1/*-
2 * Copyright (c) 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Modifications/enhancements:
5 * 	Copyright (c) 1995 John S. Dyson.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)vfs_cluster.c	8.7 (Berkeley) 2/13/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include "opt_debug_cluster.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/proc.h>
43#include <sys/bio.h>
44#include <sys/buf.h>
45#include <sys/vnode.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/resourcevar.h>
49#include <sys/rwlock.h>
50#include <sys/vmmeter.h>
51#include <vm/vm.h>
52#include <vm/vm_object.h>
53#include <vm/vm_page.h>
54#include <sys/sysctl.h>
55
56#if defined(CLUSTERDEBUG)
57static int	rcluster= 0;
58SYSCTL_INT(_debug, OID_AUTO, rcluster, CTLFLAG_RW, &rcluster, 0,
59    "Debug VFS clustering code");
60#endif
61
62static MALLOC_DEFINE(M_SEGMENT, "cl_savebuf", "cluster_save buffer");
63
64static struct cluster_save *cluster_collectbufs(struct vnode *vp,
65	    struct buf *last_bp, int gbflags);
66static struct buf *cluster_rbuild(struct vnode *vp, u_quad_t filesize,
67	    daddr_t lbn, daddr_t blkno, long size, int run, int gbflags,
68	    struct buf *fbp);
69static void cluster_callback(struct buf *);
70
71static int write_behind = 1;
72SYSCTL_INT(_vfs, OID_AUTO, write_behind, CTLFLAG_RW, &write_behind, 0,
73    "Cluster write-behind; 0: disable, 1: enable, 2: backed off");
74
75static int read_max = 64;
76SYSCTL_INT(_vfs, OID_AUTO, read_max, CTLFLAG_RW, &read_max, 0,
77    "Cluster read-ahead max block count");
78
79static int read_min = 1;
80SYSCTL_INT(_vfs, OID_AUTO, read_min, CTLFLAG_RW, &read_min, 0,
81    "Cluster read min block count");
82
83/* Page expended to mark partially backed buffers */
84extern vm_page_t	bogus_page;
85
86/*
87 * Read data to a buf, including read-ahead if we find this to be beneficial.
88 * cluster_read replaces bread.
89 */
90int
91cluster_read(struct vnode *vp, u_quad_t filesize, daddr_t lblkno, long size,
92    struct ucred *cred, long totread, int seqcount, int gbflags,
93    struct buf **bpp)
94{
95	struct buf *bp, *rbp, *reqbp;
96	struct bufobj *bo;
97	daddr_t blkno, origblkno;
98	int maxra, racluster;
99	int error, ncontig;
100	int i;
101
102	error = 0;
103	bo = &vp->v_bufobj;
104	if (!unmapped_buf_allowed)
105		gbflags &= ~GB_UNMAPPED;
106
107	/*
108	 * Try to limit the amount of read-ahead by a few
109	 * ad-hoc parameters.  This needs work!!!
110	 */
111	racluster = vp->v_mount->mnt_iosize_max / size;
112	maxra = seqcount;
113	maxra = min(read_max, maxra);
114	maxra = min(nbuf/8, maxra);
115	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
116		maxra = (filesize / size) - lblkno;
117
118	/*
119	 * get the requested block
120	 */
121	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, gbflags);
122	origblkno = lblkno;
123
124	/*
125	 * if it is in the cache, then check to see if the reads have been
126	 * sequential.  If they have, then try some read-ahead, otherwise
127	 * back-off on prospective read-aheads.
128	 */
129	if (bp->b_flags & B_CACHE) {
130		if (!seqcount) {
131			return 0;
132		} else if ((bp->b_flags & B_RAM) == 0) {
133			return 0;
134		} else {
135			bp->b_flags &= ~B_RAM;
136			BO_RLOCK(bo);
137			for (i = 1; i < maxra; i++) {
138				/*
139				 * Stop if the buffer does not exist or it
140				 * is invalid (about to go away?)
141				 */
142				rbp = gbincore(&vp->v_bufobj, lblkno+i);
143				if (rbp == NULL || (rbp->b_flags & B_INVAL))
144					break;
145
146				/*
147				 * Set another read-ahead mark so we know
148				 * to check again. (If we can lock the
149				 * buffer without waiting)
150				 */
151				if ((((i % racluster) == (racluster - 1)) ||
152				    (i == (maxra - 1)))
153				    && (0 == BUF_LOCK(rbp,
154					LK_EXCLUSIVE | LK_NOWAIT, NULL))) {
155					rbp->b_flags |= B_RAM;
156					BUF_UNLOCK(rbp);
157				}
158			}
159			BO_RUNLOCK(bo);
160			if (i >= maxra) {
161				return 0;
162			}
163			lblkno += i;
164		}
165		reqbp = bp = NULL;
166	/*
167	 * If it isn't in the cache, then get a chunk from
168	 * disk if sequential, otherwise just get the block.
