */
195	O_ICMP6TYPE,		/* icmp6 packet type filtering	*/
196	O_EXT_HDR,		/* filtering for ipv6 extension header */
197	O_IP6,
198
199	/*
200	 * actions for ng_ipfw
201	 */
202	O_NETGRAPH,		/* send to ng_ipfw		*/
203	O_NGTEE,		/* copy to ng_ipfw		*/
204
205	O_IP4,
206
207	O_UNREACH6,		/* arg1=icmpv6 code arg (deny)  */
208
209	O_TAG,   		/* arg1=tag number */
210	O_TAGGED,		/* arg1=tag number */
211
212	O_SETFIB,		/* arg1=FIB number */
213	O_FIB,			/* arg1=FIB desired fib number */
214
215	O_SOCKARG,		/* socket argument */
216
217	O_CALLRETURN,		/* arg1=called rule number */
218
219	O_FORWARD_IP6,		/* fwd sockaddr_in6             */
220
221	O_DSCP,			/* 2 u32 = DSCP mask */
222	O_SETDSCP,		/* arg1=DSCP value */
223
224	O_LAST_OPCODE		/* not an opcode!		*/
225};
226
227
228/*
229 * The extension header are filtered only for presence using a bit
230 * vector with a flag for each header.
231 */
232#define EXT_FRAGMENT	0x1
233#define EXT_HOPOPTS	0x2
234#define EXT_ROUTING	0x4
235#define EXT_AH		0x8
236#define EXT_ESP		0x10
237#define EXT_DSTOPTS	0x20
238#define EXT_RTHDR0		0x40
239#define EXT_RTHDR2		0x80
240
241/*
242 * Template for instructions.
243 *
244 * ipfw_insn is used for all instructions which require no operands,
245 * a single 16-bit value (arg1), or a couple of 8-bit values.
246 *
247 * For other instructions which require different/larger arguments
248 * we have derived structures, ipfw_insn_*.
249 *
250 * The size of the instruction (in 32-bit words) is in the low
251 * 6 bits of "len". The 2 remaining bits are used to implement
252 * NOT and OR on individual instructions. Given a type, you can
253 * compute the length to be put in "len" using F_INSN_SIZE(t)
254 *
255 * F_NOT	negates the match result of the instruction.
256 *
257 * F_OR		is used to build or blocks. By default, instructions
258 *		are evaluated as part of a logical AND. An "or" block
259 *		{ X or Y or Z } contains F_OR set in all but the last
260 *		instruction of the block. A match will cause the code
261 *		to skip past the last instruction of the block.
262 *
263 * NOTA BENE: in a couple of places we assume that
264 *	sizeof(ipfw_insn) == sizeof(u_int32_t)
265 * this needs to be fixed.
266 *
267 */
268typedef struct	_ipfw_insn {	/* template for instructions */
269	u_int8_t 	opcode;
270	u_int8_t	len;	/* number of 32-bit words */
271#define	F_NOT		0x80
272#define	F_OR		0x40
273#define	F_LEN_MASK	0x3f
274#define	F_LEN(cmd)	((cmd)->len & F_LEN_MASK)
275
276	u_int16_t	arg1;
277} ipfw_insn;
278
279/*
280 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of
281 * a given type.
282 */
283#define	F_INSN_SIZE(t)	((sizeof (t))/sizeof(u_int32_t))
284
285/*
286 * This is used to store an array of 16-bit entries (ports etc.)
287 */
288typedef struct	_ipfw_insn_u16 {
289	ipfw_insn o;
290	u_int16_t ports[2];	/* there may be more */
291} ipfw_insn_u16;
292
293/*
294 * This is used to store an array of 32-bit entries
295 * (uid, single IPv4 addresses etc.)
296 */
297typedef struct	_ipfw_insn_u32 {
298	ipfw_insn o;
299	u_int32_t d[1];	/* one or more */
300} ipfw_insn_u32;
301
302/*
303 * This is used to store IP addr-mask pairs.
304 */
305typedef struct	_ipfw_insn_ip {
306	ipfw_insn o;
307	struct in_addr	addr;
308	struct in_addr	mask;
309} ipfw_insn_ip;
310
311/*
312 * This is used to forward to a given address (ip).
