sys_pipe.c revision 197134
1264790Sbapt/*-
2264790Sbapt * Copyright (c) 1996 John S. Dyson
3264790Sbapt * All rights reserved.
4264790Sbapt *
5264790Sbapt * Redistribution and use in source and binary forms, with or without
6264790Sbapt * modification, are permitted provided that the following conditions
7264790Sbapt * are met:
8264790Sbapt * 1. Redistributions of source code must retain the above copyright
9264790Sbapt *    notice immediately at the beginning of the file, without modification,
10264790Sbapt *    this list of conditions, and the following disclaimer.
11264790Sbapt * 2. Redistributions in binary form must reproduce the above copyright
12264790Sbapt *    notice, this list of conditions and the following disclaimer in the
13264790Sbapt *    documentation and/or other materials provided with the distribution.
14264790Sbapt * 3. Absolutely no warranty of function or purpose is made by the author
15264790Sbapt *    John S. Dyson.
16264790Sbapt * 4. Modifications may be freely made to this file if the above conditions
17264790Sbapt *    are met.
18264790Sbapt */
19264790Sbapt
20264790Sbapt/*
21264790Sbapt * This file contains a high-performance replacement for the socket-based
22264790Sbapt * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23264790Sbapt * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 *     New pipes are given 16K of memory backing, pipes may dynamically
62 *     grow to as large as 64K where needed.
63 * 50% - 75%:
64 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 *     existing pipes may NOT grow.
66 * 75% - 100%:
67 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 *     existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules:  There are two locks present here:  A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81 * the flag, as mutexes can not persist over uiomove.  The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism.  Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91#include <sys/cdefs.h>
92__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 197134 2009-09-12 20:03:45Z rwatson $");
93
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/fcntl.h>
97#include <sys/file.h>
98#include <sys/filedesc.h>
99#include <sys/filio.h>
100#include <sys/kernel.h>
101#include <sys/lock.h>
102#include <sys/mutex.h>
103#include <sys/ttycom.h>
104#include <sys/stat.h>
105#include <sys/malloc.h>
106#include <sys/poll.h>
107#include <sys/selinfo.h>
108#include <sys/signalvar.h>
109#include <sys/syscallsubr.h>
110#include <sys/sysctl.h>
111#include <sys/sysproto.h>
112#include <sys/pipe.h>
113#include <sys/proc.h>
114#include <sys/vnode.h>
115#include <sys/uio.h>
116#include <sys/event.h>
117
118#include <security/mac/mac_framework.h>
119
120#include <vm/vm.h>
121#include <vm/vm_param.h>
122#include <vm/vm_object.h>
123#include <vm/vm_kern.h>
124#include <vm/vm_extern.h>
125#include <vm/pmap.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/uma.h>
129
130/*
131 * Use this define if you want to disable *fancy* VM things.  Expect an
132 * approx 30% decrease in transfer rate.  This could be useful for
133 * NetBSD or OpenBSD.
134 */
135/* #define PIPE_NODIRECT */
136
137/*
138 * interfaces to the outside world
139 */
140static fo_rdwr_t	pipe_read;
141static fo_rdwr_t	pipe_write;
142static fo_truncate_t	pipe_truncate;
143static fo_ioctl_t	pipe_ioctl;
144static fo_poll_t	pipe_poll;
145static fo_kqfilter_t	pipe_kqfilter;
146static fo_stat_t	pipe_stat;
147static fo_close_t	pipe_close;
148
149static struct fileops pipeops = {
150	.fo_read = pipe_read,
151	.fo_write = pipe_write,
152	.fo_truncate = pipe_truncate,
153	.fo_ioctl = pipe_ioctl,
154	.fo_poll = pipe_poll,
155	.fo_kqfilter = pipe_kqfilter,
156	.fo_stat = pipe_stat,
157	.fo_close = pipe_close,
158	.fo_flags = DFLAG_PASSABLE
159};
160
161static void	filt_pipedetach(struct knote *kn);
162static int	filt_piperead(struct knote *kn, long hint);
163static int	filt_pipewrite(struct knote *kn, long hint);
164
165static struct filterops pipe_rfiltops = {
166	.f_isfd = 1,
167	.f_detach = filt_pipedetach,
168	.f_event = filt_piperead
169};
170static struct filterops pipe_wfiltops = {
171	.f_isfd = 1,
172	.f_detach = filt_pipedetach,
173	.f_event = filt_pipewrite
174};
175
176/*
177 * Default pipe buffer size(s), this can be kind-of large now because pipe
178 * space is pageable.  The pipe code will try to maintain locality of
179 * reference for performance reasons, so small amounts of outstanding I/O
180 * will not wipe the cache.
181 */
182#define MINPIPESIZE (PIPE_SIZE/3)
183#define MAXPIPESIZE (2*PIPE_SIZE/3)
184
185static long amountpipekva;
186static int pipefragretry;
187static int pipeallocfail;
188static int piperesizefail;
189static int piperesizeallowed = 1;
190
191SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
192	   &maxpipekva, 0, "Pipe KVA limit");
193SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
194	   &amountpipekva, 0, "Pipe KVA usage");
195SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
196	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
197SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
198	  &pipeallocfail, 0, "Pipe allocation failures");
199SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
200	  &piperesizefail, 0, "Pipe resize failures");
201SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
202	  &piperesizeallowed, 0, "Pipe resizing allowed");
203
204static void pipeinit(void *dummy __unused);
205static void pipeclose(struct pipe *cpipe);
206static void pipe_free_kmem(struct pipe *cpipe);
207static int pipe_create(struct pipe *pipe, int backing);
208static __inline int pipelock(struct pipe *cpipe, int catch);
209static __inline void pipeunlock(struct pipe *cpipe);
210static __inline void pipeselwakeup(struct pipe *cpipe);
211#ifndef PIPE_NODIRECT
212static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
213static void pipe_destroy_write_buffer(struct pipe *wpipe);
214static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
215static void pipe_clone_write_buffer(struct pipe *wpipe);
216#endif
217static int pipespace(struct pipe *cpipe, int size);
218static int pipespace_new(struct pipe *cpipe, int size);
219
220static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
221static int	pipe_zone_init(void *mem, int size, int flags);
222static void	pipe_zone_fini(void *mem, int size);
223
224static uma_zone_t pipe_zone;
225
226SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
227
228static void
229pipeinit(void *dummy __unused)
230{
231
232	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
233	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
234	    UMA_ALIGN_PTR, 0);
235	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
236}
237
238static int
239pipe_zone_ctor(void *mem, int size, void *arg, int flags)
240{
241	struct pipepair *pp;
242	struct pipe *rpipe, *wpipe;
243
244	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
245
246	pp = (struct pipepair *)mem;
247
248	/*
249	 * We zero both pipe endpoints to make sure all the kmem pointers
250	 * are NULL, flag fields are zero'd, etc.  We timestamp both
251	 * endpoints with the same time.
