1/*-
2 * Copyright (c) 1988, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
30 * $FreeBSD$
31 */
32#include "opt_compat.h"
33#include "opt_mpath.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36
37#include <sys/param.h>
38#include <sys/jail.h>
39#include <sys/kernel.h>
40#include <sys/domain.h>
41#include <sys/lock.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/protosw.h>
47#include <sys/rwlock.h>
48#include <sys/signalvar.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/systm.h>
53
54#define	_IN_NET_RTSOCK_C
55#include <net/if.h>
56#include <net/if_dl.h>
57#include <net/if_llatbl.h>
58#include <net/if_types.h>
59#include <net/netisr.h>
60#include <net/raw_cb.h>
61#include <net/route.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <netinet/if_ether.h>
66#include <netinet/ip_carp.h>
67#ifdef INET6
68#include <netinet6/ip6_var.h>
69#include <netinet6/scope6_var.h>
70#endif
71
72#ifdef COMPAT_FREEBSD32
73#include <sys/mount.h>
74#include <compat/freebsd32/freebsd32.h>
75
76struct if_data32 {
77	uint8_t	ifi_type;
78	uint8_t	ifi_physical;
79	uint8_t	ifi_addrlen;
80	uint8_t	ifi_hdrlen;
81	uint8_t	ifi_link_state;
82	uint8_t	ifi_vhid;
83	uint8_t	ifi_baudrate_pf;
84	uint8_t	ifi_datalen;
85	uint32_t ifi_mtu;
86	uint32_t ifi_metric;
87	uint32_t ifi_baudrate;
88	uint32_t ifi_ipackets;
89	uint32_t ifi_ierrors;
90	uint32_t ifi_opackets;
91	uint32_t ifi_oerrors;
92	uint32_t ifi_collisions;
93	uint32_t ifi_ibytes;
94	uint32_t ifi_obytes;
95	uint32_t ifi_imcasts;
96	uint32_t ifi_omcasts;
97	uint32_t ifi_iqdrops;
98	uint32_t ifi_noproto;
99	uint32_t ifi_hwassist;
100	int32_t	ifi_epoch;
101	struct	timeval32 ifi_lastchange;
102	uint32_t ifi_oqdrops;
103};
104
105struct if_msghdr32 {
106	uint16_t ifm_msglen;
107	uint8_t	ifm_version;
108	uint8_t	ifm_type;
109	int32_t	ifm_addrs;
110	int32_t	ifm_flags;
111	uint16_t ifm_index;
112	struct	if_data32 ifm_data;
113};
114
115struct if_msghdrl32 {
116	uint16_t ifm_msglen;
117	uint8_t	ifm_version;
118	uint8_t	ifm_type;
119	int32_t	ifm_addrs;
120	int32_t	ifm_flags;
121	uint16_t ifm_index;
122	uint16_t _ifm_spare1;
123	uint16_t ifm_len;
124	uint16_t ifm_data_off;
125	struct	if_data32 ifm_data;
126};
127
128struct ifa_msghdrl32 {
129	uint16_t ifam_msglen;
130	uint8_t	ifam_version;
131	uint8_t	ifam_type;
132	int32_t	ifam_addrs;
133	int32_t	ifam_flags;
134	uint16_t ifam_index;
135	uint16_t _ifam_spare1;
136	uint16_t ifam_len;
137	uint16_t ifam_data_off;
138	int32_t	ifam_metric;
139	struct	if_data32 ifam_data;
140};
141#endif /* COMPAT_FREEBSD32 */
142
143MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
144
145/* NB: these are not modified */
146static struct	sockaddr route_src = { 2, PF_ROUTE, };
147static struct	sockaddr sa_zero   = { sizeof(sa_zero), AF_INET, };
148
149/* These are external hooks for CARP. */
150int	(*carp_get_vhid_p)(struct ifaddr *);
151
152/*
153 * Used by rtsock/raw_input callback code to decide whether to filter the update
154 * notification to a socket bound to a particular FIB.
155 */
156#define	RTS_FILTER_FIB	M_PROTO8
157
158static struct {
159	int	ip_count;	/* attached w/ AF_INET */
160	int	ip6_count;	/* attached w/ AF_INET6 */
161	int	ipx_count;	/* attached w/ AF_IPX */
162	int	any_count;	/* total attached */
163} route_cb;
164
165struct mtx rtsock_mtx;
166MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
167
168#define	RTSOCK_LOCK()	mtx_lock(&rtsock_mtx)
169#define	RTSOCK_UNLOCK()	mtx_unlock(&rtsock_mtx)
170#define	RTSOCK_LOCK_ASSERT()	mtx_assert(&rtsock_mtx, MA_OWNED)
171
172static SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
173
174struct walkarg {
175	int	w_tmemsize;
176	int	w_op, w_arg;
177	caddr_t	w_tmem;
178	struct sysctl_req *w_req;
179};
180
181static void	rts_input(struct mbuf *m);
182static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
183static int	rt_msg2(int type, struct rt_addrinfo *rtinfo,
184			caddr_t cp, struct walkarg *w);
185static int	rt_xaddrs(caddr_t cp, caddr_t cplim,
186			struct rt_addrinfo *rtinfo);
187static int	sysctl_dumpentry(struct radix_node *rn, void *vw);
188static int	sysctl_iflist(int af, struct walkarg *w);
189static int	sysctl_ifmalist(int af, struct walkarg *w);
190static int	route_output(struct mbuf *m, struct socket *so);
191static void	rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt);
192static void	rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out);
193static void	rt_dispatch(struct mbuf *, sa_family_t);
194
195static struct netisr_handler rtsock_nh = {
196	.nh_name = "rtsock",
197	.nh_handler = rts_input,
198	.nh_proto = NETISR_ROUTE,
199	.nh_policy = NETISR_POLICY_SOURCE,
200};
201
202static int
203sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
204{
205	int error, qlimit;
206
207	netisr_getqlimit(&rtsock_nh, &qlimit);
208	error = sysctl_handle_int(oidp, &qlimit, 0, req);
209        if (error || !req->newptr)
210                return (error);
211	if (qlimit < 1)
212		return (EINVAL);
213	return (netisr_setqlimit(&rtsock_nh, qlimit));
214}
215SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
216    0, 0, sysctl_route_netisr_maxqlen, "I",
217    "maximum routing socket dispatch queue length");
218
219static void
220rts_init(void)
221{
222	int tmp;
223
224	if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
225		rtsock_nh.nh_qlimit = tmp;
226	netisr_register(&rtsock_nh);
227}
228SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
229
230static int
231raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src,
232    struct rawcb *rp)
233{
234	int fibnum;
235
236	KASSERT(m != NULL, ("%s: m is NULL", __func__));
237	KASSERT(proto != NULL, ("%s: proto is NULL", __func__));
238	KASSERT(rp != NULL, ("%s: rp is NULL", __func__));
239
240	/* No filtering requested. */
241	if ((m->m_flags & RTS_FILTER_FIB) == 0)
242		return (0);
243
244	/* Check if it is a rts and the fib matches the one of the socket. */
245	fibnum = M_GETFIB(m);
246	if (proto->sp_family != PF_ROUTE ||
247	    rp->rcb_socket == NULL ||
248	    rp->rcb_socket->so_fibnum == fibnum)
249		return (0);
250
251	/* Filtering requested and no match, the socket shall be skipped. */
252	return (1);
253}
254
255static void
256rts_input(struct mbuf *m)
257{
258	struct sockproto route_proto;
259	unsigned short *family;
260	struct m_tag *tag;
261
262	route_proto.sp_family = PF_ROUTE;
263	tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
264	if (tag != NULL) {
265		family = (unsigned short *)(tag + 1);
266		route_proto.sp_protocol = *family;
267		m_tag_delete(m, tag);
268	} else
269		route_proto.sp_protocol = 0;
270
271	raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb);
272}
273
274/*
275 * It really doesn't make any sense at all for this code to share much
276 * with raw_usrreq.c, since its functionality is so restricted.  XXX
277 */
278static void
279rts_abort(struct socket *so)
280{
281
282	raw_usrreqs.pru_abort(so);
283}
284
285static void
286rts_close(struct socket *so)
287{
288
289	raw_usrreqs.pru_close(so);
290}
291
292/* pru_accept is EOPNOTSUPP */
293
294static int
295rts_attach(struct socket *so, int proto, struct thread *td)
296{
297	struct rawcb *rp;
298	int error;
299
300	KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
301
302	/* XXX */
303	rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
304	if (rp == NULL)
305		return ENOBUFS;
306
307	so->so_pcb = (caddr_t)rp;
