ip_fw.h revision 149020
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw.h 149020 2005-08-13 11:02:34Z bz $
26 */
27
28#ifndef _IPFW2_H
29#define _IPFW2_H
30
31/*
32 * The kernel representation of ipfw rules is made of a list of
33 * 'instructions' (for all practical purposes equivalent to BPF
34 * instructions), which specify which fields of the packet
35 * (or its metadata) should be analysed.
36 *
37 * Each instruction is stored in a structure which begins with
38 * "ipfw_insn", and can contain extra fields depending on the
39 * instruction type (listed below).
40 * Note that the code is written so that individual instructions
41 * have a size which is a multiple of 32 bits. This means that, if
42 * such structures contain pointers or other 64-bit entities,
43 * (there is just one instance now) they may end up unaligned on
44 * 64-bit architectures, so the must be handled with care.
45 *
46 * "enum ipfw_opcodes" are the opcodes supported. We can have up
47 * to 256 different opcodes. When adding new opcodes, they should
48 * be appended to the end of the opcode list before O_LAST_OPCODE,
49 * this will prevent the ABI from being broken, otherwise users
50 * will have to recompile ipfw(8) when they update the kernel.
51 */
52
53enum ipfw_opcodes {		/* arguments (4 byte each)	*/
54	O_NOP,
55
56	O_IP_SRC,		/* u32 = IP			*/
57	O_IP_SRC_MASK,		/* ip = IP/mask			*/
58	O_IP_SRC_ME,		/* none				*/
59	O_IP_SRC_SET,		/* u32=base, arg1=len, bitmap	*/
60
61	O_IP_DST,		/* u32 = IP			*/
62	O_IP_DST_MASK,		/* ip = IP/mask			*/
63	O_IP_DST_ME,		/* none				*/
64	O_IP_DST_SET,		/* u32=base, arg1=len, bitmap	*/
65
66	O_IP_SRCPORT,		/* (n)port list:mask 4 byte ea	*/
67	O_IP_DSTPORT,		/* (n)port list:mask 4 byte ea	*/
68	O_PROTO,		/* arg1=protocol		*/
69
70	O_MACADDR2,		/* 2 mac addr:mask		*/
71	O_MAC_TYPE,		/* same as srcport		*/
72
73	O_LAYER2,		/* none				*/
74	O_IN,			/* none				*/
75	O_FRAG,			/* none				*/
76
77	O_RECV,			/* none				*/
78	O_XMIT,			/* none				*/
79	O_VIA,			/* none				*/
80
81	O_IPOPT,		/* arg1 = 2*u8 bitmap		*/
82	O_IPLEN,		/* arg1 = len			*/
83	O_IPID,			/* arg1 = id			*/
84
85	O_IPTOS,		/* arg1 = id			*/
86	O_IPPRECEDENCE,		/* arg1 = precedence << 5	*/
87	O_IPTTL,		/* arg1 = TTL			*/
88
89	O_IPVER,		/* arg1 = version		*/
90	O_UID,			/* u32 = id			*/
91	O_GID,			/* u32 = id			*/
92	O_ESTAB,		/* none (tcp established)	*/
93	O_TCPFLAGS,		/* arg1 = 2*u8 bitmap		*/
94	O_TCPWIN,		/* arg1 = desired win		*/
95	O_TCPSEQ,		/* u32 = desired seq.		*/
96	O_TCPACK,		/* u32 = desired seq.		*/
97	O_ICMPTYPE,		/* u32 = icmp bitmap		*/
98	O_TCPOPTS,		/* arg1 = 2*u8 bitmap		*/
99
100	O_VERREVPATH,		/* none				*/
101	O_VERSRCREACH,		/* none				*/
102
103	O_PROBE_STATE,		/* none				*/
104	O_KEEP_STATE,		/* none				*/
105	O_LIMIT,		/* ipfw_insn_limit		*/
106	O_LIMIT_PARENT,		/* dyn_type, not an opcode.	*/
107
108	/*
109	 * These are really 'actions'.