252	 */
253	rpipe = &pp->pp_rpipe;
254	bzero(rpipe, sizeof(*rpipe));
255	vfs_timestamp(&rpipe->pipe_ctime);
256	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
257
258	wpipe = &pp->pp_wpipe;
259	bzero(wpipe, sizeof(*wpipe));
260	wpipe->pipe_ctime = rpipe->pipe_ctime;
261	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
262
263	rpipe->pipe_peer = wpipe;
264	rpipe->pipe_pair = pp;
265	wpipe->pipe_peer = rpipe;
266	wpipe->pipe_pair = pp;
267
268	/*
269	 * Mark both endpoints as present; they will later get free'd
270	 * one at a time.  When both are free'd, then the whole pair
271	 * is released.
272	 */
273	rpipe->pipe_present = PIPE_ACTIVE;
274	wpipe->pipe_present = PIPE_ACTIVE;
275
276	/*
277	 * Eventually, the MAC Framework may initialize the label
278	 * in ctor or init, but for now we do it elswhere to avoid
279	 * blocking in ctor or init.
280	 */
281	pp->pp_label = NULL;
282
283	return (0);
284}
285
286static int
287pipe_zone_init(void *mem, int size, int flags)
288{
289	struct pipepair *pp;
290
291	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
292
293	pp = (struct pipepair *)mem;
294
295	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
296	return (0);
297}
298
299static void
300pipe_zone_fini(void *mem, int size)
301{
302	struct pipepair *pp;
303
304	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
305
306	pp = (struct pipepair *)mem;
307
308	mtx_destroy(&pp->pp_mtx);
309}
310
311/*
312 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
313 * the zone pick up the pieces via pipeclose().
314 */
315int
316kern_pipe(struct thread *td, int fildes[2])
317{
318	struct filedesc *fdp = td->td_proc->p_fd;
319	struct file *rf, *wf;
320	struct pipepair *pp;
321	struct pipe *rpipe, *wpipe;
322	int fd, error;
323
324	pp = uma_zalloc(pipe_zone, M_WAITOK);
325#ifdef MAC
326	/*
327	 * The MAC label is shared between the connected endpoints.  As a
328	 * result mac_pipe_init() and mac_pipe_create() are called once
329	 * for the pair, and not on the endpoints.
330	 */
331	mac_pipe_init(pp);
332	mac_pipe_create(td->td_ucred, pp);
333#endif
334	rpipe = &pp->pp_rpipe;
335	wpipe = &pp->pp_wpipe;
336
337	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
338	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
339
340	/* Only the forward direction pipe is backed by default */
341	if ((error = pipe_create(rpipe, 1)) != 0 ||
342	    (error = pipe_create(wpipe, 0)) != 0) {
343		pipeclose(rpipe);
344		pipeclose(wpipe);
345		return (error);
346	}
347
348	rpipe->pipe_state |= PIPE_DIRECTOK;
349	wpipe->pipe_state |= PIPE_DIRECTOK;
350
351	error = falloc(td, &rf, &fd);
352	if (error) {
353		pipeclose(rpipe);
354		pipeclose(wpipe);
355		return (error);
356	}
357	/* An extra reference on `rf' has been held for us by falloc(). */
358	fildes[0] = fd;
359
360	/*
361	 * Warning: once we've gotten past allocation of the fd for the
362	 * read-side, we can only drop the read side via fdrop() in order
363	 * to avoid races against processes which manage to dup() the read
364	 * side while we are blocked trying to allocate the write side.
365	 */
366	finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
367	error = falloc(td, &wf, &fd);
368	if (error) {
369		fdclose(fdp, rf, fildes[0], td);
370		fdrop(rf, td);
371		/* rpipe has been closed by fdrop(). */
372		pipeclose(wpipe);
373		return (error);
374	}
375	/* An extra reference on `wf' has been held for us by falloc(). */
376	finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
377	fdrop(wf, td);
378	fildes[1] = fd;
379	fdrop(rf, td);
380
381	return (0);
382}
383
384/* ARGSUSED */
385int
386pipe(struct thread *td, struct pipe_args *uap)
387{
388	int error;
389	int fildes[2];
390
391	error = kern_pipe(td, fildes);
392	if (error)
393		return (error);
394
395	td->td_retval[0] = fildes[0];
396	td->td_retval[1] = fildes[1];
397
398	return (0);
399}
400
401/*
402 * Allocate kva for pipe circular buffer, the space is pageable
403 * This routine will 'realloc' the size of a pipe safely, if it fails
404 * it will retain the old buffer.
405 * If it fails it will return ENOMEM.
406 */
407static int
408pipespace_new(cpipe, size)
409	struct pipe *cpipe;
410	int size;
411{
412	caddr_t buffer;
413	int error, cnt, firstseg;
414	static int curfail = 0;
415	static struct timeval lastfail;
416
417	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
418	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
419		("pipespace: resize of direct writes not allowed"));
420retry:
421	cnt = cpipe->pipe_buffer.cnt;
422	if (cnt > size)
423		size = cnt;
424
425	size = round_page(size);
426	buffer = (caddr_t) vm_map_min(pipe_map);
427
428	error = vm_map_find(pipe_map, NULL, 0,
429		(vm_offset_t *) &buffer, size, 1,
430		VM_PROT_ALL, VM_PROT_ALL, 0);
431	if (error != KERN_SUCCESS) {
432		if ((cpipe->pipe_buffer.buffer == NULL) &&
433			(size > SMALL_PIPE_SIZE)) {
434			size = SMALL_PIPE_SIZE;
435			pipefragretry++;
436			goto retry;
437		}
438		if (cpipe->pipe_buffer.buffer == NULL) {
439			pipeallocfail++;
440			if (ppsratecheck(&lastfail, &curfail, 1))
441				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
442		} else {
443			piperesizefail++;
444		}
445		return (ENOMEM);
446	}
447
448	/* copy data, then free old resources if we're resizing */
449	if (cnt > 0) {
450		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
451			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
452			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
453				buffer, firstseg);
454			if ((cnt - firstseg) > 0)
455				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
456					cpipe->pipe_buffer.in);
457		} else {
458			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
459				buffer, cnt);
460		}
461	}
462	pipe_free_kmem(cpipe);
463	cpipe->pipe_buffer.buffer = buffer;
464	cpipe->pipe_buffer.size = size;
465	cpipe->pipe_buffer.in = cnt;
466	cpipe->pipe_buffer.out = 0;
467	cpipe->pipe_buffer.cnt = cnt;
468	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
469	return (0);
470}
471
472/*
473 * Wrapper for pipespace_new() that performs locking assertions.
