1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * Copyright (c) 2012 Giovanni Trematerra
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice immediately at the beginning of the file, without modification,
11 *    this list of conditions, and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Absolutely no warranty of function or purpose is made by the author
16 *    John S. Dyson.
17 * 4. Modifications may be freely made to this file if the above conditions
18 *    are met.
19 */
20
21/*
22 * This file contains a high-performance replacement for the socket-based
23 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
24 * all features of sockets, but does do everything that pipes normally
25 * do.
26 */
27
28/*
29 * This code has two modes of operation, a small write mode and a large
30 * write mode.  The small write mode acts like conventional pipes with
31 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
32 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
33 * and PIPE_SIZE in size, the sending process pins the underlying pages in
34 * memory, and the receiving process copies directly from these pinned pages
35 * in the sending process.
36 *
37 * If the sending process receives a signal, it is possible that it will
38 * go away, and certainly its address space can change, because control
39 * is returned back to the user-mode side.  In that case, the pipe code
40 * arranges to copy the buffer supplied by the user process, to a pageable
41 * kernel buffer, and the receiving process will grab the data from the
42 * pageable kernel buffer.  Since signals don't happen all that often,
43 * the copy operation is normally eliminated.
44 *
45 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
46 * happen for small transfers so that the system will not spend all of
47 * its time context switching.
48 *
49 * In order to limit the resource use of pipes, two sysctls exist:
50 *
51 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
52 * address space available to us in pipe_map. This value is normally
53 * autotuned, but may also be loader tuned.
54 *
55 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
56 * memory in use by pipes.
57 *
58 * Based on how large pipekva is relative to maxpipekva, the following
59 * will happen:
60 *
61 * 0% - 50%:
62 *     New pipes are given 16K of memory backing, pipes may dynamically
63 *     grow to as large as 64K where needed.
64 * 50% - 75%:
65 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
66 *     existing pipes may NOT grow.
67 * 75% - 100%:
68 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
69 *     existing pipes will be shrunk down to 4K whenever possible.
70 *
71 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
72 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
73 * resize which MUST occur for reverse-direction pipes when they are
74 * first used.
75 *
76 * Additional information about the current state of pipes may be obtained
77 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
78 * and kern.ipc.piperesizefail.
79 *
80 * Locking rules:  There are two locks present here:  A mutex, used via
81 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
82 * the flag, as mutexes can not persist over uiomove.  The mutex
83 * exists only to guard access to the flag, and is not in itself a
84 * locking mechanism.  Also note that there is only a single mutex for
85 * both directions of a pipe.
86 *
87 * As pipelock() may have to sleep before it can acquire the flag, it
88 * is important to reread all data after a call to pipelock(); everything
89 * in the structure may have changed.
90 */
91
92#include <sys/cdefs.h>
93__FBSDID("$FreeBSD$");
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/conf.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/syscallsubr.h>
112#include <sys/sysctl.h>
113#include <sys/sysproto.h>
114#include <sys/pipe.h>
115#include <sys/proc.h>
116#include <sys/vnode.h>
117#include <sys/uio.h>
118#include <sys/event.h>
119
120#include <security/mac/mac_framework.h>
121
122#include <vm/vm.h>
123#include <vm/vm_param.h>
124#include <vm/vm_object.h>
125#include <vm/vm_kern.h>
126#include <vm/vm_extern.h>
127#include <vm/pmap.h>
128#include <vm/vm_map.h>
129#include <vm/vm_page.h>
130#include <vm/uma.h>
131
132/*
133 * Use this define if you want to disable *fancy* VM things.  Expect an
134 * approx 30% decrease in transfer rate.  This could be useful for
135 * NetBSD or OpenBSD.
136 */
137/* #define PIPE_NODIRECT */
138
139#define PIPE_PEER(pipe)	\
140	(((pipe)->pipe_state & PIPE_NAMED) ? (pipe) : ((pipe)->pipe_peer))
141
142/*
143 * interfaces to the outside world
144 */
145static fo_rdwr_t	pipe_read;
146static fo_rdwr_t	pipe_write;
147static fo_truncate_t	pipe_truncate;
148static fo_ioctl_t	pipe_ioctl;
149static fo_poll_t	pipe_poll;
150static fo_kqfilter_t	pipe_kqfilter;
151static fo_stat_t	pipe_stat;
152static fo_close_t	pipe_close;
153static fo_chmod_t	pipe_chmod;
154static fo_chown_t	pipe_chown;
155
156struct fileops pipeops = {
157	.fo_read = pipe_read,
158	.fo_write = pipe_write,
159	.fo_truncate = pipe_truncate,
160	.fo_ioctl = pipe_ioctl,
161	.fo_poll = pipe_poll,
162	.fo_kqfilter = pipe_kqfilter,
163	.fo_stat = pipe_stat,
164	.fo_close = pipe_close,
165	.fo_chmod = pipe_chmod,
166	.fo_chown = pipe_chown,
167	.fo_sendfile = invfo_sendfile,
168	.fo_flags = DFLAG_PASSABLE
169};
170
171static void	filt_pipedetach(struct knote *kn);
172static void	filt_pipedetach_notsup(struct knote *kn);
173static int	filt_pipenotsup(struct knote *kn, long hint);
174static int	filt_piperead(struct knote *kn, long hint);
175static int	filt_pipewrite(struct knote *kn, long hint);
176
177static struct filterops pipe_nfiltops = {
178	.f_isfd = 1,
179	.f_detach = filt_pipedetach_notsup,
180	.f_event = filt_pipenotsup
181};
182static struct filterops pipe_rfiltops = {
183	.f_isfd = 1,
184	.f_detach = filt_pipedetach,
185	.f_event = filt_piperead
186};
187static struct filterops pipe_wfiltops = {
188	.f_isfd = 1,
189	.f_detach = filt_pipedetach,
190	.f_event = filt_pipewrite
191};
192
193/*
194 * Default pipe buffer size(s), this can be kind-of large now because pipe
195 * space is pageable.  The pipe code will try to maintain locality of
196 * reference for performance reasons, so small amounts of outstanding I/O
197 * will not wipe the cache.
