1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11 * Copyright (c) 2013, 2014 The FreeBSD Foundation
12 *
13 * Portions of this software were developed by Konstantin Belousov
14 * under sponsorship from the FreeBSD Foundation.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/disk.h>
49#include <sys/fcntl.h>
50#include <sys/file.h>
51#include <sys/kdb.h>
52#include <sys/stat.h>
53#include <sys/priv.h>
54#include <sys/proc.h>
55#include <sys/limits.h>
56#include <sys/lock.h>
57#include <sys/mount.h>
58#include <sys/mutex.h>
59#include <sys/namei.h>
60#include <sys/vnode.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/filio.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sx.h>
67#include <sys/sysctl.h>
68#include <sys/ttycom.h>
69#include <sys/conf.h>
70#include <sys/syslog.h>
71#include <sys/unistd.h>
72
73#include <security/audit/audit.h>
74#include <security/mac/mac_framework.h>
75
76#include <vm/vm.h>
77#include <vm/vm_extern.h>
78#include <vm/pmap.h>
79#include <vm/vm_map.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82
83static fo_rdwr_t	vn_read;
84static fo_rdwr_t	vn_write;
85static fo_rdwr_t	vn_io_fault;
86static fo_truncate_t	vn_truncate;
87static fo_ioctl_t	vn_ioctl;
88static fo_poll_t	vn_poll;
89static fo_kqfilter_t	vn_kqfilter;
90static fo_stat_t	vn_statfile;
91static fo_close_t	vn_closefile;
92
93struct 	fileops vnops = {
94	.fo_read = vn_io_fault,
95	.fo_write = vn_io_fault,
96	.fo_truncate = vn_truncate,
97	.fo_ioctl = vn_ioctl,
98	.fo_poll = vn_poll,
99	.fo_kqfilter = vn_kqfilter,
100	.fo_stat = vn_statfile,
101	.fo_close = vn_closefile,
102	.fo_chmod = vn_chmod,
103	.fo_chown = vn_chown,
104	.fo_sendfile = vn_sendfile,
105	.fo_seek = vn_seek,
106	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107};
108
109static const int io_hold_cnt = 16;
110static int vn_io_fault_enable = 1;
111SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112    &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113static u_long vn_io_faults_cnt;
114SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
115    &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
116
117/*
118 * Returns true if vn_io_fault mode of handling the i/o request should
119 * be used.
120 */
121static bool
122do_vn_io_fault(struct vnode *vp, struct uio *uio)
123{
124	struct mount *mp;
125
126	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
127	    (mp = vp->v_mount) != NULL &&
128	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
129}
130
131/*
132 * Structure used to pass arguments to vn_io_fault1(), to do either
133 * file- or vnode-based I/O calls.
134 */
135struct vn_io_fault_args {
136	enum {
137		VN_IO_FAULT_FOP,
138		VN_IO_FAULT_VOP
139	} kind;
140	struct ucred *cred;
141	int flags;
142	union {
143		struct fop_args_tag {
144			struct file *fp;
145			fo_rdwr_t *doio;
146		} fop_args;
147		struct vop_args_tag {
148			struct vnode *vp;
149		} vop_args;
150	} args;
151};
152
153static int vn_io_fault1(struct vnode *vp, struct uio *uio,
154    struct vn_io_fault_args *args, struct thread *td);
155
156int
157vn_open(ndp, flagp, cmode, fp)
158	struct nameidata *ndp;
159	int *flagp, cmode;
160	struct file *fp;
161{
162	struct thread *td = ndp->ni_cnd.cn_thread;
163
164	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
165}
166
167/*
168 * Common code for vnode open operations via a name lookup.
169 * Lookup the vnode and invoke VOP_CREATE if needed.
170 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
171 *
172 * Note that this does NOT free nameidata for the successful case,
173 * due to the NDINIT being done elsewhere.
174 */
175int
176vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
177    struct ucred *cred, struct file *fp)
178{
179	struct vnode *vp;
180	struct mount *mp;
181	struct thread *td = ndp->ni_cnd.cn_thread;
182	struct vattr vat;
183	struct vattr *vap = &vat;
184	int fmode, error;
185
186restart:
187	fmode = *flagp;
188	if (fmode & O_CREAT) {
189		ndp->ni_cnd.cn_nameiop = CREATE;
190		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
191		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
192			ndp->ni_cnd.cn_flags |= FOLLOW;
193		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
194			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
195		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
196			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
197		bwillwrite();
198		if ((error = namei(ndp)) != 0)
199			return (error);
200		if (ndp->ni_vp == NULL) {
201			VATTR_NULL(vap);
202			vap->va_type = VREG;
203			vap->va_mode = cmode;
204			if (fmode & O_EXCL)
205				vap->va_vaflags |= VA_EXCLUSIVE;
206			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
207				NDFREE(ndp, NDF_ONLY_PNBUF);
208				vput(ndp->ni_dvp);
209				if ((error = vn_start_write(NULL, &mp,
210				    V_XSLEEP | PCATCH)) != 0)
211					return (error);
212				goto restart;
213			}
214#ifdef MAC
215			error = mac_vnode_check_create(cred, ndp->ni_dvp,
216			    &ndp->ni_cnd, vap);
217			if (error == 0)
218#endif
219				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
220						   &ndp->ni_cnd, vap);
221			vput(ndp->ni_dvp);
222			vn_finished_write(mp);
223			if (error) {
224				NDFREE(ndp, NDF_ONLY_PNBUF);
225				return (error);
226			}
227			fmode &= ~O_TRUNC;
228			vp = ndp->ni_vp;
229		} else {
230			if (ndp->ni_dvp == ndp->ni_vp)
231				vrele(ndp->ni_dvp);
232			else
233				vput(ndp->ni_dvp);
234			ndp->ni_dvp = NULL;
235			vp = ndp->ni_vp;
236			if (fmode & O_EXCL) {
237				error = EEXIST;
238				goto bad;
239			}
240			fmode &= ~O_CREAT;
241		}
242	} else {
243		ndp->ni_cnd.cn_nameiop = LOOKUP;
244		ndp->ni_cnd.cn_flags = ISOPEN |
245		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
246		if (!(fmode & FWRITE))
247			ndp->ni_cnd.cn_flags |= LOCKSHARED;
248		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
249			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
250		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
251			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
252		if ((error = namei(ndp)) != 0)
253			return (error);
254		vp = ndp->ni_vp;
255	}
256	error = vn_open_vnode(vp, fmode, cred, td, fp);
257	if (error)
258		goto bad;
259	*flagp = fmode;
260	return (0);
261bad:
262	NDFREE(ndp, NDF_ONLY_PNBUF);
263	vput(vp);
264	*flagp = fmode;
265	ndp->ni_vp = NULL;
266	return (error);
267}
268
269/*
270 * Common code for vnode open operations once a vnode is located.
271 * Check permissions, and call the VOP_OPEN routine.
272 */
273int
274vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
275    struct thread *td, struct file *fp)
276{
277	struct mount *mp;
278	accmode_t accmode;
279	struct flock lf;
280	int error, have_flock, lock_flags, type;
281
282	if (vp->v_type == VLNK)
283		return (EMLINK);
284	if (vp->v_type == VSOCK)
285		return (EOPNOTSUPP);
286	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
287		return (ENOTDIR);
288	accmode = 0;
289	if (fmode & (FWRITE | O_TRUNC)) {
290		if (vp->v_type == VDIR)
291			return (EISDIR);
292		accmode |= VWRITE;
293	}
294	if (fmode & FREAD)
295		accmode |= VREAD;
296	if (fmode & FEXEC)
297		accmode |= VEXEC;
298	if ((fmode & O_APPEND) && (fmode & FWRITE))
299		accmode |= VAPPEND;
300#ifdef MAC
301	error = mac_vnode_check_open(cred, vp, accmode);
302	if (error)
303		return (error);
304#endif
305	if ((fmode & O_CREAT) == 0) {
306		if (accmode & VWRITE) {
307			error = vn_writechk(vp);
308			if (error)
309				return (error);
310		}
311		if (accmode) {
312		        error = VOP_ACCESS(vp, accmode, cred, td);
313			if (error)
314				return (error);
315		}
316	}
317	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
318		vn_lock(vp, LK_UPGRADE | LK_RETRY);
319	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
320		return (error);
321
322	if (fmode & (O_EXLOCK | O_SHLOCK)) {
323		KASSERT(fp != NULL, ("open with flock requires fp"));
324		lock_flags = VOP_ISLOCKED(vp);
325		VOP_UNLOCK(vp, 0);
326		lf.l_whence = SEEK_SET;
327		lf.l_start = 0;
328		lf.l_len = 0;
329		if (fmode & O_EXLOCK)
330			lf.l_type = F_WRLCK;
331		else
332			lf.l_type = F_RDLCK;
333		type = F_FLOCK;
334		if ((fmode & FNONBLOCK) == 0)
335			type |= F_WAIT;
336		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
337		have_flock = (error == 0);
338		vn_lock(vp, lock_flags | LK_RETRY);
339		if (error == 0 && vp->v_iflag & VI_DOOMED)
340			error = ENOENT;
341		/*
342		 * Another thread might have used this vnode as an
343		 * executable while the vnode lock was dropped.