474 */
475static int
476pipespace(cpipe, size)
477	struct pipe *cpipe;
478	int size;
479{
480
481	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
482		("Unlocked pipe passed to pipespace"));
483	return (pipespace_new(cpipe, size));
484}
485
486/*
487 * lock a pipe for I/O, blocking other access
488 */
489static __inline int
490pipelock(cpipe, catch)
491	struct pipe *cpipe;
492	int catch;
493{
494	int error;
495
496	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
497	while (cpipe->pipe_state & PIPE_LOCKFL) {
498		cpipe->pipe_state |= PIPE_LWANT;
499		error = msleep(cpipe, PIPE_MTX(cpipe),
500		    catch ? (PRIBIO | PCATCH) : PRIBIO,
501		    "pipelk", 0);
502		if (error != 0)
503			return (error);
504	}
505	cpipe->pipe_state |= PIPE_LOCKFL;
506	return (0);
507}
508
509/*
510 * unlock a pipe I/O lock
511 */
512static __inline void
513pipeunlock(cpipe)
514	struct pipe *cpipe;
515{
516
517	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
518	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
519		("Unlocked pipe passed to pipeunlock"));
520	cpipe->pipe_state &= ~PIPE_LOCKFL;
521	if (cpipe->pipe_state & PIPE_LWANT) {
522		cpipe->pipe_state &= ~PIPE_LWANT;
523		wakeup(cpipe);
524	}
525}
526
527static __inline void
528pipeselwakeup(cpipe)
529	struct pipe *cpipe;
530{
531
532	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
533	if (cpipe->pipe_state & PIPE_SEL) {
534		selwakeuppri(&cpipe->pipe_sel, PSOCK);
535		if (!SEL_WAITING(&cpipe->pipe_sel))
536			cpipe->pipe_state &= ~PIPE_SEL;
537	}
538	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
539		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
540	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
541}
542
543/*
544 * Initialize and allocate VM and memory for pipe.  The structure
545 * will start out zero'd from the ctor, so we just manage the kmem.
546 */
547static int
548pipe_create(pipe, backing)
549	struct pipe *pipe;
550	int backing;
551{
552	int error;
553
554	if (backing) {
555		if (amountpipekva > maxpipekva / 2)
556			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
557		else
558			error = pipespace_new(pipe, PIPE_SIZE);
559	} else {
560		/* If we're not backing this pipe, no need to do anything. */
561		error = 0;
562	}
563	return (error);
564}
565
566/* ARGSUSED */
567static int
568pipe_read(fp, uio, active_cred, flags, td)
569	struct file *fp;
570	struct uio *uio;
571	struct ucred *active_cred;
572	struct thread *td;
573	int flags;
574{
575	struct pipe *rpipe = fp->f_data;
576	int error;
577	int nread = 0;
578	u_int size;
579
580	PIPE_LOCK(rpipe);
581	++rpipe->pipe_busy;
582	error = pipelock(rpipe, 1);
583	if (error)
584		goto unlocked_error;
585
586#ifdef MAC
587	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
588	if (error)
589		goto locked_error;
590#endif
591	if (amountpipekva > (3 * maxpipekva) / 4) {
592		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
593			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
594			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
595			(piperesizeallowed == 1)) {
596			PIPE_UNLOCK(rpipe);
597			pipespace(rpipe, SMALL_PIPE_SIZE);
598			PIPE_LOCK(rpipe);
599		}
600	}
601
602	while (uio->uio_resid) {
603		/*
604		 * normal pipe buffer receive
605		 */
606		if (rpipe->pipe_buffer.cnt > 0) {
607			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
608			if (size > rpipe->pipe_buffer.cnt)
609				size = rpipe->pipe_buffer.cnt;
610			if (size > (u_int) uio->uio_resid)
611				size = (u_int) uio->uio_resid;
612
613			PIPE_UNLOCK(rpipe);
614			error = uiomove(
615			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
616			    size, uio);
617			PIPE_LOCK(rpipe);
618			if (error)
619				break;
620
621			rpipe->pipe_buffer.out += size;
622			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
623				rpipe->pipe_buffer.out = 0;
624
625			rpipe->pipe_buffer.cnt -= size;
626
627			/*
628			 * If there is no more to read in the pipe, reset
629			 * its pointers to the beginning.  This improves
630			 * cache hit stats.
631			 */
632			if (rpipe->pipe_buffer.cnt == 0) {
633				rpipe->pipe_buffer.in = 0;
634				rpipe->pipe_buffer.out = 0;
635			}
636			nread += size;
637#ifndef PIPE_NODIRECT
638		/*
639		 * Direct copy, bypassing a kernel buffer.
640		 */
641		} else if ((size = rpipe->pipe_map.cnt) &&
642			   (rpipe->pipe_state & PIPE_DIRECTW)) {
643			if (size > (u_int) uio->uio_resid)
644				size = (u_int) uio->uio_resid;
645
646			PIPE_UNLOCK(rpipe);
647			error = uiomove_fromphys(rpipe->pipe_map.ms,
648			    rpipe->pipe_map.pos, size, uio);
649			PIPE_LOCK(rpipe);
650			if (error)
651				break;
652			nread += size;
653			rpipe->pipe_map.pos += size;
654			rpipe->pipe_map.cnt -= size;
655			if (rpipe->pipe_map.cnt == 0) {
656				rpipe->pipe_state &= ~PIPE_DIRECTW;
657				wakeup(rpipe);
658			}
659#endif
660		} else {
661			/*
662			 * detect EOF condition
663			 * read returns 0 on EOF, no need to set error
664			 */
665			if (rpipe->pipe_state & PIPE_EOF)
666				break;
667
668			/*
669			 * If the "write-side" has been blocked, wake it up now.