110	 */
111
112	O_LOG,			/* ipfw_insn_log		*/
113	O_PROB,			/* u32 = match probability	*/
114
115	O_CHECK_STATE,		/* none				*/
116	O_ACCEPT,		/* none				*/
117	O_DENY,			/* none 			*/
118	O_REJECT,		/* arg1=icmp arg (same as deny)	*/
119	O_COUNT,		/* none				*/
120	O_SKIPTO,		/* arg1=next rule number	*/
121	O_PIPE,			/* arg1=pipe number		*/
122	O_QUEUE,		/* arg1=queue number		*/
123	O_DIVERT,		/* arg1=port number		*/
124	O_TEE,			/* arg1=port number		*/
125	O_FORWARD_IP,		/* fwd sockaddr			*/
126	O_FORWARD_MAC,		/* fwd mac			*/
127
128	/*
129	 * More opcodes.
130	 */
131	O_IPSEC,		/* has ipsec history 		*/
132	O_IP_SRC_LOOKUP,	/* arg1=table number, u32=value	*/
133	O_IP_DST_LOOKUP,	/* arg1=table number, u32=value	*/
134	O_ANTISPOOF,		/* none				*/
135	O_JAIL,			/* u32 = id			*/
136	O_ALTQ,			/* u32 = altq classif. qid	*/
137	O_DIVERTED,		/* arg1=bitmap (1:loop, 2:out)	*/
138	O_TCPDATALEN,		/* arg1 = tcp data len		*/
139	O_IP6_SRC,		/* address without mask		*/
140	O_IP6_SRC_ME,		/* my addresses			*/
141	O_IP6_SRC_MASK,		/* address with the mask	*/
142	O_IP6_DST,
143	O_IP6_DST_ME,
144	O_IP6_DST_MASK,
145	O_FLOW6ID,		/* for flow id tag in the ipv6 pkt */
146	O_ICMP6TYPE,		/* icmp6 packet type filtering	*/
147	O_EXT_HDR,		/* filtering for ipv6 extension header */
148	O_IP6,
149
150	/*
151	 * actions for ng_ipfw
152	 */
153	O_NETGRAPH,		/* send to ng_ipfw		*/
154	O_NGTEE,		/* copy to ng_ipfw		*/
155
156	O_IP4,
157
158	O_UNREACH6,		/* arg1=icmpv6 code arg (deny)  */
159
160	O_LAST_OPCODE		/* not an opcode!		*/
161};
162
163/*
164 * The extension header are filtered only for presence using a bit
165 * vector with a flag for each header.
166 */
167#define EXT_FRAGMENT	0x1
168#define EXT_HOPOPTS	0x2
169#define EXT_ROUTING	0x4
170#define EXT_AH		0x8
171#define EXT_ESP		0x10
172#define EXT_DSTOPTS	0x20
173
174/*
175 * Template for instructions.
176 *
177 * ipfw_insn is used for all instructions which require no operands,
178 * a single 16-bit value (arg1), or a couple of 8-bit values.
179 *
180 * For other instructions which require different/larger arguments
181 * we have derived structures, ipfw_insn_*.
182 *
183 * The size of the instruction (in 32-bit words) is in the low
184 * 6 bits of "len". The 2 remaining bits are used to implement
185 * NOT and OR on individual instructions. Given a type, you can
186 * compute the length to be put in "len" using F_INSN_SIZE(t)
187 *
188 * F_NOT	negates the match result of the instruction.
189 *
190 * F_OR		is used to build or blocks. By default, instructions
191 *		are evaluated as part of a logical AND. An "or" block
192 *		{ X or Y or Z } contains F_OR set in all but the last
193 *		instruction of the block. A match will cause the code
194 *		to skip past the last instruction of the block.
195 *
196 * NOTA BENE: in a couple of places we assume that
197 *	sizeof(ipfw_insn) == sizeof(u_int32_t)
198 * this needs to be fixed.
199 *
200 */
201typedef struct	_ipfw_insn {	/* template for instructions */
202	enum ipfw_opcodes	opcode:8;
203	u_int8_t	len;	/* numer of 32-byte words */
204#define	F_NOT		0x80
205#define	F_OR		0x40
206#define	F_LEN_MASK	0x3f
207#define	F_LEN(cmd)	((cmd)->len & F_LEN_MASK)
208
209	u_int16_t	arg1;
210} ipfw_insn;
211
212/*
213 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of
214 * a given type.
215 */
216#define	F_INSN_SIZE(t)	((sizeof (t))/sizeof(u_int32_t))
217
218/*
219 * This is used to store an array of 16-bit entries (ports etc.)