344		 * Ensure the vnode is still able to be opened for
345		 * writing after the lock has been obtained.
346		 */
347		if (error == 0 && accmode & VWRITE)
348			error = vn_writechk(vp);
349		if (error) {
350			VOP_UNLOCK(vp, 0);
351			if (have_flock) {
352				lf.l_whence = SEEK_SET;
353				lf.l_start = 0;
354				lf.l_len = 0;
355				lf.l_type = F_UNLCK;
356				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
357				    F_FLOCK);
358			}
359			vn_start_write(vp, &mp, V_WAIT);
360			vn_lock(vp, lock_flags | LK_RETRY);
361			(void)VOP_CLOSE(vp, fmode, cred, td);
362			vn_finished_write(mp);
363			/* Prevent second close from fdrop()->vn_close(). */
364			if (fp != NULL)
365				fp->f_ops= &badfileops;
366			return (error);
367		}
368		fp->f_flag |= FHASLOCK;
369	}
370	if (fmode & FWRITE) {
371		VOP_ADD_WRITECOUNT(vp, 1);
372		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
373		    __func__, vp, vp->v_writecount);
374	}
375	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
376	return (0);
377}
378
379/*
380 * Check for write permissions on the specified vnode.
381 * Prototype text segments cannot be written.
382 */
383int
384vn_writechk(vp)
385	register struct vnode *vp;
386{
387
388	ASSERT_VOP_LOCKED(vp, "vn_writechk");
389	/*
390	 * If there's shared text associated with
391	 * the vnode, try to free it up once.  If
392	 * we fail, we can't allow writing.
393	 */
394	if (VOP_IS_TEXT(vp))
395		return (ETXTBSY);
396
397	return (0);
398}
399
400/*
401 * Vnode close call
402 */
403int
404vn_close(vp, flags, file_cred, td)
405	register struct vnode *vp;
406	int flags;
407	struct ucred *file_cred;
408	struct thread *td;
409{
410	struct mount *mp;
411	int error, lock_flags;
412
413	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
414	    MNT_EXTENDED_SHARED(vp->v_mount))
415		lock_flags = LK_SHARED;
416	else
417		lock_flags = LK_EXCLUSIVE;
418
419	vn_start_write(vp, &mp, V_WAIT);
420	vn_lock(vp, lock_flags | LK_RETRY);
421	if (flags & FWRITE) {
422		VNASSERT(vp->v_writecount > 0, vp,
423		    ("vn_close: negative writecount"));
424		VOP_ADD_WRITECOUNT(vp, -1);
425		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
426		    __func__, vp, vp->v_writecount);
427	}
428	error = VOP_CLOSE(vp, flags, file_cred, td);
429	vput(vp);
430	vn_finished_write(mp);
431	return (error);
432}
433
434/*
435 * Heuristic to detect sequential operation.
436 */
437static int
438sequential_heuristic(struct uio *uio, struct file *fp)
439{
440
441	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
442	if (fp->f_flag & FRDAHEAD)
443		return (fp->f_seqcount << IO_SEQSHIFT);
444
445	/*
446	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
447	 * that the first I/O is normally considered to be slightly
448	 * sequential.  Seeking to offset 0 doesn't change sequentiality
449	 * unless previous seeks have reduced f_seqcount to 0, in which
450	 * case offset 0 is not special.
451	 */
452	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
453	    uio->uio_offset == fp->f_nextoff) {
454		/*
455		 * f_seqcount is in units of fixed-size blocks so that it
456		 * depends mainly on the amount of sequential I/O and not
457		 * much on the number of sequential I/O's.  The fixed size
458		 * of 16384 is hard-coded here since it is (not quite) just
459		 * a magic size that works well here.  This size is more
460		 * closely related to the best I/O size for real disks than
461		 * to any block size used by software.
462		 */
463		fp->f_seqcount += howmany(uio->uio_resid, 16384);
464		if (fp->f_seqcount > IO_SEQMAX)
465			fp->f_seqcount = IO_SEQMAX;
466		return (fp->f_seqcount << IO_SEQSHIFT);
467	}
468
469	/* Not sequential.  Quickly draw-down sequentiality. */
470	if (fp->f_seqcount > 1)
471		fp->f_seqcount = 1;
472	else
473		fp->f_seqcount = 0;
474	return (0);
475}
476
477/*
478 * Package up an I/O request on a vnode into a uio and do it.
479 */
480int
481vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
482    enum uio_seg segflg, int ioflg, struct ucred *active_cred,
483    struct ucred *file_cred, ssize_t *aresid, struct thread *td)
484{
485	struct uio auio;
486	struct iovec aiov;
487	struct mount *mp;
488	struct ucred *cred;
489	void *rl_cookie;
490	struct vn_io_fault_args args;
491	int error, lock_flags;
492
493	auio.uio_iov = &aiov;
494	auio.uio_iovcnt = 1;
495	aiov.iov_base = base;
496	aiov.iov_len = len;
497	auio.uio_resid = len;
498	auio.uio_offset = offset;
499	auio.uio_segflg = segflg;
500	auio.uio_rw = rw;
501	auio.uio_td = td;
502	error = 0;
503
504	if ((ioflg & IO_NODELOCKED) == 0) {
505		if (rw == UIO_READ) {
506			rl_cookie = vn_rangelock_rlock(vp, offset,
507			    offset + len);
508		} else {
509			rl_cookie = vn_rangelock_wlock(vp, offset,
510			    offset + len);
511		}
512		mp = NULL;
513		if (rw == UIO_WRITE) {
514			if (vp->v_type != VCHR &&
515			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
516			    != 0)
517				goto out;
518			if (MNT_SHARED_WRITES(mp) ||
519			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
520				lock_flags = LK_SHARED;
521			else
522				lock_flags = LK_EXCLUSIVE;
523		} else
524			lock_flags = LK_SHARED;
525		vn_lock(vp, lock_flags | LK_RETRY);
526	} else
527		rl_cookie = NULL;
528
529	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
530#ifdef MAC
531	if ((ioflg & IO_NOMACCHECK) == 0) {
532		if (rw == UIO_READ)
533			error = mac_vnode_check_read(active_cred, file_cred,
534			    vp);
535		else
536			error = mac_vnode_check_write(active_cred, file_cred,
537			    vp);
538	}
539#endif
540	if (error == 0) {
541		if (file_cred != NULL)
542			cred = file_cred;
543		else
544			cred = active_cred;
545		if (do_vn_io_fault(vp, &auio)) {
546			args.kind = VN_IO_FAULT_VOP;
547			args.cred = cred;
548			args.flags = ioflg;
549			args.args.vop_args.vp = vp;
550			error = vn_io_fault1(vp, &auio, &args, td);
551		} else if (rw == UIO_READ) {
552			error = VOP_READ(vp, &auio, ioflg, cred);
553		} else /* if (rw == UIO_WRITE) */ {
554			error = VOP_WRITE(vp, &auio, ioflg, cred);
555		}
556	}
557	if (aresid)
558		*aresid = auio.uio_resid;
559	else
560		if (auio.uio_resid && error == 0)
561			error = EIO;
562	if ((ioflg & IO_NODELOCKED) == 0) {
563		VOP_UNLOCK(vp, 0);
564		if (mp != NULL)
565			vn_finished_write(mp);
566	}
567 out:
568	if (rl_cookie != NULL)
569		vn_rangelock_unlock(vp, rl_cookie);
570	return (error);
571}
572
573/*
574 * Package up an I/O request on a vnode into a uio and do it.  The I/O
575 * request is split up into smaller chunks and we try to avoid saturating
576 * the buffer cache while potentially holding a vnode locked, so we
577 * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
578 * to give other processes a chance to lock the vnode (either other processes
579 * core'ing the same binary, or unrelated processes scanning the directory).
