sys_pipe.c revision 100527
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 *
19 * $FreeBSD: head/sys/kern/sys_pipe.c 100527 2002-07-22 19:05:44Z alfred $
20 */
21
22/*
23 * This file contains a high-performance replacement for the socket-based
24 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
25 * all features of sockets, but does do everything that pipes normally
26 * do.
27 */
28
29/*
30 * This code has two modes of operation, a small write mode and a large
31 * write mode.  The small write mode acts like conventional pipes with
32 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
33 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
34 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
35 * the receiving process can copy it directly from the pages in the sending
36 * process.
37 *
38 * If the sending process receives a signal, it is possible that it will
39 * go away, and certainly its address space can change, because control
40 * is returned back to the user-mode side.  In that case, the pipe code
41 * arranges to copy the buffer supplied by the user process, to a pageable
42 * kernel buffer, and the receiving process will grab the data from the
43 * pageable kernel buffer.  Since signals don't happen all that often,
44 * the copy operation is normally eliminated.
45 *
46 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
47 * happen for small transfers so that the system will not spend all of
48 * its time context switching.  PIPE_SIZE is constrained by the
49 * amount of kernel virtual memory.
50 */
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/fcntl.h>
55#include <sys/file.h>
56#include <sys/filedesc.h>
57#include <sys/filio.h>
58#include <sys/kernel.h>
59#include <sys/lock.h>
60#include <sys/mutex.h>
61#include <sys/ttycom.h>
62#include <sys/stat.h>
63#include <sys/malloc.h>
64#include <sys/poll.h>
65#include <sys/selinfo.h>
66#include <sys/signalvar.h>
67#include <sys/sysproto.h>
68#include <sys/pipe.h>
69#include <sys/proc.h>
70#include <sys/vnode.h>
71#include <sys/uio.h>
72#include <sys/event.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76#include <vm/vm_object.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_extern.h>
79#include <vm/pmap.h>
80#include <vm/vm_map.h>
81#include <vm/vm_page.h>
82#include <vm/uma.h>
83
84/*
85 * Use this define if you want to disable *fancy* VM things.  Expect an
86 * approx 30% decrease in transfer rate.  This could be useful for
87 * NetBSD or OpenBSD.
88 */
89/* #define PIPE_NODIRECT */
90
91/*
92 * interfaces to the outside world
93 */
94static int pipe_read(struct file *fp, struct uio *uio,
95		struct ucred *cred, int flags, struct thread *td);
96static int pipe_write(struct file *fp, struct uio *uio,
97		struct ucred *cred, int flags, struct thread *td);
98static int pipe_close(struct file *fp, struct thread *td);
99static int pipe_poll(struct file *fp, int events, struct ucred *cred,
100		struct thread *td);
101static int pipe_kqfilter(struct file *fp, struct knote *kn);
102static int pipe_stat(struct file *fp, struct stat *sb, struct thread *td);
103static int pipe_ioctl(struct file *fp, u_long cmd, void *data,
104    struct thread *td);
105
106static struct fileops pipeops = {
107	pipe_read, pipe_write, pipe_ioctl, pipe_poll, pipe_kqfilter,
108	pipe_stat, pipe_close
109};
110
111static void	filt_pipedetach(struct knote *kn);
112static int	filt_piperead(struct knote *kn, long hint);
113static int	filt_pipewrite(struct knote *kn, long hint);
114
115static struct filterops pipe_rfiltops =
116	{ 1, NULL, filt_pipedetach, filt_piperead };
117static struct filterops pipe_wfiltops =
118	{ 1, NULL, filt_pipedetach, filt_pipewrite };
119
120#define PIPE_GET_GIANT(pipe)						\
121	do {								\
122		KASSERT(((pipe)->pipe_state & PIPE_LOCKFL) != 0,	\
123		    ("%s:%d PIPE_GET_GIANT: line pipe not locked",	\
124		     __FILE__, __LINE__));				\
125		PIPE_UNLOCK(pipe);					\
126		mtx_lock(&Giant);					\
127	} while (0)
128
129#define PIPE_DROP_GIANT(pipe)						\
130	do {								\
131		mtx_unlock(&Giant);					\
132		PIPE_LOCK(pipe);					\
133	} while (0)
134
135/*
136 * Default pipe buffer size(s), this can be kind-of large now because pipe
137 * space is pageable.  The pipe code will try to maintain locality of
138 * reference for performance reasons, so small amounts of outstanding I/O
139 * will not wipe the cache.