169	 */
170	} else {
171		off_t firstread = bp->b_offset;
172		int nblks;
173		long minread;
174
175		KASSERT(bp->b_offset != NOOFFSET,
176		    ("cluster_read: no buffer offset"));
177
178		ncontig = 0;
179
180		/*
181		 * Adjust totread if needed
182		 */
183		minread = read_min * size;
184		if (minread > totread)
185			totread = minread;
186
187		/*
188		 * Compute the total number of blocks that we should read
189		 * synchronously.
190		 */
191		if (firstread + totread > filesize)
192			totread = filesize - firstread;
193		nblks = howmany(totread, size);
194		if (nblks > racluster)
195			nblks = racluster;
196
197		/*
198		 * Now compute the number of contiguous blocks.
199		 */
200		if (nblks > 1) {
201	    		error = VOP_BMAP(vp, lblkno, NULL,
202				&blkno, &ncontig, NULL);
203			/*
204			 * If this failed to map just do the original block.
205			 */
206			if (error || blkno == -1)
207				ncontig = 0;
208		}
209
210		/*
211		 * If we have contiguous data available do a cluster
212		 * otherwise just read the requested block.
213		 */
214		if (ncontig) {
215			/* Account for our first block. */
216			ncontig = min(ncontig + 1, nblks);
217			if (ncontig < nblks)
218				nblks = ncontig;
219			bp = cluster_rbuild(vp, filesize, lblkno,
220			    blkno, size, nblks, gbflags, bp);
221			lblkno += (bp->b_bufsize / size);
222		} else {
223			bp->b_flags |= B_RAM;
224			bp->b_iocmd = BIO_READ;
225			lblkno += 1;
226		}
227	}
228
229	/*
230	 * handle the synchronous read so that it is available ASAP.
231	 */
232	if (bp) {
233		if ((bp->b_flags & B_CLUSTER) == 0) {
234			vfs_busy_pages(bp, 0);
235		}
236		bp->b_flags &= ~B_INVAL;
237		bp->b_ioflags &= ~BIO_ERROR;
238		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
239			BUF_KERNPROC(bp);
240		bp->b_iooffset = dbtob(bp->b_blkno);
241		bstrategy(bp);
242		curthread->td_ru.ru_inblock++;
243	}
244
245	/*
246	 * If we have been doing sequential I/O, then do some read-ahead.
247	 */
248	while (lblkno < (origblkno + maxra)) {
249		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
250		if (error)
251			break;
252
253		if (blkno == -1)
254			break;
255
256		/*
257		 * We could throttle ncontig here by maxra but we might as
258		 * well read the data if it is contiguous.  We're throttled
259		 * by racluster anyway.
260		 */
261		if (ncontig) {
262			ncontig = min(ncontig + 1, racluster);
263			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
264			    size, ncontig, gbflags, NULL);
265			lblkno += (rbp->b_bufsize / size);
266			if (rbp->b_flags & B_DELWRI) {
267				bqrelse(rbp);
268				continue;
269			}
270		} else {
271			rbp = getblk(vp, lblkno, size, 0, 0, gbflags);
272			lblkno += 1;
273			if (rbp->b_flags & B_DELWRI) {
274				bqrelse(rbp);
275				continue;
276			}
277			rbp->b_flags |= B_ASYNC | B_RAM;
278			rbp->b_iocmd = BIO_READ;
279			rbp->b_blkno = blkno;
280		}
281		if (rbp->b_flags & B_CACHE) {
282			rbp->b_flags &= ~B_ASYNC;
283			bqrelse(rbp);
284			continue;
285		}
286		if ((rbp->b_flags & B_CLUSTER) == 0) {
287			vfs_busy_pages(rbp, 0);
288		}
289		rbp->b_flags &= ~B_INVAL;
290		rbp->b_ioflags &= ~BIO_ERROR;
291		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
292			BUF_KERNPROC(rbp);
293		rbp->b_iooffset = dbtob(rbp->b_blkno);
294		bstrategy(rbp);
295		curthread->td_ru.ru_inblock++;
296	}
297
298	if (reqbp)
299		return (bufwait(reqbp));
300	else
301		return (error);
302}
303
304/*
305 * If blocks are contiguous on disk, use this to provide clustered
306 * read ahead.  We will read as many blocks as possible sequentially
307 * and then parcel them up into logical blocks in the buffer hash table.