198 */
199#define MINPIPESIZE (PIPE_SIZE/3)
200#define MAXPIPESIZE (2*PIPE_SIZE/3)
201
202static long amountpipekva;
203static int pipefragretry;
204static int pipeallocfail;
205static int piperesizefail;
206static int piperesizeallowed = 1;
207
208SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
209	   &maxpipekva, 0, "Pipe KVA limit");
210SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
211	   &amountpipekva, 0, "Pipe KVA usage");
212SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
213	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
214SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
215	  &pipeallocfail, 0, "Pipe allocation failures");
216SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
217	  &piperesizefail, 0, "Pipe resize failures");
218SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
219	  &piperesizeallowed, 0, "Pipe resizing allowed");
220
221static void pipeinit(void *dummy __unused);
222static void pipeclose(struct pipe *cpipe);
223static void pipe_free_kmem(struct pipe *cpipe);
224static void pipe_create(struct pipe *pipe, int backing);
225static void pipe_paircreate(struct thread *td, struct pipepair **p_pp);
226static __inline int pipelock(struct pipe *cpipe, int catch);
227static __inline void pipeunlock(struct pipe *cpipe);
228#ifndef PIPE_NODIRECT
229static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
230static void pipe_destroy_write_buffer(struct pipe *wpipe);
231static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
232static void pipe_clone_write_buffer(struct pipe *wpipe);
233#endif
234static int pipespace(struct pipe *cpipe, int size);
235static int pipespace_new(struct pipe *cpipe, int size);
236
237static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
238static int	pipe_zone_init(void *mem, int size, int flags);
239static void	pipe_zone_fini(void *mem, int size);
240
241static uma_zone_t pipe_zone;
242static struct unrhdr *pipeino_unr;
243static dev_t pipedev_ino;
244
245SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
246
247static void
248pipeinit(void *dummy __unused)
249{
250
251	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
252	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
253	    UMA_ALIGN_PTR, 0);
254	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
255	pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
256	KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
257	pipedev_ino = devfs_alloc_cdp_inode();
258	KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
259}
260
261static int
262pipe_zone_ctor(void *mem, int size, void *arg, int flags)
263{
264	struct pipepair *pp;
265	struct pipe *rpipe, *wpipe;
266
267	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
268
269	pp = (struct pipepair *)mem;
270
271	/*
272	 * We zero both pipe endpoints to make sure all the kmem pointers
273	 * are NULL, flag fields are zero'd, etc.  We timestamp both
274	 * endpoints with the same time.
275	 */
276	rpipe = &pp->pp_rpipe;
277	bzero(rpipe, sizeof(*rpipe));
278	vfs_timestamp(&rpipe->pipe_ctime);
279	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
280
281	wpipe = &pp->pp_wpipe;
282	bzero(wpipe, sizeof(*wpipe));
283	wpipe->pipe_ctime = rpipe->pipe_ctime;
284	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
285
286	rpipe->pipe_peer = wpipe;
287	rpipe->pipe_pair = pp;
288	wpipe->pipe_peer = rpipe;
289	wpipe->pipe_pair = pp;
290
291	/*
292	 * Mark both endpoints as present; they will later get free'd
293	 * one at a time.  When both are free'd, then the whole pair
294	 * is released.
295	 */
296	rpipe->pipe_present = PIPE_ACTIVE;
297	wpipe->pipe_present = PIPE_ACTIVE;
298
299	/*
300	 * Eventually, the MAC Framework may initialize the label
301	 * in ctor or init, but for now we do it elswhere to avoid
302	 * blocking in ctor or init.
303	 */
304	pp->pp_label = NULL;
305
306	return (0);
307}
308
309static int
310pipe_zone_init(void *mem, int size, int flags)
311{
312	struct pipepair *pp;
313
314	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
315
316	pp = (struct pipepair *)mem;
317
318	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
319	return (0);
320}
321
322static void
323pipe_zone_fini(void *mem, int size)
324{
325	struct pipepair *pp;
326
327	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
328
329	pp = (struct pipepair *)mem;
330
331	mtx_destroy(&pp->pp_mtx);
332}
333
334static void
335pipe_paircreate(struct thread *td, struct pipepair **p_pp)
336{
337	struct pipepair *pp;
338	struct pipe *rpipe, *wpipe;
339
340	*p_pp = pp = uma_zalloc(pipe_zone, M_WAITOK);
341#ifdef MAC
342	/*
343	 * The MAC label is shared between the connected endpoints.  As a
344	 * result mac_pipe_init() and mac_pipe_create() are called once
345	 * for the pair, and not on the endpoints.
346	 */
347	mac_pipe_init(pp);
348	mac_pipe_create(td->td_ucred, pp);
349#endif
350	rpipe = &pp->pp_rpipe;
351	wpipe = &pp->pp_wpipe;
352
353	knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
354	knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
355
356	/* Only the forward direction pipe is backed by default */
357	pipe_create(rpipe, 1);
358	pipe_create(wpipe, 0);
359
360	rpipe->pipe_state |= PIPE_DIRECTOK;
361	wpipe->pipe_state |= PIPE_DIRECTOK;
362}
363
364void
365pipe_named_ctor(struct pipe **ppipe, struct thread *td)
366{
367	struct pipepair *pp;
368
369	pipe_paircreate(td, &pp);
370	pp->pp_rpipe.pipe_state |= PIPE_NAMED;
371	*ppipe = &pp->pp_rpipe;
372}
373
374void
375pipe_dtor(struct pipe *dpipe)
376{
377	ino_t ino;
378
379	ino = dpipe->pipe_ino;
380	funsetown(&dpipe->pipe_sigio);
381	pipeclose(dpipe);
382	if (dpipe->pipe_state & PIPE_NAMED) {
383		dpipe = dpipe->pipe_peer;
384		funsetown(&dpipe->pipe_sigio);
385		pipeclose(dpipe);
386	}
387	if (ino != 0 && ino != (ino_t)-1)
388		free_unr(pipeino_unr, ino);
389}
390
391/*
392 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
393 * the zone pick up the pieces via pipeclose().
394 */
395int
396kern_pipe(struct thread *td, int fildes[2])
397{
398
399	return (kern_pipe2(td, fildes, 0));
400}
401
402int
403kern_pipe2(struct thread *td, int fildes[2], int flags)
404{
405	struct filedesc *fdp;
406	struct file *rf, *wf;
407	struct pipe *rpipe, *wpipe;
408	struct pipepair *pp;
409	int fd, fflags, error;
410
411	fdp = td->td_proc->p_fd;
412	pipe_paircreate(td, &pp);
413	rpipe = &pp->pp_rpipe;
414	wpipe = &pp->pp_wpipe;
415	error = falloc(td, &rf, &fd, flags);
416	if (error) {
417		pipeclose(rpipe);
418		pipeclose(wpipe);
419		return (error);
420	}
421	/* An extra reference on `rf' has been held for us by falloc(). */
422	fildes[0] = fd;
423
424	fflags = FREAD | FWRITE;
425	if ((flags & O_NONBLOCK) != 0)
426		fflags |= FNONBLOCK;
427
428	/*
429	 * Warning: once we've gotten past allocation of the fd for the
430	 * read-side, we can only drop the read side via fdrop() in order
431	 * to avoid races against processes which manage to dup() the read
432	 * side while we are blocked trying to allocate the write side.
433	 */
434	finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
435	error = falloc(td, &wf, &fd, flags);
436	if (error) {
437		fdclose(fdp, rf, fildes[0], td);
438		fdrop(rf, td);
439		/* rpipe has been closed by fdrop(). */
440		pipeclose(wpipe);
441		return (error);
442	}
443	/* An extra reference on `wf' has been held for us by falloc(). */
444	finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
445	fdrop(wf, td);
446	fildes[1] = fd;
447	fdrop(rf, td);
448
449	return (0);
450}
451
452/* ARGSUSED */
453int
454sys_pipe(struct thread *td, struct pipe_args *uap)
455{
456	int error;
457	int fildes[2];
458
459	error = kern_pipe(td, fildes);
460	if (error)
461		return (error);
462
463	td->td_retval[0] = fildes[0];
464	td->td_retval[1] = fildes[1];
465
466	return (0);
467}
468
469int
470sys_pipe2(struct thread *td, struct pipe2_args *uap)
471{
472	int error, fildes[2];
473
474	if (uap->flags & ~(O_CLOEXEC | O_NONBLOCK))
475		return (EINVAL);
476	error = kern_pipe2(td, fildes, uap->flags);
477	if (error)
478		return (error);
479	error = copyout(fildes, uap->fildes, 2 * sizeof(int));
480	if (error) {
481		(void)kern_close(td, fildes[0]);
482		(void)kern_close(td, fildes[1]);
483	}
484	return (error);
485}
486
487/*
488 * Allocate kva for pipe circular buffer, the space is pageable
489 * This routine will 'realloc' the size of a pipe safely, if it fails
490 * it will retain the old buffer.