670			 */
671			if (rpipe->pipe_state & PIPE_WANTW) {
672				rpipe->pipe_state &= ~PIPE_WANTW;
673				wakeup(rpipe);
674			}
675
676			/*
677			 * Break if some data was read.
678			 */
679			if (nread > 0)
680				break;
681
682			/*
683			 * Unlock the pipe buffer for our remaining processing.
684			 * We will either break out with an error or we will
685			 * sleep and relock to loop.
686			 */
687			pipeunlock(rpipe);
688
689			/*
690			 * Handle non-blocking mode operation or
691			 * wait for more data.
692			 */
693			if (fp->f_flag & FNONBLOCK) {
694				error = EAGAIN;
695			} else {
696				rpipe->pipe_state |= PIPE_WANTR;
697				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
698				    PRIBIO | PCATCH,
699				    "piperd", 0)) == 0)
700					error = pipelock(rpipe, 1);
701			}
702			if (error)
703				goto unlocked_error;
704		}
705	}
706#ifdef MAC
707locked_error:
708#endif
709	pipeunlock(rpipe);
710
711	/* XXX: should probably do this before getting any locks. */
712	if (error == 0)
713		vfs_timestamp(&rpipe->pipe_atime);
714unlocked_error:
715	--rpipe->pipe_busy;
716
717	/*
718	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
719	 */
720	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
721		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
722		wakeup(rpipe);
723	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
724		/*
725		 * Handle write blocking hysteresis.
726		 */
727		if (rpipe->pipe_state & PIPE_WANTW) {
728			rpipe->pipe_state &= ~PIPE_WANTW;
729			wakeup(rpipe);
730		}
731	}
732
733	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
734		pipeselwakeup(rpipe);
735
736	PIPE_UNLOCK(rpipe);
737	return (error);
738}
739
740#ifndef PIPE_NODIRECT
741/*
742 * Map the sending processes' buffer into kernel space and wire it.
743 * This is similar to a physical write operation.
744 */
745static int
746pipe_build_write_buffer(wpipe, uio)
747	struct pipe *wpipe;
748	struct uio *uio;
749{
750	pmap_t pmap;
751	u_int size;
752	int i, j;
753	vm_offset_t addr, endaddr;
754
755	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
756	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
757		("Clone attempt on non-direct write pipe!"));
758
759	size = (u_int) uio->uio_iov->iov_len;
760	if (size > wpipe->pipe_buffer.size)
761		size = wpipe->pipe_buffer.size;
762
763	pmap = vmspace_pmap(curproc->p_vmspace);
764	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
765	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
766	if (endaddr < addr)
767		return (EFAULT);
768	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
769		/*
770		 * vm_fault_quick() can sleep.  Consequently,
771		 * vm_page_lock_queue() and vm_page_unlock_queue()
772		 * should not be performed outside of this loop.
773		 */
774	race:
775		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
776			vm_page_lock_queues();
777			for (j = 0; j < i; j++)
778				vm_page_unhold(wpipe->pipe_map.ms[j]);
779			vm_page_unlock_queues();
780			return (EFAULT);
781		}
782		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
783		    VM_PROT_READ);
784		if (wpipe->pipe_map.ms[i] == NULL)
785			goto race;
786	}
787
788/*
789 * set up the control block
790 */
791	wpipe->pipe_map.npages = i;
792	wpipe->pipe_map.pos =
793	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
794	wpipe->pipe_map.cnt = size;
795
796/*
797 * and update the uio data
798 */
799
800	uio->uio_iov->iov_len -= size;
801	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
802	if (uio->uio_iov->iov_len == 0)
803		uio->uio_iov++;
804	uio->uio_resid -= size;
805	uio->uio_offset += size;
806	return (0);
807}
808
809/*
810 * unmap and unwire the process buffer
811 */
812static void
813pipe_destroy_write_buffer(wpipe)
814	struct pipe *wpipe;
815{
816	int i;
817
818	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
819	vm_page_lock_queues();
820	for (i = 0; i < wpipe->pipe_map.npages; i++) {
821		vm_page_unhold(wpipe->pipe_map.ms[i]);
822	}
823	vm_page_unlock_queues();
824	wpipe->pipe_map.npages = 0;
825}
826
827/*
828 * In the case of a signal, the writing process might go away.  This
829 * code copies the data into the circular buffer so that the source
830 * pages can be freed without loss of data.
831 */
832static void
833pipe_clone_write_buffer(wpipe)
834	struct pipe *wpipe;
835{
836	struct uio uio;
837	struct iovec iov;
838	int size;
839	int pos;
840
841	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
842	size = wpipe->pipe_map.cnt;
843	pos = wpipe->pipe_map.pos;
844
845	wpipe->pipe_buffer.in = size;
846	wpipe->pipe_buffer.out = 0;
847	wpipe->pipe_buffer.cnt = size;
848	wpipe->pipe_state &= ~PIPE_DIRECTW;
849
850	PIPE_UNLOCK(wpipe);
851	iov.iov_base = wpipe->pipe_buffer.buffer;
852	iov.iov_len = size;
853	uio.uio_iov = &iov;
854	uio.uio_iovcnt = 1;
855	uio.uio_offset = 0;
856	uio.uio_resid = size;
857	uio.uio_segflg = UIO_SYSSPACE;
858	uio.uio_rw = UIO_READ;
859	uio.uio_td = curthread;
860	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
861	PIPE_LOCK(wpipe);
862	pipe_destroy_write_buffer(wpipe);
863}
864
865/*
866 * This implements the pipe buffer write mechanism.  Note that only
867 * a direct write OR a normal pipe write can be pending at any given time.
868 * If there are any characters in the pipe buffer, the direct write will
869 * be deferred until the receiving process grabs all of the bytes from
870 * the pipe buffer.  Then the direct mapping write is set-up.