580 */
581int
582vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
583    file_cred, aresid, td)
584	enum uio_rw rw;
585	struct vnode *vp;
586	void *base;
587	size_t len;
588	off_t offset;
589	enum uio_seg segflg;
590	int ioflg;
591	struct ucred *active_cred;
592	struct ucred *file_cred;
593	size_t *aresid;
594	struct thread *td;
595{
596	int error = 0;
597	ssize_t iaresid;
598
599	do {
600		int chunk;
601
602		/*
603		 * Force `offset' to a multiple of MAXBSIZE except possibly
604		 * for the first chunk, so that filesystems only need to
605		 * write full blocks except possibly for the first and last
606		 * chunks.
607		 */
608		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
609
610		if (chunk > len)
611			chunk = len;
612		if (rw != UIO_READ && vp->v_type == VREG)
613			bwillwrite();
614		iaresid = 0;
615		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
616		    ioflg, active_cred, file_cred, &iaresid, td);
617		len -= chunk;	/* aresid calc already includes length */
618		if (error)
619			break;
620		offset += chunk;
621		base = (char *)base + chunk;
622		kern_yield(PRI_USER);
623	} while (len);
624	if (aresid)
625		*aresid = len + iaresid;
626	return (error);
627}
628
629off_t
630foffset_lock(struct file *fp, int flags)
631{
632	struct mtx *mtxp;
633	off_t res;
634
635	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
636
637#if OFF_MAX <= LONG_MAX
638	/*
639	 * Caller only wants the current f_offset value.  Assume that
640	 * the long and shorter integer types reads are atomic.
641	 */
642	if ((flags & FOF_NOLOCK) != 0)
643		return (fp->f_offset);
644#endif
645
646	/*
647	 * According to McKusick the vn lock was protecting f_offset here.
648	 * It is now protected by the FOFFSET_LOCKED flag.
649	 */
650	mtxp = mtx_pool_find(mtxpool_sleep, fp);
651	mtx_lock(mtxp);
652	if ((flags & FOF_NOLOCK) == 0) {
653		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
654			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
655			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
656			    "vofflock", 0);
657		}
658		fp->f_vnread_flags |= FOFFSET_LOCKED;
659	}
660	res = fp->f_offset;
661	mtx_unlock(mtxp);
662	return (res);
663}
664
665void
666foffset_unlock(struct file *fp, off_t val, int flags)
667{
668	struct mtx *mtxp;
669
670	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
671
672#if OFF_MAX <= LONG_MAX
673	if ((flags & FOF_NOLOCK) != 0) {
674		if ((flags & FOF_NOUPDATE) == 0)
675			fp->f_offset = val;
676		if ((flags & FOF_NEXTOFF) != 0)
677			fp->f_nextoff = val;
678		return;
679	}
680#endif
681
682	mtxp = mtx_pool_find(mtxpool_sleep, fp);
683	mtx_lock(mtxp);
684	if ((flags & FOF_NOUPDATE) == 0)
685		fp->f_offset = val;
686	if ((flags & FOF_NEXTOFF) != 0)
687		fp->f_nextoff = val;
688	if ((flags & FOF_NOLOCK) == 0) {
689		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
690		    ("Lost FOFFSET_LOCKED"));
691		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
692			wakeup(&fp->f_vnread_flags);
693		fp->f_vnread_flags = 0;
694	}
695	mtx_unlock(mtxp);
696}
697
698void
699foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
700{
701
702	if ((flags & FOF_OFFSET) == 0)
703		uio->uio_offset = foffset_lock(fp, flags);
704}
705
706void
707foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
708{
709
710	if ((flags & FOF_OFFSET) == 0)
711		foffset_unlock(fp, uio->uio_offset, flags);
712}
713
714static int
715get_advice(struct file *fp, struct uio *uio)
716{
717	struct mtx *mtxp;
718	int ret;
719
720	ret = POSIX_FADV_NORMAL;
721	if (fp->f_advice == NULL)
722		return (ret);
723
724	mtxp = mtx_pool_find(mtxpool_sleep, fp);
725	mtx_lock(mtxp);
726	if (uio->uio_offset >= fp->f_advice->fa_start &&
727	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
728		ret = fp->f_advice->fa_advice;
729	mtx_unlock(mtxp);
730	return (ret);
731}
732
733/*
734 * File table vnode read routine.
735 */
736static int
737vn_read(fp, uio, active_cred, flags, td)
738	struct file *fp;
739	struct uio *uio;
740	struct ucred *active_cred;
741	int flags;
742	struct thread *td;
743{
744	struct vnode *vp;
745	struct mtx *mtxp;
746	int error, ioflag;
747	int advice;
748	off_t offset, start, end;
749
750	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
751	    uio->uio_td, td));
752	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
753	vp = fp->f_vnode;
754	ioflag = 0;
755	if (fp->f_flag & FNONBLOCK)
756		ioflag |= IO_NDELAY;
757	if (fp->f_flag & O_DIRECT)
758		ioflag |= IO_DIRECT;
759	advice = get_advice(fp, uio);
760	vn_lock(vp, LK_SHARED | LK_RETRY);
761
762	switch (advice) {
763	case POSIX_FADV_NORMAL:
764	case POSIX_FADV_SEQUENTIAL:
765	case POSIX_FADV_NOREUSE:
766		ioflag |= sequential_heuristic(uio, fp);
767		break;
768	case POSIX_FADV_RANDOM:
769		/* Disable read-ahead for random I/O. */
770		break;
771	}
772	offset = uio->uio_offset;
773
774#ifdef MAC
775	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
776	if (error == 0)
777#endif
778		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
779	fp->f_nextoff = uio->uio_offset;
780	VOP_UNLOCK(vp, 0);
781	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
782	    offset != uio->uio_offset) {
783		/*
784		 * Use POSIX_FADV_DONTNEED to flush clean pages and
785		 * buffers for the backing file after a
786		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
787		 * case of using POSIX_FADV_NOREUSE with sequential
788		 * access, track the previous implicit DONTNEED
789		 * request and grow this request to include the
790		 * current read(2) in addition to the previous
791		 * DONTNEED.  With purely sequential access this will
792		 * cause the DONTNEED requests to continously grow to
793		 * cover all of the previously read regions of the
794		 * file.  This allows filesystem blocks that are
795		 * accessed by multiple calls to read(2) to be flushed
796		 * once the last read(2) finishes.
797		 */
798		start = offset;
799		end = uio->uio_offset - 1;
800		mtxp = mtx_pool_find(mtxpool_sleep, fp);
801		mtx_lock(mtxp);
802		if (fp->f_advice != NULL &&
803		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
804			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
805				start = fp->f_advice->fa_prevstart;
806			else if (fp->f_advice->fa_prevstart != 0 &&
807			    fp->f_advice->fa_prevstart == end + 1)
808				end = fp->f_advice->fa_prevend;
809			fp->f_advice->fa_prevstart = start;
810			fp->f_advice->fa_prevend = end;
811		}
812		mtx_unlock(mtxp);
813		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
814	}
815	return (error);
816}
817
818/*
819 * File table vnode write routine.