491 * If it fails it will return ENOMEM.
492 */
493static int
494pipespace_new(cpipe, size)
495	struct pipe *cpipe;
496	int size;
497{
498	caddr_t buffer;
499	int error, cnt, firstseg;
500	static int curfail = 0;
501	static struct timeval lastfail;
502
503	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
504	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
505		("pipespace: resize of direct writes not allowed"));
506retry:
507	cnt = cpipe->pipe_buffer.cnt;
508	if (cnt > size)
509		size = cnt;
510
511	size = round_page(size);
512	buffer = (caddr_t) vm_map_min(pipe_map);
513
514	error = vm_map_find(pipe_map, NULL, 0,
515		(vm_offset_t *) &buffer, size, 0, VMFS_ANY_SPACE,
516		VM_PROT_ALL, VM_PROT_ALL, 0);
517	if (error != KERN_SUCCESS) {
518		if ((cpipe->pipe_buffer.buffer == NULL) &&
519			(size > SMALL_PIPE_SIZE)) {
520			size = SMALL_PIPE_SIZE;
521			pipefragretry++;
522			goto retry;
523		}
524		if (cpipe->pipe_buffer.buffer == NULL) {
525			pipeallocfail++;
526			if (ppsratecheck(&lastfail, &curfail, 1))
527				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
528		} else {
529			piperesizefail++;
530		}
531		return (ENOMEM);
532	}
533
534	/* copy data, then free old resources if we're resizing */
535	if (cnt > 0) {
536		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
537			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
538			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
539				buffer, firstseg);
540			if ((cnt - firstseg) > 0)
541				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
542					cpipe->pipe_buffer.in);
543		} else {
544			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
545				buffer, cnt);
546		}
547	}
548	pipe_free_kmem(cpipe);
549	cpipe->pipe_buffer.buffer = buffer;
550	cpipe->pipe_buffer.size = size;
551	cpipe->pipe_buffer.in = cnt;
552	cpipe->pipe_buffer.out = 0;
553	cpipe->pipe_buffer.cnt = cnt;
554	atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
555	return (0);
556}
557
558/*
559 * Wrapper for pipespace_new() that performs locking assertions.
560 */
561static int
562pipespace(cpipe, size)
563	struct pipe *cpipe;
564	int size;
565{
566
567	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
568		("Unlocked pipe passed to pipespace"));
569	return (pipespace_new(cpipe, size));
570}
571
572/*
573 * lock a pipe for I/O, blocking other access
574 */
575static __inline int
576pipelock(cpipe, catch)
577	struct pipe *cpipe;
578	int catch;
579{
580	int error;
581
582	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
583	while (cpipe->pipe_state & PIPE_LOCKFL) {
584		cpipe->pipe_state |= PIPE_LWANT;
585		error = msleep(cpipe, PIPE_MTX(cpipe),
586		    catch ? (PRIBIO | PCATCH) : PRIBIO,
587		    "pipelk", 0);
588		if (error != 0)
589			return (error);
590	}
591	cpipe->pipe_state |= PIPE_LOCKFL;
592	return (0);
593}
594
595/*
596 * unlock a pipe I/O lock
597 */
598static __inline void
599pipeunlock(cpipe)
600	struct pipe *cpipe;
601{
602
603	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
604	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
605		("Unlocked pipe passed to pipeunlock"));
606	cpipe->pipe_state &= ~PIPE_LOCKFL;
607	if (cpipe->pipe_state & PIPE_LWANT) {
608		cpipe->pipe_state &= ~PIPE_LWANT;
609		wakeup(cpipe);
610	}
611}
612
613void
614pipeselwakeup(cpipe)
615	struct pipe *cpipe;
616{
617
618	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
619	if (cpipe->pipe_state & PIPE_SEL) {
620		selwakeuppri(&cpipe->pipe_sel, PSOCK);
621		if (!SEL_WAITING(&cpipe->pipe_sel))
622			cpipe->pipe_state &= ~PIPE_SEL;
623	}
624	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
625		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
626	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
627}
628
629/*
630 * Initialize and allocate VM and memory for pipe.  The structure
631 * will start out zero'd from the ctor, so we just manage the kmem.
632 */
633static void
634pipe_create(pipe, backing)
635	struct pipe *pipe;
636	int backing;
637{
638
639	if (backing) {
640		/*
641		 * Note that these functions can fail if pipe map is exhausted
642		 * (as a result of too many pipes created), but we ignore the
643		 * error as it is not fatal and could be provoked by
644		 * unprivileged users. The only consequence is worse performance
645		 * with given pipe.
646		 */
647		if (amountpipekva > maxpipekva / 2)
648			(void)pipespace_new(pipe, SMALL_PIPE_SIZE);
649		else
650			(void)pipespace_new(pipe, PIPE_SIZE);
651	}
652
653	pipe->pipe_ino = -1;
654}
655
656/* ARGSUSED */
657static int
658pipe_read(fp, uio, active_cred, flags, td)
659	struct file *fp;
660	struct uio *uio;
661	struct ucred *active_cred;
662	struct thread *td;
663	int flags;
664{
665	struct pipe *rpipe;
666	int error;
667	int nread = 0;
668	int size;
669
670	rpipe = fp->f_data;
671	PIPE_LOCK(rpipe);
672	++rpipe->pipe_busy;
673	error = pipelock(rpipe, 1);
674	if (error)
675		goto unlocked_error;
676
677#ifdef MAC
678	error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
679	if (error)
680		goto locked_error;
681#endif
682	if (amountpipekva > (3 * maxpipekva) / 4) {
683		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
684			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
685			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
686			(piperesizeallowed == 1)) {
687			PIPE_UNLOCK(rpipe);
688			pipespace(rpipe, SMALL_PIPE_SIZE);
689			PIPE_LOCK(rpipe);
690		}
691	}
692
693	while (uio->uio_resid) {
694		/*
695		 * normal pipe buffer receive
696		 */
697		if (rpipe->pipe_buffer.cnt > 0) {
698			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
699			if (size > rpipe->pipe_buffer.cnt)
700				size = rpipe->pipe_buffer.cnt;
701			if (size > uio->uio_resid)
702				size = uio->uio_resid;
703
704			PIPE_UNLOCK(rpipe);
705			error = uiomove(
706			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
707			    size, uio);
708			PIPE_LOCK(rpipe);
709			if (error)
710				break;
711
712			rpipe->pipe_buffer.out += size;
713			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
714				rpipe->pipe_buffer.out = 0;
715
716			rpipe->pipe_buffer.cnt -= size;
717
718			/*
719			 * If there is no more to read in the pipe, reset
720			 * its pointers to the beginning.  This improves
721			 * cache hit stats.