308	so->so_fibnum = td->td_proc->p_fibnum;
309	error = raw_attach(so, proto);
310	rp = sotorawcb(so);
311	if (error) {
312		so->so_pcb = NULL;
313		free(rp, M_PCB);
314		return error;
315	}
316	RTSOCK_LOCK();
317	switch(rp->rcb_proto.sp_protocol) {
318	case AF_INET:
319		route_cb.ip_count++;
320		break;
321	case AF_INET6:
322		route_cb.ip6_count++;
323		break;
324	case AF_IPX:
325		route_cb.ipx_count++;
326		break;
327	}
328	route_cb.any_count++;
329	RTSOCK_UNLOCK();
330	soisconnected(so);
331	so->so_options |= SO_USELOOPBACK;
332	return 0;
333}
334
335static int
336rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
337{
338
339	return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
340}
341
342static int
343rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
344{
345
346	return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
347}
348
349/* pru_connect2 is EOPNOTSUPP */
350/* pru_control is EOPNOTSUPP */
351
352static void
353rts_detach(struct socket *so)
354{
355	struct rawcb *rp = sotorawcb(so);
356
357	KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
358
359	RTSOCK_LOCK();
360	switch(rp->rcb_proto.sp_protocol) {
361	case AF_INET:
362		route_cb.ip_count--;
363		break;
364	case AF_INET6:
365		route_cb.ip6_count--;
366		break;
367	case AF_IPX:
368		route_cb.ipx_count--;
369		break;
370	}
371	route_cb.any_count--;
372	RTSOCK_UNLOCK();
373	raw_usrreqs.pru_detach(so);
374}
375
376static int
377rts_disconnect(struct socket *so)
378{
379
380	return (raw_usrreqs.pru_disconnect(so));
381}
382
383/* pru_listen is EOPNOTSUPP */
384
385static int
386rts_peeraddr(struct socket *so, struct sockaddr **nam)
387{
388
389	return (raw_usrreqs.pru_peeraddr(so, nam));
390}
391
392/* pru_rcvd is EOPNOTSUPP */
393/* pru_rcvoob is EOPNOTSUPP */
394
395static int
396rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
397	 struct mbuf *control, struct thread *td)
398{
399
400	return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
401}
402
403/* pru_sense is null */
404
405static int
406rts_shutdown(struct socket *so)
407{
408
409	return (raw_usrreqs.pru_shutdown(so));
410}
411
412static int
413rts_sockaddr(struct socket *so, struct sockaddr **nam)
414{
415
416	return (raw_usrreqs.pru_sockaddr(so, nam));
417}
418
419static struct pr_usrreqs route_usrreqs = {
420	.pru_abort =		rts_abort,
421	.pru_attach =		rts_attach,
422	.pru_bind =		rts_bind,
423	.pru_connect =		rts_connect,
424	.pru_detach =		rts_detach,
425	.pru_disconnect =	rts_disconnect,
426	.pru_peeraddr =		rts_peeraddr,
427	.pru_send =		rts_send,
428	.pru_shutdown =		rts_shutdown,
429	.pru_sockaddr =		rts_sockaddr,
430	.pru_close =		rts_close,
431};
432
433#ifndef _SOCKADDR_UNION_DEFINED
434#define	_SOCKADDR_UNION_DEFINED
435/*
436 * The union of all possible address formats we handle.
437 */
438union sockaddr_union {
439	struct sockaddr		sa;
440	struct sockaddr_in	sin;
441	struct sockaddr_in6	sin6;
442};
443#endif /* _SOCKADDR_UNION_DEFINED */
444
445static int
446rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
447    struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
448{
449
450	/* First, see if the returned address is part of the jail. */
451	if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
452		info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
453		return (0);
454	}
455
456	switch (info->rti_info[RTAX_DST]->sa_family) {
457#ifdef INET
458	case AF_INET:
459	{
460		struct in_addr ia;
461		struct ifaddr *ifa;
462		int found;
463
464		found = 0;
465		/*
466		 * Try to find an address on the given outgoing interface
467		 * that belongs to the jail.
468		 */
469		IF_ADDR_RLOCK(ifp);
470		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
471			struct sockaddr *sa;
472			sa = ifa->ifa_addr;
473			if (sa->sa_family != AF_INET)
474				continue;
475			ia = ((struct sockaddr_in *)sa)->sin_addr;
476			if (prison_check_ip4(cred, &ia) == 0) {
477				found = 1;
478				break;
479			}
480		}
481		IF_ADDR_RUNLOCK(ifp);
482		if (!found) {
483			/*
484			 * As a last resort return the 'default' jail address.
485			 */
486			ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
487			    sin_addr;
488			if (prison_get_ip4(cred, &ia) != 0)
489				return (ESRCH);
490		}
491		bzero(&saun->sin, sizeof(struct sockaddr_in));
492		saun->sin.sin_len = sizeof(struct sockaddr_in);
493		saun->sin.sin_family = AF_INET;
494		saun->sin.sin_addr.s_addr = ia.s_addr;
495		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
496		break;
497	}
498#endif
499#ifdef INET6
500	case AF_INET6:
501	{
502		struct in6_addr ia6;
503		struct ifaddr *ifa;
504		int found;
505
506		found = 0;
507		/*
508		 * Try to find an address on the given outgoing interface
509		 * that belongs to the jail.
510		 */
511		IF_ADDR_RLOCK(ifp);
512		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
513			struct sockaddr *sa;
514			sa = ifa->ifa_addr;
515			if (sa->sa_family != AF_INET6)
516				continue;
517			bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
518			    &ia6, sizeof(struct in6_addr));
519			if (prison_check_ip6(cred, &ia6) == 0) {
520				found = 1;
521				break;
522			}
523		}
524		IF_ADDR_RUNLOCK(ifp);
525		if (!found) {
526			/*
527			 * As a last resort return the 'default' jail address.
528			 */
529			ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
530			    sin6_addr;
531			if (prison_get_ip6(cred, &ia6) != 0)
532				return (ESRCH);
533		}
534		bzero(&saun->sin6, sizeof(struct sockaddr_in6));
535		saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
536		saun->sin6.sin6_family = AF_INET6;
537		bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
538		if (sa6_recoverscope(&saun->sin6) != 0)
539			return (ESRCH);
540		info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
541		break;
542	}
543#endif
544	default:
545		return (ESRCH);
546	}
547	return (0);
548}
549
550/*ARGSUSED*/
551static int
552route_output(struct mbuf *m, struct socket *so)
553{
554#define	sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
555	struct rt_msghdr *rtm = NULL;
556	struct rtentry *rt = NULL;
557	struct radix_node_head *rnh;
558	struct rt_addrinfo info;
559#ifdef INET6
560	struct sockaddr_storage ss;
561	struct sockaddr_in6 *sin6;
562	int i, rti_need_deembed = 0;
563#endif
564	int len, error = 0;
565	struct ifnet *ifp = NULL;
566	union sockaddr_union saun;
567	sa_family_t saf = AF_UNSPEC;
568
569#define senderr(e) { error = e; goto flush;}
570	if (m == NULL || ((m->m_len < sizeof(long)) &&
571		       (m = m_pullup(m, sizeof(long))) == NULL))
572		return (ENOBUFS);
573	if ((m->m_flags & M_PKTHDR) == 0)
574		panic("route_output");
575	len = m->m_pkthdr.len;
576	if (len < sizeof(*rtm) ||
577	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
578		info.rti_info[RTAX_DST] = NULL;
579		senderr(EINVAL);
580	}
581	R_Malloc(rtm, struct rt_msghdr *, len);
582	if (rtm == NULL) {
583		info.rti_info[RTAX_DST] = NULL;
584		senderr(ENOBUFS);
585	}
586	m_copydata(m, 0, len, (caddr_t)rtm);
587	if (rtm->rtm_version != RTM_VERSION) {
588		info.rti_info[RTAX_DST] = NULL;
589		senderr(EPROTONOSUPPORT);
590	}
591	rtm->rtm_pid = curproc->p_pid;
592	bzero(&info, sizeof(info));
593	info.rti_addrs = rtm->rtm_addrs;
594	/*
595	 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
596	 * link-local address because rtrequest requires addresses with
597	 * embedded scope id.