313 */
314typedef struct  _ipfw_insn_sa {
315	ipfw_insn o;
316	struct sockaddr_in sa;
317} ipfw_insn_sa;
318
319/*
320 * This is used to forward to a given address (ipv6).
321 */
322typedef struct _ipfw_insn_sa6 {
323	ipfw_insn o;
324	struct sockaddr_in6 sa;
325} ipfw_insn_sa6;
326
327/*
328 * This is used for MAC addr-mask pairs.
329 */
330typedef struct	_ipfw_insn_mac {
331	ipfw_insn o;
332	u_char addr[12];	/* dst[6] + src[6] */
333	u_char mask[12];	/* dst[6] + src[6] */
334} ipfw_insn_mac;
335
336/*
337 * This is used for interface match rules (recv xx, xmit xx).
338 */
339typedef struct	_ipfw_insn_if {
340	ipfw_insn o;
341	union {
342		struct in_addr ip;
343		int glob;
344	} p;
345	char name[IFNAMSIZ];
346} ipfw_insn_if;
347
348/*
349 * This is used for storing an altq queue id number.
350 */
351typedef struct _ipfw_insn_altq {
352	ipfw_insn	o;
353	u_int32_t	qid;
354} ipfw_insn_altq;
355
356/*
357 * This is used for limit rules.
358 */
359typedef struct	_ipfw_insn_limit {
360	ipfw_insn o;
361	u_int8_t _pad;
362	u_int8_t limit_mask;	/* combination of DYN_* below	*/
363#define	DYN_SRC_ADDR	0x1
364#define	DYN_SRC_PORT	0x2
365#define	DYN_DST_ADDR	0x4
366#define	DYN_DST_PORT	0x8
367
368	u_int16_t conn_limit;
369} ipfw_insn_limit;
370
371/*
372 * This is used for log instructions.
373 */
374typedef struct  _ipfw_insn_log {
375        ipfw_insn o;
376	u_int32_t max_log;	/* how many do we log -- 0 = all */
377	u_int32_t log_left;	/* how many left to log 	*/
378} ipfw_insn_log;
379
380/*
381 * Data structures required by both ipfw(8) and ipfw(4) but not part of the
382 * management API are protected by IPFW_INTERNAL.
383 */
384#ifdef IPFW_INTERNAL
385/* Server pool support (LSNAT). */
386struct cfg_spool {
387	LIST_ENTRY(cfg_spool)   _next;          /* chain of spool instances */
388	struct in_addr          addr;
389	u_short                 port;
390};
391#endif
392
393/* Redirect modes id. */
394#define REDIR_ADDR      0x01
395#define REDIR_PORT      0x02
396#define REDIR_PROTO     0x04
397
398#ifdef IPFW_INTERNAL
399/* Nat redirect configuration. */
400struct cfg_redir {
401	LIST_ENTRY(cfg_redir)   _next;          /* chain of redir instances */
402	u_int16_t               mode;           /* type of redirect mode */
403	struct in_addr	        laddr;          /* local ip address */
404	struct in_addr	        paddr;          /* public ip address */
405	struct in_addr	        raddr;          /* remote ip address */
406	u_short                 lport;          /* local port */
407	u_short                 pport;          /* public port */
408	u_short                 rport;          /* remote port  */
409	u_short                 pport_cnt;      /* number of public ports */
410	u_short                 rport_cnt;      /* number of remote ports */
411	int                     proto;          /* protocol: tcp/udp */
412	struct alias_link       **alink;
413	/* num of entry in spool chain */
414	u_int16_t               spool_cnt;
415	/* chain of spool instances */
416	LIST_HEAD(spool_chain, cfg_spool) spool_chain;
417};
418#endif
419
420#ifdef IPFW_INTERNAL
421/* Nat configuration data struct. */
422struct cfg_nat {
423	/* chain of nat instances */
424	LIST_ENTRY(cfg_nat)     _next;
425	int                     id;                     /* nat id */
426	struct in_addr          ip;                     /* nat ip address */
427	char                    if_name[IF_NAMESIZE];   /* interface name */
428	int                     mode;                   /* aliasing mode */
429	struct libalias	        *lib;                   /* libalias instance */
430	/* number of entry in spool chain */
431	int                     redir_cnt;
432	/* chain of redir instances */
433	LIST_HEAD(redir_chain, cfg_redir) redir_chain;
434};
435#endif
436
437#define SOF_NAT         sizeof(struct cfg_nat)
438#define SOF_REDIR       sizeof(struct cfg_redir)
439#define SOF_SPOOL       sizeof(struct cfg_spool)
440
441/* Nat command. */
442typedef struct	_ipfw_insn_nat {
443 	ipfw_insn	o;
444 	struct cfg_nat *nat;
445} ipfw_insn_nat;
446
447/* Apply ipv6 mask on ipv6 addr */
448#define APPLY_MASK(addr,mask)                          \
449    (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
450    (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
451    (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
452    (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
453
454/* Structure for ipv6 */
455typedef struct _ipfw_insn_ip6 {
456       ipfw_insn o;
457       struct in6_addr addr6;
458       struct in6_addr mask6;
459} ipfw_insn_ip6;
460
461/* Used to support icmp6 types */
462typedef struct _ipfw_insn_icmp6 {
463       ipfw_insn o;
464       uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
465                       *     define ICMP6_MAXTYPE
466                       *     as follows: n = ICMP6_MAXTYPE/32 + 1
467                        *     Actually is 203
468                       */
469} ipfw_insn_icmp6;
470
471/*
472 * Here we have the structure representing an ipfw rule.