722			 */
723			if (rpipe->pipe_buffer.cnt == 0) {
724				rpipe->pipe_buffer.in = 0;
725				rpipe->pipe_buffer.out = 0;
726			}
727			nread += size;
728#ifndef PIPE_NODIRECT
729		/*
730		 * Direct copy, bypassing a kernel buffer.
731		 */
732		} else if ((size = rpipe->pipe_map.cnt) &&
733			   (rpipe->pipe_state & PIPE_DIRECTW)) {
734			if (size > uio->uio_resid)
735				size = (u_int) uio->uio_resid;
736
737			PIPE_UNLOCK(rpipe);
738			error = uiomove_fromphys(rpipe->pipe_map.ms,
739			    rpipe->pipe_map.pos, size, uio);
740			PIPE_LOCK(rpipe);
741			if (error)
742				break;
743			nread += size;
744			rpipe->pipe_map.pos += size;
745			rpipe->pipe_map.cnt -= size;
746			if (rpipe->pipe_map.cnt == 0) {
747				rpipe->pipe_state &= ~(PIPE_DIRECTW|PIPE_WANTW);
748				wakeup(rpipe);
749			}
750#endif
751		} else {
752			/*
753			 * detect EOF condition
754			 * read returns 0 on EOF, no need to set error
755			 */
756			if (rpipe->pipe_state & PIPE_EOF)
757				break;
758
759			/*
760			 * If the "write-side" has been blocked, wake it up now.
761			 */
762			if (rpipe->pipe_state & PIPE_WANTW) {
763				rpipe->pipe_state &= ~PIPE_WANTW;
764				wakeup(rpipe);
765			}
766
767			/*
768			 * Break if some data was read.
769			 */
770			if (nread > 0)
771				break;
772
773			/*
774			 * Unlock the pipe buffer for our remaining processing.
775			 * We will either break out with an error or we will
776			 * sleep and relock to loop.
777			 */
778			pipeunlock(rpipe);
779
780			/*
781			 * Handle non-blocking mode operation or
782			 * wait for more data.
783			 */
784			if (fp->f_flag & FNONBLOCK) {
785				error = EAGAIN;
786			} else {
787				rpipe->pipe_state |= PIPE_WANTR;
788				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
789				    PRIBIO | PCATCH,
790				    "piperd", 0)) == 0)
791					error = pipelock(rpipe, 1);
792			}
793			if (error)
794				goto unlocked_error;
795		}
796	}
797#ifdef MAC
798locked_error:
799#endif
800	pipeunlock(rpipe);
801
802	/* XXX: should probably do this before getting any locks. */
803	if (error == 0)
804		vfs_timestamp(&rpipe->pipe_atime);
805unlocked_error:
806	--rpipe->pipe_busy;
807
808	/*
809	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
810	 */
811	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
812		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
813		wakeup(rpipe);
814	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
815		/*
816		 * Handle write blocking hysteresis.
817		 */
818		if (rpipe->pipe_state & PIPE_WANTW) {
819			rpipe->pipe_state &= ~PIPE_WANTW;
820			wakeup(rpipe);
821		}
822	}
823
824	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
825		pipeselwakeup(rpipe);
826
827	PIPE_UNLOCK(rpipe);
828	return (error);
829}
830
831#ifndef PIPE_NODIRECT
832/*
833 * Map the sending processes' buffer into kernel space and wire it.
834 * This is similar to a physical write operation.
835 */
836static int
837pipe_build_write_buffer(wpipe, uio)
838	struct pipe *wpipe;
839	struct uio *uio;
840{
841	u_int size;
842	int i;
843
844	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
845	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
846		("Clone attempt on non-direct write pipe!"));
847
848	if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
849                size = wpipe->pipe_buffer.size;
850	else
851                size = uio->uio_iov->iov_len;
852
853	if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
854	    (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
855	    wpipe->pipe_map.ms, PIPENPAGES)) < 0)
856		return (EFAULT);
857
858/*
859 * set up the control block
860 */
861	wpipe->pipe_map.npages = i;
862	wpipe->pipe_map.pos =
863	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
864	wpipe->pipe_map.cnt = size;
865
866/*
867 * and update the uio data
868 */
869
870	uio->uio_iov->iov_len -= size;
871	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
872	if (uio->uio_iov->iov_len == 0)
873		uio->uio_iov++;
874	uio->uio_resid -= size;
875	uio->uio_offset += size;
876	return (0);
877}
878
879/*
880 * unmap and unwire the process buffer
881 */
882static void
883pipe_destroy_write_buffer(wpipe)
884	struct pipe *wpipe;
885{
886
887	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
888	vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
889	wpipe->pipe_map.npages = 0;
890}
891
892/*
893 * In the case of a signal, the writing process might go away.  This
894 * code copies the data into the circular buffer so that the source
895 * pages can be freed without loss of data.
896 */
897static void
898pipe_clone_write_buffer(wpipe)
899	struct pipe *wpipe;
900{
901	struct uio uio;
902	struct iovec iov;
903	int size;
904	int pos;
905
906	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
907	size = wpipe->pipe_map.cnt;
908	pos = wpipe->pipe_map.pos;
909
910	wpipe->pipe_buffer.in = size;
911	wpipe->pipe_buffer.out = 0;
912	wpipe->pipe_buffer.cnt = size;
913	wpipe->pipe_state &= ~PIPE_DIRECTW;
914
915	PIPE_UNLOCK(wpipe);
916	iov.iov_base = wpipe->pipe_buffer.buffer;
917	iov.iov_len = size;
918	uio.uio_iov = &iov;
919	uio.uio_iovcnt = 1;
920	uio.uio_offset = 0;
921	uio.uio_resid = size;
922	uio.uio_segflg = UIO_SYSSPACE;
923	uio.uio_rw = UIO_READ;
924	uio.uio_td = curthread;
925	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
926	PIPE_LOCK(wpipe);
927	pipe_destroy_write_buffer(wpipe);
928}
929
930/*
931 * This implements the pipe buffer write mechanism.  Note that only
932 * a direct write OR a normal pipe write can be pending at any given time.
933 * If there are any characters in the pipe buffer, the direct write will
934 * be deferred until the receiving process grabs all of the bytes from
935 * the pipe buffer.  Then the direct mapping write is set-up.