820 */
821static int
822vn_write(fp, uio, active_cred, flags, td)
823	struct file *fp;
824	struct uio *uio;
825	struct ucred *active_cred;
826	int flags;
827	struct thread *td;
828{
829	struct vnode *vp;
830	struct mount *mp;
831	struct mtx *mtxp;
832	int error, ioflag, lock_flags;
833	int advice;
834	off_t offset, start, end;
835
836	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
837	    uio->uio_td, td));
838	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
839	vp = fp->f_vnode;
840	if (vp->v_type == VREG)
841		bwillwrite();
842	ioflag = IO_UNIT;
843	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
844		ioflag |= IO_APPEND;
845	if (fp->f_flag & FNONBLOCK)
846		ioflag |= IO_NDELAY;
847	if (fp->f_flag & O_DIRECT)
848		ioflag |= IO_DIRECT;
849	if ((fp->f_flag & O_FSYNC) ||
850	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
851		ioflag |= IO_SYNC;
852	mp = NULL;
853	if (vp->v_type != VCHR &&
854	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
855		goto unlock;
856
857	advice = get_advice(fp, uio);
858
859	if (MNT_SHARED_WRITES(mp) ||
860	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
861		lock_flags = LK_SHARED;
862	} else {
863		lock_flags = LK_EXCLUSIVE;
864	}
865
866	vn_lock(vp, lock_flags | LK_RETRY);
867	switch (advice) {
868	case POSIX_FADV_NORMAL:
869	case POSIX_FADV_SEQUENTIAL:
870	case POSIX_FADV_NOREUSE:
871		ioflag |= sequential_heuristic(uio, fp);
872		break;
873	case POSIX_FADV_RANDOM:
874		/* XXX: Is this correct? */
875		break;
876	}
877	offset = uio->uio_offset;
878
879#ifdef MAC
880	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
881	if (error == 0)
882#endif
883		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
884	fp->f_nextoff = uio->uio_offset;
885	VOP_UNLOCK(vp, 0);
886	if (vp->v_type != VCHR)
887		vn_finished_write(mp);
888	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
889	    offset != uio->uio_offset) {
890		/*
891		 * Use POSIX_FADV_DONTNEED to flush clean pages and
892		 * buffers for the backing file after a
893		 * POSIX_FADV_NOREUSE write(2).  To optimize the
894		 * common case of using POSIX_FADV_NOREUSE with
895		 * sequential access, track the previous implicit
896		 * DONTNEED request and grow this request to include
897		 * the current write(2) in addition to the previous
898		 * DONTNEED.  With purely sequential access this will
899		 * cause the DONTNEED requests to continously grow to
900		 * cover all of the previously written regions of the
901		 * file.
902		 *
903		 * Note that the blocks just written are almost
904		 * certainly still dirty, so this only works when
905		 * VOP_ADVISE() calls from subsequent writes push out
906		 * the data written by this write(2) once the backing
907		 * buffers are clean.  However, as compared to forcing
908		 * IO_DIRECT, this gives much saner behavior.  Write
909		 * clustering is still allowed, and clean pages are
910		 * merely moved to the cache page queue rather than
911		 * outright thrown away.  This means a subsequent
912		 * read(2) can still avoid hitting the disk if the
913		 * pages have not been reclaimed.
914		 *
915		 * This does make POSIX_FADV_NOREUSE largely useless
916		 * with non-sequential access.  However, sequential
917		 * access is the more common use case and the flag is
918		 * merely advisory.
919		 */
920		start = offset;
921		end = uio->uio_offset - 1;
922		mtxp = mtx_pool_find(mtxpool_sleep, fp);
923		mtx_lock(mtxp);
924		if (fp->f_advice != NULL &&
925		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
926			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
927				start = fp->f_advice->fa_prevstart;
928			else if (fp->f_advice->fa_prevstart != 0 &&
929			    fp->f_advice->fa_prevstart == end + 1)
930				end = fp->f_advice->fa_prevend;
931			fp->f_advice->fa_prevstart = start;
932			fp->f_advice->fa_prevend = end;
933		}
934		mtx_unlock(mtxp);
935		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
936	}
937
938unlock:
939	return (error);
940}
941
942/*
943 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
944 * prevent the following deadlock:
945 *
946 * Assume that the thread A reads from the vnode vp1 into userspace
947 * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
948 * currently not resident, then system ends up with the call chain
949 *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
950 *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
951 * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
952 * If, at the same time, thread B reads from vnode vp2 into buffer buf2
953 * backed by the pages of vnode vp1, and some page in buf2 is not
954 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
955 *
956 * To prevent the lock order reversal and deadlock, vn_io_fault() does
957 * not allow page faults to happen during VOP_READ() or VOP_WRITE().
958 * Instead, it first tries to do the whole range i/o with pagefaults
959 * disabled. If all pages in the i/o buffer are resident and mapped,
960 * VOP will succeed (ignoring the genuine filesystem errors).
961 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
962 * i/o in chunks, with all pages in the chunk prefaulted and held
963 * using vm_fault_quick_hold_pages().
964 *
965 * Filesystems using this deadlock avoidance scheme should use the
966 * array of the held pages from uio, saved in the curthread->td_ma,
967 * instead of doing uiomove().  A helper function
968 * vn_io_fault_uiomove() converts uiomove request into
969 * uiomove_fromphys() over td_ma array.
970 *
971 * Since vnode locks do not cover the whole i/o anymore, rangelocks
972 * make the current i/o request atomic with respect to other i/os and
973 * truncations.
974 */
975
976/*
977 * Decode vn_io_fault_args and perform the corresponding i/o.
978 */
979static int
980vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
981    struct thread *td)
982{
983
984	switch (args->kind) {
985	case VN_IO_FAULT_FOP:
986		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
987		    uio, args->cred, args->flags, td));
988	case VN_IO_FAULT_VOP:
989		if (uio->uio_rw == UIO_READ) {
990			return (VOP_READ(args->args.vop_args.vp, uio,
991			    args->flags, args->cred));
992		} else if (uio->uio_rw == UIO_WRITE) {
993			return (VOP_WRITE(args->args.vop_args.vp, uio,
994			    args->flags, args->cred));
995		}
996		break;
997	}
998	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
999	    uio->uio_rw);
1000}
1001
1002/*
1003 * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1004 * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1005 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1006 * into args and call vn_io_fault1() to handle faults during the user
1007 * mode buffer accesses.
1008 */
1009static int
1010vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1011    struct thread *td)
1012{
1013	vm_page_t ma[io_hold_cnt + 2];
1014	struct uio *uio_clone, short_uio;
1015	struct iovec short_iovec[1];
1016	vm_page_t *prev_td_ma;
1017	vm_prot_t prot;
1018	vm_offset_t addr, end;
1019	size_t len, resid;
1020	ssize_t adv;
1021	int error, cnt, save, saveheld, prev_td_ma_cnt;
1022
1023	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1024
1025	/*
1026	 * The UFS follows IO_UNIT directive and replays back both
1027	 * uio_offset and uio_resid if an error is encountered during the
1028	 * operation.  But, since the iovec may be already advanced,
1029	 * uio is still in an inconsistent state.
1030	 *
1031	 * Cache a copy of the original uio, which is advanced to the redo
1032	 * point using UIO_NOCOPY below.
1033	 */
1034	uio_clone = cloneuio(uio);
1035	resid = uio->uio_resid;
1036
1037	short_uio.uio_segflg = UIO_USERSPACE;
1038	short_uio.uio_rw = uio->uio_rw;
1039	short_uio.uio_td = uio->uio_td;
1040
1041	save = vm_fault_disable_pagefaults();
1042	error = vn_io_fault_doio(args, uio, td);
1043	if (error != EFAULT)
1044		goto out;
1045
1046	atomic_add_long(&vn_io_faults_cnt, 1);
1047	uio_clone->uio_segflg = UIO_NOCOPY;
1048	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1049	uio_clone->uio_segflg = uio->uio_segflg;
1050
1051	saveheld = curthread_pflags_set(TDP_UIOHELD);
1052	prev_td_ma = td->td_ma;
1053	prev_td_ma_cnt = td->td_ma_cnt;
1054
1055	while (uio_clone->uio_resid != 0) {
1056		len = uio_clone->uio_iov->iov_len;
1057		if (len == 0) {
1058			KASSERT(uio_clone->uio_iovcnt >= 1,
1059			    ("iovcnt underflow"));
1060			uio_clone->uio_iov++;
1061			uio_clone->uio_iovcnt--;
1062			continue;
1063		}
1064		if (len > io_hold_cnt * PAGE_SIZE)
1065			len = io_hold_cnt * PAGE_SIZE;
1066		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1067		end = round_page(addr + len);
1068		if (end < addr) {
1069			error = EFAULT;
1070			break;
1071		}
1072		cnt = atop(end - trunc_page(addr));
1073		/*
1074		 * A perfectly misaligned address and length could cause
1075		 * both the start and the end of the chunk to use partial
1076		 * page.  +2 accounts for such a situation.
