sys_pipe.c revision 170022
1/*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 *     New pipes are given 16K of memory backing, pipes may dynamically
62 *     grow to as large as 64K where needed.
63 * 50% - 75%:
64 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 *     existing pipes may NOT grow.
66 * 75% - 100%:
67 *     New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 *     existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0.  If
71 * that is set,  the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules:  There are two locks present here:  A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock().  All locking is done via
81 * the flag, as mutexes can not persist over uiomove.  The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism.  Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91#include <sys/cdefs.h>
92__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 170022 2007-05-27 17:33:10Z rwatson $");
93
94#include "opt_mac.h"
95
96#include <sys/param.h>
97#include <sys/systm.h>
98#include <sys/fcntl.h>
99#include <sys/file.h>
100#include <sys/filedesc.h>
101#include <sys/filio.h>
102#include <sys/kernel.h>
103#include <sys/lock.h>
104#include <sys/mutex.h>
105#include <sys/ttycom.h>
106#include <sys/stat.h>
107#include <sys/malloc.h>
108#include <sys/poll.h>
109#include <sys/selinfo.h>
110#include <sys/signalvar.h>
111#include <sys/sysctl.h>
112#include <sys/sysproto.h>
113#include <sys/pipe.h>
114#include <sys/proc.h>
115#include <sys/vnode.h>
116#include <sys/uio.h>
117#include <sys/event.h>
118
119#include <security/mac/mac_framework.h>
120
121#include <vm/vm.h>
122#include <vm/vm_param.h>
123#include <vm/vm_object.h>
124#include <vm/vm_kern.h>
125#include <vm/vm_extern.h>
126#include <vm/pmap.h>
127#include <vm/vm_map.h>
128#include <vm/vm_page.h>
129#include <vm/uma.h>
130
131/*
132 * Use this define if you want to disable *fancy* VM things.  Expect an
133 * approx 30% decrease in transfer rate.  This could be useful for
134 * NetBSD or OpenBSD.
135 */
136/* #define PIPE_NODIRECT */
137
138/*
139 * interfaces to the outside world
140 */
141static fo_rdwr_t	pipe_read;
142static fo_rdwr_t	pipe_write;
143static fo_ioctl_t	pipe_ioctl;
144static fo_poll_t	pipe_poll;
145static fo_kqfilter_t	pipe_kqfilter;
146static fo_stat_t	pipe_stat;
147static fo_close_t	pipe_close;
148
149static struct fileops pipeops = {
150	.fo_read = pipe_read,
151	.fo_write = pipe_write,
152	.fo_ioctl = pipe_ioctl,
153	.fo_poll = pipe_poll,
154	.fo_kqfilter = pipe_kqfilter,
155	.fo_stat = pipe_stat,
156	.fo_close = pipe_close,
157	.fo_flags = DFLAG_PASSABLE
158};
159
160static void	filt_pipedetach(struct knote *kn);
161static int	filt_piperead(struct knote *kn, long hint);
162static int	filt_pipewrite(struct knote *kn, long hint);
163
164static struct filterops pipe_rfiltops =
165	{ 1, NULL, filt_pipedetach, filt_piperead };
166static struct filterops pipe_wfiltops =
167	{ 1, NULL, filt_pipedetach, filt_pipewrite };
168
169/*
170 * Default pipe buffer size(s), this can be kind-of large now because pipe
171 * space is pageable.  The pipe code will try to maintain locality of
172 * reference for performance reasons, so small amounts of outstanding I/O
173 * will not wipe the cache.
174 */
175#define MINPIPESIZE (PIPE_SIZE/3)
176#define MAXPIPESIZE (2*PIPE_SIZE/3)
177
178static int amountpipekva;
179static int pipefragretry;
180static int pipeallocfail;
181static int piperesizefail;
182static int piperesizeallowed = 1;
183
184SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
185	   &maxpipekva, 0, "Pipe KVA limit");
186SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
187	   &amountpipekva, 0, "Pipe KVA usage");
188SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
189	  &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
190SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
191	  &pipeallocfail, 0, "Pipe allocation failures");
192SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
193	  &piperesizefail, 0, "Pipe resize failures");
194SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
195	  &piperesizeallowed, 0, "Pipe resizing allowed");
196
197static void pipeinit(void *dummy __unused);
198static void pipeclose(struct pipe *cpipe);
199static void pipe_free_kmem(struct pipe *cpipe);
200static int pipe_create(struct pipe *pipe, int backing);
201static __inline int pipelock(struct pipe *cpipe, int catch);
202static __inline void pipeunlock(struct pipe *cpipe);
203static __inline void pipeselwakeup(struct pipe *cpipe);
204#ifndef PIPE_NODIRECT
205static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
206static void pipe_destroy_write_buffer(struct pipe *wpipe);
207static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
208static void pipe_clone_write_buffer(struct pipe *wpipe);
209#endif
210static int pipespace(struct pipe *cpipe, int size);
211static int pipespace_new(struct pipe *cpipe, int size);
212
213static int	pipe_zone_ctor(void *mem, int size, void *arg, int flags);
214static int	pipe_zone_init(void *mem, int size, int flags);
215static void	pipe_zone_fini(void *mem, int size);
216
217static uma_zone_t pipe_zone;
218
219SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
220
221static void
222pipeinit(void *dummy __unused)
223{
224
225	pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
226	    pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
227	    UMA_ALIGN_PTR, 0);
228	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
229}
230
231static int
232pipe_zone_ctor(void *mem, int size, void *arg, int flags)
233{
234	struct pipepair *pp;
235	struct pipe *rpipe, *wpipe;
236
237	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
238
239	pp = (struct pipepair *)mem;
240
241	/*
242	 * We zero both pipe endpoints to make sure all the kmem pointers
243	 * are NULL, flag fields are zero'd, etc.  We timestamp both
244	 * endpoints with the same time.