936 */
937static int
938pipe_direct_write(wpipe, uio)
939	struct pipe *wpipe;
940	struct uio *uio;
941{
942	int error;
943
944retry:
945	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
946	error = pipelock(wpipe, 1);
947	if (wpipe->pipe_state & PIPE_EOF)
948		error = EPIPE;
949	if (error) {
950		pipeunlock(wpipe);
951		goto error1;
952	}
953	while (wpipe->pipe_state & PIPE_DIRECTW) {
954		if (wpipe->pipe_state & PIPE_WANTR) {
955			wpipe->pipe_state &= ~PIPE_WANTR;
956			wakeup(wpipe);
957		}
958		pipeselwakeup(wpipe);
959		wpipe->pipe_state |= PIPE_WANTW;
960		pipeunlock(wpipe);
961		error = msleep(wpipe, PIPE_MTX(wpipe),
962		    PRIBIO | PCATCH, "pipdww", 0);
963		if (error)
964			goto error1;
965		else
966			goto retry;
967	}
968	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
969	if (wpipe->pipe_buffer.cnt > 0) {
970		if (wpipe->pipe_state & PIPE_WANTR) {
971			wpipe->pipe_state &= ~PIPE_WANTR;
972			wakeup(wpipe);
973		}
974		pipeselwakeup(wpipe);
975		wpipe->pipe_state |= PIPE_WANTW;
976		pipeunlock(wpipe);
977		error = msleep(wpipe, PIPE_MTX(wpipe),
978		    PRIBIO | PCATCH, "pipdwc", 0);
979		if (error)
980			goto error1;
981		else
982			goto retry;
983	}
984
985	wpipe->pipe_state |= PIPE_DIRECTW;
986
987	PIPE_UNLOCK(wpipe);
988	error = pipe_build_write_buffer(wpipe, uio);
989	PIPE_LOCK(wpipe);
990	if (error) {
991		wpipe->pipe_state &= ~PIPE_DIRECTW;
992		pipeunlock(wpipe);
993		goto error1;
994	}
995
996	error = 0;
997	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
998		if (wpipe->pipe_state & PIPE_EOF) {
999			pipe_destroy_write_buffer(wpipe);
1000			pipeselwakeup(wpipe);
1001			pipeunlock(wpipe);
1002			error = EPIPE;
1003			goto error1;
1004		}
1005		if (wpipe->pipe_state & PIPE_WANTR) {
1006			wpipe->pipe_state &= ~PIPE_WANTR;
1007			wakeup(wpipe);
1008		}
1009		pipeselwakeup(wpipe);
1010		wpipe->pipe_state |= PIPE_WANTW;
1011		pipeunlock(wpipe);
1012		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
1013		    "pipdwt", 0);
1014		pipelock(wpipe, 0);
1015	}
1016
1017	if (wpipe->pipe_state & PIPE_EOF)
1018		error = EPIPE;
1019	if (wpipe->pipe_state & PIPE_DIRECTW) {
1020		/*
1021		 * this bit of trickery substitutes a kernel buffer for
1022		 * the process that might be going away.
1023		 */
1024		pipe_clone_write_buffer(wpipe);
1025	} else {
1026		pipe_destroy_write_buffer(wpipe);
1027	}
1028	pipeunlock(wpipe);
1029	return (error);
1030
1031error1:
1032	wakeup(wpipe);
1033	return (error);
1034}
1035#endif
1036
1037static int
1038pipe_write(fp, uio, active_cred, flags, td)
1039	struct file *fp;
1040	struct uio *uio;
1041	struct ucred *active_cred;
1042	struct thread *td;
1043	int flags;
1044{
1045	int error = 0;
1046	int desiredsize;
1047	ssize_t orig_resid;
1048	struct pipe *wpipe, *rpipe;
1049
1050	rpipe = fp->f_data;
1051	wpipe = PIPE_PEER(rpipe);
1052	PIPE_LOCK(rpipe);
1053	error = pipelock(wpipe, 1);
1054	if (error) {
1055		PIPE_UNLOCK(rpipe);
1056		return (error);
1057	}
1058	/*
1059	 * detect loss of pipe read side, issue SIGPIPE if lost.
1060	 */
1061	if (wpipe->pipe_present != PIPE_ACTIVE ||
1062	    (wpipe->pipe_state & PIPE_EOF)) {
1063		pipeunlock(wpipe);
1064		PIPE_UNLOCK(rpipe);
1065		return (EPIPE);
1066	}
1067#ifdef MAC
1068	error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1069	if (error) {
1070		pipeunlock(wpipe);
1071		PIPE_UNLOCK(rpipe);
1072		return (error);
1073	}
1074#endif
1075	++wpipe->pipe_busy;
1076
1077	/* Choose a larger size if it's advantageous */
1078	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1079	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1080		if (piperesizeallowed != 1)
1081			break;
1082		if (amountpipekva > maxpipekva / 2)
1083			break;
1084		if (desiredsize == BIG_PIPE_SIZE)
1085			break;
1086		desiredsize = desiredsize * 2;
1087	}
1088
1089	/* Choose a smaller size if we're in a OOM situation */
1090	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1091		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1092		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1093		(piperesizeallowed == 1))
1094		desiredsize = SMALL_PIPE_SIZE;
1095
1096	/* Resize if the above determined that a new size was necessary */
1097	if ((desiredsize != wpipe->pipe_buffer.size) &&
1098		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1099		PIPE_UNLOCK(wpipe);
1100		pipespace(wpipe, desiredsize);
1101		PIPE_LOCK(wpipe);
1102	}
1103	if (wpipe->pipe_buffer.size == 0) {
1104		/*
1105		 * This can only happen for reverse direction use of pipes
1106		 * in a complete OOM situation.
1107		 */
1108		error = ENOMEM;
1109		--wpipe->pipe_busy;
1110		pipeunlock(wpipe);
1111		PIPE_UNLOCK(wpipe);
1112		return (error);
1113	}
1114
1115	pipeunlock(wpipe);
1116
1117	orig_resid = uio->uio_resid;
1118
1119	while (uio->uio_resid) {
1120		int space;
1121
1122		pipelock(wpipe, 0);
1123		if (wpipe->pipe_state & PIPE_EOF) {
1124			pipeunlock(wpipe);
1125			error = EPIPE;
1126			break;
1127		}
1128#ifndef PIPE_NODIRECT
1129		/*
1130		 * If the transfer is large, we can gain performance if
1131		 * we do process-to-process copies directly.
1132		 * If the write is non-blocking, we don't use the
1133		 * direct write mechanism.
1134		 *
1135		 * The direct write mechanism will detect the reader going
1136		 * away on us.
1137		 */
1138		if (uio->uio_segflg == UIO_USERSPACE &&
1139		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1140		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1141		    (fp->f_flag & FNONBLOCK) == 0) {
1142			pipeunlock(wpipe);
1143			error = pipe_direct_write(wpipe, uio);
1144			if (error)
1145				break;
1146			continue;
1147		}
1148#endif
1149
1150		/*
1151		 * Pipe buffered writes cannot be coincidental with
1152		 * direct writes.  We wait until the currently executing
1153		 * direct write is completed before we start filling the
1154		 * pipe buffer.  We break out if a signal occurs or the
1155		 * reader goes away.
1156		 */
1157		if (wpipe->pipe_state & PIPE_DIRECTW) {
1158			if (wpipe->pipe_state & PIPE_WANTR) {
1159				wpipe->pipe_state &= ~PIPE_WANTR;
1160				wakeup(wpipe);
1161			}
1162			pipeselwakeup(wpipe);
1163			wpipe->pipe_state |= PIPE_WANTW;
1164			pipeunlock(wpipe);
1165			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1166			    "pipbww", 0);
1167			if (error)
1168				break;
1169			else
1170				continue;
1171		}
1172
1173		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1174
1175		/* Writes of size <= PIPE_BUF must be atomic. */
1176		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1177			space = 0;
1178
1179		if (space > 0) {
1180			int size;	/* Transfer size */
1181			int segsize;	/* first segment to transfer */
1182
1183			/*
1184			 * Transfer size is minimum of uio transfer
1185			 * and free space in pipe buffer.