140 */
141#define MINPIPESIZE (PIPE_SIZE/3)
142#define MAXPIPESIZE (2*PIPE_SIZE/3)
143
144/*
145 * Maximum amount of kva for pipes -- this is kind-of a soft limit, but
146 * is there so that on large systems, we don't exhaust it.
147 */
148#define MAXPIPEKVA (8*1024*1024)
149
150/*
151 * Limit for direct transfers, we cannot, of course limit
152 * the amount of kva for pipes in general though.
153 */
154#define LIMITPIPEKVA (16*1024*1024)
155
156/*
157 * Limit the number of "big" pipes
158 */
159#define LIMITBIGPIPES	32
160static int nbigpipe;
161
162static int amountpipekva;
163
164static void pipeinit(void *dummy __unused);
165static void pipeclose(struct pipe *cpipe);
166static void pipe_free_kmem(struct pipe *cpipe);
167static int pipe_create(struct pipe **cpipep);
168static __inline int pipelock(struct pipe *cpipe, int catch);
169static __inline void pipeunlock(struct pipe *cpipe);
170static __inline void pipeselwakeup(struct pipe *cpipe);
171#ifndef PIPE_NODIRECT
172static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
173static void pipe_destroy_write_buffer(struct pipe *wpipe);
174static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
175static void pipe_clone_write_buffer(struct pipe *wpipe);
176#endif
177static int pipespace(struct pipe *cpipe, int size);
178
179static uma_zone_t pipe_zone;
180
181SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
182
183static void
184pipeinit(void *dummy __unused)
185{
186	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipe), NULL,
187	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
188}
189
190/*
191 * The pipe system call for the DTYPE_PIPE type of pipes
192 */
193
194/* ARGSUSED */
195int
196pipe(td, uap)
197	struct thread *td;
198	struct pipe_args /* {
199		int	dummy;
200	} */ *uap;
201{
202	struct filedesc *fdp = td->td_proc->p_fd;
203	struct file *rf, *wf;
204	struct pipe *rpipe, *wpipe;
205	struct mtx *pmtx;
206	int fd, error;
207
208	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
209
210	pmtx = malloc(sizeof(*pmtx), M_TEMP, M_WAITOK | M_ZERO);
211
212	rpipe = wpipe = NULL;
213	if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
214		pipeclose(rpipe);
215		pipeclose(wpipe);
216		free(pmtx, M_TEMP);
217		return (ENFILE);
218	}
219
220	rpipe->pipe_state |= PIPE_DIRECTOK;
221	wpipe->pipe_state |= PIPE_DIRECTOK;
222
223	error = falloc(td, &rf, &fd);
224	if (error) {
225		pipeclose(rpipe);
226		pipeclose(wpipe);
227		free(pmtx, M_TEMP);
228		return (error);
229	}
230	fhold(rf);
231	td->td_retval[0] = fd;
232
233	/*
234	 * Warning: once we've gotten past allocation of the fd for the
235	 * read-side, we can only drop the read side via fdrop() in order
236	 * to avoid races against processes which manage to dup() the read
237	 * side while we are blocked trying to allocate the write side.