245	 */
246	rpipe = &pp->pp_rpipe;
247	bzero(rpipe, sizeof(*rpipe));
248	vfs_timestamp(&rpipe->pipe_ctime);
249	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
250
251	wpipe = &pp->pp_wpipe;
252	bzero(wpipe, sizeof(*wpipe));
253	wpipe->pipe_ctime = rpipe->pipe_ctime;
254	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
255
256	rpipe->pipe_peer = wpipe;
257	rpipe->pipe_pair = pp;
258	wpipe->pipe_peer = rpipe;
259	wpipe->pipe_pair = pp;
260
261	/*
262	 * Mark both endpoints as present; they will later get free'd
263	 * one at a time.  When both are free'd, then the whole pair
264	 * is released.
265	 */
266	rpipe->pipe_present = 1;
267	wpipe->pipe_present = 1;
268
269	/*
270	 * Eventually, the MAC Framework may initialize the label
271	 * in ctor or init, but for now we do it elswhere to avoid
272	 * blocking in ctor or init.
273	 */
274	pp->pp_label = NULL;
275
276	return (0);
277}
278
279static int
280pipe_zone_init(void *mem, int size, int flags)
281{
282	struct pipepair *pp;
283
284	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
285
286	pp = (struct pipepair *)mem;
287
288	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
289	return (0);
290}
291
292static void
293pipe_zone_fini(void *mem, int size)
294{
295	struct pipepair *pp;
296
297	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
298
299	pp = (struct pipepair *)mem;
300
301	mtx_destroy(&pp->pp_mtx);
302}
303
304/*
305 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail, let
306 * the zone pick up the pieces via pipeclose().
307 */
308/* ARGSUSED */
309int
310pipe(td, uap)
311	struct thread *td;
312	struct pipe_args /* {
313		int	dummy;
314	} */ *uap;
315{
316	struct filedesc *fdp = td->td_proc->p_fd;
317	struct file *rf, *wf;
318	struct pipepair *pp;
319	struct pipe *rpipe, *wpipe;
320	int fd, error;
321
322	pp = uma_zalloc(pipe_zone, M_WAITOK);
323#ifdef MAC
324	/*
325	 * The MAC label is shared between the connected endpoints.  As a
326	 * result mac_init_pipe() and mac_create_pipe() are called once
327	 * for the pair, and not on the endpoints.
328	 */
329	mac_init_pipe(pp);
330	mac_create_pipe(td->td_ucred, pp);
331#endif
332	rpipe = &pp->pp_rpipe;
333	wpipe = &pp->pp_wpipe;
334
335	knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
336	    NULL);
337	knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
338	    NULL);
339
340	/* Only the forward direction pipe is backed by default */
341	if ((error = pipe_create(rpipe, 1)) != 0 ||
342	    (error = pipe_create(wpipe, 0)) != 0) {
343		pipeclose(rpipe);
344		pipeclose(wpipe);
345		return (error);
346	}
347
348	rpipe->pipe_state |= PIPE_DIRECTOK;
349	wpipe->pipe_state |= PIPE_DIRECTOK;
350
351	error = falloc(td, &rf, &fd);
352	if (error) {
353		pipeclose(rpipe);
354		pipeclose(wpipe);
355		return (error);
356	}
357	/* An extra reference on `rf' has been held for us by falloc(). */
358	td->td_retval[0] = fd;
359
360	/*
361	 * Warning: once we've gotten past allocation of the fd for the
362	 * read-side, we can only drop the read side via fdrop() in order
363	 * to avoid races against processes which manage to dup() the read
364	 * side while we are blocked trying to allocate the write side.
365	 */
366	FILE_LOCK(rf);
367	rf->f_flag = FREAD | FWRITE;
368	rf->f_type = DTYPE_PIPE;
369	rf->f_data = rpipe;
370	rf->f_ops = &pipeops;
371	FILE_UNLOCK(rf);
372	error = falloc(td, &wf, &fd);
373	if (error) {
374		fdclose(fdp, rf, td->td_retval[0], td);
375		fdrop(rf, td);
376		/* rpipe has been closed by fdrop(). */
377		pipeclose(wpipe);
378		return (error);
379	}
380	/* An extra reference on `wf' has been held for us by falloc(). */
381	FILE_LOCK(wf);
382	wf->f_flag = FREAD | FWRITE;
383	wf->f_type = DTYPE_PIPE;
384	wf->f_data = wpipe;
385	wf->f_ops = &pipeops;
386	FILE_UNLOCK(wf);
387	fdrop(wf, td);
388	td->td_retval[1] = fd;
389	fdrop(rf, td);
390
391	return (0);
392}
393
394/*
395 * Allocate kva for pipe circular buffer, the space is pageable
396 * This routine will 'realloc' the size of a pipe safely, if it fails
397 * it will retain the old buffer.
398 * If it fails it will return ENOMEM.
399 */
400static int
401pipespace_new(cpipe, size)
402	struct pipe *cpipe;
403	int size;
404{
405	caddr_t buffer;
406	int error, cnt, firstseg;
407	static int curfail = 0;
408	static struct timeval lastfail;
409
410	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
411	KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
412		("pipespace: resize of direct writes not allowed"));
413retry:
414	cnt = cpipe->pipe_buffer.cnt;
415	if (cnt > size)
416		size = cnt;
417
418	size = round_page(size);
419	buffer = (caddr_t) vm_map_min(pipe_map);
420
421	error = vm_map_find(pipe_map, NULL, 0,
422		(vm_offset_t *) &buffer, size, 1,
423		VM_PROT_ALL, VM_PROT_ALL, 0);
424	if (error != KERN_SUCCESS) {
425		if ((cpipe->pipe_buffer.buffer == NULL) &&
426			(size > SMALL_PIPE_SIZE)) {
427			size = SMALL_PIPE_SIZE;
428			pipefragretry++;
429			goto retry;
430		}
431		if (cpipe->pipe_buffer.buffer == NULL) {
432			pipeallocfail++;
433			if (ppsratecheck(&lastfail, &curfail, 1))
434				printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
435		} else {
436			piperesizefail++;
437		}
438		return (ENOMEM);
439	}
440
441	/* copy data, then free old resources if we're resizing */
442	if (cnt > 0) {
443		if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
444			firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
445			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
446				buffer, firstseg);
447			if ((cnt - firstseg) > 0)
448				bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
449					cpipe->pipe_buffer.in);
450		} else {
451			bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
452				buffer, cnt);
453		}
454	}
455	pipe_free_kmem(cpipe);
456	cpipe->pipe_buffer.buffer = buffer;
457	cpipe->pipe_buffer.size = size;
458	cpipe->pipe_buffer.in = cnt;
459	cpipe->pipe_buffer.out = 0;
460	cpipe->pipe_buffer.cnt = cnt;
461	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
462	return (0);
463}
464
465/*
466 * Wrapper for pipespace_new() that performs locking assertions.