871 */
872static int
873pipe_direct_write(wpipe, uio)
874	struct pipe *wpipe;
875	struct uio *uio;
876{
877	int error;
878
879retry:
880	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
881	error = pipelock(wpipe, 1);
882	if (wpipe->pipe_state & PIPE_EOF)
883		error = EPIPE;
884	if (error) {
885		pipeunlock(wpipe);
886		goto error1;
887	}
888	while (wpipe->pipe_state & PIPE_DIRECTW) {
889		if (wpipe->pipe_state & PIPE_WANTR) {
890			wpipe->pipe_state &= ~PIPE_WANTR;
891			wakeup(wpipe);
892		}
893		pipeselwakeup(wpipe);
894		wpipe->pipe_state |= PIPE_WANTW;
895		pipeunlock(wpipe);
896		error = msleep(wpipe, PIPE_MTX(wpipe),
897		    PRIBIO | PCATCH, "pipdww", 0);
898		if (error)
899			goto error1;
900		else
901			goto retry;
902	}
903	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
904	if (wpipe->pipe_buffer.cnt > 0) {
905		if (wpipe->pipe_state & PIPE_WANTR) {
906			wpipe->pipe_state &= ~PIPE_WANTR;
907			wakeup(wpipe);
908		}
909		pipeselwakeup(wpipe);
910		wpipe->pipe_state |= PIPE_WANTW;
911		pipeunlock(wpipe);
912		error = msleep(wpipe, PIPE_MTX(wpipe),
913		    PRIBIO | PCATCH, "pipdwc", 0);
914		if (error)
915			goto error1;
916		else
917			goto retry;
918	}
919
920	wpipe->pipe_state |= PIPE_DIRECTW;
921
922	PIPE_UNLOCK(wpipe);
923	error = pipe_build_write_buffer(wpipe, uio);
924	PIPE_LOCK(wpipe);
925	if (error) {
926		wpipe->pipe_state &= ~PIPE_DIRECTW;
927		pipeunlock(wpipe);
928		goto error1;
929	}
930
931	error = 0;
932	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
933		if (wpipe->pipe_state & PIPE_EOF) {
934			pipe_destroy_write_buffer(wpipe);
935			pipeselwakeup(wpipe);
936			pipeunlock(wpipe);
937			error = EPIPE;
938			goto error1;
939		}
940		if (wpipe->pipe_state & PIPE_WANTR) {
941			wpipe->pipe_state &= ~PIPE_WANTR;
942			wakeup(wpipe);
943		}
944		pipeselwakeup(wpipe);
945		pipeunlock(wpipe);
946		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
947		    "pipdwt", 0);
948		pipelock(wpipe, 0);
949	}
950
951	if (wpipe->pipe_state & PIPE_EOF)
952		error = EPIPE;
953	if (wpipe->pipe_state & PIPE_DIRECTW) {
954		/*
955		 * this bit of trickery substitutes a kernel buffer for
956		 * the process that might be going away.
957		 */
958		pipe_clone_write_buffer(wpipe);
959	} else {
960		pipe_destroy_write_buffer(wpipe);
961	}
962	pipeunlock(wpipe);
963	return (error);
964
965error1:
966	wakeup(wpipe);
967	return (error);
968}
969#endif
970
971static int
972pipe_write(fp, uio, active_cred, flags, td)
973	struct file *fp;
974	struct uio *uio;
975	struct ucred *active_cred;
976	struct thread *td;
977	int flags;
978{
979	int error = 0;
980	int desiredsize, orig_resid;
981	struct pipe *wpipe, *rpipe;
982
983	rpipe = fp->f_data;
984	wpipe = rpipe->pipe_peer;
985
986	PIPE_LOCK(rpipe);
987	error = pipelock(wpipe, 1);
988	if (error) {
989		PIPE_UNLOCK(rpipe);
990		return (error);
991	}
992	/*
993	 * detect loss of pipe read side, issue SIGPIPE if lost.
994	 */
995	if (wpipe->pipe_present != PIPE_ACTIVE ||
996	    (wpipe->pipe_state & PIPE_EOF)) {
997		pipeunlock(wpipe);
998		PIPE_UNLOCK(rpipe);
999		return (EPIPE);
1000	}
1001#ifdef MAC
1002	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1003	if (error) {
1004		pipeunlock(wpipe);
1005		PIPE_UNLOCK(rpipe);
1006		return (error);
1007	}
1008#endif
1009	++wpipe->pipe_busy;
1010
1011	/* Choose a larger size if it's advantageous */
1012	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1013	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1014		if (piperesizeallowed != 1)
1015			break;
1016		if (amountpipekva > maxpipekva / 2)
1017			break;
1018		if (desiredsize == BIG_PIPE_SIZE)
1019			break;
1020		desiredsize = desiredsize * 2;
1021	}
1022
1023	/* Choose a smaller size if we're in a OOM situation */
1024	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1025		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1026		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1027		(piperesizeallowed == 1))
1028		desiredsize = SMALL_PIPE_SIZE;
1029
1030	/* Resize if the above determined that a new size was necessary */
1031	if ((desiredsize != wpipe->pipe_buffer.size) &&
1032		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1033		PIPE_UNLOCK(wpipe);
1034		pipespace(wpipe, desiredsize);
1035		PIPE_LOCK(wpipe);
1036	}
1037	if (wpipe->pipe_buffer.size == 0) {
1038		/*
1039		 * This can only happen for reverse direction use of pipes
1040		 * in a complete OOM situation.
1041		 */
1042		error = ENOMEM;
1043		--wpipe->pipe_busy;
1044		pipeunlock(wpipe);
1045		PIPE_UNLOCK(wpipe);
1046		return (error);
1047	}
1048
1049	pipeunlock(wpipe);
1050
1051	orig_resid = uio->uio_resid;
1052
1053	while (uio->uio_resid) {
1054		int space;
1055
1056		pipelock(wpipe, 0);
1057		if (wpipe->pipe_state & PIPE_EOF) {
1058			pipeunlock(wpipe);
1059			error = EPIPE;
1060			break;
1061		}
1062#ifndef PIPE_NODIRECT
1063		/*
1064		 * If the transfer is large, we can gain performance if
1065		 * we do process-to-process copies directly.
1066		 * If the write is non-blocking, we don't use the
1067		 * direct write mechanism.
1068		 *
1069		 * The direct write mechanism will detect the reader going
1070		 * away on us.