308 */
309static struct buf *
310cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
311    daddr_t blkno, long size, int run, int gbflags, struct buf *fbp)
312{
313	struct bufobj *bo;
314	struct buf *bp, *tbp;
315	daddr_t bn;
316	off_t off;
317	long tinc, tsize;
318	int i, inc, j, k, toff;
319
320	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
321	    ("cluster_rbuild: size %ld != f_iosize %jd\n",
322	    size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));
323
324	/*
325	 * avoid a division
326	 */
327	while ((u_quad_t) size * (lbn + run) > filesize) {
328		--run;
329	}
330
331	if (fbp) {
332		tbp = fbp;
333		tbp->b_iocmd = BIO_READ;
334	} else {
335		tbp = getblk(vp, lbn, size, 0, 0, gbflags);
336		if (tbp->b_flags & B_CACHE)
337			return tbp;
338		tbp->b_flags |= B_ASYNC | B_RAM;
339		tbp->b_iocmd = BIO_READ;
340	}
341	tbp->b_blkno = blkno;
342	if( (tbp->b_flags & B_MALLOC) ||
343		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
344		return tbp;
345
346	bp = trypbuf(&cluster_pbuf_freecnt);
347	if (bp == 0)
348		return tbp;
349
350	/*
351	 * We are synthesizing a buffer out of vm_page_t's, but
352	 * if the block size is not page aligned then the starting
353	 * address may not be either.  Inherit the b_data offset
354	 * from the original buffer.
355	 */
356	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
357	if ((gbflags & GB_UNMAPPED) != 0) {
358		bp->b_flags |= B_UNMAPPED;
359		bp->b_data = unmapped_buf;
360	} else {
361		bp->b_data = (char *)((vm_offset_t)bp->b_data |
362		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
363	}
364	bp->b_iocmd = BIO_READ;
365	bp->b_iodone = cluster_callback;
366	bp->b_blkno = blkno;
367	bp->b_lblkno = lbn;
368	bp->b_offset = tbp->b_offset;
369	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
370	pbgetvp(vp, bp);
371
372	TAILQ_INIT(&bp->b_cluster.cluster_head);
373
374	bp->b_bcount = 0;
375	bp->b_bufsize = 0;
376	bp->b_npages = 0;
377
378	inc = btodb(size);
379	bo = &vp->v_bufobj;
380	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
381		if (i == 0) {
382			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
383			vfs_drain_busy_pages(tbp);
384			vm_object_pip_add(tbp->b_bufobj->bo_object,
385			    tbp->b_npages);
386			for (k = 0; k < tbp->b_npages; k++)
387				vm_page_sbusy(tbp->b_pages[k]);
388			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
389		} else {
390			if ((bp->b_npages * PAGE_SIZE) +
391			    round_page(size) > vp->v_mount->mnt_iosize_max) {
392				break;
393			}
394
395			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT |
396			    (gbflags & GB_UNMAPPED));
397
398			/* Don't wait around for locked bufs. */
399			if (tbp == NULL)
400				break;
401
402			/*
403			 * Stop scanning if the buffer is fully valid
404			 * (marked B_CACHE), or locked (may be doing a
405			 * background write), or if the buffer is not
406			 * VMIO backed.  The clustering code can only deal
407			 * with VMIO-backed buffers.  The bo lock is not
408			 * required for the BKGRDINPROG check since it
409			 * can not be set without the buf lock.
410			 */
411			if ((tbp->b_vflags & BV_BKGRDINPROG) ||
412			    (tbp->b_flags & B_CACHE) ||
413			    (tbp->b_flags & B_VMIO) == 0) {
414				bqrelse(tbp);
415				break;
416			}
417
418			/*
419			 * The buffer must be completely invalid in order to
420			 * take part in the cluster.  If it is partially valid
421			 * then we stop.