467 */
468static int
469pipespace(cpipe, size)
470	struct pipe *cpipe;
471	int size;
472{
473
474	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
475		("Unlocked pipe passed to pipespace"));
476	return (pipespace_new(cpipe, size));
477}
478
479/*
480 * lock a pipe for I/O, blocking other access
481 */
482static __inline int
483pipelock(cpipe, catch)
484	struct pipe *cpipe;
485	int catch;
486{
487	int error;
488
489	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
490	while (cpipe->pipe_state & PIPE_LOCKFL) {
491		cpipe->pipe_state |= PIPE_LWANT;
492		error = msleep(cpipe, PIPE_MTX(cpipe),
493		    catch ? (PRIBIO | PCATCH) : PRIBIO,
494		    "pipelk", 0);
495		if (error != 0)
496			return (error);
497	}
498	cpipe->pipe_state |= PIPE_LOCKFL;
499	return (0);
500}
501
502/*
503 * unlock a pipe I/O lock
504 */
505static __inline void
506pipeunlock(cpipe)
507	struct pipe *cpipe;
508{
509
510	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
511	KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
512		("Unlocked pipe passed to pipeunlock"));
513	cpipe->pipe_state &= ~PIPE_LOCKFL;
514	if (cpipe->pipe_state & PIPE_LWANT) {
515		cpipe->pipe_state &= ~PIPE_LWANT;
516		wakeup(cpipe);
517	}
518}
519
520static __inline void
521pipeselwakeup(cpipe)
522	struct pipe *cpipe;
523{
524
525	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
526	if (cpipe->pipe_state & PIPE_SEL) {
527		cpipe->pipe_state &= ~PIPE_SEL;
528		selwakeuppri(&cpipe->pipe_sel, PSOCK);
529	}
530	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
531		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
532	KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
533}
534
535/*
536 * Initialize and allocate VM and memory for pipe.  The structure
537 * will start out zero'd from the ctor, so we just manage the kmem.
538 */
539static int
540pipe_create(pipe, backing)
541	struct pipe *pipe;
542	int backing;
543{
544	int error;
545
546	if (backing) {
547		if (amountpipekva > maxpipekva / 2)
548			error = pipespace_new(pipe, SMALL_PIPE_SIZE);
549		else
550			error = pipespace_new(pipe, PIPE_SIZE);
551	} else {
552		/* If we're not backing this pipe, no need to do anything. */
553		error = 0;
554	}
555	return (error);
556}
557
558/* ARGSUSED */
559static int
560pipe_read(fp, uio, active_cred, flags, td)
561	struct file *fp;
562	struct uio *uio;
563	struct ucred *active_cred;
564	struct thread *td;
565	int flags;
566{
567	struct pipe *rpipe = fp->f_data;
568	int error;
569	int nread = 0;
570	u_int size;
571
572	PIPE_LOCK(rpipe);
573	++rpipe->pipe_busy;
574	error = pipelock(rpipe, 1);
575	if (error)
576		goto unlocked_error;
577
578#ifdef MAC
579	error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
580	if (error)
581		goto locked_error;
582#endif
583	if (amountpipekva > (3 * maxpipekva) / 4) {
584		if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
585			(rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
586			(rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
587			(piperesizeallowed == 1)) {
588			PIPE_UNLOCK(rpipe);
589			pipespace(rpipe, SMALL_PIPE_SIZE);
590			PIPE_LOCK(rpipe);
591		}
592	}
593
594	while (uio->uio_resid) {
595		/*
596		 * normal pipe buffer receive
597		 */
598		if (rpipe->pipe_buffer.cnt > 0) {
599			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
600			if (size > rpipe->pipe_buffer.cnt)
601				size = rpipe->pipe_buffer.cnt;
602			if (size > (u_int) uio->uio_resid)
603				size = (u_int) uio->uio_resid;
604
605			PIPE_UNLOCK(rpipe);
606			error = uiomove(
607			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
608			    size, uio);
609			PIPE_LOCK(rpipe);
610			if (error)
611				break;
612
613			rpipe->pipe_buffer.out += size;
614			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
615				rpipe->pipe_buffer.out = 0;
616
617			rpipe->pipe_buffer.cnt -= size;
618
619			/*
620			 * If there is no more to read in the pipe, reset
621			 * its pointers to the beginning.  This improves
622			 * cache hit stats.
623			 */
624			if (rpipe->pipe_buffer.cnt == 0) {
625				rpipe->pipe_buffer.in = 0;
626				rpipe->pipe_buffer.out = 0;
627			}
628			nread += size;
629#ifndef PIPE_NODIRECT
630		/*
631		 * Direct copy, bypassing a kernel buffer.
632		 */
633		} else if ((size = rpipe->pipe_map.cnt) &&
634			   (rpipe->pipe_state & PIPE_DIRECTW)) {
635			if (size > (u_int) uio->uio_resid)
636				size = (u_int) uio->uio_resid;
637
638			PIPE_UNLOCK(rpipe);
639			error = uiomove_fromphys(rpipe->pipe_map.ms,
640			    rpipe->pipe_map.pos, size, uio);
641			PIPE_LOCK(rpipe);
642			if (error)
643				break;
644			nread += size;
645			rpipe->pipe_map.pos += size;
646			rpipe->pipe_map.cnt -= size;
647			if (rpipe->pipe_map.cnt == 0) {
648				rpipe->pipe_state &= ~PIPE_DIRECTW;
649				wakeup(rpipe);
650			}
651#endif
652		} else {
653			/*
654			 * detect EOF condition
655			 * read returns 0 on EOF, no need to set error
656			 */
657			if (rpipe->pipe_state & PIPE_EOF)
658				break;
659
660			/*
661			 * If the "write-side" has been blocked, wake it up now.