220 */
221typedef struct	_ipfw_insn_u16 {
222	ipfw_insn o;
223	u_int16_t ports[2];	/* there may be more */
224} ipfw_insn_u16;
225
226/*
227 * This is used to store an array of 32-bit entries
228 * (uid, single IPv4 addresses etc.)
229 */
230typedef struct	_ipfw_insn_u32 {
231	ipfw_insn o;
232	u_int32_t d[1];	/* one or more */
233} ipfw_insn_u32;
234
235/*
236 * This is used to store IP addr-mask pairs.
237 */
238typedef struct	_ipfw_insn_ip {
239	ipfw_insn o;
240	struct in_addr	addr;
241	struct in_addr	mask;
242} ipfw_insn_ip;
243
244/*
245 * This is used to forward to a given address (ip).
246 */
247typedef struct  _ipfw_insn_sa {
248	ipfw_insn o;
249	struct sockaddr_in sa;
250} ipfw_insn_sa;
251
252/*
253 * This is used for MAC addr-mask pairs.
254 */
255typedef struct	_ipfw_insn_mac {
256	ipfw_insn o;
257	u_char addr[12];	/* dst[6] + src[6] */
258	u_char mask[12];	/* dst[6] + src[6] */
259} ipfw_insn_mac;
260
261/*
262 * This is used for interface match rules (recv xx, xmit xx).
263 */
264typedef struct	_ipfw_insn_if {
265	ipfw_insn o;
266	union {
267		struct in_addr ip;
268		int glob;
269	} p;
270	char name[IFNAMSIZ];
271} ipfw_insn_if;
272
273/*
274 * This is used for pipe and queue actions, which need to store
275 * a single pointer (which can have different size on different
276 * architectures.
277 * Note that, because of previous instructions, pipe_ptr might
278 * be unaligned in the overall structure, so it needs to be
279 * manipulated with care.
280 */
281typedef struct	_ipfw_insn_pipe {
282	ipfw_insn	o;
283	void		*pipe_ptr;	/* XXX */
284} ipfw_insn_pipe;
285
286/*
287 * This is used for storing an altq queue id number.
288 */
289typedef struct _ipfw_insn_altq {
290	ipfw_insn	o;
291	u_int32_t	qid;
292} ipfw_insn_altq;
293
294/*
295 * This is used for limit rules.
296 */
297typedef struct	_ipfw_insn_limit {
298	ipfw_insn o;
299	u_int8_t _pad;
300	u_int8_t limit_mask;	/* combination of DYN_* below	*/
301#define	DYN_SRC_ADDR	0x1
302#define	DYN_SRC_PORT	0x2
303#define	DYN_DST_ADDR	0x4
304#define	DYN_DST_PORT	0x8
305
306	u_int16_t conn_limit;
307} ipfw_insn_limit;
308
309/*
310 * This is used for log instructions.
311 */
312typedef struct  _ipfw_insn_log {
313        ipfw_insn o;
314	u_int32_t max_log;	/* how many do we log -- 0 = all */
315	u_int32_t log_left;	/* how many left to log 	*/
316} ipfw_insn_log;
317
318/* Apply ipv6 mask on ipv6 addr */
319#define APPLY_MASK(addr,mask)                          \
320    (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
321    (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
322    (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
323    (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3];
324
325/* Structure for ipv6 */
326typedef struct _ipfw_insn_ip6 {
327       ipfw_insn o;
328       struct in6_addr addr6;
329       struct in6_addr mask6;
330} ipfw_insn_ip6;
331
332/* Used to support icmp6 types */
333typedef struct _ipfw_insn_icmp6 {
334       ipfw_insn o;
335       uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
336                       *     define ICMP6_MAXTYPE
337                       *     as follows: n = ICMP6_MAXTYPE/32 + 1
338                        *     Actually is 203
339                       */
340} ipfw_insn_icmp6;
341
342/*
343 * Here we have the structure representing an ipfw rule.
344 *
345 * It starts with a general area (with link fields and counters)
346 * followed by an array of one or more instructions, which the code
347 * accesses as an array of 32-bit values.
348 *
349 * Given a rule pointer  r:
350 *
351 *  r->cmd		is the start of the first instruction.