473 *
474 * It starts with a general area (with link fields and counters)
475 * followed by an array of one or more instructions, which the code
476 * accesses as an array of 32-bit values.
477 *
478 * Given a rule pointer  r:
479 *
480 *  r->cmd		is the start of the first instruction.
481 *  ACTION_PTR(r)	is the start of the first action (things to do
482 *			once a rule matched).
483 *
484 * When assembling instruction, remember the following:
485 *
486 *  + if a rule has a "keep-state" (or "limit") option, then the
487 *	first instruction (at r->cmd) MUST BE an O_PROBE_STATE
488 *  + if a rule has a "log" option, then the first action
489 *	(at ACTION_PTR(r)) MUST be O_LOG
490 *  + if a rule has an "altq" option, it comes after "log"
491 *  + if a rule has an O_TAG option, it comes after "log" and "altq"
492 *
493 * NOTE: we use a simple linked list of rules because we never need
494 * 	to delete a rule without scanning the list. We do not use
495 *	queue(3) macros for portability and readability.
496 */
497
498struct ip_fw {
499	struct ip_fw	*x_next;	/* linked list of rules		*/
500	struct ip_fw	*next_rule;	/* ptr to next [skipto] rule	*/
501	/* 'next_rule' is used to pass up 'set_disable' status		*/
502
503	uint16_t	act_ofs;	/* offset of action in 32-bit units */
504	uint16_t	cmd_len;	/* # of 32-bit words in cmd	*/
505	uint16_t	rulenum;	/* rule number			*/
506	uint8_t	set;		/* rule set (0..31)		*/
507#define	RESVD_SET	31	/* set for default and persistent rules */
508	uint8_t		_pad;		/* padding			*/
509	uint32_t	id;		/* rule id */
510
511	/* These fields are present in all rules.			*/
512	uint64_t	pcnt;		/* Packet counter		*/
513	uint64_t	bcnt;		/* Byte counter			*/
514	uint32_t	timestamp;	/* tv_sec of last match		*/
515
516	ipfw_insn	cmd[1];		/* storage for commands		*/
517};
518
519#define ACTION_PTR(rule)				\
520	(ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
521
522#define RULESIZE(rule)  (sizeof(struct ip_fw) + \
523	((struct ip_fw *)(rule))->cmd_len * 4 - 4)
524
525#if 1 // should be moved to in.h
526/*
527 * This structure is used as a flow mask and a flow id for various
528 * parts of the code.
529 * addr_type is used in userland and kernel to mark the address type.
530 * fib is used in the kernel to record the fib in use.
531 * _flags is used in the kernel to store tcp flags for dynamic rules.
532 */
533struct ipfw_flow_id {
534	uint32_t	dst_ip;
535	uint32_t	src_ip;
536	uint16_t	dst_port;
537	uint16_t	src_port;
538	uint8_t		fib;
539	uint8_t		proto;
540	uint8_t		_flags;	/* protocol-specific flags */
541	uint8_t		addr_type; /* 4=ip4, 6=ip6, 1=ether ? */
542	struct in6_addr dst_ip6;
543	struct in6_addr src_ip6;
544	uint32_t	flow_id6;
545	uint32_t	extra; /* queue/pipe or frag_id */
546};
547#endif
548
549#define IS_IP6_FLOW_ID(id)	((id)->addr_type == 6)
550
551/*
552 * Dynamic ipfw rule.