662			 */
663			if (rpipe->pipe_state & PIPE_WANTW) {
664				rpipe->pipe_state &= ~PIPE_WANTW;
665				wakeup(rpipe);
666			}
667
668			/*
669			 * Break if some data was read.
670			 */
671			if (nread > 0)
672				break;
673
674			/*
675			 * Unlock the pipe buffer for our remaining processing.
676			 * We will either break out with an error or we will
677			 * sleep and relock to loop.
678			 */
679			pipeunlock(rpipe);
680
681			/*
682			 * Handle non-blocking mode operation or
683			 * wait for more data.
684			 */
685			if (fp->f_flag & FNONBLOCK) {
686				error = EAGAIN;
687			} else {
688				rpipe->pipe_state |= PIPE_WANTR;
689				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
690				    PRIBIO | PCATCH,
691				    "piperd", 0)) == 0)
692					error = pipelock(rpipe, 1);
693			}
694			if (error)
695				goto unlocked_error;
696		}
697	}
698#ifdef MAC
699locked_error:
700#endif
701	pipeunlock(rpipe);
702
703	/* XXX: should probably do this before getting any locks. */
704	if (error == 0)
705		vfs_timestamp(&rpipe->pipe_atime);
706unlocked_error:
707	--rpipe->pipe_busy;
708
709	/*
710	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
711	 */
712	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
713		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
714		wakeup(rpipe);
715	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
716		/*
717		 * Handle write blocking hysteresis.
718		 */
719		if (rpipe->pipe_state & PIPE_WANTW) {
720			rpipe->pipe_state &= ~PIPE_WANTW;
721			wakeup(rpipe);
722		}
723	}
724
725	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
726		pipeselwakeup(rpipe);
727
728	PIPE_UNLOCK(rpipe);
729	return (error);
730}
731
732#ifndef PIPE_NODIRECT
733/*
734 * Map the sending processes' buffer into kernel space and wire it.
735 * This is similar to a physical write operation.
736 */
737static int
738pipe_build_write_buffer(wpipe, uio)
739	struct pipe *wpipe;
740	struct uio *uio;
741{
742	pmap_t pmap;
743	u_int size;
744	int i, j;
745	vm_offset_t addr, endaddr;
746
747	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
748	KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
749		("Clone attempt on non-direct write pipe!"));
750
751	size = (u_int) uio->uio_iov->iov_len;
752	if (size > wpipe->pipe_buffer.size)
753		size = wpipe->pipe_buffer.size;
754
755	pmap = vmspace_pmap(curproc->p_vmspace);
756	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
757	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
758	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
759		/*
760		 * vm_fault_quick() can sleep.  Consequently,
761		 * vm_page_lock_queue() and vm_page_unlock_queue()
762		 * should not be performed outside of this loop.
763		 */
764	race:
765		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
766			vm_page_lock_queues();
767			for (j = 0; j < i; j++)
768				vm_page_unhold(wpipe->pipe_map.ms[j]);
769			vm_page_unlock_queues();
770			return (EFAULT);
771		}
772		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
773		    VM_PROT_READ);
774		if (wpipe->pipe_map.ms[i] == NULL)
775			goto race;
776	}
777
778/*
779 * set up the control block
780 */
781	wpipe->pipe_map.npages = i;
782	wpipe->pipe_map.pos =
783	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
784	wpipe->pipe_map.cnt = size;
785
786/*
787 * and update the uio data
788 */
789
790	uio->uio_iov->iov_len -= size;
791	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
792	if (uio->uio_iov->iov_len == 0)
793		uio->uio_iov++;
794	uio->uio_resid -= size;
795	uio->uio_offset += size;
796	return (0);
797}
798
799/*
800 * unmap and unwire the process buffer
801 */
802static void
803pipe_destroy_write_buffer(wpipe)
804	struct pipe *wpipe;
805{
806	int i;
807
808	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
809	vm_page_lock_queues();
810	for (i = 0; i < wpipe->pipe_map.npages; i++) {
811		vm_page_unhold(wpipe->pipe_map.ms[i]);
812	}
813	vm_page_unlock_queues();
814	wpipe->pipe_map.npages = 0;
815}
816
817/*
818 * In the case of a signal, the writing process might go away.  This
819 * code copies the data into the circular buffer so that the source
820 * pages can be freed without loss of data.
821 */
822static void
823pipe_clone_write_buffer(wpipe)
824	struct pipe *wpipe;
825{
826	struct uio uio;
827	struct iovec iov;
828	int size;
829	int pos;
830
831	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
832	size = wpipe->pipe_map.cnt;
833	pos = wpipe->pipe_map.pos;
834
835	wpipe->pipe_buffer.in = size;
836	wpipe->pipe_buffer.out = 0;
837	wpipe->pipe_buffer.cnt = size;
838	wpipe->pipe_state &= ~PIPE_DIRECTW;
839
840	PIPE_UNLOCK(wpipe);
841	iov.iov_base = wpipe->pipe_buffer.buffer;
842	iov.iov_len = size;
843	uio.uio_iov = &iov;
844	uio.uio_iovcnt = 1;
845	uio.uio_offset = 0;
846	uio.uio_resid = size;
847	uio.uio_segflg = UIO_SYSSPACE;
848	uio.uio_rw = UIO_READ;
849	uio.uio_td = curthread;
850	uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
851	PIPE_LOCK(wpipe);
852	pipe_destroy_write_buffer(wpipe);
853}
854
855/*
856 * This implements the pipe buffer write mechanism.  Note that only
857 * a direct write OR a normal pipe write can be pending at any given time.
858 * If there are any characters in the pipe buffer, the direct write will
859 * be deferred until the receiving process grabs all of the bytes from
860 * the pipe buffer.  Then the direct mapping write is set-up.