598	 */
599	if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
600		info.rti_info[RTAX_DST] = NULL;
601		senderr(EINVAL);
602	}
603	info.rti_flags = rtm->rtm_flags;
604	if (info.rti_info[RTAX_DST] == NULL ||
605	    info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
606	    (info.rti_info[RTAX_GATEWAY] != NULL &&
607	     info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
608		senderr(EINVAL);
609	saf = info.rti_info[RTAX_DST]->sa_family;
610	/*
611	 * Verify that the caller has the appropriate privilege; RTM_GET
612	 * is the only operation the non-superuser is allowed.
613	 */
614	if (rtm->rtm_type != RTM_GET) {
615		error = priv_check(curthread, PRIV_NET_ROUTE);
616		if (error)
617			senderr(error);
618	}
619
620	/*
621	 * The given gateway address may be an interface address.
622	 * For example, issuing a "route change" command on a route
623	 * entry that was created from a tunnel, and the gateway
624	 * address given is the local end point. In this case the
625	 * RTF_GATEWAY flag must be cleared or the destination will
626	 * not be reachable even though there is no error message.
627	 */
628	if (info.rti_info[RTAX_GATEWAY] != NULL &&
629	    info.rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
630		struct route gw_ro;
631
632		bzero(&gw_ro, sizeof(gw_ro));
633		gw_ro.ro_dst = *info.rti_info[RTAX_GATEWAY];
634		rtalloc_ign_fib(&gw_ro, 0, so->so_fibnum);
635		/*
636		 * A host route through the loopback interface is
637		 * installed for each interface adddress. In pre 8.0
638		 * releases the interface address of a PPP link type
639		 * is not reachable locally. This behavior is fixed as
640		 * part of the new L2/L3 redesign and rewrite work. The
641		 * signature of this interface address route is the
642		 * AF_LINK sa_family type of the rt_gateway, and the
643		 * rt_ifp has the IFF_LOOPBACK flag set.
644		 */
645		if (gw_ro.ro_rt != NULL &&
646		    gw_ro.ro_rt->rt_gateway->sa_family == AF_LINK &&
647		    gw_ro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) {
648			info.rti_flags &= ~RTF_GATEWAY;
649			info.rti_flags |= RTF_GWFLAG_COMPAT;
650		}
651		if (gw_ro.ro_rt != NULL)
652			RTFREE(gw_ro.ro_rt);
653	}
654
655	switch (rtm->rtm_type) {
656		struct rtentry *saved_nrt;
657
658	case RTM_ADD:
659		if (info.rti_info[RTAX_GATEWAY] == NULL)
660			senderr(EINVAL);
661		saved_nrt = NULL;
662
663		/* support for new ARP code */
664		if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
665		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
666			error = lla_rt_output(rtm, &info);
667#ifdef INET6
668			if (error == 0)
669				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
670#endif
671			break;
672		}
673		error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
674		    so->so_fibnum);
675		if (error == 0 && saved_nrt) {
676#ifdef INET6
677			rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
678#endif
679			RT_LOCK(saved_nrt);
680			rt_setmetrics(rtm, saved_nrt);
681			rtm->rtm_index = saved_nrt->rt_ifp->if_index;
682			RT_REMREF(saved_nrt);
683			RT_UNLOCK(saved_nrt);
684		}
685		break;
686
687	case RTM_DELETE:
688		saved_nrt = NULL;
689		/* support for new ARP code */
690		if (info.rti_info[RTAX_GATEWAY] &&
691		    (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
692		    (rtm->rtm_flags & RTF_LLDATA) != 0) {
693			error = lla_rt_output(rtm, &info);
694#ifdef INET6
695			if (error == 0)
696				rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
697#endif
698			break;
699		}
700		error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
701		    so->so_fibnum);
702		if (error == 0) {
703			RT_LOCK(saved_nrt);
704			rt = saved_nrt;
705			goto report;
706		}
707#ifdef INET6
708		/* rt_msg2() will not be used when RTM_DELETE fails. */
709		rti_need_deembed = (V_deembed_scopeid) ? 1 : 0;
710#endif
711		break;
712
713	case RTM_GET:
714	case RTM_CHANGE:
715	case RTM_LOCK:
716		rnh = rt_tables_get_rnh(so->so_fibnum,
717		    info.rti_info[RTAX_DST]->sa_family);
718		if (rnh == NULL)
719			senderr(EAFNOSUPPORT);
720
721		RADIX_NODE_HEAD_RLOCK(rnh);
722
723		if (info.rti_info[RTAX_NETMASK] == NULL &&
724		    rtm->rtm_type == RTM_GET) {
725			/*
726			 * Provide logest prefix match for
727			 * address lookup (no mask).
728			 * 'route -n get addr'
729			 */
730			rt = (struct rtentry *) rnh->rnh_matchaddr(
731			    info.rti_info[RTAX_DST], rnh);
732		} else
733			rt = (struct rtentry *) rnh->rnh_lookup(
734			    info.rti_info[RTAX_DST],
735			    info.rti_info[RTAX_NETMASK], rnh);
736
737		if (rt == NULL) {
738			RADIX_NODE_HEAD_RUNLOCK(rnh);
739			senderr(ESRCH);
740		}
741#ifdef RADIX_MPATH
742		/*
743		 * for RTM_CHANGE/LOCK, if we got multipath routes,
744		 * we require users to specify a matching RTAX_GATEWAY.
745		 *
746		 * for RTM_GET, gate is optional even with multipath.
747		 * if gate == NULL the first match is returned.
748		 * (no need to call rt_mpath_matchgate if gate == NULL)
749		 */
750		if (rn_mpath_capable(rnh) &&
751		    (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
752			rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
753			if (!rt) {
754				RADIX_NODE_HEAD_RUNLOCK(rnh);
755				senderr(ESRCH);
756			}
757		}
758#endif
759		/*
760		 * If performing proxied L2 entry insertion, and
761		 * the actual PPP host entry is found, perform
762		 * another search to retrieve the prefix route of
763		 * the local end point of the PPP link.