238	 */
239	FILE_LOCK(rf);
240	rf->f_flag = FREAD | FWRITE;
241	rf->f_type = DTYPE_PIPE;
242	rf->f_data = rpipe;
243	rf->f_ops = &pipeops;
244	FILE_UNLOCK(rf);
245	error = falloc(td, &wf, &fd);
246	if (error) {
247		FILEDESC_LOCK(fdp);
248		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
249			fdp->fd_ofiles[td->td_retval[0]] = NULL;
250			FILEDESC_UNLOCK(fdp);
251			fdrop(rf, td);
252		} else
253			FILEDESC_UNLOCK(fdp);
254		fdrop(rf, td);
255		/* rpipe has been closed by fdrop(). */
256		pipeclose(wpipe);
257		free(pmtx, M_TEMP);
258		return (error);
259	}
260	FILE_LOCK(wf);
261	wf->f_flag = FREAD | FWRITE;
262	wf->f_type = DTYPE_PIPE;
263	wf->f_data = wpipe;
264	wf->f_ops = &pipeops;
265	FILE_UNLOCK(wf);
266	td->td_retval[1] = fd;
267	rpipe->pipe_peer = wpipe;
268	wpipe->pipe_peer = rpipe;
269	mtx_init(pmtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
270	rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
271	fdrop(rf, td);
272
273	return (0);
274}
275
276/*
277 * Allocate kva for pipe circular buffer, the space is pageable
278 * This routine will 'realloc' the size of a pipe safely, if it fails
279 * it will retain the old buffer.
280 * If it fails it will return ENOMEM.
281 */
282static int
283pipespace(cpipe, size)
284	struct pipe *cpipe;
285	int size;
286{
287	struct vm_object *object;
288	caddr_t buffer;
289	int npages, error;
290
291	GIANT_REQUIRED;
292	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
293	       ("pipespace: pipe mutex locked"));
294
295	npages = round_page(size)/PAGE_SIZE;
296	/*
297	 * Create an object, I don't like the idea of paging to/from
298	 * kernel_object.
299	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
300	 */
301	object = vm_object_allocate(OBJT_DEFAULT, npages);
302	buffer = (caddr_t) vm_map_min(kernel_map);
303
304	/*
305	 * Insert the object into the kernel map, and allocate kva for it.
306	 * The map entry is, by default, pageable.
307	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
308	 */
309	error = vm_map_find(kernel_map, object, 0,
310		(vm_offset_t *) &buffer, size, 1,
311		VM_PROT_ALL, VM_PROT_ALL, 0);
312
313	if (error != KERN_SUCCESS) {
314		vm_object_deallocate(object);
315		return (ENOMEM);
316	}
317
318	/* free old resources if we're resizing */
319	pipe_free_kmem(cpipe);
320	cpipe->pipe_buffer.object = object;
321	cpipe->pipe_buffer.buffer = buffer;
322	cpipe->pipe_buffer.size = size;
323	cpipe->pipe_buffer.in = 0;
324	cpipe->pipe_buffer.out = 0;
325	cpipe->pipe_buffer.cnt = 0;
326	amountpipekva += cpipe->pipe_buffer.size;
327	return (0);
328}
329
330/*
331 * initialize and allocate VM and memory for pipe
332 */
333static int
334pipe_create(cpipep)
335	struct pipe **cpipep;
336{
337	struct pipe *cpipe;
338	int error;
339
340	*cpipep = uma_zalloc(pipe_zone, M_WAITOK);
341	if (*cpipep == NULL)
342		return (ENOMEM);
343
344	cpipe = *cpipep;
345
346	/* so pipespace()->pipe_free_kmem() doesn't follow junk pointer */
347	cpipe->pipe_buffer.object = NULL;
348#ifndef PIPE_NODIRECT
349	cpipe->pipe_map.kva = NULL;
350#endif
351	/*
352	 * protect so pipeclose() doesn't follow a junk pointer
353	 * if pipespace() fails.