861 */
862static int
863pipe_direct_write(wpipe, uio)
864	struct pipe *wpipe;
865	struct uio *uio;
866{
867	int error;
868
869retry:
870	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
871	error = pipelock(wpipe, 1);
872	if (wpipe->pipe_state & PIPE_EOF)
873		error = EPIPE;
874	if (error) {
875		pipeunlock(wpipe);
876		goto error1;
877	}
878	while (wpipe->pipe_state & PIPE_DIRECTW) {
879		if (wpipe->pipe_state & PIPE_WANTR) {
880			wpipe->pipe_state &= ~PIPE_WANTR;
881			wakeup(wpipe);
882		}
883		wpipe->pipe_state |= PIPE_WANTW;
884		pipeunlock(wpipe);
885		error = msleep(wpipe, PIPE_MTX(wpipe),
886		    PRIBIO | PCATCH, "pipdww", 0);
887		if (error)
888			goto error1;
889		else
890			goto retry;
891	}
892	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
893	if (wpipe->pipe_buffer.cnt > 0) {
894		if (wpipe->pipe_state & PIPE_WANTR) {
895			wpipe->pipe_state &= ~PIPE_WANTR;
896			wakeup(wpipe);
897		}
898		wpipe->pipe_state |= PIPE_WANTW;
899		pipeunlock(wpipe);
900		error = msleep(wpipe, PIPE_MTX(wpipe),
901		    PRIBIO | PCATCH, "pipdwc", 0);
902		if (error)
903			goto error1;
904		else
905			goto retry;
906	}
907
908	wpipe->pipe_state |= PIPE_DIRECTW;
909
910	PIPE_UNLOCK(wpipe);
911	error = pipe_build_write_buffer(wpipe, uio);
912	PIPE_LOCK(wpipe);
913	if (error) {
914		wpipe->pipe_state &= ~PIPE_DIRECTW;
915		pipeunlock(wpipe);
916		goto error1;
917	}
918
919	error = 0;
920	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
921		if (wpipe->pipe_state & PIPE_EOF) {
922			pipe_destroy_write_buffer(wpipe);
923			pipeselwakeup(wpipe);
924			pipeunlock(wpipe);
925			error = EPIPE;
926			goto error1;
927		}
928		if (wpipe->pipe_state & PIPE_WANTR) {
929			wpipe->pipe_state &= ~PIPE_WANTR;
930			wakeup(wpipe);
931		}
932		pipeselwakeup(wpipe);
933		pipeunlock(wpipe);
934		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
935		    "pipdwt", 0);
936		pipelock(wpipe, 0);
937	}
938
939	if (wpipe->pipe_state & PIPE_EOF)
940		error = EPIPE;
941	if (wpipe->pipe_state & PIPE_DIRECTW) {
942		/*
943		 * this bit of trickery substitutes a kernel buffer for
944		 * the process that might be going away.
945		 */
946		pipe_clone_write_buffer(wpipe);
947	} else {
948		pipe_destroy_write_buffer(wpipe);
949	}
950	pipeunlock(wpipe);
951	return (error);
952
953error1:
954	wakeup(wpipe);
955	return (error);
956}
957#endif
958
959static int
960pipe_write(fp, uio, active_cred, flags, td)
961	struct file *fp;
962	struct uio *uio;
963	struct ucred *active_cred;
964	struct thread *td;
965	int flags;
966{
967	int error = 0;
968	int desiredsize, orig_resid;
969	struct pipe *wpipe, *rpipe;
970
971	rpipe = fp->f_data;
972	wpipe = rpipe->pipe_peer;
973
974	PIPE_LOCK(rpipe);
975	error = pipelock(wpipe, 1);
976	if (error) {
977		PIPE_UNLOCK(rpipe);
978		return (error);
979	}
980	/*
981	 * detect loss of pipe read side, issue SIGPIPE if lost.
982	 */
983	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
984		pipeunlock(wpipe);
985		PIPE_UNLOCK(rpipe);
986		return (EPIPE);
987	}
988#ifdef MAC
989	error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
990	if (error) {
991		pipeunlock(wpipe);
992		PIPE_UNLOCK(rpipe);
993		return (error);
994	}
995#endif
996	++wpipe->pipe_busy;
997
998	/* Choose a larger size if it's advantageous */
999	desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1000	while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1001		if (piperesizeallowed != 1)
1002			break;
1003		if (amountpipekva > maxpipekva / 2)
1004			break;
1005		if (desiredsize == BIG_PIPE_SIZE)
1006			break;
1007		desiredsize = desiredsize * 2;
1008	}
1009
1010	/* Choose a smaller size if we're in a OOM situation */
1011	if ((amountpipekva > (3 * maxpipekva) / 4) &&
1012		(wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1013		(wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1014		(piperesizeallowed == 1))
1015		desiredsize = SMALL_PIPE_SIZE;
1016
1017	/* Resize if the above determined that a new size was necessary */
1018	if ((desiredsize != wpipe->pipe_buffer.size) &&
1019		((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1020		PIPE_UNLOCK(wpipe);
1021		pipespace(wpipe, desiredsize);
1022		PIPE_LOCK(wpipe);
1023	}
1024	if (wpipe->pipe_buffer.size == 0) {
1025		/*
1026		 * This can only happen for reverse direction use of pipes
1027		 * in a complete OOM situation.
1028		 */
1029		error = ENOMEM;
1030		--wpipe->pipe_busy;
1031		pipeunlock(wpipe);
1032		PIPE_UNLOCK(wpipe);
1033		return (error);
1034	}
1035
1036	pipeunlock(wpipe);
1037
1038	orig_resid = uio->uio_resid;
1039
1040	while (uio->uio_resid) {
1041		int space;
1042
1043		pipelock(wpipe, 0);
1044		if (wpipe->pipe_state & PIPE_EOF) {
1045			pipeunlock(wpipe);
1046			error = EPIPE;
1047			break;
1048		}
1049#ifndef PIPE_NODIRECT
1050		/*
1051		 * If the transfer is large, we can gain performance if
1052		 * we do process-to-process copies directly.