764		 */
765		if (rtm->rtm_flags & RTF_ANNOUNCE) {
766			struct sockaddr laddr;
767
768			if (rt->rt_ifp != NULL &&
769			    rt->rt_ifp->if_type == IFT_PROPVIRTUAL) {
770				struct ifaddr *ifa;
771
772				ifa = ifa_ifwithnet(info.rti_info[RTAX_DST], 1);
773				if (ifa != NULL)
774					rt_maskedcopy(ifa->ifa_addr,
775						      &laddr,
776						      ifa->ifa_netmask);
777			} else
778				rt_maskedcopy(rt->rt_ifa->ifa_addr,
779					      &laddr,
780					      rt->rt_ifa->ifa_netmask);
781			/*
782			 * refactor rt and no lock operation necessary
783			 */
784			rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, rnh);
785			if (rt == NULL) {
786				RADIX_NODE_HEAD_RUNLOCK(rnh);
787				senderr(ESRCH);
788			}
789		}
790		RT_LOCK(rt);
791		RT_ADDREF(rt);
792		RADIX_NODE_HEAD_RUNLOCK(rnh);
793
794		switch(rtm->rtm_type) {
795
796		case RTM_GET:
797		report:
798			RT_LOCK_ASSERT(rt);
799			if ((rt->rt_flags & RTF_HOST) == 0
800			    ? jailed_without_vnet(curthread->td_ucred)
801			    : prison_if(curthread->td_ucred,
802			    rt_key(rt)) != 0) {
803				RT_UNLOCK(rt);
804				senderr(ESRCH);
805			}
806			info.rti_info[RTAX_DST] = rt_key(rt);
807			info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
808			info.rti_info[RTAX_NETMASK] = rt_mask(rt);
809			info.rti_info[RTAX_GENMASK] = 0;
810			if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
811				ifp = rt->rt_ifp;
812				if (ifp) {
813					info.rti_info[RTAX_IFP] =
814					    ifp->if_addr->ifa_addr;
815					error = rtm_get_jailed(&info, ifp, rt,
816					    &saun, curthread->td_ucred);
817					if (error != 0) {
818						RT_UNLOCK(rt);
819						senderr(error);
820					}
821					if (ifp->if_flags & IFF_POINTOPOINT)
822						info.rti_info[RTAX_BRD] =
823						    rt->rt_ifa->ifa_dstaddr;
824					rtm->rtm_index = ifp->if_index;
825				} else {
826					info.rti_info[RTAX_IFP] = NULL;
827					info.rti_info[RTAX_IFA] = NULL;
828				}
829			} else if ((ifp = rt->rt_ifp) != NULL) {
830				rtm->rtm_index = ifp->if_index;
831			}
832			len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
833			if (len > rtm->rtm_msglen) {
834				struct rt_msghdr *new_rtm;
835				R_Malloc(new_rtm, struct rt_msghdr *, len);
836				if (new_rtm == NULL) {
837					RT_UNLOCK(rt);
838					senderr(ENOBUFS);
839				}
840				bcopy(rtm, new_rtm, rtm->rtm_msglen);
841				Free(rtm); rtm = new_rtm;
842			}
843			(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
844			if (rt->rt_flags & RTF_GWFLAG_COMPAT)
845				rtm->rtm_flags = RTF_GATEWAY |
846					(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
847			else
848				rtm->rtm_flags = rt->rt_flags;
849			rt_getmetrics(rt, &rtm->rtm_rmx);
850			rtm->rtm_addrs = info.rti_addrs;
851			break;
852
853		case RTM_CHANGE:
854			/*
855			 * New gateway could require new ifaddr, ifp;
856			 * flags may also be different; ifp may be specified
857			 * by ll sockaddr when protocol address is ambiguous
858			 */
859			if (((rt->rt_flags & RTF_GATEWAY) &&
860			     info.rti_info[RTAX_GATEWAY] != NULL) ||
861			    info.rti_info[RTAX_IFP] != NULL ||
862			    (info.rti_info[RTAX_IFA] != NULL &&
863			     !sa_equal(info.rti_info[RTAX_IFA],
864				       rt->rt_ifa->ifa_addr))) {
865				RT_UNLOCK(rt);
866				RADIX_NODE_HEAD_LOCK(rnh);
867				error = rt_getifa_fib(&info, rt->rt_fibnum);
868				/*
869				 * XXXRW: Really we should release this
870				 * reference later, but this maintains
871				 * historical behavior.
872				 */
873				if (info.rti_ifa != NULL)
874					ifa_free(info.rti_ifa);
875				RADIX_NODE_HEAD_UNLOCK(rnh);
876				if (error != 0)
877					senderr(error);
878				RT_LOCK(rt);
879			}
880			if (info.rti_ifa != NULL &&
881			    info.rti_ifa != rt->rt_ifa &&
882			    rt->rt_ifa != NULL &&
883			    rt->rt_ifa->ifa_rtrequest != NULL) {
884				rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
885				    &info);
886				ifa_free(rt->rt_ifa);
887			}
888			if (info.rti_info[RTAX_GATEWAY] != NULL) {
889				RT_UNLOCK(rt);
890				RADIX_NODE_HEAD_LOCK(rnh);
891				RT_LOCK(rt);
892
893				error = rt_setgate(rt, rt_key(rt),
894				    info.rti_info[RTAX_GATEWAY]);
895				RADIX_NODE_HEAD_UNLOCK(rnh);
896				if (error != 0) {
897					RT_UNLOCK(rt);
898					senderr(error);
899				}
900				rt->rt_flags &= ~RTF_GATEWAY;
901				rt->rt_flags |= (RTF_GATEWAY & info.rti_flags);
902			}
903			if (info.rti_ifa != NULL &&
904			    info.rti_ifa != rt->rt_ifa) {
905				ifa_ref(info.rti_ifa);
906				rt->rt_ifa = info.rti_ifa;
907				rt->rt_ifp = info.rti_ifp;
908			}
909			/* Allow some flags to be toggled on change. */
910			rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) |
911				    (rtm->rtm_flags & RTF_FMASK);
912			rt_setmetrics(rtm, rt);
913			rtm->rtm_index = rt->rt_ifp->if_index;
914			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
915			       rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
916			/* FALLTHROUGH */
917		case RTM_LOCK:
918			/* We don't support locks anymore */
919			break;
920		}
921		RT_UNLOCK(rt);
922		break;
923
924	default:
925		senderr(EOPNOTSUPP);
926	}
927
928flush:
929	if (rtm) {
930		if (error)
931			rtm->rtm_errno = error;
932		else
933			rtm->rtm_flags |= RTF_DONE;
934	}
935	if (rt)		/* XXX can this be true? */
936		RTFREE(rt);
937    {
938	struct rawcb *rp = NULL;
939	/*
940	 * Check to see if we don't want our own messages.
941	 */
942	if ((so->so_options & SO_USELOOPBACK) == 0) {
943		if (route_cb.any_count <= 1) {
944			if (rtm)
945				Free(rtm);
946			m_freem(m);
947			return (error);
948		}
949		/* There is another listener, so construct message */
950		rp = sotorawcb(so);
951	}
952	if (rtm) {
953#ifdef INET6
954		if (rti_need_deembed) {
955			/* sin6_scope_id is recovered before sending rtm. */
956			sin6 = (struct sockaddr_in6 *)&ss;
957			for (i = 0; i < RTAX_MAX; i++) {
958				if (info.rti_info[i] == NULL)
959					continue;
960				if (info.rti_info[i]->sa_family != AF_INET6)
961					continue;
962				bcopy(info.rti_info[i], sin6, sizeof(*sin6));
963				if (sa6_recoverscope(sin6) == 0)
964					bcopy(sin6, info.rti_info[i],
965						    sizeof(*sin6));
966			}
967		}
968#endif
969		m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
970		if (m->m_pkthdr.len < rtm->rtm_msglen) {
971			m_freem(m);
972			m = NULL;
973		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
974			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
975	}
976	if (m) {
977		M_SETFIB(m, so->so_fibnum);
978		m->m_flags |= RTS_FILTER_FIB;
979		if (rp) {
980			/*
981			 * XXX insure we don't get a copy by
982			 * invalidating our protocol
983			 */
984			unsigned short family = rp->rcb_proto.sp_family;
985			rp->rcb_proto.sp_family = 0;
986			rt_dispatch(m, saf);
987			rp->rcb_proto.sp_family = family;
988		} else
989			rt_dispatch(m, saf);
990	}
991	/* info.rti_info[RTAX_DST] (used above) can point inside of rtm */
992	if (rtm)
993		Free(rtm);
994    }
995	return (error);
996#undef	sa_equal
997}
998
999static void
1000rt_setmetrics(const struct rt_msghdr *rtm, struct rtentry *rt)
1001{
1002
1003	if (rtm->rtm_inits & RTV_MTU)
1004		rt->rt_mtu = rtm->rtm_rmx.rmx_mtu;
1005	if (rtm->rtm_inits & RTV_WEIGHT)
1006		rt->rt_weight = rtm->rtm_rmx.rmx_weight;
1007	/* Kernel -> userland timebase conversion. */
1008	if (rtm->rtm_inits & RTV_EXPIRE)
1009		rt->rt_expire = rtm->rtm_rmx.rmx_expire ?
1010		    rtm->rtm_rmx.rmx_expire - time_second + time_uptime : 0;
1011}
1012
1013static void
1014rt_getmetrics(const struct rtentry *rt, struct rt_metrics *out)
1015{
1016
1017	bzero(out, sizeof(*out));
1018	out->rmx_mtu = rt->rt_mtu;
1019	out->rmx_weight = rt->rt_weight;
1020	out->rmx_pksent = counter_u64_fetch(rt->rt_pksent);
1021	/* Kernel -> userland timebase conversion. */
1022	out->rmx_expire = rt->rt_expire ?
1023	    rt->rt_expire - time_uptime + time_second : 0;
1024}
1025
1026/*
1027 * Extract the addresses of the passed sockaddrs.
1028 * Do a little sanity checking so as to avoid bad memory references.
1029 * This data is derived straight from userland.
1030 */
1031static int
1032rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1033{
1034	struct sockaddr *sa;
1035	int i;
1036
1037	for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1038		if ((rtinfo->rti_addrs & (1 << i)) == 0)
1039			continue;
1040		sa = (struct sockaddr *)cp;
1041		/*
1042		 * It won't fit.