553 */
554typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
555
556struct _ipfw_dyn_rule {
557	ipfw_dyn_rule	*next;		/* linked list of rules.	*/
558	struct ip_fw *rule;		/* pointer to rule		*/
559	/* 'rule' is used to pass up the rule number (from the parent)	*/
560
561	ipfw_dyn_rule *parent;		/* pointer to parent rule	*/
562	u_int64_t	pcnt;		/* packet match counter		*/
563	u_int64_t	bcnt;		/* byte match counter		*/
564	struct ipfw_flow_id id;		/* (masked) flow id		*/
565	u_int32_t	expire;		/* expire time			*/
566	u_int32_t	bucket;		/* which bucket in hash table	*/
567	u_int32_t	state;		/* state of this rule (typically a
568					 * combination of TCP flags)
569					 */
570	u_int32_t	ack_fwd;	/* most recent ACKs in forward	*/
571	u_int32_t	ack_rev;	/* and reverse directions (used	*/
572					/* to generate keepalives)	*/
573	u_int16_t	dyn_type;	/* rule type			*/
574	u_int16_t	count;		/* refcount			*/
575};
576
577/*
578 * Definitions for IP option names.
579 */
580#define	IP_FW_IPOPT_LSRR	0x01
581#define	IP_FW_IPOPT_SSRR	0x02
582#define	IP_FW_IPOPT_RR		0x04
583#define	IP_FW_IPOPT_TS		0x08
584
585/*
586 * Definitions for TCP option names.
587 */
588#define	IP_FW_TCPOPT_MSS	0x01
589#define	IP_FW_TCPOPT_WINDOW	0x02
590#define	IP_FW_TCPOPT_SACK	0x04
591#define	IP_FW_TCPOPT_TS		0x08
592#define	IP_FW_TCPOPT_CC		0x10
593
594#define	ICMP_REJECT_RST		0x100	/* fake ICMP code (send a TCP RST) */
595#define	ICMP6_UNREACH_RST	0x100	/* fake ICMPv6 code (send a TCP RST) */
596
597/*
598 * These are used for lookup tables.
599 */
600
601#define	IPFW_TABLE_CIDR		1	/* Table for holding IPv4/IPv6 prefixes */
602#define	IPFW_TABLE_INTERFACE	2	/* Table for holding interface names */
603#define	IPFW_TABLE_MAXTYPE	2	/* Maximum valid number */
604
605typedef struct	_ipfw_table_entry {
606	in_addr_t	addr;		/* network address		*/
607	u_int32_t	value;		/* value			*/
608	u_int16_t	tbl;		/* table number			*/
609	u_int8_t	masklen;	/* mask length			*/
610} ipfw_table_entry;
611
612typedef struct	_ipfw_table_xentry {
613	uint16_t	len;		/* Total entry length		*/
614	uint8_t		type;		/* entry type			*/
615	uint8_t		masklen;	/* mask length			*/
616	uint16_t	tbl;		/* table number			*/
617	uint32_t	value;		/* value			*/
618	union {
619		/* Longest field needs to be aligned by 4-byte boundary	*/
620		struct in6_addr	addr6;	/* IPv6 address 		*/
621		char	iface[IF_NAMESIZE];	/* interface name	*/
622	} k;
623} ipfw_table_xentry;
624
625typedef struct	_ipfw_table {
626	u_int32_t	size;		/* size of entries in bytes	*/
627	u_int32_t	cnt;		/* # of entries			*/
628	u_int16_t	tbl;		/* table number			*/
629	ipfw_table_entry ent[0];	/* entries			*/
630} ipfw_table;
631
632typedef struct	_ipfw_xtable {
633	ip_fw3_opheader	opheader;	/* eXtended tables are controlled via IP_FW3 */
634	uint32_t	size;		/* size of entries in bytes	*/
635	uint32_t	cnt;		/* # of entries			*/
636	uint16_t	tbl;		/* table number			*/
637	uint8_t		type;		/* table type			*/
638	ipfw_table_xentry xent[0];	/* entries			*/
639} ipfw_xtable;
640
641#endif /* _IPFW2_H */
642