352 *  ACTION_PTR(r)	is the start of the first action (things to do
353 *			once a rule matched).
354 *
355 * When assembling instruction, remember the following:
356 *
357 *  + if a rule has a "keep-state" (or "limit") option, then the
358 *	first instruction (at r->cmd) MUST BE an O_PROBE_STATE
359 *  + if a rule has a "log" option, then the first action
360 *	(at ACTION_PTR(r)) MUST be O_LOG
361 *  + if a rule has an "altq" option, it comes after "log"
362 *
363 * NOTE: we use a simple linked list of rules because we never need
364 * 	to delete a rule without scanning the list. We do not use
365 *	queue(3) macros for portability and readability.
366 */
367
368struct ip_fw {
369	struct ip_fw	*next;		/* linked list of rules		*/
370	struct ip_fw	*next_rule;	/* ptr to next [skipto] rule	*/
371	/* 'next_rule' is used to pass up 'set_disable' status		*/
372
373	u_int16_t	act_ofs;	/* offset of action in 32-bit units */
374	u_int16_t	cmd_len;	/* # of 32-bit words in cmd	*/
375	u_int16_t	rulenum;	/* rule number			*/
376	u_int8_t	set;		/* rule set (0..31)		*/
377#define	RESVD_SET	31	/* set for default and persistent rules */
378	u_int8_t	_pad;		/* padding			*/
379
380	/* These fields are present in all rules.			*/
381	u_int64_t	pcnt;		/* Packet counter		*/
382	u_int64_t	bcnt;		/* Byte counter			*/
383	u_int32_t	timestamp;	/* tv_sec of last match		*/
384
385	ipfw_insn	cmd[1];		/* storage for commands		*/
386};
387
388#define ACTION_PTR(rule)				\
389	(ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
390
391#define RULESIZE(rule)  (sizeof(struct ip_fw) + \
392	((struct ip_fw *)(rule))->cmd_len * 4 - 4)
393
394/*
395 * This structure is used as a flow mask and a flow id for various
396 * parts of the code.
397 */
398struct ipfw_flow_id {
399	u_int32_t	dst_ip;
400	u_int32_t	src_ip;
401	u_int16_t	dst_port;
402	u_int16_t	src_port;
403	u_int8_t	proto;
404	u_int8_t	flags;	/* protocol-specific flags */
405	uint8_t		addr_type; /* 4 = ipv4, 6 = ipv6, 1=ether ? */
406	struct in6_addr dst_ip6;	/* could also store MAC addr! */
407	struct in6_addr src_ip6;
408	u_int32_t	flow_id6;
409	u_int32_t	frag_id6;
410};
411
412#define IS_IP6_FLOW_ID(id)	((id)->addr_type == 6)
413
414/*
415 * Dynamic ipfw rule.
416 */
417typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
418
419struct _ipfw_dyn_rule {
420	ipfw_dyn_rule	*next;		/* linked list of rules.	*/
421	struct ip_fw *rule;		/* pointer to rule		*/
422	/* 'rule' is used to pass up the rule number (from the parent)	*/
423
424	ipfw_dyn_rule *parent;		/* pointer to parent rule	*/
425	u_int64_t	pcnt;		/* packet match counter		*/
426	u_int64_t	bcnt;		/* byte match counter		*/
427	struct ipfw_flow_id id;		/* (masked) flow id		*/
428	u_int32_t	expire;		/* expire time			*/
429	u_int32_t	bucket;		/* which bucket in hash table	*/
430	u_int32_t	state;		/* state of this rule (typically a
431					 * combination of TCP flags)
432					 */
433	u_int32_t	ack_fwd;	/* most recent ACKs in forward	*/
434	u_int32_t	ack_rev;	/* and reverse directions (used	*/
435					/* to generate keepalives)	*/
436	u_int16_t	dyn_type;	/* rule type			*/
437	u_int16_t	count;		/* refcount			*/
438};
439
440/*
441 * Definitions for IP option names.
442 */
443#define	IP_FW_IPOPT_LSRR	0x01
444#define	IP_FW_IPOPT_SSRR	0x02
445#define	IP_FW_IPOPT_RR		0x04
446#define	IP_FW_IPOPT_TS		0x08
447
448/*
449 * Definitions for TCP option names.