1043		 */
1044		if (cp + sa->sa_len > cplim)
1045			return (EINVAL);
1046		/*
1047		 * there are no more.. quit now
1048		 * If there are more bits, they are in error.
1049		 * I've seen this. route(1) can evidently generate these.
1050		 * This causes kernel to core dump.
1051		 * for compatibility, If we see this, point to a safe address.
1052		 */
1053		if (sa->sa_len == 0) {
1054			rtinfo->rti_info[i] = &sa_zero;
1055			return (0); /* should be EINVAL but for compat */
1056		}
1057		/* accept it */
1058#ifdef INET6
1059		if (sa->sa_family == AF_INET6)
1060			sa6_embedscope((struct sockaddr_in6 *)sa,
1061			    V_ip6_use_defzone);
1062#endif
1063		rtinfo->rti_info[i] = sa;
1064		cp += SA_SIZE(sa);
1065	}
1066	return (0);
1067}
1068
1069/*
1070 * Used by the routing socket.
1071 */
1072static struct mbuf *
1073rt_msg1(int type, struct rt_addrinfo *rtinfo)
1074{
1075	struct rt_msghdr *rtm;
1076	struct mbuf *m;
1077	int i;
1078	struct sockaddr *sa;
1079#ifdef INET6
1080	struct sockaddr_storage ss;
1081	struct sockaddr_in6 *sin6;
1082#endif
1083	int len, dlen;
1084
1085	switch (type) {
1086
1087	case RTM_DELADDR:
1088	case RTM_NEWADDR:
1089		len = sizeof(struct ifa_msghdr);
1090		break;
1091
1092	case RTM_DELMADDR:
1093	case RTM_NEWMADDR:
1094		len = sizeof(struct ifma_msghdr);
1095		break;
1096
1097	case RTM_IFINFO:
1098		len = sizeof(struct if_msghdr);
1099		break;
1100
1101	case RTM_IFANNOUNCE:
1102	case RTM_IEEE80211:
1103		len = sizeof(struct if_announcemsghdr);
1104		break;
1105
1106	default:
1107		len = sizeof(struct rt_msghdr);
1108	}
1109
1110	/* XXXGL: can we use MJUMPAGESIZE cluster here? */
1111	KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1112	if (len > MHLEN)
1113		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1114	else
1115		m = m_gethdr(M_NOWAIT, MT_DATA);
1116	if (m == NULL)
1117		return (m);
1118
1119	m->m_pkthdr.len = m->m_len = len;
1120	rtm = mtod(m, struct rt_msghdr *);
1121	bzero((caddr_t)rtm, len);
1122	for (i = 0; i < RTAX_MAX; i++) {
1123		if ((sa = rtinfo->rti_info[i]) == NULL)
1124			continue;
1125		rtinfo->rti_addrs |= (1 << i);
1126		dlen = SA_SIZE(sa);
1127#ifdef INET6
1128		if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1129			sin6 = (struct sockaddr_in6 *)&ss;
1130			bcopy(sa, sin6, sizeof(*sin6));
1131			if (sa6_recoverscope(sin6) == 0)
1132				sa = (struct sockaddr *)sin6;
1133		}
1134#endif
1135		m_copyback(m, len, dlen, (caddr_t)sa);
1136		len += dlen;
1137	}
1138	if (m->m_pkthdr.len != len) {
1139		m_freem(m);
1140		return (NULL);
1141	}
1142	rtm->rtm_msglen = len;
1143	rtm->rtm_version = RTM_VERSION;
1144	rtm->rtm_type = type;
1145	return (m);
1146}
1147
1148/*
1149 * Used by the sysctl code and routing socket.
1150 */
1151static int
1152rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
1153{
1154	int i;
1155	int len, dlen, second_time = 0;
1156	caddr_t cp0;
1157#ifdef INET6
1158	struct sockaddr_storage ss;
1159	struct sockaddr_in6 *sin6;
1160#endif
1161
1162	rtinfo->rti_addrs = 0;
1163again:
1164	switch (type) {
1165
1166	case RTM_DELADDR:
1167	case RTM_NEWADDR:
1168		if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1169#ifdef COMPAT_FREEBSD32
1170			if (w->w_req->flags & SCTL_MASK32)
1171				len = sizeof(struct ifa_msghdrl32);
1172			else
1173#endif
1174				len = sizeof(struct ifa_msghdrl);
1175		} else
1176			len = sizeof(struct ifa_msghdr);
1177		break;
1178
1179	case RTM_IFINFO:
1180#ifdef COMPAT_FREEBSD32
1181		if (w != NULL && w->w_req->flags & SCTL_MASK32) {
1182			if (w->w_op == NET_RT_IFLISTL)
1183				len = sizeof(struct if_msghdrl32);
1184			else
1185				len = sizeof(struct if_msghdr32);
1186			break;
1187		}
1188#endif
1189		if (w != NULL && w->w_op == NET_RT_IFLISTL)
1190			len = sizeof(struct if_msghdrl);
1191		else
1192			len = sizeof(struct if_msghdr);
1193		break;
1194
1195	case RTM_NEWMADDR:
1196		len = sizeof(struct ifma_msghdr);
1197		break;
1198
1199	default:
1200		len = sizeof(struct rt_msghdr);
1201	}
1202	cp0 = cp;
1203	if (cp0)
1204		cp += len;
1205	for (i = 0; i < RTAX_MAX; i++) {
1206		struct sockaddr *sa;
1207
1208		if ((sa = rtinfo->rti_info[i]) == NULL)
1209			continue;
1210		rtinfo->rti_addrs |= (1 << i);
1211		dlen = SA_SIZE(sa);
1212		if (cp) {
1213#ifdef INET6
1214			if (V_deembed_scopeid && sa->sa_family == AF_INET6) {
1215				sin6 = (struct sockaddr_in6 *)&ss;
1216				bcopy(sa, sin6, sizeof(*sin6));
1217				if (sa6_recoverscope(sin6) == 0)
1218					sa = (struct sockaddr *)sin6;
1219			}
1220#endif
1221			bcopy((caddr_t)sa, cp, (unsigned)dlen);
1222			cp += dlen;
1223		}
1224		len += dlen;
1225	}
1226	len = ALIGN(len);
1227	if (cp == NULL && w != NULL && !second_time) {
1228		struct walkarg *rw = w;
1229
1230		if (rw->w_req) {
1231			if (rw->w_tmemsize < len) {
1232				if (rw->w_tmem)
1233					free(rw->w_tmem, M_RTABLE);
1234				rw->w_tmem = (caddr_t)
1235					malloc(len, M_RTABLE, M_NOWAIT);
1236				if (rw->w_tmem)
1237					rw->w_tmemsize = len;
1238			}
1239			if (rw->w_tmem) {
1240				cp = rw->w_tmem;
1241				second_time = 1;
1242				goto again;
1243			}
1244		}
1245	}
1246	if (cp) {
1247		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
1248
1249		rtm->rtm_version = RTM_VERSION;
1250		rtm->rtm_type = type;
1251		rtm->rtm_msglen = len;
1252	}
1253	return (len);
1254}
1255
1256/*
1257 * This routine is called to generate a message from the routing
1258 * socket indicating that a redirect has occured, a routing lookup
1259 * has failed, or that a protocol has detected timeouts to a particular
1260 * destination.
1261 */
1262void
1263rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1264    int fibnum)
1265{
1266	struct rt_msghdr *rtm;
1267	struct mbuf *m;
1268	struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1269
1270	if (route_cb.any_count == 0)
1271		return;
1272	m = rt_msg1(type, rtinfo);
1273	if (m == NULL)
1274		return;
1275
1276	if (fibnum != RT_ALL_FIBS) {
1277		KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1278		    "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1279		M_SETFIB(m, fibnum);
1280		m->m_flags |= RTS_FILTER_FIB;
1281	}
1282
1283	rtm = mtod(m, struct rt_msghdr *);
1284	rtm->rtm_flags = RTF_DONE | flags;
1285	rtm->rtm_errno = error;
1286	rtm->rtm_addrs = rtinfo->rti_addrs;
1287	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1288}
1289
1290void
1291rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1292{
1293
1294	rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1295}
1296
1297/*
1298 * This routine is called to generate a message from the routing
1299 * socket indicating that the status of a network interface has changed.