422			 */
423			off = tbp->b_offset;
424			tsize = size;
425			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
426			for (j = 0; tsize > 0; j++) {
427				toff = off & PAGE_MASK;
428				tinc = tsize;
429				if (toff + tinc > PAGE_SIZE)
430					tinc = PAGE_SIZE - toff;
431				VM_OBJECT_ASSERT_WLOCKED(tbp->b_pages[j]->object);
432				if ((tbp->b_pages[j]->valid &
433				    vm_page_bits(toff, tinc)) != 0)
434					break;
435				if (vm_page_xbusied(tbp->b_pages[j]))
436					break;
437				vm_object_pip_add(tbp->b_bufobj->bo_object, 1);
438				vm_page_sbusy(tbp->b_pages[j]);
439				off += tinc;
440				tsize -= tinc;
441			}
442			if (tsize > 0) {
443clean_sbusy:
444				vm_object_pip_add(tbp->b_bufobj->bo_object, -j);
445				for (k = 0; k < j; k++)
446					vm_page_sunbusy(tbp->b_pages[k]);
447				VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
448				bqrelse(tbp);
449				break;
450			}
451			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
452
453			/*
454			 * Set a read-ahead mark as appropriate
455			 */
456			if ((fbp && (i == 1)) || (i == (run - 1)))
457				tbp->b_flags |= B_RAM;
458
459			/*
460			 * Set the buffer up for an async read (XXX should
461			 * we do this only if we do not wind up brelse()ing?).
462			 * Set the block number if it isn't set, otherwise
463			 * if it is make sure it matches the block number we
464			 * expect.
465			 */
466			tbp->b_flags |= B_ASYNC;
467			tbp->b_iocmd = BIO_READ;
468			if (tbp->b_blkno == tbp->b_lblkno) {
469				tbp->b_blkno = bn;
470			} else if (tbp->b_blkno != bn) {
471				VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
472				goto clean_sbusy;
473			}
474		}
475		/*
476		 * XXX fbp from caller may not be B_ASYNC, but we are going
477		 * to biodone() it in cluster_callback() anyway
478		 */
479		BUF_KERNPROC(tbp);
480		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
481			tbp, b_cluster.cluster_entry);
482		VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
483		for (j = 0; j < tbp->b_npages; j += 1) {
484			vm_page_t m;
485			m = tbp->b_pages[j];
486			if ((bp->b_npages == 0) ||
487			    (bp->b_pages[bp->b_npages-1] != m)) {
488				bp->b_pages[bp->b_npages] = m;
489				bp->b_npages++;
490			}
491			if (m->valid == VM_PAGE_BITS_ALL)
492				tbp->b_pages[j] = bogus_page;
493		}
494		VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
495		/*
496		 * Don't inherit tbp->b_bufsize as it may be larger due to
497		 * a non-page-aligned size.  Instead just aggregate using
498		 * 'size'.
499		 */
500		if (tbp->b_bcount != size)
501			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
502		if (tbp->b_bufsize != size)
503			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
504		bp->b_bcount += size;
505		bp->b_bufsize += size;
506	}
507
508	/*
509	 * Fully valid pages in the cluster are already good and do not need
510	 * to be re-read from disk.  Replace the page with bogus_page
511	 */
512	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
513	for (j = 0; j < bp->b_npages; j++) {
514		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[j]->object);
515		if (bp->b_pages[j]->valid == VM_PAGE_BITS_ALL)
516			bp->b_pages[j] = bogus_page;
517	}
518	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
519	if (bp->b_bufsize > bp->b_kvasize)
520		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
521		    bp->b_bufsize, bp->b_kvasize);
522	bp->b_kvasize = bp->b_bufsize;
523
524	if ((bp->b_flags & B_UNMAPPED) == 0) {
525		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
526		    (vm_page_t *)bp->b_pages, bp->b_npages);
527	}
528	return (bp);
529}
530
531/*
532 * Cleanup after a clustered read or write.
533 * This is complicated by the fact that any of the buffers might have
534 * extra memory (if there were no empty buffer headers at allocbuf time)
535 * that we will need to shift around.
536 */
537static void
538cluster_callback(bp)
539	struct buf *bp;
540{
541	struct buf *nbp, *tbp;
542	int error = 0;
543
544	/*
545	 * Must propogate errors to all the components.
546	 */
547	if (bp->b_ioflags & BIO_ERROR)
548		error = bp->b_error;
549
550	if ((bp->b_flags & B_UNMAPPED) == 0) {
551		pmap_qremove(trunc_page((vm_offset_t) bp->b_data),
552		    bp->b_npages);
553	}
554	/*
555	 * Move memory from the large cluster buffer into the component
556	 * buffers and mark IO as done on these.