1053		 * If the write is non-blocking, we don't use the
1054		 * direct write mechanism.
1055		 *
1056		 * The direct write mechanism will detect the reader going
1057		 * away on us.
1058		 */
1059		if (uio->uio_segflg == UIO_USERSPACE &&
1060		    uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1061		    wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1062		    (fp->f_flag & FNONBLOCK) == 0) {
1063			pipeunlock(wpipe);
1064			error = pipe_direct_write(wpipe, uio);
1065			if (error)
1066				break;
1067			continue;
1068		}
1069#endif
1070
1071		/*
1072		 * Pipe buffered writes cannot be coincidental with
1073		 * direct writes.  We wait until the currently executing
1074		 * direct write is completed before we start filling the
1075		 * pipe buffer.  We break out if a signal occurs or the
1076		 * reader goes away.
1077		 */
1078		if (wpipe->pipe_state & PIPE_DIRECTW) {
1079			if (wpipe->pipe_state & PIPE_WANTR) {
1080				wpipe->pipe_state &= ~PIPE_WANTR;
1081				wakeup(wpipe);
1082			}
1083			pipeunlock(wpipe);
1084			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1085			    "pipbww", 0);
1086			if (error)
1087				break;
1088			else
1089				continue;
1090		}
1091
1092		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1093
1094		/* Writes of size <= PIPE_BUF must be atomic. */
1095		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1096			space = 0;
1097
1098		if (space > 0) {
1099			int size;	/* Transfer size */
1100			int segsize;	/* first segment to transfer */
1101
1102			/*
1103			 * Transfer size is minimum of uio transfer
1104			 * and free space in pipe buffer.
1105			 */
1106			if (space > uio->uio_resid)
1107				size = uio->uio_resid;
1108			else
1109				size = space;
1110			/*
1111			 * First segment to transfer is minimum of
1112			 * transfer size and contiguous space in
1113			 * pipe buffer.  If first segment to transfer
1114			 * is less than the transfer size, we've got
1115			 * a wraparound in the buffer.
1116			 */
1117			segsize = wpipe->pipe_buffer.size -
1118				wpipe->pipe_buffer.in;
1119			if (segsize > size)
1120				segsize = size;
1121
1122			/* Transfer first segment */
1123
1124			PIPE_UNLOCK(rpipe);
1125			error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1126					segsize, uio);
1127			PIPE_LOCK(rpipe);
1128
1129			if (error == 0 && segsize < size) {
1130				KASSERT(wpipe->pipe_buffer.in + segsize ==
1131					wpipe->pipe_buffer.size,
1132					("Pipe buffer wraparound disappeared"));
1133				/*
1134				 * Transfer remaining part now, to
1135				 * support atomic writes.  Wraparound
1136				 * happened.
1137				 */
1138
1139				PIPE_UNLOCK(rpipe);
1140				error = uiomove(
1141				    &wpipe->pipe_buffer.buffer[0],
1142				    size - segsize, uio);
1143				PIPE_LOCK(rpipe);
1144			}
1145			if (error == 0) {
1146				wpipe->pipe_buffer.in += size;
1147				if (wpipe->pipe_buffer.in >=
1148				    wpipe->pipe_buffer.size) {
1149					KASSERT(wpipe->pipe_buffer.in ==
1150						size - segsize +
1151						wpipe->pipe_buffer.size,
1152						("Expected wraparound bad"));
1153					wpipe->pipe_buffer.in = size - segsize;
1154				}
1155
1156				wpipe->pipe_buffer.cnt += size;
1157				KASSERT(wpipe->pipe_buffer.cnt <=
1158					wpipe->pipe_buffer.size,
1159					("Pipe buffer overflow"));
1160			}
1161			pipeunlock(wpipe);
1162			if (error != 0)
1163				break;
1164		} else {
1165			/*
1166			 * If the "read-side" has been blocked, wake it up now.
1167			 */
1168			if (wpipe->pipe_state & PIPE_WANTR) {
1169				wpipe->pipe_state &= ~PIPE_WANTR;
1170				wakeup(wpipe);
1171			}
1172
1173			/*
1174			 * don't block on non-blocking I/O
1175			 */
1176			if (fp->f_flag & FNONBLOCK) {
1177				error = EAGAIN;
1178				pipeunlock(wpipe);
1179				break;
1180			}
1181
1182			/*
1183			 * We have no more space and have something to offer,
1184			 * wake up select/poll.
1185			 */
1186			pipeselwakeup(wpipe);
1187
1188			wpipe->pipe_state |= PIPE_WANTW;
1189			pipeunlock(wpipe);
1190			error = msleep(wpipe, PIPE_MTX(rpipe),
1191			    PRIBIO | PCATCH, "pipewr", 0);
1192			if (error != 0)
1193				break;
1194		}
1195	}
1196
1197	pipelock(wpipe, 0);
1198	--wpipe->pipe_busy;
1199
1200	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1201		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1202		wakeup(wpipe);
1203	} else if (wpipe->pipe_buffer.cnt > 0) {
1204		/*
1205		 * If we have put any characters in the buffer, we wake up
1206		 * the reader.
1207		 */
1208		if (wpipe->pipe_state & PIPE_WANTR) {
1209			wpipe->pipe_state &= ~PIPE_WANTR;
1210			wakeup(wpipe);
1211		}
1212	}
1213
1214	/*
1215	 * Don't return EPIPE if I/O was successful
1216	 */
1217	if ((wpipe->pipe_buffer.cnt == 0) &&
1218	    (uio->uio_resid == 0) &&
1219	    (error == EPIPE)) {
1220		error = 0;
1221	}
1222
1223	if (error == 0)
1224		vfs_timestamp(&wpipe->pipe_mtime);
1225
1226	/*
1227	 * We have something to offer,
1228	 * wake up select/poll.