1071		 */
1072		if (uio->uio_segflg == UIO_USERSPACE &&
1073		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1074		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1075		    (fp->f_flag & FNONBLOCK) == 0) {
1076			pipeunlock(wpipe);
1077			error = pipe_direct_write(wpipe, uio);
1078			if (error)
1079				break;
1080			continue;
1081		}
1082#endif
1083
1084		/*
1085		 * Pipe buffered writes cannot be coincidental with
1086		 * direct writes.  We wait until the currently executing
1087		 * direct write is completed before we start filling the
1088		 * pipe buffer.  We break out if a signal occurs or the
1089		 * reader goes away.
1090		 */
1091		if (wpipe->pipe_state & PIPE_DIRECTW) {
1092			if (wpipe->pipe_state & PIPE_WANTR) {
1093				wpipe->pipe_state &= ~PIPE_WANTR;
1094				wakeup(wpipe);
1095			}
1096			pipeselwakeup(wpipe);
1097			wpipe->pipe_state |= PIPE_WANTW;
1098			pipeunlock(wpipe);
1099			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1100			    "pipbww", 0);
1101			if (error)
1102				break;
1103			else
1104				continue;
1105		}
1106
1107		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1108
1109		/* Writes of size <= PIPE_BUF must be atomic. */
1110		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1111			space = 0;
1112
1113		if (space > 0) {
1114			int size;	/* Transfer size */
1115			int segsize;	/* first segment to transfer */
1116
1117			/*
1118			 * Transfer size is minimum of uio transfer
1119			 * and free space in pipe buffer.
1120			 */
1121			if (space > uio->uio_resid)
1122				size = uio->uio_resid;
1123			else
1124				size = space;
1125			/*
1126			 * First segment to transfer is minimum of
1127			 * transfer size and contiguous space in
1128			 * pipe buffer.  If first segment to transfer
1129			 * is less than the transfer size, we've got
1130			 * a wraparound in the buffer.
1131			 */
1132			segsize = wpipe->pipe_buffer.size -
1133				wpipe->pipe_buffer.in;
1134			if (segsize > size)
1135				segsize = size;
1136
1137			/* Transfer first segment */
1138
1139			PIPE_UNLOCK(rpipe);
1140			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1141					segsize, uio);
1142			PIPE_LOCK(rpipe);
1143
1144			if (error == 0 && segsize < size) {
1145				KASSERT(wpipe->pipe_buffer.in + segsize ==
1146					wpipe->pipe_buffer.size,
1147					("Pipe buffer wraparound disappeared"));
1148				/*
1149				 * Transfer remaining part now, to
1150				 * support atomic writes.  Wraparound
1151				 * happened.
1152				 */
1153
1154				PIPE_UNLOCK(rpipe);
1155				error = uiomove(
1156				    &wpipe->pipe_buffer.buffer[0],
1157				    size - segsize, uio);
1158				PIPE_LOCK(rpipe);
1159			}
1160			if (error == 0) {
1161				wpipe->pipe_buffer.in += size;
1162				if (wpipe->pipe_buffer.in >=
1163				    wpipe->pipe_buffer.size) {
1164					KASSERT(wpipe->pipe_buffer.in ==
1165						size - segsize +
1166						wpipe->pipe_buffer.size,
1167						("Expected wraparound bad"));
1168					wpipe->pipe_buffer.in = size - segsize;
1169				}
1170
1171				wpipe->pipe_buffer.cnt += size;
1172				KASSERT(wpipe->pipe_buffer.cnt <=
1173					wpipe->pipe_buffer.size,
1174					("Pipe buffer overflow"));
1175			}
1176			pipeunlock(wpipe);
1177			if (error != 0)
1178				break;
1179		} else {
1180			/*
1181			 * If the "read-side" has been blocked, wake it up now.
1182			 */
1183			if (wpipe->pipe_state & PIPE_WANTR) {
1184				wpipe->pipe_state &= ~PIPE_WANTR;
1185				wakeup(wpipe);
1186			}
1187
1188			/*
1189			 * don't block on non-blocking I/O
1190			 */
1191			if (fp->f_flag & FNONBLOCK) {
1192				error = EAGAIN;
1193				pipeunlock(wpipe);
1194				break;
1195			}
1196
1197			/*
1198			 * We have no more space and have something to offer,
1199			 * wake up select/poll.
1200			 */
1201			pipeselwakeup(wpipe);
1202
1203			wpipe->pipe_state |= PIPE_WANTW;
1204			pipeunlock(wpipe);
1205			error = msleep(wpipe, PIPE_MTX(rpipe),
1206			    PRIBIO | PCATCH, "pipewr", 0);
1207			if (error != 0)
1208				break;
1209		}
1210	}
1211
1212	pipelock(wpipe, 0);
1213	--wpipe->pipe_busy;
1214
1215	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1216		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1217		wakeup(wpipe);
1218	} else if (wpipe->pipe_buffer.cnt > 0) {
1219		/*
1220		 * If we have put any characters in the buffer, we wake up
1221		 * the reader.
1222		 */
1223		if (wpipe->pipe_state & PIPE_WANTR) {
1224			wpipe->pipe_state &= ~PIPE_WANTR;
1225			wakeup(wpipe);
1226		}
1227	}
1228
1229	/*
1230	 * Don't return EPIPE if I/O was successful
1231	 */
1232	if ((wpipe->pipe_buffer.cnt == 0) &&
1233	    (uio->uio_resid == 0) &&
1234	    (error == EPIPE)) {
1235		error = 0;
1236	}
1237
1238	if (error == 0)
1239		vfs_timestamp(&wpipe->pipe_mtime);
1240
1241	/*
1242	 * We have something to offer,
1243	 * wake up select/poll.
1244	 */
1245	if (wpipe->pipe_buffer.cnt)
1246		pipeselwakeup(wpipe);
1247
1248	pipeunlock(wpipe);
1249	PIPE_UNLOCK(rpipe);
1250	return (error);
1251}
1252
1253/* ARGSUSED */
1254static int
1255pipe_truncate(fp, length, active_cred, td)
1256	struct file *fp;
1257	off_t length;
1258	struct ucred *active_cred;
1259	struct thread *td;
1260{
1261
1262	return (EINVAL);
1263}
1264
1265/*
1266 * we implement a very minimal set of ioctls for compatibility with sockets.