557	 */
558	for (tbp = TAILQ_FIRST(&bp->b_cluster.cluster_head);
559		tbp; tbp = nbp) {
560		nbp = TAILQ_NEXT(&tbp->b_cluster, cluster_entry);
561		if (error) {
562			tbp->b_ioflags |= BIO_ERROR;
563			tbp->b_error = error;
564		} else {
565			tbp->b_dirtyoff = tbp->b_dirtyend = 0;
566			tbp->b_flags &= ~B_INVAL;
567			tbp->b_ioflags &= ~BIO_ERROR;
568			/*
569			 * XXX the bdwrite()/bqrelse() issued during
570			 * cluster building clears B_RELBUF (see bqrelse()
571			 * comment).  If direct I/O was specified, we have
572			 * to restore it here to allow the buffer and VM
573			 * to be freed.
574			 */
575			if (tbp->b_flags & B_DIRECT)
576				tbp->b_flags |= B_RELBUF;
577		}
578		bufdone(tbp);
579	}
580	pbrelvp(bp);
581	relpbuf(bp, &cluster_pbuf_freecnt);
582}
583
584/*
585 *	cluster_wbuild_wb:
586 *
587 *	Implement modified write build for cluster.
588 *
589 *		write_behind = 0	write behind disabled
590 *		write_behind = 1	write behind normal (default)
591 *		write_behind = 2	write behind backed-off
592 */
593
594static __inline int
595cluster_wbuild_wb(struct vnode *vp, long size, daddr_t start_lbn, int len,
596    int gbflags)
597{
598	int r = 0;
599
600	switch (write_behind) {
601	case 2:
602		if (start_lbn < len)
603			break;
604		start_lbn -= len;
605		/* FALLTHROUGH */
606	case 1:
607		r = cluster_wbuild(vp, size, start_lbn, len, gbflags);
608		/* FALLTHROUGH */
609	default:
610		/* FALLTHROUGH */
611		break;
612	}
613	return(r);
614}
615
616/*
617 * Do clustered write for FFS.
618 *
619 * Three cases:
620 *	1. Write is not sequential (write asynchronously)
621 *	Write is sequential:
622 *	2.	beginning of cluster - begin cluster
623 *	3.	middle of a cluster - add to cluster
624 *	4.	end of a cluster - asynchronously write cluster
625 */
626void
627cluster_write(struct vnode *vp, struct buf *bp, u_quad_t filesize, int seqcount,
628    int gbflags)
629{
630	daddr_t lbn;
631	int maxclen, cursize;
632	int lblocksize;
633	int async;
634
635	if (!unmapped_buf_allowed)
636		gbflags &= ~GB_UNMAPPED;
637
638	if (vp->v_type == VREG) {
639		async = DOINGASYNC(vp);
640		lblocksize = vp->v_mount->mnt_stat.f_iosize;
641	} else {
642		async = 0;
643		lblocksize = bp->b_bufsize;
644	}
645	lbn = bp->b_lblkno;
646	KASSERT(bp->b_offset != NOOFFSET, ("cluster_write: no buffer offset"));
647
648	/* Initialize vnode to beginning of file. */
649	if (lbn == 0)
650		vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
651
652	if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
653	    (bp->b_blkno != vp->v_lasta + btodb(lblocksize))) {
654		maxclen = vp->v_mount->mnt_iosize_max / lblocksize - 1;
655		if (vp->v_clen != 0) {
656			/*
657			 * Next block is not sequential.
658			 *
659			 * If we are not writing at end of file, the process
660			 * seeked to another point in the file since its last
661			 * write, or we have reached our maximum cluster size,
662			 * then push the previous cluster. Otherwise try
663			 * reallocating to make it sequential.
664			 *
665			 * Change to algorithm: only push previous cluster if
666			 * it was sequential from the point of view of the
667			 * seqcount heuristic, otherwise leave the buffer
668			 * intact so we can potentially optimize the I/O
669			 * later on in the buf_daemon or update daemon
670			 * flush.
671			 */
672			cursize = vp->v_lastw - vp->v_cstart + 1;
673			if (((u_quad_t) bp->b_offset + lblocksize) != filesize ||
674			    lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
675				if (!async && seqcount > 0) {
676					cluster_wbuild_wb(vp, lblocksize,
677					    vp->v_cstart, cursize, gbflags);
678				}
679			} else {
680				struct buf **bpp, **endbp;
681				struct cluster_save *buflist;
682
683				buflist = cluster_collectbufs(vp, bp, gbflags);
684				endbp = &buflist->bs_children
685				    [buflist->bs_nchildren - 1];
686				if (VOP_REALLOCBLKS(vp, buflist)) {
687					/*
688					 * Failed, push the previous cluster
689					 * if *really* writing sequentially
690					 * in the logical file (seqcount > 1),
691					 * otherwise delay it in the hopes that
692					 * the low level disk driver can
693					 * optimize the write ordering.