1229	 */
1230	if (wpipe->pipe_buffer.cnt)
1231		pipeselwakeup(wpipe);
1232
1233	pipeunlock(wpipe);
1234	PIPE_UNLOCK(rpipe);
1235	return (error);
1236}
1237
1238/*
1239 * we implement a very minimal set of ioctls for compatibility with sockets.
1240 */
1241static int
1242pipe_ioctl(fp, cmd, data, active_cred, td)
1243	struct file *fp;
1244	u_long cmd;
1245	void *data;
1246	struct ucred *active_cred;
1247	struct thread *td;
1248{
1249	struct pipe *mpipe = fp->f_data;
1250	int error;
1251
1252	PIPE_LOCK(mpipe);
1253
1254#ifdef MAC
1255	error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1256	if (error) {
1257		PIPE_UNLOCK(mpipe);
1258		return (error);
1259	}
1260#endif
1261
1262	error = 0;
1263	switch (cmd) {
1264
1265	case FIONBIO:
1266		break;
1267
1268	case FIOASYNC:
1269		if (*(int *)data) {
1270			mpipe->pipe_state |= PIPE_ASYNC;
1271		} else {
1272			mpipe->pipe_state &= ~PIPE_ASYNC;
1273		}
1274		break;
1275
1276	case FIONREAD:
1277		if (mpipe->pipe_state & PIPE_DIRECTW)
1278			*(int *)data = mpipe->pipe_map.cnt;
1279		else
1280			*(int *)data = mpipe->pipe_buffer.cnt;
1281		break;
1282
1283	case FIOSETOWN:
1284		PIPE_UNLOCK(mpipe);
1285		error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1286		goto out_unlocked;
1287
1288	case FIOGETOWN:
1289		*(int *)data = fgetown(&mpipe->pipe_sigio);
1290		break;
1291
1292	/* This is deprecated, FIOSETOWN should be used instead. */
1293	case TIOCSPGRP:
1294		PIPE_UNLOCK(mpipe);
1295		error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1296		goto out_unlocked;
1297
1298	/* This is deprecated, FIOGETOWN should be used instead. */
1299	case TIOCGPGRP:
1300		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1301		break;
1302
1303	default:
1304		error = ENOTTY;
1305		break;
1306	}
1307	PIPE_UNLOCK(mpipe);
1308out_unlocked:
1309	return (error);
1310}
1311
1312static int
1313pipe_poll(fp, events, active_cred, td)
1314	struct file *fp;
1315	int events;
1316	struct ucred *active_cred;
1317	struct thread *td;
1318{
1319	struct pipe *rpipe = fp->f_data;
1320	struct pipe *wpipe;
1321	int revents = 0;
1322#ifdef MAC
1323	int error;
1324#endif
1325
1326	wpipe = rpipe->pipe_peer;
1327	PIPE_LOCK(rpipe);
1328#ifdef MAC
1329	error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1330	if (error)
1331		goto locked_error;
1332#endif
1333	if (events & (POLLIN | POLLRDNORM))
1334		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1335		    (rpipe->pipe_buffer.cnt > 0) ||
1336		    (rpipe->pipe_state & PIPE_EOF))
1337			revents |= events & (POLLIN | POLLRDNORM);
1338
1339	if (events & (POLLOUT | POLLWRNORM))
1340		if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1341		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1342		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1343			revents |= events & (POLLOUT | POLLWRNORM);
1344
1345	if ((rpipe->pipe_state & PIPE_EOF) ||
1346	    (!wpipe->pipe_present) ||
1347	    (wpipe->pipe_state & PIPE_EOF))
1348		revents |= POLLHUP;
1349
1350	if (revents == 0) {
1351		if (events & (POLLIN | POLLRDNORM)) {
1352			selrecord(td, &rpipe->pipe_sel);
1353			rpipe->pipe_state |= PIPE_SEL;
1354		}
1355
1356		if (events & (POLLOUT | POLLWRNORM)) {
1357			selrecord(td, &wpipe->pipe_sel);
1358			wpipe->pipe_state |= PIPE_SEL;
1359		}
1360	}
1361#ifdef MAC
1362locked_error:
1363#endif
1364	PIPE_UNLOCK(rpipe);
1365
1366	return (revents);
1367}
1368
1369/*
1370 * We shouldn't need locks here as we're doing a read and this should
1371 * be a natural race.
1372 */
1373static int
1374pipe_stat(fp, ub, active_cred, td)
1375	struct file *fp;
1376	struct stat *ub;
1377	struct ucred *active_cred;
1378	struct thread *td;
1379{
1380	struct pipe *pipe = fp->f_data;
1381#ifdef MAC
1382	int error;
1383
1384	PIPE_LOCK(pipe);
1385	error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1386	PIPE_UNLOCK(pipe);
1387	if (error)
1388		return (error);
1389#endif
1390	bzero(ub, sizeof(*ub));
1391	ub->st_mode = S_IFIFO;
1392	ub->st_blksize = PAGE_SIZE;
1393	if (pipe->pipe_state & PIPE_DIRECTW)
1394		ub->st_size = pipe->pipe_map.cnt;
1395	else
1396		ub->st_size = pipe->pipe_buffer.cnt;
1397	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1398	ub->st_atimespec = pipe->pipe_atime;
1399	ub->st_mtimespec = pipe->pipe_mtime;
1400	ub->st_ctimespec = pipe->pipe_ctime;
1401	ub->st_uid = fp->f_cred->cr_uid;
1402	ub->st_gid = fp->f_cred->cr_gid;
1403	/*
1404	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1405	 * XXX (st_dev, st_ino) should be unique.