1300 */
1301void
1302rt_ifmsg(struct ifnet *ifp)
1303{
1304	struct if_msghdr *ifm;
1305	struct mbuf *m;
1306	struct rt_addrinfo info;
1307
1308	if (route_cb.any_count == 0)
1309		return;
1310	bzero((caddr_t)&info, sizeof(info));
1311	m = rt_msg1(RTM_IFINFO, &info);
1312	if (m == NULL)
1313		return;
1314	ifm = mtod(m, struct if_msghdr *);
1315	ifm->ifm_index = ifp->if_index;
1316	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1317	ifm->ifm_data = ifp->if_data;
1318	ifm->ifm_addrs = 0;
1319	rt_dispatch(m, AF_UNSPEC);
1320}
1321
1322/*
1323 * Announce interface address arrival/withdraw.
1324 * Please do not call directly, use rt_addrmsg().
1325 * Assume input data to be valid.
1326 * Returns 0 on success.
1327 */
1328int
1329rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1330{
1331	struct rt_addrinfo info;
1332	struct sockaddr *sa;
1333	int ncmd;
1334	struct mbuf *m;
1335	struct ifa_msghdr *ifam;
1336	struct ifnet *ifp = ifa->ifa_ifp;
1337
1338	if (route_cb.any_count == 0)
1339		return (0);
1340
1341	ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
1342
1343	bzero((caddr_t)&info, sizeof(info));
1344	info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
1345	info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
1346	info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1347	info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1348	if ((m = rt_msg1(ncmd, &info)) == NULL)
1349		return (ENOBUFS);
1350	ifam = mtod(m, struct ifa_msghdr *);
1351	ifam->ifam_index = ifp->if_index;
1352	ifam->ifam_metric = ifa->ifa_metric;
1353	ifam->ifam_flags = ifa->ifa_flags;
1354	ifam->ifam_addrs = info.rti_addrs;
1355
1356	if (fibnum != RT_ALL_FIBS) {
1357		M_SETFIB(m, fibnum);
1358		m->m_flags |= RTS_FILTER_FIB;
1359	}
1360
1361	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1362
1363	return (0);
1364}
1365
1366/*
1367 * Announce route addition/removal.
1368 * Please do not call directly, use rt_routemsg().
1369 * Note that @rt data MAY be inconsistent/invalid:
1370 * if some userland app sends us "invalid" route message (invalid mask,
1371 * no dst, wrong address families, etc...) we need to pass it back
1372 * to app (and any other rtsock consumers) with rtm_errno field set to
1373 * non-zero value.
1374 *
1375 * Returns 0 on success.
1376 */
1377int
1378rtsock_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt,
1379    int fibnum)
1380{
1381	struct rt_addrinfo info;
1382	struct sockaddr *sa;
1383	struct mbuf *m;
1384	struct rt_msghdr *rtm;
1385
1386	if (route_cb.any_count == 0)
1387		return (0);
1388
1389	bzero((caddr_t)&info, sizeof(info));
1390	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1391	info.rti_info[RTAX_DST] = sa = rt_key(rt);
1392	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1393	if ((m = rt_msg1(cmd, &info)) == NULL)
1394		return (ENOBUFS);
1395	rtm = mtod(m, struct rt_msghdr *);
1396	rtm->rtm_index = ifp->if_index;
1397	rtm->rtm_flags |= rt->rt_flags;
1398	rtm->rtm_errno = error;
1399	rtm->rtm_addrs = info.rti_addrs;
1400
1401	if (fibnum != RT_ALL_FIBS) {
1402		M_SETFIB(m, fibnum);
1403		m->m_flags |= RTS_FILTER_FIB;
1404	}
1405
1406	rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1407
1408	return (0);
1409}
1410
1411/*
1412 * This is the analogue to the rt_newaddrmsg which performs the same
1413 * function but for multicast group memberhips.  This is easier since
1414 * there is no route state to worry about.
1415 */
1416void
1417rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
1418{
1419	struct rt_addrinfo info;
1420	struct mbuf *m = NULL;
1421	struct ifnet *ifp = ifma->ifma_ifp;
1422	struct ifma_msghdr *ifmam;
1423
1424	if (route_cb.any_count == 0)
1425		return;
1426
1427	bzero((caddr_t)&info, sizeof(info));
1428	info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1429	info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
1430	/*
1431	 * If a link-layer address is present, present it as a ``gateway''
1432	 * (similarly to how ARP entries, e.g., are presented).
1433	 */
1434	info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
1435	m = rt_msg1(cmd, &info);
1436	if (m == NULL)
1437		return;
1438	ifmam = mtod(m, struct ifma_msghdr *);
1439	KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
1440	    __func__));
1441	ifmam->ifmam_index = ifp->if_index;
1442	ifmam->ifmam_addrs = info.rti_addrs;
1443	rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
1444}
1445
1446static struct mbuf *
1447rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1448	struct rt_addrinfo *info)
1449{
1450	struct if_announcemsghdr *ifan;
1451	struct mbuf *m;
1452
1453	if (route_cb.any_count == 0)
1454		return NULL;
1455	bzero((caddr_t)info, sizeof(*info));
1456	m = rt_msg1(type, info);
1457	if (m != NULL) {
1458		ifan = mtod(m, struct if_announcemsghdr *);
1459		ifan->ifan_index = ifp->if_index;
1460		strlcpy(ifan->ifan_name, ifp->if_xname,
1461			sizeof(ifan->ifan_name));
1462		ifan->ifan_what = what;
1463	}
1464	return m;
1465}
1466
1467/*
1468 * This is called to generate routing socket messages indicating
1469 * IEEE80211 wireless events.
1470 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1471 */
1472void
1473rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1474{
1475	struct mbuf *m;
1476	struct rt_addrinfo info;
1477
1478	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1479	if (m != NULL) {
1480		/*
1481		 * Append the ieee80211 data.  Try to stick it in the
1482		 * mbuf containing the ifannounce msg; otherwise allocate
1483		 * a new mbuf and append.
1484		 *
1485		 * NB: we assume m is a single mbuf.
1486		 */
1487		if (data_len > M_TRAILINGSPACE(m)) {
1488			struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1489			if (n == NULL) {
1490				m_freem(m);
1491				return;
1492			}
1493			bcopy(data, mtod(n, void *), data_len);
1494			n->m_len = data_len;
1495			m->m_next = n;
1496		} else if (data_len > 0) {
1497			bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1498			m->m_len += data_len;
1499		}
1500		if (m->m_flags & M_PKTHDR)
1501			m->m_pkthdr.len += data_len;
1502		mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1503		rt_dispatch(m, AF_UNSPEC);
1504	}
1505}
1506
1507/*
1508 * This is called to generate routing socket messages indicating
1509 * network interface arrival and departure.
1510 */
1511void
1512rt_ifannouncemsg(struct ifnet *ifp, int what)
1513{
1514	struct mbuf *m;
1515	struct rt_addrinfo info;
1516
1517	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1518	if (m != NULL)
1519		rt_dispatch(m, AF_UNSPEC);
1520}
1521
1522static void
1523rt_dispatch(struct mbuf *m, sa_family_t saf)
1524{
1525	struct m_tag *tag;
1526
1527	/*
1528	 * Preserve the family from the sockaddr, if any, in an m_tag for
1529	 * use when injecting the mbuf into the routing socket buffer from
1530	 * the netisr.
1531	 */
1532	if (saf != AF_UNSPEC) {
1533		tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1534		    M_NOWAIT);
1535		if (tag == NULL) {
1536			m_freem(m);
1537			return;
1538		}
1539		*(unsigned short *)(tag + 1) = saf;
1540		m_tag_prepend(m, tag);
1541	}
1542#ifdef VIMAGE
1543	if (V_loif)
1544		m->m_pkthdr.rcvif = V_loif;
1545	else {
1546		m_freem(m);
1547		return;
1548	}
1549#endif
1550	netisr_queue(NETISR_ROUTE, m);	/* mbuf is free'd on failure. */
1551}
1552
1553/*
1554 * This is used in dumping the kernel table via sysctl().