354	 */
355	bzero(&cpipe->pipe_sel, sizeof(cpipe->pipe_sel));
356	cpipe->pipe_state = 0;
357	cpipe->pipe_peer = NULL;
358	cpipe->pipe_busy = 0;
359
360#ifndef PIPE_NODIRECT
361	/*
362	 * pipe data structure initializations to support direct pipe I/O
363	 */
364	cpipe->pipe_map.cnt = 0;
365	cpipe->pipe_map.kva = 0;
366	cpipe->pipe_map.pos = 0;
367	cpipe->pipe_map.npages = 0;
368	/* cpipe->pipe_map.ms[] = invalid */
369#endif
370
371	cpipe->pipe_mtxp = NULL;	/* avoid pipespace assertion */
372	error = pipespace(cpipe, PIPE_SIZE);
373	if (error)
374		return (error);
375
376	vfs_timestamp(&cpipe->pipe_ctime);
377	cpipe->pipe_atime = cpipe->pipe_ctime;
378	cpipe->pipe_mtime = cpipe->pipe_ctime;
379
380	return (0);
381}
382
383
384/*
385 * lock a pipe for I/O, blocking other access
386 */
387static __inline int
388pipelock(cpipe, catch)
389	struct pipe *cpipe;
390	int catch;
391{
392	int error;
393
394	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
395	while (cpipe->pipe_state & PIPE_LOCKFL) {
396		cpipe->pipe_state |= PIPE_LWANT;
397		error = msleep(cpipe, PIPE_MTX(cpipe),
398		    catch ? (PRIBIO | PCATCH) : PRIBIO,
399		    "pipelk", 0);
400		if (error != 0)
401			return (error);
402	}
403	cpipe->pipe_state |= PIPE_LOCKFL;
404	return (0);
405}
406
407/*
408 * unlock a pipe I/O lock
409 */
410static __inline void
411pipeunlock(cpipe)
412	struct pipe *cpipe;
413{
414
415	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
416	cpipe->pipe_state &= ~PIPE_LOCKFL;
417	if (cpipe->pipe_state & PIPE_LWANT) {
418		cpipe->pipe_state &= ~PIPE_LWANT;
419		wakeup(cpipe);
420	}
421}
422
423static __inline void
424pipeselwakeup(cpipe)
425	struct pipe *cpipe;
426{
427
428	if (cpipe->pipe_state & PIPE_SEL) {
429		cpipe->pipe_state &= ~PIPE_SEL;
430		selwakeup(&cpipe->pipe_sel);
431	}
432	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
433		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
434	KNOTE(&cpipe->pipe_sel.si_note, 0);
435}
436
437/* ARGSUSED */
438static int
439pipe_read(fp, uio, cred, flags, td)
440	struct file *fp;
441	struct uio *uio;
442	struct ucred *cred;
443	struct thread *td;
444	int flags;
445{
446	struct pipe *rpipe = (struct pipe *) fp->f_data;
447	int error;
448	int nread = 0;
449	u_int size;
450
451	PIPE_LOCK(rpipe);
452	++rpipe->pipe_busy;
453	error = pipelock(rpipe, 1);
454	if (error)
455		goto unlocked_error;
456
457	while (uio->uio_resid) {
458		/*
459		 * normal pipe buffer receive
460		 */
461		if (rpipe->pipe_buffer.cnt > 0) {
462			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
463			if (size > rpipe->pipe_buffer.cnt)
464				size = rpipe->pipe_buffer.cnt;
465			if (size > (u_int) uio->uio_resid)
466				size = (u_int) uio->uio_resid;
467
468			PIPE_UNLOCK(rpipe);
469			error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
470					size, uio);
471			PIPE_LOCK(rpipe);
472			if (error)
473				break;
474
475			rpipe->pipe_buffer.out += size;
476			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
477				rpipe->pipe_buffer.out = 0;
478
479			rpipe->pipe_buffer.cnt -= size;
480
481			/*
482			 * If there is no more to read in the pipe, reset
483			 * its pointers to the beginning.  This improves
484			 * cache hit stats.
485			 */
486			if (rpipe->pipe_buffer.cnt == 0) {
487				rpipe->pipe_buffer.in = 0;
488				rpipe->pipe_buffer.out = 0;
489			}
490			nread += size;
491#ifndef PIPE_NODIRECT
492		/*
493		 * Direct copy, bypassing a kernel buffer.