450 */
451#define	IP_FW_TCPOPT_MSS	0x01
452#define	IP_FW_TCPOPT_WINDOW	0x02
453#define	IP_FW_TCPOPT_SACK	0x04
454#define	IP_FW_TCPOPT_TS		0x08
455#define	IP_FW_TCPOPT_CC		0x10
456
457#define	ICMP_REJECT_RST		0x100	/* fake ICMP code (send a TCP RST) */
458#define	ICMP6_UNREACH_RST	0x100	/* fake ICMPv6 code (send a TCP RST) */
459
460/*
461 * These are used for lookup tables.
462 */
463typedef struct	_ipfw_table_entry {
464	in_addr_t	addr;		/* network address		*/
465	u_int32_t	value;		/* value			*/
466	u_int16_t	tbl;		/* table number			*/
467	u_int8_t	masklen;	/* mask length			*/
468} ipfw_table_entry;
469
470typedef struct	_ipfw_table {
471	u_int32_t	size;		/* size of entries in bytes	*/
472	u_int32_t	cnt;		/* # of entries			*/
473	u_int16_t	tbl;		/* table number			*/
474	ipfw_table_entry ent[0];	/* entries			*/
475} ipfw_table;
476
477/*
478 * Main firewall chains definitions and global var's definitions.
479 */
480#ifdef _KERNEL
481
482/* Return values from ipfw_chk() */
483enum {
484	IP_FW_PASS = 0,
485	IP_FW_DENY,
486	IP_FW_DIVERT,
487	IP_FW_TEE,
488	IP_FW_DUMMYNET,
489	IP_FW_NETGRAPH,
490	IP_FW_NGTEE,
491};
492
493/* flags for divert mtag */
494#define	IP_FW_DIVERT_LOOPBACK_FLAG	0x00080000
495#define	IP_FW_DIVERT_OUTPUT_FLAG	0x00100000
496
497/*
498 * Structure for collecting parameters to dummynet for ip6_output forwarding
499 */
500struct _ip6dn_args {
501       struct ip6_pktopts *opt_or;
502       struct route_in6 ro_or;
503       int flags_or;
504       struct ip6_moptions *im6o_or;
505       struct ifnet *origifp_or;
506       struct ifnet *ifp_or;
507       struct sockaddr_in6 dst_or;
508       u_long mtu_or;
509       struct route_in6 ro_pmtu_or;
510};
511
512/*
513 * Arguments for calling ipfw_chk() and dummynet_io(). We put them
514 * all into a structure because this way it is easier and more
515 * efficient to pass variables around and extend the interface.
516 */
517struct ip_fw_args {
518	struct mbuf	*m;		/* the mbuf chain		*/
519	struct ifnet	*oif;		/* output interface		*/
520	struct sockaddr_in *next_hop;	/* forward address		*/
521	struct ip_fw	*rule;		/* matching rule		*/
522	struct ether_header *eh;	/* for bridged packets		*/
523
524	int flags;			/* for dummynet			*/
525
526	struct ipfw_flow_id f_id;	/* grabbed from IP header	*/
527	u_int32_t	cookie;		/* a cookie depending on rule action */
528	struct inpcb	*inp;
529
530	struct _ip6dn_args	dummypar; /* dummynet->ip6_output */
531};
532
533/*
534 * Function definitions.
535 */
536
537/* Firewall hooks */
538struct sockopt;
539struct dn_flow_set;
540
541int ipfw_check_in(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
542int ipfw_check_out(void *, struct mbuf **, struct ifnet *, int, struct inpcb *inp);
543
544int ipfw_chk(struct ip_fw_args *);
545
546int ipfw_init(void);
547void ipfw_destroy(void);
548
549void flush_pipe_ptrs(struct dn_flow_set *match); /* used by dummynet */
550
551typedef int ip_fw_ctl_t(struct sockopt *);
552extern ip_fw_ctl_t *ip_fw_ctl_ptr;
553extern int fw_one_pass;
554extern int fw_enable;
555
556/* For kernel ipfw_ether and ipfw_bridge. */
557typedef	int ip_fw_chk_t(struct ip_fw_args *args);
558extern	ip_fw_chk_t	*ip_fw_chk_ptr;
559#define	IPFW_LOADED	(ip_fw_chk_ptr != NULL)
560
561#endif /* _KERNEL */
562#endif /* _IPFW2_H */
563