1077		 */
1078		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1079		    addr, len, prot, ma, io_hold_cnt + 2);
1080		if (cnt == -1) {
1081			error = EFAULT;
1082			break;
1083		}
1084		short_uio.uio_iov = &short_iovec[0];
1085		short_iovec[0].iov_base = (void *)addr;
1086		short_uio.uio_iovcnt = 1;
1087		short_uio.uio_resid = short_iovec[0].iov_len = len;
1088		short_uio.uio_offset = uio_clone->uio_offset;
1089		td->td_ma = ma;
1090		td->td_ma_cnt = cnt;
1091
1092		error = vn_io_fault_doio(args, &short_uio, td);
1093		vm_page_unhold_pages(ma, cnt);
1094		adv = len - short_uio.uio_resid;
1095
1096		uio_clone->uio_iov->iov_base =
1097		    (char *)uio_clone->uio_iov->iov_base + adv;
1098		uio_clone->uio_iov->iov_len -= adv;
1099		uio_clone->uio_resid -= adv;
1100		uio_clone->uio_offset += adv;
1101
1102		uio->uio_resid -= adv;
1103		uio->uio_offset += adv;
1104
1105		if (error != 0 || adv == 0)
1106			break;
1107	}
1108	td->td_ma = prev_td_ma;
1109	td->td_ma_cnt = prev_td_ma_cnt;
1110	curthread_pflags_restore(saveheld);
1111out:
1112	vm_fault_enable_pagefaults(save);
1113	free(uio_clone, M_IOV);
1114	return (error);
1115}
1116
1117static int
1118vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1119    int flags, struct thread *td)
1120{
1121	fo_rdwr_t *doio;
1122	struct vnode *vp;
1123	void *rl_cookie;
1124	struct vn_io_fault_args args;
1125	int error;
1126
1127	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1128	vp = fp->f_vnode;
1129	foffset_lock_uio(fp, uio, flags);
1130	if (do_vn_io_fault(vp, uio)) {
1131		args.kind = VN_IO_FAULT_FOP;
1132		args.args.fop_args.fp = fp;
1133		args.args.fop_args.doio = doio;
1134		args.cred = active_cred;
1135		args.flags = flags | FOF_OFFSET;
1136		if (uio->uio_rw == UIO_READ) {
1137			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1138			    uio->uio_offset + uio->uio_resid);
1139		} else if ((fp->f_flag & O_APPEND) != 0 ||
1140		    (flags & FOF_OFFSET) == 0) {
1141			/* For appenders, punt and lock the whole range. */
1142			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1143		} else {
1144			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1145			    uio->uio_offset + uio->uio_resid);
1146		}
1147		error = vn_io_fault1(vp, uio, &args, td);
1148		vn_rangelock_unlock(vp, rl_cookie);
1149	} else {
1150		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1151	}
1152	foffset_unlock_uio(fp, uio, flags);
1153	return (error);
1154}
1155
1156/*
1157 * Helper function to perform the requested uiomove operation using
1158 * the held pages for io->uio_iov[0].iov_base buffer instead of
1159 * copyin/copyout.  Access to the pages with uiomove_fromphys()
1160 * instead of iov_base prevents page faults that could occur due to
1161 * pmap_collect() invalidating the mapping created by
1162 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1163 * object cleanup revoking the write access from page mappings.
1164 *
1165 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1166 * instead of plain uiomove().
1167 */
1168int
1169vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1170{
1171	struct uio transp_uio;
1172	struct iovec transp_iov[1];
1173	struct thread *td;
1174	size_t adv;
1175	int error, pgadv;
1176
1177	td = curthread;
1178	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1179	    uio->uio_segflg != UIO_USERSPACE)
1180		return (uiomove(data, xfersize, uio));
1181
1182	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1183	transp_iov[0].iov_base = data;
1184	transp_uio.uio_iov = &transp_iov[0];
1185	transp_uio.uio_iovcnt = 1;
1186	if (xfersize > uio->uio_resid)
1187		xfersize = uio->uio_resid;
1188	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1189	transp_uio.uio_offset = 0;
1190	transp_uio.uio_segflg = UIO_SYSSPACE;
1191	/*
1192	 * Since transp_iov points to data, and td_ma page array
1193	 * corresponds to original uio->uio_iov, we need to invert the
1194	 * direction of the i/o operation as passed to
1195	 * uiomove_fromphys().
1196	 */
1197	switch (uio->uio_rw) {
1198	case UIO_WRITE:
1199		transp_uio.uio_rw = UIO_READ;
1200		break;
1201	case UIO_READ:
1202		transp_uio.uio_rw = UIO_WRITE;
1203		break;
1204	}
1205	transp_uio.uio_td = uio->uio_td;
1206	error = uiomove_fromphys(td->td_ma,
1207	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1208	    xfersize, &transp_uio);
1209	adv = xfersize - transp_uio.uio_resid;
1210	pgadv =
1211	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1212	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1213	td->td_ma += pgadv;
1214	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1215	    pgadv));
1216	td->td_ma_cnt -= pgadv;
1217	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1218	uio->uio_iov->iov_len -= adv;
1219	uio->uio_resid -= adv;
1220	uio->uio_offset += adv;
1221	return (error);
1222}
1223
1224int
1225vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1226    struct uio *uio)
1227{
1228	struct thread *td;
1229	vm_offset_t iov_base;
1230	int cnt, pgadv;
1231
1232	td = curthread;
1233	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1234	    uio->uio_segflg != UIO_USERSPACE)
1235		return (uiomove_fromphys(ma, offset, xfersize, uio));
1236
1237	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1238	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1239	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1240	switch (uio->uio_rw) {
1241	case UIO_WRITE:
1242		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1243		    offset, cnt);
1244		break;
1245	case UIO_READ:
1246		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1247		    cnt);
1248		break;
1249	}
1250	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1251	td->td_ma += pgadv;
1252	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1253	    pgadv));
1254	td->td_ma_cnt -= pgadv;
1255	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1256	uio->uio_iov->iov_len -= cnt;
1257	uio->uio_resid -= cnt;
1258	uio->uio_offset += cnt;
1259	return (0);
1260}
1261
1262
1263/*
1264 * File table truncate routine.
1265 */
1266static int
1267vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1268    struct thread *td)
1269{
1270	struct vattr vattr;
1271	struct mount *mp;
1272	struct vnode *vp;
1273	void *rl_cookie;
1274	int error;
1275
1276	vp = fp->f_vnode;
1277
1278	/*
1279	 * Lock the whole range for truncation.  Otherwise split i/o
1280	 * might happen partly before and partly after the truncation.
1281	 */
1282	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1283	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1284	if (error)
1285		goto out1;
1286	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1287	if (vp->v_type == VDIR) {
1288		error = EISDIR;
1289		goto out;
1290	}
1291#ifdef MAC
1292	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1293	if (error)
1294		goto out;
1295#endif
1296	error = vn_writechk(vp);
1297	if (error == 0) {
1298		VATTR_NULL(&vattr);
1299		vattr.va_size = length;
1300		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1301	}
1302out:
1303	VOP_UNLOCK(vp, 0);
1304	vn_finished_write(mp);
1305out1:
1306	vn_rangelock_unlock(vp, rl_cookie);
1307	return (error);
1308}
1309
1310/*
1311 * File table vnode stat routine.
1312 */
1313static int
1314vn_statfile(fp, sb, active_cred, td)
1315	struct file *fp;
1316	struct stat *sb;
1317	struct ucred *active_cred;
1318	struct thread *td;
1319{
1320	struct vnode *vp = fp->f_vnode;
1321	int error;
1322
1323	vn_lock(vp, LK_SHARED | LK_RETRY);
1324	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1325	VOP_UNLOCK(vp, 0);
1326
1327	return (error);
1328}
1329
1330/*
1331 * Stat a vnode; implementation for the stat syscall
1332 */
1333int
1334vn_stat(vp, sb, active_cred, file_cred, td)
1335	struct vnode *vp;
1336	register struct stat *sb;
1337	struct ucred *active_cred;
1338	struct ucred *file_cred;
1339	struct thread *td;
1340{
1341	struct vattr vattr;
1342	register struct vattr *vap;
1343	int error;
1344	u_short mode;
1345
1346#ifdef MAC
1347	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1348	if (error)
1349		return (error);
1350#endif
1351
1352	vap = &vattr;
1353
1354	/*
1355	 * Initialize defaults for new and unusual fields, so that file
1356	 * systems which don't support these fields don't need to know
1357	 * about them.