1186			 */
1187			if (space > uio->uio_resid)
1188				size = uio->uio_resid;
1189			else
1190				size = space;
1191			/*
1192			 * First segment to transfer is minimum of
1193			 * transfer size and contiguous space in
1194			 * pipe buffer.  If first segment to transfer
1195			 * is less than the transfer size, we've got
1196			 * a wraparound in the buffer.
1197			 */
1198			segsize = wpipe->pipe_buffer.size -
1199				wpipe->pipe_buffer.in;
1200			if (segsize > size)
1201				segsize = size;
1202
1203			/* Transfer first segment */
1204
1205			PIPE_UNLOCK(rpipe);
1206			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1207					segsize, uio);
1208			PIPE_LOCK(rpipe);
1209
1210			if (error == 0 && segsize < size) {
1211				KASSERT(wpipe->pipe_buffer.in + segsize ==
1212					wpipe->pipe_buffer.size,
1213					("Pipe buffer wraparound disappeared"));
1214				/*
1215				 * Transfer remaining part now, to
1216				 * support atomic writes.  Wraparound
1217				 * happened.
1218				 */
1219
1220				PIPE_UNLOCK(rpipe);
1221				error = uiomove(
1222				    &wpipe->pipe_buffer.buffer[0],
1223				    size - segsize, uio);
1224				PIPE_LOCK(rpipe);
1225			}
1226			if (error == 0) {
1227				wpipe->pipe_buffer.in += size;
1228				if (wpipe->pipe_buffer.in >=
1229				    wpipe->pipe_buffer.size) {
1230					KASSERT(wpipe->pipe_buffer.in ==
1231						size - segsize +
1232						wpipe->pipe_buffer.size,
1233						("Expected wraparound bad"));
1234					wpipe->pipe_buffer.in = size - segsize;
1235				}
1236
1237				wpipe->pipe_buffer.cnt += size;
1238				KASSERT(wpipe->pipe_buffer.cnt <=
1239					wpipe->pipe_buffer.size,
1240					("Pipe buffer overflow"));
1241			}
1242			pipeunlock(wpipe);
1243			if (error != 0)
1244				break;
1245		} else {
1246			/*
1247			 * If the "read-side" has been blocked, wake it up now.
1248			 */
1249			if (wpipe->pipe_state & PIPE_WANTR) {
1250				wpipe->pipe_state &= ~PIPE_WANTR;
1251				wakeup(wpipe);
1252			}
1253
1254			/*
1255			 * don't block on non-blocking I/O
1256			 */
1257			if (fp->f_flag & FNONBLOCK) {
1258				error = EAGAIN;
1259				pipeunlock(wpipe);
1260				break;
1261			}
1262
1263			/*
1264			 * We have no more space and have something to offer,
1265			 * wake up select/poll.
1266			 */
1267			pipeselwakeup(wpipe);
1268
1269			wpipe->pipe_state |= PIPE_WANTW;
1270			pipeunlock(wpipe);
1271			error = msleep(wpipe, PIPE_MTX(rpipe),
1272			    PRIBIO | PCATCH, "pipewr", 0);
1273			if (error != 0)
1274				break;
1275		}
1276	}
1277
1278	pipelock(wpipe, 0);
1279	--wpipe->pipe_busy;
1280
1281	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1282		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1283		wakeup(wpipe);
1284	} else if (wpipe->pipe_buffer.cnt > 0) {
1285		/*
1286		 * If we have put any characters in the buffer, we wake up
1287		 * the reader.
1288		 */
1289		if (wpipe->pipe_state & PIPE_WANTR) {
1290			wpipe->pipe_state &= ~PIPE_WANTR;
1291			wakeup(wpipe);
1292		}
1293	}
1294
1295	/*
1296	 * Don't return EPIPE if I/O was successful
1297	 */
1298	if ((wpipe->pipe_buffer.cnt == 0) &&
1299	    (uio->uio_resid == 0) &&
1300	    (error == EPIPE)) {
1301		error = 0;
1302	}
1303
1304	if (error == 0)
1305		vfs_timestamp(&wpipe->pipe_mtime);
1306
1307	/*
1308	 * We have something to offer,
1309	 * wake up select/poll.
1310	 */
1311	if (wpipe->pipe_buffer.cnt)
1312		pipeselwakeup(wpipe);
1313
1314	pipeunlock(wpipe);
1315	PIPE_UNLOCK(rpipe);
1316	return (error);
1317}
1318
1319/* ARGSUSED */
1320static int
1321pipe_truncate(fp, length, active_cred, td)
1322	struct file *fp;
1323	off_t length;
1324	struct ucred *active_cred;
1325	struct thread *td;
1326{
1327
1328	/* For named pipes call the vnode operation. */
1329	if (fp->f_vnode != NULL)
1330		return (vnops.fo_truncate(fp, length, active_cred, td));
1331	return (EINVAL);
1332}
1333
1334/*
1335 * we implement a very minimal set of ioctls for compatibility with sockets.