694					 */
695					for (bpp = buflist->bs_children;
696					     bpp < endbp; bpp++)
697						brelse(*bpp);
698					free(buflist, M_SEGMENT);
699					if (seqcount > 1) {
700						cluster_wbuild_wb(vp,
701						    lblocksize, vp->v_cstart,
702						    cursize, gbflags);
703					}
704				} else {
705					/*
706					 * Succeeded, keep building cluster.
707					 */
708					for (bpp = buflist->bs_children;
709					     bpp <= endbp; bpp++)
710						bdwrite(*bpp);
711					free(buflist, M_SEGMENT);
712					vp->v_lastw = lbn;
713					vp->v_lasta = bp->b_blkno;
714					return;
715				}
716			}
717		}
718		/*
719		 * Consider beginning a cluster. If at end of file, make
720		 * cluster as large as possible, otherwise find size of
721		 * existing cluster.
722		 */
723		if ((vp->v_type == VREG) &&
724			((u_quad_t) bp->b_offset + lblocksize) != filesize &&
725		    (bp->b_blkno == bp->b_lblkno) &&
726		    (VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen, NULL) ||
727		     bp->b_blkno == -1)) {
728			bawrite(bp);
729			vp->v_clen = 0;
730			vp->v_lasta = bp->b_blkno;
731			vp->v_cstart = lbn + 1;
732			vp->v_lastw = lbn;
733			return;
734		}
735		vp->v_clen = maxclen;
736		if (!async && maxclen == 0) {	/* I/O not contiguous */
737			vp->v_cstart = lbn + 1;
738			bawrite(bp);
739		} else {	/* Wait for rest of cluster */
740			vp->v_cstart = lbn;
741			bdwrite(bp);
742		}
743	} else if (lbn == vp->v_cstart + vp->v_clen) {
744		/*
745		 * At end of cluster, write it out if seqcount tells us we
746		 * are operating sequentially, otherwise let the buf or
747		 * update daemon handle it.
748		 */
749		bdwrite(bp);
750		if (seqcount > 1) {
751			cluster_wbuild_wb(vp, lblocksize, vp->v_cstart,
752			    vp->v_clen + 1, gbflags);
753		}
754		vp->v_clen = 0;
755		vp->v_cstart = lbn + 1;
756	} else if (vm_page_count_severe()) {
757		/*
758		 * We are low on memory, get it going NOW
759		 */
760		bawrite(bp);
761	} else {
762		/*
763		 * In the middle of a cluster, so just delay the I/O for now.
764		 */
765		bdwrite(bp);
766	}
767	vp->v_lastw = lbn;
768	vp->v_lasta = bp->b_blkno;
769}
770
771
772/*
773 * This is an awful lot like cluster_rbuild...wish they could be combined.
774 * The last lbn argument is the current block on which I/O is being
775 * performed.  Check to see that it doesn't fall in the middle of
776 * the current block (if last_bp == NULL).
777 */
778int
779cluster_wbuild(struct vnode *vp, long size, daddr_t start_lbn, int len,
780    int gbflags)
781{
782	struct buf *bp, *tbp;
783	struct bufobj *bo;
784	int i, j;
785	int totalwritten = 0;
786	int dbsize = btodb(size);
787
788	if (!unmapped_buf_allowed)
789		gbflags &= ~GB_UNMAPPED;
790
791	bo = &vp->v_bufobj;
792	while (len > 0) {
793		/*
794		 * If the buffer is not delayed-write (i.e. dirty), or it
795		 * is delayed-write but either locked or inval, it cannot
796		 * partake in the clustered write.
797		 */
798		BO_LOCK(bo);
799		if ((tbp = gbincore(&vp->v_bufobj, start_lbn)) == NULL ||
800		    (tbp->b_vflags & BV_BKGRDINPROG)) {
801			BO_UNLOCK(bo);
802			++start_lbn;
803			--len;
804			continue;
805		}
806		if (BUF_LOCK(tbp,
807		    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, BO_LOCKPTR(bo))) {
808			++start_lbn;
809			--len;
810			continue;
811		}
812		if ((tbp->b_flags & (B_INVAL | B_DELWRI)) != B_DELWRI) {
813			BUF_UNLOCK(tbp);
814			++start_lbn;
815			--len;
816			continue;
817		}
818		if (tbp->b_pin_count >  0) {
819			BUF_UNLOCK(tbp);
820			++start_lbn;
821			--len;
822			continue;
823		}
824		bremfree(tbp);
825		tbp->b_flags &= ~B_DONE;
826
827		/*
828		 * Extra memory in the buffer, punt on this buffer.