494		 */
495		} else if ((size = rpipe->pipe_map.cnt) &&
496			   (rpipe->pipe_state & PIPE_DIRECTW)) {
497			caddr_t	va;
498			if (size > (u_int) uio->uio_resid)
499				size = (u_int) uio->uio_resid;
500
501			va = (caddr_t) rpipe->pipe_map.kva +
502			    rpipe->pipe_map.pos;
503			PIPE_UNLOCK(rpipe);
504			error = uiomove(va, size, uio);
505			PIPE_LOCK(rpipe);
506			if (error)
507				break;
508			nread += size;
509			rpipe->pipe_map.pos += size;
510			rpipe->pipe_map.cnt -= size;
511			if (rpipe->pipe_map.cnt == 0) {
512				rpipe->pipe_state &= ~PIPE_DIRECTW;
513				wakeup(rpipe);
514			}
515#endif
516		} else {
517			/*
518			 * detect EOF condition
519			 * read returns 0 on EOF, no need to set error
520			 */
521			if (rpipe->pipe_state & PIPE_EOF)
522				break;
523
524			/*
525			 * If the "write-side" has been blocked, wake it up now.
526			 */
527			if (rpipe->pipe_state & PIPE_WANTW) {
528				rpipe->pipe_state &= ~PIPE_WANTW;
529				wakeup(rpipe);
530			}
531
532			/*
533			 * Break if some data was read.
534			 */
535			if (nread > 0)
536				break;
537
538			/*
539			 * Unlock the pipe buffer for our remaining processing.  We
540			 * will either break out with an error or we will sleep and
541			 * relock to loop.
542			 */
543			pipeunlock(rpipe);
544
545			/*
546			 * Handle non-blocking mode operation or
547			 * wait for more data.
548			 */
549			if (fp->f_flag & FNONBLOCK) {
550				error = EAGAIN;
551			} else {
552				rpipe->pipe_state |= PIPE_WANTR;
553				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
554				    PRIBIO | PCATCH,
555				    "piperd", 0)) == 0)
556					error = pipelock(rpipe, 1);
557			}
558			if (error)
559				goto unlocked_error;
560		}
561	}
562	pipeunlock(rpipe);
563
564	/* XXX: should probably do this before getting any locks. */
565	if (error == 0)
566		vfs_timestamp(&rpipe->pipe_atime);
567unlocked_error:
568	--rpipe->pipe_busy;
569
570	/*
571	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
572	 */
573	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
574		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
575		wakeup(rpipe);
576	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
577		/*
578		 * Handle write blocking hysteresis.
579		 */
580		if (rpipe->pipe_state & PIPE_WANTW) {
581			rpipe->pipe_state &= ~PIPE_WANTW;
582			wakeup(rpipe);
583		}
584	}
585
586	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
587		pipeselwakeup(rpipe);
588
589	PIPE_UNLOCK(rpipe);
590	return (error);
591}
592
593#ifndef PIPE_NODIRECT
594/*
595 * Map the sending processes' buffer into kernel space and wire it.
596 * This is similar to a physical write operation.
597 */
598static int
599pipe_build_write_buffer(wpipe, uio)
600	struct pipe *wpipe;
601	struct uio *uio;
602{
603	u_int size;
604	int i;
605	vm_offset_t addr, endaddr, paddr;
606
607	GIANT_REQUIRED;
608	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
609
610	size = (u_int) uio->uio_iov->iov_len;
611	if (size > wpipe->pipe_buffer.size)
612		size = wpipe->pipe_buffer.size;
613
614	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
615	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
616	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
617		vm_page_t m;
618
619		/*
620		 * vm_fault_quick() can sleep.  Consequently,
621		 * vm_page_lock_queue() and vm_page_unlock_queue()
622		 * should not be performed outside of this loop.
623		 */
624		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0 ||
625		    (paddr = pmap_extract(vmspace_pmap(curproc->p_vmspace),
626		     addr)) == 0) {
627			int j;
628
629			vm_page_lock_queues();
630			for (j = 0; j < i; j++)
631				vm_page_unwire(wpipe->pipe_map.ms[j], 1);
632			vm_page_unlock_queues();
633			return (EFAULT);
634		}
635
636		m = PHYS_TO_VM_PAGE(paddr);
637		vm_page_lock_queues();
638		vm_page_wire(m);
639		vm_page_unlock_queues();
640		wpipe->pipe_map.ms[i] = m;
641	}
642
643/*
644 * set up the control block
645 */
646	wpipe->pipe_map.npages = i;
647	wpipe->pipe_map.pos =
648	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
649	wpipe->pipe_map.cnt = size;
650
651/*
652 * and map the buffer
653 */
654	if (wpipe->pipe_map.kva == 0) {
655		/*
656		 * We need to allocate space for an extra page because the
657		 * address range might (will) span pages at times.