1406	 */
1407	return (0);
1408}
1409
1410/* ARGSUSED */
1411static int
1412pipe_close(fp, td)
1413	struct file *fp;
1414	struct thread *td;
1415{
1416	struct pipe *cpipe = fp->f_data;
1417
1418	fp->f_ops = &badfileops;
1419	fp->f_data = NULL;
1420	funsetown(&cpipe->pipe_sigio);
1421	pipeclose(cpipe);
1422	return (0);
1423}
1424
1425static void
1426pipe_free_kmem(cpipe)
1427	struct pipe *cpipe;
1428{
1429
1430	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1431	    ("pipe_free_kmem: pipe mutex locked"));
1432
1433	if (cpipe->pipe_buffer.buffer != NULL) {
1434		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1435		vm_map_remove(pipe_map,
1436		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1437		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1438		cpipe->pipe_buffer.buffer = NULL;
1439	}
1440#ifndef PIPE_NODIRECT
1441	{
1442		cpipe->pipe_map.cnt = 0;
1443		cpipe->pipe_map.pos = 0;
1444		cpipe->pipe_map.npages = 0;
1445	}
1446#endif
1447}
1448
1449/*
1450 * shutdown the pipe
1451 */
1452static void
1453pipeclose(cpipe)
1454	struct pipe *cpipe;
1455{
1456	struct pipepair *pp;
1457	struct pipe *ppipe;
1458
1459	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1460
1461	PIPE_LOCK(cpipe);
1462	pipelock(cpipe, 0);
1463	pp = cpipe->pipe_pair;
1464
1465	pipeselwakeup(cpipe);
1466
1467	/*
1468	 * If the other side is blocked, wake it up saying that
1469	 * we want to close it down.
1470	 */
1471	cpipe->pipe_state |= PIPE_EOF;
1472	while (cpipe->pipe_busy) {
1473		wakeup(cpipe);
1474		cpipe->pipe_state |= PIPE_WANT;
1475		pipeunlock(cpipe);
1476		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1477		pipelock(cpipe, 0);
1478	}
1479
1480
1481	/*
1482	 * Disconnect from peer, if any.
1483	 */
1484	ppipe = cpipe->pipe_peer;
1485	if (ppipe->pipe_present != 0) {
1486		pipeselwakeup(ppipe);
1487
1488		ppipe->pipe_state |= PIPE_EOF;
1489		wakeup(ppipe);
1490		KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1491	}
1492
1493	/*
1494	 * Mark this endpoint as free.  Release kmem resources.  We
1495	 * don't mark this endpoint as unused until we've finished
1496	 * doing that, or the pipe might disappear out from under
1497	 * us.
1498	 */
1499	PIPE_UNLOCK(cpipe);
1500	pipe_free_kmem(cpipe);
1501	PIPE_LOCK(cpipe);
1502	cpipe->pipe_present = 0;
1503	pipeunlock(cpipe);
1504	knlist_clear(&cpipe->pipe_sel.si_note, 1);
1505	knlist_destroy(&cpipe->pipe_sel.si_note);
1506
1507	/*
1508	 * If both endpoints are now closed, release the memory for the
1509	 * pipe pair.  If not, unlock.
1510	 */
1511	if (ppipe->pipe_present == 0) {
1512		PIPE_UNLOCK(cpipe);
1513#ifdef MAC
1514		mac_destroy_pipe(pp);
1515#endif
1516		uma_zfree(pipe_zone, cpipe->pipe_pair);
1517	} else
1518		PIPE_UNLOCK(cpipe);
1519}
1520
1521/*ARGSUSED*/
1522static int
1523pipe_kqfilter(struct file *fp, struct knote *kn)
1524{
1525	struct pipe *cpipe;
1526
1527	cpipe = kn->kn_fp->f_data;
1528	PIPE_LOCK(cpipe);
1529	switch (kn->kn_filter) {
1530	case EVFILT_READ:
1531		kn->kn_fop = &pipe_rfiltops;
1532		break;
1533	case EVFILT_WRITE:
1534		kn->kn_fop = &pipe_wfiltops;
1535		if (!cpipe->pipe_peer->pipe_present) {
1536			/* other end of pipe has been closed */
1537			PIPE_UNLOCK(cpipe);
1538			return (EPIPE);
1539		}
1540		cpipe = cpipe->pipe_peer;
1541		break;
1542	default:
1543		PIPE_UNLOCK(cpipe);
1544		return (EINVAL);
1545	}
1546
1547	knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1548	PIPE_UNLOCK(cpipe);
1549	return (0);
1550}
1551
1552static void
1553filt_pipedetach(struct knote *kn)
1554{
1555	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1556
1557	PIPE_LOCK(cpipe);
1558	if (kn->kn_filter == EVFILT_WRITE) {
1559		if (!cpipe->pipe_peer->pipe_present) {
1560			PIPE_UNLOCK(cpipe);
1561			return;
1562		}
1563		cpipe = cpipe->pipe_peer;
1564	}
1565	knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1566	PIPE_UNLOCK(cpipe);
1567}
1568
1569/*ARGSUSED*/
1570static int
1571filt_piperead(struct knote *kn, long hint)
1572{
1573	struct pipe *rpipe = kn->kn_fp->f_data;
1574	struct pipe *wpipe = rpipe->pipe_peer;
1575	int ret;
1576
1577	PIPE_LOCK(rpipe);
1578	kn->kn_data = rpipe->pipe_buffer.cnt;
1579	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1580		kn->kn_data = rpipe->pipe_map.cnt;
1581
1582	if ((rpipe->pipe_state & PIPE_EOF) ||
1583	    (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1584		kn->kn_flags |= EV_EOF;
1585		PIPE_UNLOCK(rpipe);
1586		return (1);
1587	}
1588	ret = kn->kn_data > 0;
1589	PIPE_UNLOCK(rpipe);
1590	return ret;
1591}
1592
1593/*ARGSUSED*/
1594static int
1595filt_pipewrite(struct knote *kn, long hint)
1596{
1597	struct pipe *rpipe = kn->kn_fp->f_data;
1598	struct pipe *wpipe = rpipe->pipe_peer;
1599
1600	PIPE_LOCK(rpipe);
1601	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1602		kn->kn_data = 0;
1603		kn->kn_flags |= EV_EOF;
1604		PIPE_UNLOCK(rpipe);
1605		return (1);
1606	}
1607	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1608	if (wpipe->pipe_state & PIPE_DIRECTW)
1609		kn->kn_data = 0;
1610
1611	PIPE_UNLOCK(rpipe);
1612	return (kn->kn_data >= PIPE_BUF);
1613}
1614