1358	 */
1359	vap->va_birthtime.tv_sec = -1;
1360	vap->va_birthtime.tv_nsec = 0;
1361	vap->va_fsid = VNOVAL;
1362	vap->va_rdev = NODEV;
1363
1364	error = VOP_GETATTR(vp, vap, active_cred);
1365	if (error)
1366		return (error);
1367
1368	/*
1369	 * Zero the spare stat fields
1370	 */
1371	bzero(sb, sizeof *sb);
1372
1373	/*
1374	 * Copy from vattr table
1375	 */
1376	if (vap->va_fsid != VNOVAL)
1377		sb->st_dev = vap->va_fsid;
1378	else
1379		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1380	sb->st_ino = vap->va_fileid;
1381	mode = vap->va_mode;
1382	switch (vap->va_type) {
1383	case VREG:
1384		mode |= S_IFREG;
1385		break;
1386	case VDIR:
1387		mode |= S_IFDIR;
1388		break;
1389	case VBLK:
1390		mode |= S_IFBLK;
1391		break;
1392	case VCHR:
1393		mode |= S_IFCHR;
1394		break;
1395	case VLNK:
1396		mode |= S_IFLNK;
1397		break;
1398	case VSOCK:
1399		mode |= S_IFSOCK;
1400		break;
1401	case VFIFO:
1402		mode |= S_IFIFO;
1403		break;
1404	default:
1405		return (EBADF);
1406	};
1407	sb->st_mode = mode;
1408	sb->st_nlink = vap->va_nlink;
1409	sb->st_uid = vap->va_uid;
1410	sb->st_gid = vap->va_gid;
1411	sb->st_rdev = vap->va_rdev;
1412	if (vap->va_size > OFF_MAX)
1413		return (EOVERFLOW);
1414	sb->st_size = vap->va_size;
1415	sb->st_atim = vap->va_atime;
1416	sb->st_mtim = vap->va_mtime;
1417	sb->st_ctim = vap->va_ctime;
1418	sb->st_birthtim = vap->va_birthtime;
1419
1420        /*
1421	 * According to www.opengroup.org, the meaning of st_blksize is
1422	 *   "a filesystem-specific preferred I/O block size for this
1423	 *    object.  In some filesystem types, this may vary from file
1424	 *    to file"
1425	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1426	 */
1427
1428	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1429
1430	sb->st_flags = vap->va_flags;
1431	if (priv_check(td, PRIV_VFS_GENERATION))
1432		sb->st_gen = 0;
1433	else
1434		sb->st_gen = vap->va_gen;
1435
1436	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1437	return (0);
1438}
1439
1440/*
1441 * File table vnode ioctl routine.
1442 */
1443static int
1444vn_ioctl(fp, com, data, active_cred, td)
1445	struct file *fp;
1446	u_long com;
1447	void *data;
1448	struct ucred *active_cred;
1449	struct thread *td;
1450{
1451	struct vattr vattr;
1452	struct vnode *vp;
1453	int error;
1454
1455	vp = fp->f_vnode;
1456	switch (vp->v_type) {
1457	case VDIR:
1458	case VREG:
1459		switch (com) {
1460		case FIONREAD:
1461			vn_lock(vp, LK_SHARED | LK_RETRY);
1462			error = VOP_GETATTR(vp, &vattr, active_cred);
1463			VOP_UNLOCK(vp, 0);
1464			if (error == 0)
1465				*(int *)data = vattr.va_size - fp->f_offset;
1466			return (error);
1467		case FIONBIO:
1468		case FIOASYNC:
1469			return (0);
1470		default:
1471			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1472			    active_cred, td));
1473		}
1474	default:
1475		return (ENOTTY);
1476	}
1477}
1478
1479/*
1480 * File table vnode poll routine.
1481 */
1482static int
1483vn_poll(fp, events, active_cred, td)
1484	struct file *fp;
1485	int events;
1486	struct ucred *active_cred;
1487	struct thread *td;
1488{
1489	struct vnode *vp;
1490	int error;
1491
1492	vp = fp->f_vnode;
1493#ifdef MAC
1494	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1495	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1496	VOP_UNLOCK(vp, 0);
1497	if (!error)
1498#endif
1499
1500	error = VOP_POLL(vp, events, fp->f_cred, td);
1501	return (error);
1502}
1503
1504/*
1505 * Acquire the requested lock and then check for validity.  LK_RETRY
1506 * permits vn_lock to return doomed vnodes.
1507 */
1508int
1509_vn_lock(struct vnode *vp, int flags, char *file, int line)
1510{
1511	int error;
1512
1513	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1514	    ("vn_lock called with no locktype."));
1515	do {
1516#ifdef DEBUG_VFS_LOCKS
1517		KASSERT(vp->v_holdcnt != 0,
1518		    ("vn_lock %p: zero hold count", vp));
1519#endif
1520		error = VOP_LOCK1(vp, flags, file, line);
1521		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1522		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1523		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1524		    flags, error));
1525		/*
1526		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1527		 * If RETRY is not set, we return ENOENT instead.
1528		 */
1529		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1530		    (flags & LK_RETRY) == 0) {
1531			VOP_UNLOCK(vp, 0);
1532			error = ENOENT;
1533			break;
1534		}
1535	} while (flags & LK_RETRY && error != 0);
1536	return (error);
1537}
1538
1539/*
1540 * File table vnode close routine.
1541 */
1542static int
1543vn_closefile(fp, td)
1544	struct file *fp;
1545	struct thread *td;
1546{
1547	struct vnode *vp;
1548	struct flock lf;
1549	int error;
1550
1551	vp = fp->f_vnode;
1552	fp->f_ops = &badfileops;
1553
1554	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1555		vref(vp);
1556
1557	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1558
1559	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1560		lf.l_whence = SEEK_SET;
1561		lf.l_start = 0;
1562		lf.l_len = 0;
1563		lf.l_type = F_UNLCK;
1564		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1565		vrele(vp);
1566	}
1567	return (error);
1568}
1569
1570/*
1571 * Preparing to start a filesystem write operation. If the operation is
1572 * permitted, then we bump the count of operations in progress and
1573 * proceed. If a suspend request is in progress, we wait until the
1574 * suspension is over, and then proceed.
1575 */
1576static int
1577vn_start_write_locked(struct mount *mp, int flags)
1578{
1579	int error;
1580
1581	mtx_assert(MNT_MTX(mp), MA_OWNED);
1582	error = 0;
1583
1584	/*
1585	 * Check on status of suspension.
1586	 */
1587	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1588	    mp->mnt_susp_owner != curthread) {
1589		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1590			if (flags & V_NOWAIT) {
1591				error = EWOULDBLOCK;
1592				goto unlock;
1593			}
1594			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1595			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1596			if (error)
1597				goto unlock;
1598		}
1599	}
1600	if (flags & V_XSLEEP)
1601		goto unlock;
1602	mp->mnt_writeopcount++;
1603unlock:
1604	if (error != 0 || (flags & V_XSLEEP) != 0)
1605		MNT_REL(mp);
1606	MNT_IUNLOCK(mp);
1607	return (error);
1608}
1609
1610int
1611vn_start_write(vp, mpp, flags)
1612	struct vnode *vp;
1613	struct mount **mpp;
1614	int flags;
1615{
1616	struct mount *mp;
1617	int error;
1618
1619	error = 0;
1620	/*
1621	 * If a vnode is provided, get and return the mount point that
1622	 * to which it will write.
1623	 */
1624	if (vp != NULL) {
1625		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1626			*mpp = NULL;
1627			if (error != EOPNOTSUPP)
1628				return (error);
1629			return (0);
1630		}
1631	}
1632	if ((mp = *mpp) == NULL)
1633		return (0);
1634
1635	/*
1636	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1637	 * a vfs_ref().
1638	 * As long as a vnode is not provided we need to acquire a
1639	 * refcount for the provided mountpoint too, in order to
1640	 * emulate a vfs_ref().
1641	 */
1642	MNT_ILOCK(mp);
1643	if (vp == NULL)
1644		MNT_REF(mp);
1645
1646	return (vn_start_write_locked(mp, flags));
1647}
1648
1649/*
1650 * Secondary suspension. Used by operations such as vop_inactive
1651 * routines that are needed by the higher level functions. These
1652 * are allowed to proceed until all the higher level functions have
1653 * completed (indicated by mnt_writeopcount dropping to zero). At that
1654 * time, these operations are halted until the suspension is over.