829		 * XXX we could handle this in most cases, but we would
830		 * have to push the extra memory down to after our max
831		 * possible cluster size and then potentially pull it back
832		 * up if the cluster was terminated prematurely--too much
833		 * hassle.
834		 */
835		if (((tbp->b_flags & (B_CLUSTEROK | B_MALLOC | B_VMIO)) !=
836		     (B_CLUSTEROK | B_VMIO)) ||
837		  (tbp->b_bcount != tbp->b_bufsize) ||
838		  (tbp->b_bcount != size) ||
839		  (len == 1) ||
840		  ((bp = (vp->v_vflag & VV_MD) != 0 ?
841		  trypbuf(&cluster_pbuf_freecnt) :
842		  getpbuf(&cluster_pbuf_freecnt)) == NULL)) {
843			totalwritten += tbp->b_bufsize;
844			bawrite(tbp);
845			++start_lbn;
846			--len;
847			continue;
848		}
849
850		/*
851		 * We got a pbuf to make the cluster in.
852		 * so initialise it.
853		 */
854		TAILQ_INIT(&bp->b_cluster.cluster_head);
855		bp->b_bcount = 0;
856		bp->b_bufsize = 0;
857		bp->b_npages = 0;
858		if (tbp->b_wcred != NOCRED)
859			bp->b_wcred = crhold(tbp->b_wcred);
860
861		bp->b_blkno = tbp->b_blkno;
862		bp->b_lblkno = tbp->b_lblkno;
863		bp->b_offset = tbp->b_offset;
864
865		/*
866		 * We are synthesizing a buffer out of vm_page_t's, but
867		 * if the block size is not page aligned then the starting
868		 * address may not be either.  Inherit the b_data offset
869		 * from the original buffer.
870		 */
871		if ((gbflags & GB_UNMAPPED) == 0 ||
872		    (tbp->b_flags & B_VMIO) == 0) {
873			bp->b_data = (char *)((vm_offset_t)bp->b_data |
874			    ((vm_offset_t)tbp->b_data & PAGE_MASK));
875		} else {
876			bp->b_flags |= B_UNMAPPED;
877			bp->b_data = unmapped_buf;
878		}
879		bp->b_flags |= B_CLUSTER | (tbp->b_flags & (B_VMIO |
880		    B_NEEDCOMMIT));
881		bp->b_iodone = cluster_callback;
882		pbgetvp(vp, bp);
883		/*
884		 * From this location in the file, scan forward to see
885		 * if there are buffers with adjacent data that need to
886		 * be written as well.
887		 */
888		for (i = 0; i < len; ++i, ++start_lbn) {
889			if (i != 0) { /* If not the first buffer */
890				/*
891				 * If the adjacent data is not even in core it
892				 * can't need to be written.
893				 */
894				BO_LOCK(bo);
895				if ((tbp = gbincore(bo, start_lbn)) == NULL ||
896				    (tbp->b_vflags & BV_BKGRDINPROG)) {
897					BO_UNLOCK(bo);
898					break;
899				}
900
901				/*
902				 * If it IS in core, but has different
903				 * characteristics, or is locked (which
904				 * means it could be undergoing a background
905				 * I/O or be in a weird state), then don't
906				 * cluster with it.
907				 */
908				if (BUF_LOCK(tbp,
909				    LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK,
910				    BO_LOCKPTR(bo)))
911					break;
912
913				if ((tbp->b_flags & (B_VMIO | B_CLUSTEROK |
914				    B_INVAL | B_DELWRI | B_NEEDCOMMIT))
915				    != (B_DELWRI | B_CLUSTEROK |
916				    (bp->b_flags & (B_VMIO | B_NEEDCOMMIT))) ||
917				    tbp->b_wcred != bp->b_wcred) {
918					BUF_UNLOCK(tbp);
919					break;
920				}
921
922				/*
923				 * Check that the combined cluster
924				 * would make sense with regard to pages
925				 * and would not be too large
926				 */
927				if ((tbp->b_bcount != size) ||
928				  ((bp->b_blkno + (dbsize * i)) !=
929				    tbp->b_blkno) ||
930				  ((tbp->b_npages + bp->b_npages) >
931				    (vp->v_mount->mnt_iosize_max / PAGE_SIZE))) {
932					BUF_UNLOCK(tbp);
933					break;
934				}
935
936				/*
937				 * Do not pull in pinned buffers.