1267 */
1268static int
1269pipe_ioctl(fp, cmd, data, active_cred, td)
1270	struct file *fp;
1271	u_long cmd;
1272	void *data;
1273	struct ucred *active_cred;
1274	struct thread *td;
1275{
1276	struct pipe *mpipe = fp->f_data;
1277	int error;
1278
1279	PIPE_LOCK(mpipe);
1280
1281#ifdef MAC
1282	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1283	if (error) {
1284		PIPE_UNLOCK(mpipe);
1285		return (error);
1286	}
1287#endif
1288
1289	error = 0;
1290	switch (cmd) {
1291
1292	case FIONBIO:
1293		break;
1294
1295	case FIOASYNC:
1296		if (*(int *)data) {
1297			mpipe->pipe_state |= PIPE_ASYNC;
1298		} else {
1299			mpipe->pipe_state &= ~PIPE_ASYNC;
1300		}
1301		break;
1302
1303	case FIONREAD:
1304		if (mpipe->pipe_state & PIPE_DIRECTW)
1305			*(int *)data = mpipe->pipe_map.cnt;
1306		else
1307			*(int *)data = mpipe->pipe_buffer.cnt;
1308		break;
1309
1310	case FIOSETOWN:
1311		PIPE_UNLOCK(mpipe);
1312		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1313		goto out_unlocked;
1314
1315	case FIOGETOWN:
1316		*(int *)data = fgetown(&mpipe->pipe_sigio);
1317		break;
1318
1319	/* This is deprecated, FIOSETOWN should be used instead. */
1320	case TIOCSPGRP:
1321		PIPE_UNLOCK(mpipe);
1322		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1323		goto out_unlocked;
1324
1325	/* This is deprecated, FIOGETOWN should be used instead. */
1326	case TIOCGPGRP:
1327		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1328		break;
1329
1330	default:
1331		error = ENOTTY;
1332		break;
1333	}
1334	PIPE_UNLOCK(mpipe);
1335out_unlocked:
1336	return (error);
1337}
1338
1339static int
1340pipe_poll(fp, events, active_cred, td)
1341	struct file *fp;
1342	int events;
1343	struct ucred *active_cred;
1344	struct thread *td;
1345{
1346	struct pipe *rpipe = fp->f_data;
1347	struct pipe *wpipe;
1348	int revents = 0;
1349#ifdef MAC
1350	int error;
1351#endif
1352
1353	wpipe = rpipe->pipe_peer;
1354	PIPE_LOCK(rpipe);
1355#ifdef MAC
1356	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1357	if (error)
1358		goto locked_error;
1359#endif
1360	if (events & (POLLIN | POLLRDNORM))
1361		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1362		    (rpipe->pipe_buffer.cnt > 0))
1363			revents |= events & (POLLIN | POLLRDNORM);
1364
1365	if (events & (POLLOUT | POLLWRNORM))
1366		if (wpipe->pipe_present != PIPE_ACTIVE ||
1367		    (wpipe->pipe_state & PIPE_EOF) ||
1368		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1369		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1370			revents |= events & (POLLOUT | POLLWRNORM);
1371
1372	if ((events & POLLINIGNEOF) == 0) {
1373		if (rpipe->pipe_state & PIPE_EOF) {
1374			revents |= (events & (POLLIN | POLLRDNORM));
1375			if (wpipe->pipe_present != PIPE_ACTIVE ||
1376			    (wpipe->pipe_state & PIPE_EOF))
1377				revents |= POLLHUP;
1378		}
1379	}
1380
1381	if (revents == 0) {
1382		if (events & (POLLIN | POLLRDNORM)) {
1383			selrecord(td, &rpipe->pipe_sel);
1384			if (SEL_WAITING(&rpipe->pipe_sel))
1385				rpipe->pipe_state |= PIPE_SEL;
1386		}
1387
1388		if (events & (POLLOUT | POLLWRNORM)) {
1389			selrecord(td, &wpipe->pipe_sel);
1390			if (SEL_WAITING(&wpipe->pipe_sel))
1391				wpipe->pipe_state |= PIPE_SEL;
1392		}
1393	}
1394#ifdef MAC
1395locked_error:
1396#endif
1397	PIPE_UNLOCK(rpipe);
1398
1399	return (revents);
1400}
1401
1402/*
1403 * We shouldn't need locks here as we're doing a read and this should
1404 * be a natural race.
1405 */
1406static int
1407pipe_stat(fp, ub, active_cred, td)
1408	struct file *fp;
1409	struct stat *ub;
1410	struct ucred *active_cred;
1411	struct thread *td;
1412{
1413	struct pipe *pipe = fp->f_data;
1414#ifdef MAC
1415	int error;
1416
1417	PIPE_LOCK(pipe);
1418	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1419	PIPE_UNLOCK(pipe);
1420	if (error)
1421		return (error);
1422#endif
1423	bzero(ub, sizeof(*ub));
1424	ub->st_mode = S_IFIFO;
1425	ub->st_blksize = PAGE_SIZE;
1426	if (pipe->pipe_state & PIPE_DIRECTW)
1427		ub->st_size = pipe->pipe_map.cnt;
1428	else
1429		ub->st_size = pipe->pipe_buffer.cnt;
1430	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1431	ub->st_atimespec = pipe->pipe_atime;
1432	ub->st_mtimespec = pipe->pipe_mtime;
1433	ub->st_ctimespec = pipe->pipe_ctime;
1434	ub->st_uid = fp->f_cred->cr_uid;
1435	ub->st_gid = fp->f_cred->cr_gid;
1436	/*
1437	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1438	 * XXX (st_dev, st_ino) should be unique.