1555 */
1556static int
1557sysctl_dumpentry(struct radix_node *rn, void *vw)
1558{
1559	struct walkarg *w = vw;
1560	struct rtentry *rt = (struct rtentry *)rn;
1561	int error = 0, size;
1562	struct rt_addrinfo info;
1563
1564	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1565		return 0;
1566	if ((rt->rt_flags & RTF_HOST) == 0
1567	    ? jailed_without_vnet(w->w_req->td->td_ucred)
1568	    : prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
1569		return (0);
1570	bzero((caddr_t)&info, sizeof(info));
1571	info.rti_info[RTAX_DST] = rt_key(rt);
1572	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1573	info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1574	info.rti_info[RTAX_GENMASK] = 0;
1575	if (rt->rt_ifp) {
1576		info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1577		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1578		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1579			info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1580	}
1581	size = rt_msg2(RTM_GET, &info, NULL, w);
1582	if (w->w_req && w->w_tmem) {
1583		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1584
1585		if (rt->rt_flags & RTF_GWFLAG_COMPAT)
1586			rtm->rtm_flags = RTF_GATEWAY |
1587				(rt->rt_flags & ~RTF_GWFLAG_COMPAT);
1588		else
1589			rtm->rtm_flags = rt->rt_flags;
1590		rt_getmetrics(rt, &rtm->rtm_rmx);
1591		rtm->rtm_index = rt->rt_ifp->if_index;
1592		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1593		rtm->rtm_addrs = info.rti_addrs;
1594		error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1595		return (error);
1596	}
1597	return (error);
1598}
1599
1600#ifdef COMPAT_FREEBSD32
1601static void
1602copy_ifdata32(struct if_data *src, struct if_data32 *dst)
1603{
1604
1605	bzero(dst, sizeof(*dst));
1606	CP(*src, *dst, ifi_type);
1607	CP(*src, *dst, ifi_physical);
1608	CP(*src, *dst, ifi_addrlen);
1609	CP(*src, *dst, ifi_hdrlen);
1610	CP(*src, *dst, ifi_link_state);
1611	CP(*src, *dst, ifi_vhid);
1612	CP(*src, *dst, ifi_baudrate_pf);
1613	dst->ifi_datalen = sizeof(struct if_data32);
1614	CP(*src, *dst, ifi_mtu);
1615	CP(*src, *dst, ifi_metric);
1616	CP(*src, *dst, ifi_baudrate);
1617	CP(*src, *dst, ifi_ipackets);
1618	CP(*src, *dst, ifi_ierrors);
1619	CP(*src, *dst, ifi_opackets);
1620	CP(*src, *dst, ifi_oerrors);
1621	CP(*src, *dst, ifi_collisions);
1622	CP(*src, *dst, ifi_ibytes);
1623	CP(*src, *dst, ifi_obytes);
1624	CP(*src, *dst, ifi_imcasts);
1625	CP(*src, *dst, ifi_omcasts);
1626	CP(*src, *dst, ifi_iqdrops);
1627	CP(*src, *dst, ifi_noproto);
1628	CP(*src, *dst, ifi_hwassist);
1629	CP(*src, *dst, ifi_epoch);
1630	TV_CP(*src, *dst, ifi_lastchange);
1631}
1632#endif
1633
1634static int
1635sysctl_iflist_ifml(struct ifnet *ifp, struct rt_addrinfo *info,
1636    struct walkarg *w, int len)
1637{
1638	struct if_msghdrl *ifm;
1639
1640#ifdef COMPAT_FREEBSD32
1641	if (w->w_req->flags & SCTL_MASK32) {
1642		struct if_msghdrl32 *ifm32;
1643
1644		ifm32 = (struct if_msghdrl32 *)w->w_tmem;
1645		ifm32->ifm_addrs = info->rti_addrs;
1646		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1647		ifm32->ifm_index = ifp->if_index;
1648		ifm32->_ifm_spare1 = 0;
1649		ifm32->ifm_len = sizeof(*ifm32);
1650		ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
1651
1652		copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
1653		/* Fixup if_data carp(4) vhid. */
1654		if (carp_get_vhid_p != NULL)
1655			ifm32->ifm_data.ifi_vhid =
1656			    (*carp_get_vhid_p)(ifp->if_addr);
1657		ifm32->ifm_data.ifi_oqdrops = ifp->if_snd.ifq_drops;
1658
1659		return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
1660	}
1661#endif
1662	ifm = (struct if_msghdrl *)w->w_tmem;
1663	ifm->ifm_addrs = info->rti_addrs;
1664	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1665	ifm->ifm_index = ifp->if_index;
1666	ifm->_ifm_spare1 = 0;
1667	ifm->ifm_len = sizeof(*ifm);
1668	ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
1669
1670	ifm->ifm_data = ifp->if_data;
1671	/* Fixup if_data carp(4) vhid. */
1672	if (carp_get_vhid_p != NULL)
1673		ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr);
1674
1675	ifm->ifm_data.ifi_datalen += sizeof(u_long);
1676	ifm->ifi_oqdrops = ifp->if_snd.ifq_drops;
1677
1678	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1679}
1680
1681static int
1682sysctl_iflist_ifm(struct ifnet *ifp, struct rt_addrinfo *info,
1683    struct walkarg *w, int len)
1684{
1685	struct if_msghdr *ifm;
1686
1687#ifdef COMPAT_FREEBSD32
1688	if (w->w_req->flags & SCTL_MASK32) {
1689		struct if_msghdr32 *ifm32;
1690
1691		ifm32 = (struct if_msghdr32 *)w->w_tmem;
1692		ifm32->ifm_addrs = info->rti_addrs;
1693		ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1694		ifm32->ifm_index = ifp->if_index;
1695
1696		copy_ifdata32(&ifp->if_data, &ifm32->ifm_data);
1697		/* Fixup if_data carp(4) vhid. */
1698		if (carp_get_vhid_p != NULL)
1699			ifm32->ifm_data.ifi_vhid =
1700			    (*carp_get_vhid_p)(ifp->if_addr);
1701
1702		return (SYSCTL_OUT(w->w_req, (caddr_t)ifm32, len));
1703	}
1704#endif
1705	ifm = (struct if_msghdr *)w->w_tmem;
1706	ifm->ifm_addrs = info->rti_addrs;
1707	ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1708	ifm->ifm_index = ifp->if_index;
1709
1710	ifm->ifm_data = ifp->if_data;
1711	/* Fixup if_data carp(4) vhid. */
1712	if (carp_get_vhid_p != NULL)
1713		ifm->ifm_data.ifi_vhid = (*carp_get_vhid_p)(ifp->if_addr);
1714
1715	return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
1716}
1717
1718static int
1719sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
1720    struct walkarg *w, int len)
1721{
1722	struct ifa_msghdrl *ifam;
1723
1724#ifdef COMPAT_FREEBSD32
1725	if (w->w_req->flags & SCTL_MASK32) {
1726		struct ifa_msghdrl32 *ifam32;
1727
1728		ifam32 = (struct ifa_msghdrl32 *)w->w_tmem;
1729		ifam32->ifam_addrs = info->rti_addrs;
1730		ifam32->ifam_flags = ifa->ifa_flags;
1731		ifam32->ifam_index = ifa->ifa_ifp->if_index;
1732		ifam32->_ifam_spare1 = 0;
1733		ifam32->ifam_len = sizeof(*ifam32);
1734		ifam32->ifam_data_off =
1735		    offsetof(struct ifa_msghdrl32, ifam_data);
1736		ifam32->ifam_metric = ifa->ifa_metric;
1737
1738		copy_ifdata32(&ifa->ifa_ifp->if_data, &ifam32->ifam_data);
1739		/* Fixup if_data carp(4) vhid. */
1740		if (carp_get_vhid_p != NULL)
1741			ifam32->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa);
1742
1743		return (SYSCTL_OUT(w->w_req, (caddr_t)ifam32, len));
1744	}
1745#endif
1746
1747	ifam = (struct ifa_msghdrl *)w->w_tmem;
1748	ifam->ifam_addrs = info->rti_addrs;
1749	ifam->ifam_flags = ifa->ifa_flags;
1750	ifam->ifam_index = ifa->ifa_ifp->if_index;
1751	ifam->_ifam_spare1 = 0;
1752	ifam->ifam_len = sizeof(*ifam);
1753	ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
1754	ifam->ifam_metric = ifa->ifa_metric;
1755
1756	ifam->ifam_data = ifa->if_data;
1757	/* Fixup if_data carp(4) vhid. */
1758	if (carp_get_vhid_p != NULL)
1759		ifam->ifam_data.ifi_vhid = (*carp_get_vhid_p)(ifa);
1760