1655 */
1656int
1657vn_start_secondary_write(vp, mpp, flags)
1658	struct vnode *vp;
1659	struct mount **mpp;
1660	int flags;
1661{
1662	struct mount *mp;
1663	int error;
1664
1665 retry:
1666	if (vp != NULL) {
1667		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1668			*mpp = NULL;
1669			if (error != EOPNOTSUPP)
1670				return (error);
1671			return (0);
1672		}
1673	}
1674	/*
1675	 * If we are not suspended or have not yet reached suspended
1676	 * mode, then let the operation proceed.
1677	 */
1678	if ((mp = *mpp) == NULL)
1679		return (0);
1680
1681	/*
1682	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1683	 * a vfs_ref().
1684	 * As long as a vnode is not provided we need to acquire a
1685	 * refcount for the provided mountpoint too, in order to
1686	 * emulate a vfs_ref().
1687	 */
1688	MNT_ILOCK(mp);
1689	if (vp == NULL)
1690		MNT_REF(mp);
1691	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1692		mp->mnt_secondary_writes++;
1693		mp->mnt_secondary_accwrites++;
1694		MNT_IUNLOCK(mp);
1695		return (0);
1696	}
1697	if (flags & V_NOWAIT) {
1698		MNT_REL(mp);
1699		MNT_IUNLOCK(mp);
1700		return (EWOULDBLOCK);
1701	}
1702	/*
1703	 * Wait for the suspension to finish.
1704	 */
1705	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1706		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1707	vfs_rel(mp);
1708	if (error == 0)
1709		goto retry;
1710	return (error);
1711}
1712
1713/*
1714 * Filesystem write operation has completed. If we are suspending and this
1715 * operation is the last one, notify the suspender that the suspension is
1716 * now in effect.
1717 */
1718void
1719vn_finished_write(mp)
1720	struct mount *mp;
1721{
1722	if (mp == NULL)
1723		return;
1724	MNT_ILOCK(mp);
1725	MNT_REL(mp);
1726	mp->mnt_writeopcount--;
1727	if (mp->mnt_writeopcount < 0)
1728		panic("vn_finished_write: neg cnt");
1729	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1730	    mp->mnt_writeopcount <= 0)
1731		wakeup(&mp->mnt_writeopcount);
1732	MNT_IUNLOCK(mp);
1733}
1734
1735
1736/*
1737 * Filesystem secondary write operation has completed. If we are
1738 * suspending and this operation is the last one, notify the suspender
1739 * that the suspension is now in effect.
1740 */
1741void
1742vn_finished_secondary_write(mp)
1743	struct mount *mp;
1744{
1745	if (mp == NULL)
1746		return;
1747	MNT_ILOCK(mp);
1748	MNT_REL(mp);
1749	mp->mnt_secondary_writes--;
1750	if (mp->mnt_secondary_writes < 0)
1751		panic("vn_finished_secondary_write: neg cnt");
1752	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1753	    mp->mnt_secondary_writes <= 0)
1754		wakeup(&mp->mnt_secondary_writes);
1755	MNT_IUNLOCK(mp);
1756}
1757
1758
1759
1760/*
1761 * Request a filesystem to suspend write operations.
1762 */
1763int
1764vfs_write_suspend(struct mount *mp, int flags)
1765{
1766	int error;
1767
1768	MNT_ILOCK(mp);
1769	if (mp->mnt_susp_owner == curthread) {
1770		MNT_IUNLOCK(mp);
1771		return (EALREADY);
1772	}
1773	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1774		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1775
1776	/*
1777	 * Unmount holds a write reference on the mount point.  If we
1778	 * own busy reference and drain for writers, we deadlock with
1779	 * the reference draining in the unmount path.  Callers of
1780	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1781	 * vfs_busy() reference is owned and caller is not in the
1782	 * unmount context.
1783	 */
1784	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1785	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1786		MNT_IUNLOCK(mp);
1787		return (EBUSY);
1788	}
1789
1790	mp->mnt_kern_flag |= MNTK_SUSPEND;
1791	mp->mnt_susp_owner = curthread;
1792	if (mp->mnt_writeopcount > 0)
1793		(void) msleep(&mp->mnt_writeopcount,
1794		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1795	else
1796		MNT_IUNLOCK(mp);
1797	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1798		vfs_write_resume(mp, 0);
1799	return (error);
1800}
1801
1802/*
1803 * Request a filesystem to resume write operations.
1804 */
1805void
1806vfs_write_resume(struct mount *mp, int flags)
1807{
1808
1809	MNT_ILOCK(mp);
1810	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1811		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1812		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1813				       MNTK_SUSPENDED);
1814		mp->mnt_susp_owner = NULL;
1815		wakeup(&mp->mnt_writeopcount);
1816		wakeup(&mp->mnt_flag);
1817		curthread->td_pflags &= ~TDP_IGNSUSP;
1818		if ((flags & VR_START_WRITE) != 0) {
1819			MNT_REF(mp);
1820			mp->mnt_writeopcount++;
1821		}
1822		MNT_IUNLOCK(mp);
1823		if ((flags & VR_NO_SUSPCLR) == 0)
1824			VFS_SUSP_CLEAN(mp);
1825	} else if ((flags & VR_START_WRITE) != 0) {
1826		MNT_REF(mp);
1827		vn_start_write_locked(mp, 0);
1828	} else {
1829		MNT_IUNLOCK(mp);
1830	}
1831}
1832
1833/*
1834 * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1835 * methods.
1836 */
1837int
1838vfs_write_suspend_umnt(struct mount *mp)
1839{
1840	int error;
1841
1842	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1843	    ("vfs_write_suspend_umnt: recursed"));
1844
1845	/* dounmount() already called vn_start_write(). */
1846	for (;;) {
1847		vn_finished_write(mp);
1848		error = vfs_write_suspend(mp, 0);
1849		if (error != 0)
1850			return (error);
1851		MNT_ILOCK(mp);
1852		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1853			break;
1854		MNT_IUNLOCK(mp);
1855		vn_start_write(NULL, &mp, V_WAIT);
1856	}
1857	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1858	wakeup(&mp->mnt_flag);
1859	MNT_IUNLOCK(mp);
1860	curthread->td_pflags |= TDP_IGNSUSP;
1861	return (0);
1862}
1863
1864/*
1865 * Implement kqueues for files by translating it to vnode operation.
1866 */
1867static int
1868vn_kqfilter(struct file *fp, struct knote *kn)
1869{
1870
1871	return (VOP_KQFILTER(fp->f_vnode, kn));
1872}
1873
1874/*
1875 * Simplified in-kernel wrapper calls for extended attribute access.
1876 * Both calls pass in a NULL credential, authorizing as "kernel" access.
1877 * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1878 */
1879int
1880vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1881    const char *attrname, int *buflen, char *buf, struct thread *td)
1882{
1883	struct uio	auio;
1884	struct iovec	iov;
1885	int	error;
1886
1887	iov.iov_len = *buflen;
1888	iov.iov_base = buf;
1889
1890	auio.uio_iov = &iov;
1891	auio.uio_iovcnt = 1;
1892	auio.uio_rw = UIO_READ;
1893	auio.uio_segflg = UIO_SYSSPACE;
1894	auio.uio_td = td;
1895	auio.uio_offset = 0;
1896	auio.uio_resid = *buflen;
1897
1898	if ((ioflg & IO_NODELOCKED) == 0)
1899		vn_lock(vp, LK_SHARED | LK_RETRY);
1900
1901	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1902
1903	/* authorize attribute retrieval as kernel */
1904	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1905	    td);
1906
1907	if ((ioflg & IO_NODELOCKED) == 0)
1908		VOP_UNLOCK(vp, 0);
1909
1910	if (error == 0) {
1911		*buflen = *buflen - auio.uio_resid;
1912	}
1913
1914	return (error);
1915}
1916
1917/*
1918 * XXX failure mode if partially written?