1439	 */
1440	return (0);
1441}
1442
1443/* ARGSUSED */
1444static int
1445pipe_close(fp, td)
1446	struct file *fp;
1447	struct thread *td;
1448{
1449	struct pipe *cpipe = fp->f_data;
1450
1451	fp->f_ops = &badfileops;
1452	fp->f_data = NULL;
1453	funsetown(&cpipe->pipe_sigio);
1454	pipeclose(cpipe);
1455	return (0);
1456}
1457
1458static void
1459pipe_free_kmem(cpipe)
1460	struct pipe *cpipe;
1461{
1462
1463	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1464	    ("pipe_free_kmem: pipe mutex locked"));
1465
1466	if (cpipe->pipe_buffer.buffer != NULL) {
1467		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1468		vm_map_remove(pipe_map,
1469		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1470		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1471		cpipe->pipe_buffer.buffer = NULL;
1472	}
1473#ifndef PIPE_NODIRECT
1474	{
1475		cpipe->pipe_map.cnt = 0;
1476		cpipe->pipe_map.pos = 0;
1477		cpipe->pipe_map.npages = 0;
1478	}
1479#endif
1480}
1481
1482/*
1483 * shutdown the pipe
1484 */
1485static void
1486pipeclose(cpipe)
1487	struct pipe *cpipe;
1488{
1489	struct pipepair *pp;
1490	struct pipe *ppipe;
1491
1492	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1493
1494	PIPE_LOCK(cpipe);
1495	pipelock(cpipe, 0);
1496	pp = cpipe->pipe_pair;
1497
1498	pipeselwakeup(cpipe);
1499
1500	/*
1501	 * If the other side is blocked, wake it up saying that
1502	 * we want to close it down.
1503	 */
1504	cpipe->pipe_state |= PIPE_EOF;
1505	while (cpipe->pipe_busy) {
1506		wakeup(cpipe);
1507		cpipe->pipe_state |= PIPE_WANT;
1508		pipeunlock(cpipe);
1509		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1510		pipelock(cpipe, 0);
1511	}
1512
1513
1514	/*
1515	 * Disconnect from peer, if any.
1516	 */
1517	ppipe = cpipe->pipe_peer;
1518	if (ppipe->pipe_present == PIPE_ACTIVE) {
1519		pipeselwakeup(ppipe);
1520
1521		ppipe->pipe_state |= PIPE_EOF;
1522		wakeup(ppipe);
1523		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1524	}
1525
1526	/*
1527	 * Mark this endpoint as free.  Release kmem resources.  We
1528	 * don't mark this endpoint as unused until we've finished
1529	 * doing that, or the pipe might disappear out from under
1530	 * us.
1531	 */
1532	PIPE_UNLOCK(cpipe);
1533	pipe_free_kmem(cpipe);
1534	PIPE_LOCK(cpipe);
1535	cpipe->pipe_present = PIPE_CLOSING;
1536	pipeunlock(cpipe);
1537
1538	/*
1539	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1540	 * PIPE_FINALIZED, that allows other end to free the
1541	 * pipe_pair, only after the knotes are completely dismantled.
1542	 */
1543	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1544	cpipe->pipe_present = PIPE_FINALIZED;
1545	knlist_destroy(&cpipe->pipe_sel.si_note);
1546
1547	/*
1548	 * If both endpoints are now closed, release the memory for the
1549	 * pipe pair.  If not, unlock.
1550	 */
1551	if (ppipe->pipe_present == PIPE_FINALIZED) {
1552		PIPE_UNLOCK(cpipe);
1553#ifdef MAC
1554		mac_pipe_destroy(pp);
1555#endif
1556		uma_zfree(pipe_zone, cpipe->pipe_pair);
1557	} else
1558		PIPE_UNLOCK(cpipe);
1559}
1560
1561/*ARGSUSED*/
1562static int
1563pipe_kqfilter(struct file *fp, struct knote *kn)
1564{
1565	struct pipe *cpipe;
1566
1567	cpipe = kn->kn_fp->f_data;
1568	PIPE_LOCK(cpipe);
1569	switch (kn->kn_filter) {
1570	case EVFILT_READ:
1571		kn->kn_fop = &pipe_rfiltops;
1572		break;
1573	case EVFILT_WRITE:
1574		kn->kn_fop = &pipe_wfiltops;
1575		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1576			/* other end of pipe has been closed */
1577			PIPE_UNLOCK(cpipe);
1578			return (EPIPE);
1579		}
1580		cpipe = cpipe->pipe_peer;
1581		break;
1582	default:
1583		PIPE_UNLOCK(cpipe);
1584		return (EINVAL);
1585	}
1586
1587	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1588	PIPE_UNLOCK(cpipe);
1589	return (0);
1590}
1591
1592static void
1593filt_pipedetach(struct knote *kn)
1594{
1595	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1596
1597	PIPE_LOCK(cpipe);
1598	if (kn->kn_filter == EVFILT_WRITE)
1599		cpipe = cpipe->pipe_peer;
1600	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1601	PIPE_UNLOCK(cpipe);
1602}
1603
1604/*ARGSUSED*/
1605static int
1606filt_piperead(struct knote *kn, long hint)
1607{
1608	struct pipe *rpipe = kn->kn_fp->f_data;
1609	struct pipe *wpipe = rpipe->pipe_peer;
1610	int ret;
1611
1612	PIPE_LOCK(rpipe);
1613	kn->kn_data = rpipe->pipe_buffer.cnt;
1614	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1615		kn->kn_data = rpipe->pipe_map.cnt;
1616
1617	if ((rpipe->pipe_state & PIPE_EOF) ||
1618	    wpipe->pipe_present != PIPE_ACTIVE ||
1619	    (wpipe->pipe_state & PIPE_EOF)) {
1620		kn->kn_flags |= EV_EOF;
1621		PIPE_UNLOCK(rpipe);
1622		return (1);
1623	}
1624	ret = kn->kn_data > 0;
1625	PIPE_UNLOCK(rpipe);
1626	return ret;
1627}
1628
1629/*ARGSUSED*/
1630static int
1631filt_pipewrite(struct knote *kn, long hint)
1632{
1633	struct pipe *rpipe = kn->kn_fp->f_data;
1634	struct pipe *wpipe = rpipe->pipe_peer;
1635
1636	PIPE_LOCK(rpipe);
1637	if (wpipe->pipe_present != PIPE_ACTIVE ||
1638	    (wpipe->pipe_state & PIPE_EOF)) {
1639		kn->kn_data = 0;
1640		kn->kn_flags |= EV_EOF;
1641		PIPE_UNLOCK(rpipe);
1642		return (1);
1643	}
1644	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1645	if (wpipe->pipe_state & PIPE_DIRECTW)
1646		kn->kn_data = 0;
1647
1648	PIPE_UNLOCK(rpipe);
1649	return (kn->kn_data >= PIPE_BUF);
1650}
1651