1761	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1762}
1763
1764static int
1765sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
1766    struct walkarg *w, int len)
1767{
1768	struct ifa_msghdr *ifam;
1769
1770	ifam = (struct ifa_msghdr *)w->w_tmem;
1771	ifam->ifam_addrs = info->rti_addrs;
1772	ifam->ifam_flags = ifa->ifa_flags;
1773	ifam->ifam_index = ifa->ifa_ifp->if_index;
1774	ifam->ifam_metric = ifa->ifa_metric;
1775
1776	return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
1777}
1778
1779static int
1780sysctl_iflist(int af, struct walkarg *w)
1781{
1782	struct ifnet *ifp;
1783	struct ifaddr *ifa;
1784	struct rt_addrinfo info;
1785	int len, error = 0;
1786
1787	bzero((caddr_t)&info, sizeof(info));
1788	IFNET_RLOCK_NOSLEEP();
1789	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1790		if (w->w_arg && w->w_arg != ifp->if_index)
1791			continue;
1792		IF_ADDR_RLOCK(ifp);
1793		ifa = ifp->if_addr;
1794		info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1795		len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1796		info.rti_info[RTAX_IFP] = NULL;
1797		if (w->w_req && w->w_tmem) {
1798			if (w->w_op == NET_RT_IFLISTL)
1799				error = sysctl_iflist_ifml(ifp, &info, w, len);
1800			else
1801				error = sysctl_iflist_ifm(ifp, &info, w, len);
1802			if (error)
1803				goto done;
1804		}
1805		while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1806			if (af && af != ifa->ifa_addr->sa_family)
1807				continue;
1808			if (prison_if(w->w_req->td->td_ucred,
1809			    ifa->ifa_addr) != 0)
1810				continue;
1811			info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1812			info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1813			info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1814			len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1815			if (w->w_req && w->w_tmem) {
1816				if (w->w_op == NET_RT_IFLISTL)
1817					error = sysctl_iflist_ifaml(ifa, &info,
1818					    w, len);
1819				else
1820					error = sysctl_iflist_ifam(ifa, &info,
1821					    w, len);
1822				if (error)
1823					goto done;
1824			}
1825		}
1826		IF_ADDR_RUNLOCK(ifp);
1827		info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1828			info.rti_info[RTAX_BRD] = NULL;
1829	}
1830done:
1831	if (ifp != NULL)
1832		IF_ADDR_RUNLOCK(ifp);
1833	IFNET_RUNLOCK_NOSLEEP();
1834	return (error);
1835}
1836
1837static int
1838sysctl_ifmalist(int af, struct walkarg *w)
1839{
1840	struct ifnet *ifp;
1841	struct ifmultiaddr *ifma;
1842	struct	rt_addrinfo info;
1843	int	len, error = 0;
1844	struct ifaddr *ifa;
1845
1846	bzero((caddr_t)&info, sizeof(info));
1847	IFNET_RLOCK_NOSLEEP();
1848	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1849		if (w->w_arg && w->w_arg != ifp->if_index)
1850			continue;
1851		ifa = ifp->if_addr;
1852		info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1853		IF_ADDR_RLOCK(ifp);
1854		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1855			if (af && af != ifma->ifma_addr->sa_family)
1856				continue;
1857			if (prison_if(w->w_req->td->td_ucred,
1858			    ifma->ifma_addr) != 0)
1859				continue;
1860			info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1861			info.rti_info[RTAX_GATEWAY] =
1862			    (ifma->ifma_addr->sa_family != AF_LINK) ?
1863			    ifma->ifma_lladdr : NULL;
1864			len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1865			if (w->w_req && w->w_tmem) {
1866				struct ifma_msghdr *ifmam;
1867
1868				ifmam = (struct ifma_msghdr *)w->w_tmem;
1869				ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1870				ifmam->ifmam_flags = 0;
1871				ifmam->ifmam_addrs = info.rti_addrs;
1872				error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1873				if (error) {
1874					IF_ADDR_RUNLOCK(ifp);
1875					goto done;
1876				}
1877			}
1878		}
1879		IF_ADDR_RUNLOCK(ifp);
1880	}
1881done:
1882	IFNET_RUNLOCK_NOSLEEP();
1883	return (error);
1884}
1885
1886static int
1887sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1888{
1889	int	*name = (int *)arg1;
1890	u_int	namelen = arg2;
1891	struct radix_node_head *rnh = NULL; /* silence compiler. */
1892	int	i, lim, error = EINVAL;
1893	int	fib = 0;
1894	u_char	af;
1895	struct	walkarg w;
1896
1897	name ++;
1898	namelen--;
1899	if (req->newptr)
1900		return (EPERM);
1901	if (name[1] == NET_RT_DUMP) {
1902		if (namelen == 3)
1903			fib = req->td->td_proc->p_fibnum;
1904		else if (namelen == 4)
1905			fib = (name[3] == RT_ALL_FIBS) ?
1906			    req->td->td_proc->p_fibnum : name[3];
1907		else
1908			return ((namelen < 3) ? EISDIR : ENOTDIR);
1909		if (fib < 0 || fib >= rt_numfibs)
1910			return (EINVAL);
1911	} else if (namelen != 3)
1912		return ((namelen < 3) ? EISDIR : ENOTDIR);
1913	af = name[0];
1914	if (af > AF_MAX)
1915		return (EINVAL);
1916	bzero(&w, sizeof(w));
1917	w.w_op = name[1];
1918	w.w_arg = name[2];
1919	w.w_req = req;
1920
1921	error = sysctl_wire_old_buffer(req, 0);
1922	if (error)
1923		return (error);
1924	switch (w.w_op) {
1925
1926	case NET_RT_DUMP:
1927	case NET_RT_FLAGS:
1928		if (af == 0) {			/* dump all tables */
1929			i = 1;
1930			lim = AF_MAX;
1931		} else				/* dump only one table */
1932			i = lim = af;
1933
1934		/*
1935		 * take care of llinfo entries, the caller must
1936		 * specify an AF
1937		 */
1938		if (w.w_op == NET_RT_FLAGS &&
1939		    (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
1940			if (af != 0)
1941				error = lltable_sysctl_dumparp(af, w.w_req);
1942			else
1943				error = EINVAL;
1944			break;
1945		}
1946		/*
1947		 * take care of routing entries
1948		 */
1949		for (error = 0; error == 0 && i <= lim; i++) {
1950			rnh = rt_tables_get_rnh(fib, i);
1951			if (rnh != NULL) {
1952				RADIX_NODE_HEAD_RLOCK(rnh);
1953			    	error = rnh->rnh_walktree(rnh,
1954				    sysctl_dumpentry, &w);
1955				RADIX_NODE_HEAD_RUNLOCK(rnh);
1956			} else if (af != 0)
1957				error = EAFNOSUPPORT;
1958		}
1959		break;
1960
1961	case NET_RT_IFLIST:
1962	case NET_RT_IFLISTL:
1963		error = sysctl_iflist(af, &w);
1964		break;
1965
1966	case NET_RT_IFMALIST:
1967		error = sysctl_ifmalist(af, &w);
1968		break;
1969	}
1970	if (w.w_tmem)
1971		free(w.w_tmem, M_RTABLE);
1972	return (error);
1973}
1974
1975static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1976
1977/*
1978 * Definitions of protocols supported in the ROUTE domain.
1979 */
1980
1981static struct domain routedomain;		/* or at least forward */
1982
1983static struct protosw routesw[] = {
1984{
1985	.pr_type =		SOCK_RAW,
1986	.pr_domain =		&routedomain,
1987	.pr_flags =		PR_ATOMIC|PR_ADDR,
1988	.pr_output =		route_output,
1989	.pr_ctlinput =		raw_ctlinput,
1990	.pr_init =		raw_init,
1991	.pr_usrreqs =		&route_usrreqs
1992}
1993};
1994
1995static struct domain routedomain = {
1996	.dom_family =		PF_ROUTE,
1997	.dom_name =		 "route",
1998	.dom_protosw =		routesw,
1999	.dom_protoswNPROTOSW =	&routesw[sizeof(routesw)/sizeof(routesw[0])]
2000};
2001
2002VNET_DOMAIN_SET(route);
2003