938				 */
939				if (tbp->b_pin_count > 0) {
940					BUF_UNLOCK(tbp);
941					break;
942				}
943
944				/*
945				 * Ok, it's passed all the tests,
946				 * so remove it from the free list
947				 * and mark it busy. We will use it.
948				 */
949				bremfree(tbp);
950				tbp->b_flags &= ~B_DONE;
951			} /* end of code for non-first buffers only */
952			/*
953			 * If the IO is via the VM then we do some
954			 * special VM hackery (yuck).  Since the buffer's
955			 * block size may not be page-aligned it is possible
956			 * for a page to be shared between two buffers.  We
957			 * have to get rid of the duplication when building
958			 * the cluster.
959			 */
960			if (tbp->b_flags & B_VMIO) {
961				vm_page_t m;
962
963				VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
964				if (i == 0) {
965					vfs_drain_busy_pages(tbp);
966				} else { /* if not first buffer */
967					for (j = 0; j < tbp->b_npages; j += 1) {
968						m = tbp->b_pages[j];
969						if (vm_page_xbusied(m)) {
970							VM_OBJECT_WUNLOCK(
971							    tbp->b_object);
972							bqrelse(tbp);
973							goto finishcluster;
974						}
975					}
976				}
977				for (j = 0; j < tbp->b_npages; j += 1) {
978					m = tbp->b_pages[j];
979					vm_page_sbusy(m);
980					vm_object_pip_add(m->object, 1);
981					if ((bp->b_npages == 0) ||
982					  (bp->b_pages[bp->b_npages - 1] != m)) {
983						bp->b_pages[bp->b_npages] = m;
984						bp->b_npages++;
985					}
986				}
987				VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
988			}
989			bp->b_bcount += size;
990			bp->b_bufsize += size;
991			/*
992			 * If any of the clustered buffers have their
993			 * B_BARRIER flag set, transfer that request to
994			 * the cluster.
995			 */
996			bp->b_flags |= (tbp->b_flags & B_BARRIER);
997			tbp->b_flags &= ~(B_DONE | B_BARRIER);
998			tbp->b_flags |= B_ASYNC;
999			tbp->b_ioflags &= ~BIO_ERROR;
1000			tbp->b_iocmd = BIO_WRITE;
1001			bundirty(tbp);
1002			reassignbuf(tbp);		/* put on clean list */
1003			bufobj_wref(tbp->b_bufobj);
1004			BUF_KERNPROC(tbp);
1005			TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
1006				tbp, b_cluster.cluster_entry);
1007		}
1008	finishcluster:
1009		if ((bp->b_flags & B_UNMAPPED) == 0) {
1010			pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
1011			    (vm_page_t *)bp->b_pages, bp->b_npages);
1012		}
1013		if (bp->b_bufsize > bp->b_kvasize)
1014			panic(
1015			    "cluster_wbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
1016			    bp->b_bufsize, bp->b_kvasize);
1017		bp->b_kvasize = bp->b_bufsize;
1018		totalwritten += bp->b_bufsize;
1019		bp->b_dirtyoff = 0;
1020		bp->b_dirtyend = bp->b_bufsize;
1021		bawrite(bp);
1022
1023		len -= i;
1024	}
1025	return totalwritten;
1026}
1027
1028/*
1029 * Collect together all the buffers in a cluster.
1030 * Plus add one additional buffer.
1031 */
1032static struct cluster_save *
1033cluster_collectbufs(struct vnode *vp, struct buf *last_bp, int gbflags)
1034{
1035	struct cluster_save *buflist;
1036	struct buf *bp;
1037	daddr_t lbn;
1038	int i, len;
1039
1040	len = vp->v_lastw - vp->v_cstart + 1;
1041	buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
1042	    M_SEGMENT, M_WAITOK);
1043	buflist->bs_nchildren = 0;
1044	buflist->bs_children = (struct buf **) (buflist + 1);
1045	for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++) {
1046		(void)bread_gb(vp, lbn, last_bp->b_bcount, NOCRED,
1047		    gbflags, &bp);
1048		buflist->bs_children[i] = bp;
1049		if (bp->b_blkno == bp->b_lblkno)
1050			VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1051				NULL, NULL);
1052	}
1053	buflist->bs_children[i] = bp = last_bp;
1054	if (bp->b_blkno == bp->b_lblkno)
1055		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1056	buflist->bs_nchildren = i + 1;
1057	return (buflist);
1058}
1059