1336 */
1337static int
1338pipe_ioctl(fp, cmd, data, active_cred, td)
1339	struct file *fp;
1340	u_long cmd;
1341	void *data;
1342	struct ucred *active_cred;
1343	struct thread *td;
1344{
1345	struct pipe *mpipe = fp->f_data;
1346	int error;
1347
1348	PIPE_LOCK(mpipe);
1349
1350#ifdef MAC
1351	error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1352	if (error) {
1353		PIPE_UNLOCK(mpipe);
1354		return (error);
1355	}
1356#endif
1357
1358	error = 0;
1359	switch (cmd) {
1360
1361	case FIONBIO:
1362		break;
1363
1364	case FIOASYNC:
1365		if (*(int *)data) {
1366			mpipe->pipe_state |= PIPE_ASYNC;
1367		} else {
1368			mpipe->pipe_state &= ~PIPE_ASYNC;
1369		}
1370		break;
1371
1372	case FIONREAD:
1373		if (!(fp->f_flag & FREAD)) {
1374			*(int *)data = 0;
1375			PIPE_UNLOCK(mpipe);
1376			return (0);
1377		}
1378		if (mpipe->pipe_state & PIPE_DIRECTW)
1379			*(int *)data = mpipe->pipe_map.cnt;
1380		else
1381			*(int *)data = mpipe->pipe_buffer.cnt;
1382		break;
1383
1384	case FIOSETOWN:
1385		PIPE_UNLOCK(mpipe);
1386		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1387		goto out_unlocked;
1388
1389	case FIOGETOWN:
1390		*(int *)data = fgetown(&mpipe->pipe_sigio);
1391		break;
1392
1393	/* This is deprecated, FIOSETOWN should be used instead. */
1394	case TIOCSPGRP:
1395		PIPE_UNLOCK(mpipe);
1396		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1397		goto out_unlocked;
1398
1399	/* This is deprecated, FIOGETOWN should be used instead. */
1400	case TIOCGPGRP:
1401		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1402		break;
1403
1404	default:
1405		error = ENOTTY;
1406		break;
1407	}
1408	PIPE_UNLOCK(mpipe);
1409out_unlocked:
1410	return (error);
1411}
1412
1413static int
1414pipe_poll(fp, events, active_cred, td)
1415	struct file *fp;
1416	int events;
1417	struct ucred *active_cred;
1418	struct thread *td;
1419{
1420	struct pipe *rpipe;
1421	struct pipe *wpipe;
1422	int levents, revents;
1423#ifdef MAC
1424	int error;
1425#endif
1426
1427	revents = 0;
1428	rpipe = fp->f_data;
1429	wpipe = PIPE_PEER(rpipe);
1430	PIPE_LOCK(rpipe);
1431#ifdef MAC
1432	error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1433	if (error)
1434		goto locked_error;
1435#endif
1436	if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM))
1437		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1438		    (rpipe->pipe_buffer.cnt > 0))
1439			revents |= events & (POLLIN | POLLRDNORM);
1440
1441	if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM))
1442		if (wpipe->pipe_present != PIPE_ACTIVE ||
1443		    (wpipe->pipe_state & PIPE_EOF) ||
1444		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1445		     ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1446			 wpipe->pipe_buffer.size == 0)))
1447			revents |= events & (POLLOUT | POLLWRNORM);
1448
1449	levents = events &
1450	    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM | POLLRDBAND);
1451	if (rpipe->pipe_state & PIPE_NAMED && fp->f_flag & FREAD && levents &&
1452	    fp->f_seqcount == rpipe->pipe_wgen)
1453		events |= POLLINIGNEOF;
1454
1455	if ((events & POLLINIGNEOF) == 0) {
1456		if (rpipe->pipe_state & PIPE_EOF) {
1457			revents |= (events & (POLLIN | POLLRDNORM));
1458			if (wpipe->pipe_present != PIPE_ACTIVE ||
1459			    (wpipe->pipe_state & PIPE_EOF))
1460				revents |= POLLHUP;
1461		}
1462	}
1463
1464	if (revents == 0) {
1465		if (fp->f_flag & FREAD && events & (POLLIN | POLLRDNORM)) {
1466			selrecord(td, &rpipe->pipe_sel);
1467			if (SEL_WAITING(&rpipe->pipe_sel))
1468				rpipe->pipe_state |= PIPE_SEL;
1469		}
1470
1471		if (fp->f_flag & FWRITE && events & (POLLOUT | POLLWRNORM)) {
1472			selrecord(td, &wpipe->pipe_sel);
1473			if (SEL_WAITING(&wpipe->pipe_sel))
1474				wpipe->pipe_state |= PIPE_SEL;
1475		}
1476	}
1477#ifdef MAC
1478locked_error:
1479#endif
1480	PIPE_UNLOCK(rpipe);
1481
1482	return (revents);
1483}
1484
1485/*
1486 * We shouldn't need locks here as we're doing a read and this should
1487 * be a natural race.
1488 */
1489static int
1490pipe_stat(fp, ub, active_cred, td)
1491	struct file *fp;
1492	struct stat *ub;
1493	struct ucred *active_cred;
1494	struct thread *td;
1495{
1496	struct pipe *pipe;
1497	int new_unr;
1498#ifdef MAC
1499	int error;
1500#endif
1501
1502	pipe = fp->f_data;
1503	PIPE_LOCK(pipe);
1504#ifdef MAC
1505	error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1506	if (error) {
1507		PIPE_UNLOCK(pipe);
1508		return (error);
1509	}
1510#endif
1511
1512	/* For named pipes ask the underlying filesystem. */
1513	if (pipe->pipe_state & PIPE_NAMED) {
1514		PIPE_UNLOCK(pipe);
1515		return (vnops.fo_stat(fp, ub, active_cred, td));
1516	}
1517
1518	/*
1519	 * Lazily allocate an inode number for the pipe.  Most pipe
1520	 * users do not call fstat(2) on the pipe, which means that
1521	 * postponing the inode allocation until it is must be
1522	 * returned to userland is useful.  If alloc_unr failed,
1523	 * assign st_ino zero instead of returning an error.
1524	 * Special pipe_ino values:
1525	 *  -1 - not yet initialized;
1526	 *  0  - alloc_unr failed, return 0 as st_ino forever.
1527	 */
1528	if (pipe->pipe_ino == (ino_t)-1) {
1529		new_unr = alloc_unr(pipeino_unr);
1530		if (new_unr != -1)
1531			pipe->pipe_ino = new_unr;
1532		else
1533			pipe->pipe_ino = 0;
1534	}
1535	PIPE_UNLOCK(pipe);
1536
1537	bzero(ub, sizeof(*ub));
1538	ub->st_mode = S_IFIFO;
1539	ub->st_blksize = PAGE_SIZE;
1540	if (pipe->pipe_state & PIPE_DIRECTW)
1541		ub->st_size = pipe->pipe_map.cnt;
1542	else
1543		ub->st_size = pipe->pipe_buffer.cnt;
1544	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1545	ub->st_atim = pipe->pipe_atime;
1546	ub->st_mtim = pipe->pipe_mtime;
1547	ub->st_ctim = pipe->pipe_ctime;
1548	ub->st_uid = fp->f_cred->cr_uid;
1549	ub->st_gid = fp->f_cred->cr_gid;
1550	ub->st_dev = pipedev_ino;
1551	ub->st_ino = pipe->pipe_ino;
1552	/*
1553	 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1554	 */
1555	return (0);
1556}
1557
1558/* ARGSUSED */
1559static int
1560pipe_close(fp, td)
1561	struct file *fp;
1562	struct thread *td;
1563{
1564
1565	if (fp->f_vnode != NULL)
1566		return vnops.fo_close(fp, td);
1567	fp->f_ops = &badfileops;
1568	pipe_dtor(fp->f_data);
1569	fp->f_data = NULL;
1570	return (0);
1571}
1572
1573static int
1574pipe_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td)
1575{
1576	struct pipe *cpipe;
1577	int error;
1578
1579	cpipe = fp->f_data;
1580	if (cpipe->pipe_state & PIPE_NAMED)
1581		error = vn_chmod(fp, mode, active_cred, td);
1582	else
1583		error = invfo_chmod(fp, mode, active_cred, td);
1584	return (error);
1585}
1586
1587static int
1588pipe_chown(fp, uid, gid, active_cred, td)
1589	struct file *fp;
1590	uid_t uid;
1591	gid_t gid;
1592	struct ucred *active_cred;
1593	struct thread *td;
1594{
1595	struct pipe *cpipe;
1596	int error;
1597
1598	cpipe = fp->f_data;
1599	if (cpipe->pipe_state & PIPE_NAMED)
1600		error = vn_chown(fp, uid, gid, active_cred, td);
1601	else
1602		error = invfo_chown(fp, uid, gid, active_cred, td);
1603	return (error);
1604}
1605
1606static void
1607pipe_free_kmem(cpipe)
1608	struct pipe *cpipe;
1609{
1610
1611	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1612	    ("pipe_free_kmem: pipe mutex locked"));
1613
1614	if (cpipe->pipe_buffer.buffer != NULL) {
1615		atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1616		vm_map_remove(pipe_map,
1617		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1618		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1619		cpipe->pipe_buffer.buffer = NULL;
1620	}
1621#ifndef PIPE_NODIRECT
1622	{
1623		cpipe->pipe_map.cnt = 0;
1624		cpipe->pipe_map.pos = 0;
1625		cpipe->pipe_map.npages = 0;
1626	}
1627#endif
1628}
1629
1630/*
1631 * shutdown the pipe
1632 */
1633static void
1634pipeclose(cpipe)
1635	struct pipe *cpipe;
1636{
1637	struct pipepair *pp;
1638	struct pipe *ppipe;
1639
1640	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1641
1642	PIPE_LOCK(cpipe);
1643	pipelock(cpipe, 0);
1644	pp = cpipe->pipe_pair;
1645
1646	pipeselwakeup(cpipe);
1647
1648	/*
1649	 * If the other side is blocked, wake it up saying that
1650	 * we want to close it down.