1919 */
1920int
1921vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1922    const char *attrname, int buflen, char *buf, struct thread *td)
1923{
1924	struct uio	auio;
1925	struct iovec	iov;
1926	struct mount	*mp;
1927	int	error;
1928
1929	iov.iov_len = buflen;
1930	iov.iov_base = buf;
1931
1932	auio.uio_iov = &iov;
1933	auio.uio_iovcnt = 1;
1934	auio.uio_rw = UIO_WRITE;
1935	auio.uio_segflg = UIO_SYSSPACE;
1936	auio.uio_td = td;
1937	auio.uio_offset = 0;
1938	auio.uio_resid = buflen;
1939
1940	if ((ioflg & IO_NODELOCKED) == 0) {
1941		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1942			return (error);
1943		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1944	}
1945
1946	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1947
1948	/* authorize attribute setting as kernel */
1949	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1950
1951	if ((ioflg & IO_NODELOCKED) == 0) {
1952		vn_finished_write(mp);
1953		VOP_UNLOCK(vp, 0);
1954	}
1955
1956	return (error);
1957}
1958
1959int
1960vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1961    const char *attrname, struct thread *td)
1962{
1963	struct mount	*mp;
1964	int	error;
1965
1966	if ((ioflg & IO_NODELOCKED) == 0) {
1967		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1968			return (error);
1969		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1970	}
1971
1972	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1973
1974	/* authorize attribute removal as kernel */
1975	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1976	if (error == EOPNOTSUPP)
1977		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1978		    NULL, td);
1979
1980	if ((ioflg & IO_NODELOCKED) == 0) {
1981		vn_finished_write(mp);
1982		VOP_UNLOCK(vp, 0);
1983	}
1984
1985	return (error);
1986}
1987
1988static int
1989vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
1990    struct vnode **rvp)
1991{
1992
1993	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
1994}
1995
1996int
1997vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1998{
1999
2000	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2001	    lkflags, rvp));
2002}
2003
2004int
2005vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2006    int lkflags, struct vnode **rvp)
2007{
2008	struct mount *mp;
2009	int ltype, error;
2010
2011	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2012	mp = vp->v_mount;
2013	ltype = VOP_ISLOCKED(vp);
2014	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2015	    ("vn_vget_ino: vp not locked"));
2016	error = vfs_busy(mp, MBF_NOWAIT);
2017	if (error != 0) {
2018		vfs_ref(mp);
2019		VOP_UNLOCK(vp, 0);
2020		error = vfs_busy(mp, 0);
2021		vn_lock(vp, ltype | LK_RETRY);
2022		vfs_rel(mp);
2023		if (error != 0)
2024			return (ENOENT);
2025		if (vp->v_iflag & VI_DOOMED) {
2026			vfs_unbusy(mp);
2027			return (ENOENT);
2028		}
2029	}
2030	VOP_UNLOCK(vp, 0);
2031	error = alloc(mp, alloc_arg, lkflags, rvp);
2032	vfs_unbusy(mp);
2033	if (*rvp != vp)
2034		vn_lock(vp, ltype | LK_RETRY);
2035	if (vp->v_iflag & VI_DOOMED) {
2036		if (error == 0) {
2037			if (*rvp == vp)
2038				vunref(vp);
2039			else
2040				vput(*rvp);
2041		}
2042		error = ENOENT;
2043	}
2044	return (error);
2045}
2046
2047int
2048vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2049    const struct thread *td)
2050{
2051
2052	if (vp->v_type != VREG || td == NULL)
2053		return (0);
2054	PROC_LOCK(td->td_proc);
2055	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2056	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2057		kern_psignal(td->td_proc, SIGXFSZ);
2058		PROC_UNLOCK(td->td_proc);
2059		return (EFBIG);
2060	}
2061	PROC_UNLOCK(td->td_proc);
2062	return (0);
2063}
2064
2065int
2066vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2067    struct thread *td)
2068{
2069	struct vnode *vp;
2070
2071	vp = fp->f_vnode;
2072#ifdef AUDIT
2073	vn_lock(vp, LK_SHARED | LK_RETRY);
2074	AUDIT_ARG_VNODE1(vp);
2075	VOP_UNLOCK(vp, 0);
2076#endif
2077	return (setfmode(td, active_cred, vp, mode));
2078}
2079
2080int
2081vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2082    struct thread *td)
2083{
2084	struct vnode *vp;
2085
2086	vp = fp->f_vnode;
2087#ifdef AUDIT
2088	vn_lock(vp, LK_SHARED | LK_RETRY);
2089	AUDIT_ARG_VNODE1(vp);
2090	VOP_UNLOCK(vp, 0);
2091#endif
2092	return (setfown(td, active_cred, vp, uid, gid));
2093}
2094
2095void
2096vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2097{
2098	vm_object_t object;
2099
2100	if ((object = vp->v_object) == NULL)
2101		return;
2102	VM_OBJECT_WLOCK(object);
2103	vm_object_page_remove(object, start, end, 0);
2104	VM_OBJECT_WUNLOCK(object);
2105}
2106
2107int
2108vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2109{
2110	struct vattr va;
2111	daddr_t bn, bnp;
2112	uint64_t bsize;
2113	off_t noff;
2114	int error;
2115
2116	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2117	    ("Wrong command %lu", cmd));
2118
2119	if (vn_lock(vp, LK_SHARED) != 0)
2120		return (EBADF);
2121	if (vp->v_type != VREG) {
2122		error = ENOTTY;
2123		goto unlock;
2124	}
2125	error = VOP_GETATTR(vp, &va, cred);
2126	if (error != 0)
2127		goto unlock;
2128	noff = *off;
2129	if (noff >= va.va_size) {
2130		error = ENXIO;
2131		goto unlock;
2132	}
2133	bsize = vp->v_mount->mnt_stat.f_iosize;
2134	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2135		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2136		if (error == EOPNOTSUPP) {
2137			error = ENOTTY;
2138			goto unlock;
2139		}
2140		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2141		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2142			noff = bn * bsize;
2143			if (noff < *off)
2144				noff = *off;
2145			goto unlock;
2146		}
2147	}
2148	if (noff > va.va_size)
2149		noff = va.va_size;
2150	/* noff == va.va_size. There is an implicit hole at the end of file. */
2151	if (cmd == FIOSEEKDATA)
2152		error = ENXIO;
2153unlock:
2154	VOP_UNLOCK(vp, 0);
2155	if (error == 0)
2156		*off = noff;
2157	return (error);
2158}
2159
2160int
2161vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2162{
2163	struct ucred *cred;
2164	struct vnode *vp;
2165	struct vattr vattr;
2166	off_t foffset, size;
2167	int error, noneg;
2168
2169	cred = td->td_ucred;
2170	vp = fp->f_vnode;
2171	foffset = foffset_lock(fp, 0);
2172	noneg = (vp->v_type != VCHR);
2173	error = 0;
2174	switch (whence) {
2175	case L_INCR:
2176		if (noneg &&
2177		    (foffset < 0 ||
2178		    (offset > 0 && foffset > OFF_MAX - offset))) {
2179			error = EOVERFLOW;
2180			break;
2181		}
2182		offset += foffset;
2183		break;
2184	case L_XTND:
2185		vn_lock(vp, LK_SHARED | LK_RETRY);
2186		error = VOP_GETATTR(vp, &vattr, cred);
2187		VOP_UNLOCK(vp, 0);
2188		if (error)
2189			break;
2190
2191		/*
2192		 * If the file references a disk device, then fetch
2193		 * the media size and use that to determine the ending
2194		 * offset.
2195		 */
2196		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2197		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2198			vattr.va_size = size;
2199		if (noneg &&
2200		    (vattr.va_size > OFF_MAX ||
2201		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2202			error = EOVERFLOW;
2203			break;
2204		}
2205		offset += vattr.va_size;
2206		break;
2207	case L_SET:
2208		break;
2209	case SEEK_DATA:
2210		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2211		break;
2212	case SEEK_HOLE:
2213		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2214		break;
2215	default:
2216		error = EINVAL;
2217	}
2218	if (error == 0 && noneg && offset < 0)
2219		error = EINVAL;
2220	if (error != 0)
2221		goto drop;
2222	VFS_KNOTE_UNLOCKED(vp, 0);
2223	*(off_t *)(td->td_retval) = offset;
2224drop:
2225	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2226	return (error);
2227}
2228
2229int
2230vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2231    struct thread *td)
2232{
2233	int error;
2234
2235	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2236
2237	/*
2238	 * From utimes(2):
2239	 * Grant permission if the caller is the owner of the file or
2240	 * the super-user.  If the time pointer is null, then write
2241	 * permission on the file is also sufficient.
2242	 *
2243	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2244	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2245	 * will be allowed to set the times [..] to the current
2246	 * server time.
2247	 */
2248	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2249		error = VOP_ACCESS(vp, VWRITE, cred, td);
2250	return (error);
2251}
2252