1651	 */
1652	cpipe->pipe_state |= PIPE_EOF;
1653	while (cpipe->pipe_busy) {
1654		wakeup(cpipe);
1655		cpipe->pipe_state |= PIPE_WANT;
1656		pipeunlock(cpipe);
1657		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1658		pipelock(cpipe, 0);
1659	}
1660
1661
1662	/*
1663	 * Disconnect from peer, if any.
1664	 */
1665	ppipe = cpipe->pipe_peer;
1666	if (ppipe->pipe_present == PIPE_ACTIVE) {
1667		pipeselwakeup(ppipe);
1668
1669		ppipe->pipe_state |= PIPE_EOF;
1670		wakeup(ppipe);
1671		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1672	}
1673
1674	/*
1675	 * Mark this endpoint as free.  Release kmem resources.  We
1676	 * don't mark this endpoint as unused until we've finished
1677	 * doing that, or the pipe might disappear out from under
1678	 * us.
1679	 */
1680	PIPE_UNLOCK(cpipe);
1681	pipe_free_kmem(cpipe);
1682	PIPE_LOCK(cpipe);
1683	cpipe->pipe_present = PIPE_CLOSING;
1684	pipeunlock(cpipe);
1685
1686	/*
1687	 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1688	 * PIPE_FINALIZED, that allows other end to free the
1689	 * pipe_pair, only after the knotes are completely dismantled.
1690	 */
1691	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1692	cpipe->pipe_present = PIPE_FINALIZED;
1693	seldrain(&cpipe->pipe_sel);
1694	knlist_destroy(&cpipe->pipe_sel.si_note);
1695
1696	/*
1697	 * If both endpoints are now closed, release the memory for the
1698	 * pipe pair.  If not, unlock.
1699	 */
1700	if (ppipe->pipe_present == PIPE_FINALIZED) {
1701		PIPE_UNLOCK(cpipe);
1702#ifdef MAC
1703		mac_pipe_destroy(pp);
1704#endif
1705		uma_zfree(pipe_zone, cpipe->pipe_pair);
1706	} else
1707		PIPE_UNLOCK(cpipe);
1708}
1709
1710/*ARGSUSED*/
1711static int
1712pipe_kqfilter(struct file *fp, struct knote *kn)
1713{
1714	struct pipe *cpipe;
1715
1716	/*
1717	 * If a filter is requested that is not supported by this file
1718	 * descriptor, don't return an error, but also don't ever generate an
1719	 * event.
1720	 */
1721	if ((kn->kn_filter == EVFILT_READ) && !(fp->f_flag & FREAD)) {
1722		kn->kn_fop = &pipe_nfiltops;
1723		return (0);
1724	}
1725	if ((kn->kn_filter == EVFILT_WRITE) && !(fp->f_flag & FWRITE)) {
1726		kn->kn_fop = &pipe_nfiltops;
1727		return (0);
1728	}
1729	cpipe = fp->f_data;
1730	PIPE_LOCK(cpipe);
1731	switch (kn->kn_filter) {
1732	case EVFILT_READ:
1733		kn->kn_fop = &pipe_rfiltops;
1734		break;
1735	case EVFILT_WRITE:
1736		kn->kn_fop = &pipe_wfiltops;
1737		if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1738			/* other end of pipe has been closed */
1739			PIPE_UNLOCK(cpipe);
1740			return (EPIPE);
1741		}
1742		cpipe = PIPE_PEER(cpipe);
1743		break;
1744	default:
1745		PIPE_UNLOCK(cpipe);
1746		return (EINVAL);
1747	}
1748
1749	kn->kn_hook = cpipe;
1750	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1751	PIPE_UNLOCK(cpipe);
1752	return (0);
1753}
1754
1755static void
1756filt_pipedetach(struct knote *kn)
1757{
1758	struct pipe *cpipe = kn->kn_hook;
1759
1760	PIPE_LOCK(cpipe);
1761	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1762	PIPE_UNLOCK(cpipe);
1763}
1764
1765/*ARGSUSED*/
1766static int
1767filt_piperead(struct knote *kn, long hint)
1768{
1769	struct pipe *rpipe = kn->kn_hook;
1770	struct pipe *wpipe = rpipe->pipe_peer;
1771	int ret;
1772
1773	PIPE_LOCK(rpipe);
1774	kn->kn_data = rpipe->pipe_buffer.cnt;
1775	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1776		kn->kn_data = rpipe->pipe_map.cnt;
1777
1778	if ((rpipe->pipe_state & PIPE_EOF) ||
1779	    wpipe->pipe_present != PIPE_ACTIVE ||
1780	    (wpipe->pipe_state & PIPE_EOF)) {
1781		kn->kn_flags |= EV_EOF;
1782		PIPE_UNLOCK(rpipe);
1783		return (1);
1784	}
1785	ret = kn->kn_data > 0;
1786	PIPE_UNLOCK(rpipe);
1787	return ret;
1788}
1789
1790/*ARGSUSED*/
1791static int
1792filt_pipewrite(struct knote *kn, long hint)
1793{
1794	struct pipe *wpipe;
1795
1796	wpipe = kn->kn_hook;
1797	PIPE_LOCK(wpipe);
1798	if (wpipe->pipe_present != PIPE_ACTIVE ||
1799	    (wpipe->pipe_state & PIPE_EOF)) {
1800		kn->kn_data = 0;
1801		kn->kn_flags |= EV_EOF;
1802		PIPE_UNLOCK(wpipe);
1803		return (1);
1804	}
1805	kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1806	    (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1807	if (wpipe->pipe_state & PIPE_DIRECTW)
1808		kn->kn_data = 0;
1809
1810	PIPE_UNLOCK(wpipe);
1811	return (kn->kn_data >= PIPE_BUF);
1812}
1813
1814static void
1815filt_pipedetach_notsup(struct knote *kn)
1816{
1817
1818}
1819
1820static int
1821filt_pipenotsup(struct knote *kn, long hint)
1822{
1823
1824	return (0);
1825}
1826