658		 */
659		wpipe->pipe_map.kva = kmem_alloc_pageable(kernel_map,
660			wpipe->pipe_buffer.size + PAGE_SIZE);
661		amountpipekva += wpipe->pipe_buffer.size + PAGE_SIZE;
662	}
663	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
664		wpipe->pipe_map.npages);
665
666/*
667 * and update the uio data
668 */
669
670	uio->uio_iov->iov_len -= size;
671	uio->uio_iov->iov_base += size;
672	if (uio->uio_iov->iov_len == 0)
673		uio->uio_iov++;
674	uio->uio_resid -= size;
675	uio->uio_offset += size;
676	return (0);
677}
678
679/*
680 * unmap and unwire the process buffer
681 */
682static void
683pipe_destroy_write_buffer(wpipe)
684	struct pipe *wpipe;
685{
686	int i;
687
688	GIANT_REQUIRED;
689	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
690
691	if (wpipe->pipe_map.kva) {
692		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
693
694		if (amountpipekva > MAXPIPEKVA) {
695			vm_offset_t kva = wpipe->pipe_map.kva;
696			wpipe->pipe_map.kva = 0;
697			kmem_free(kernel_map, kva,
698				wpipe->pipe_buffer.size + PAGE_SIZE);
699			amountpipekva -= wpipe->pipe_buffer.size + PAGE_SIZE;
700		}
701	}
702	vm_page_lock_queues();
703	for (i = 0; i < wpipe->pipe_map.npages; i++)
704		vm_page_unwire(wpipe->pipe_map.ms[i], 1);
705	vm_page_unlock_queues();
706	wpipe->pipe_map.npages = 0;
707}
708
709/*
710 * In the case of a signal, the writing process might go away.  This
711 * code copies the data into the circular buffer so that the source
712 * pages can be freed without loss of data.
713 */
714static void
715pipe_clone_write_buffer(wpipe)
716	struct pipe *wpipe;
717{
718	int size;
719	int pos;
720
721	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
722	size = wpipe->pipe_map.cnt;
723	pos = wpipe->pipe_map.pos;
724
725	wpipe->pipe_buffer.in = size;
726	wpipe->pipe_buffer.out = 0;
727	wpipe->pipe_buffer.cnt = size;
728	wpipe->pipe_state &= ~PIPE_DIRECTW;
729
730	PIPE_GET_GIANT(wpipe);
731	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
732	    wpipe->pipe_buffer.buffer, size);
733	pipe_destroy_write_buffer(wpipe);
734	PIPE_DROP_GIANT(wpipe);
735}
736
737/*
738 * This implements the pipe buffer write mechanism.  Note that only
739 * a direct write OR a normal pipe write can be pending at any given time.
740 * If there are any characters in the pipe buffer, the direct write will
741 * be deferred until the receiving process grabs all of the bytes from
742 * the pipe buffer.  Then the direct mapping write is set-up.
743 */
744static int
745pipe_direct_write(wpipe, uio)
746	struct pipe *wpipe;
747	struct uio *uio;
748{
749	int error;
750
751retry:
752	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
753	while (wpipe->pipe_state & PIPE_DIRECTW) {
754		if (wpipe->pipe_state & PIPE_WANTR) {
755			wpipe->pipe_state &= ~PIPE_WANTR;
756			wakeup(wpipe);
757		}
758		wpipe->pipe_state |= PIPE_WANTW;
759		error = msleep(wpipe, PIPE_MTX(wpipe),
760		    PRIBIO | PCATCH, "pipdww", 0);
761		if (error)
762			goto error1;
763		if (wpipe->pipe_state & PIPE_EOF) {
764			error = EPIPE;
765			goto error1;
766		}
767	}
768	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
769	if (wpipe->pipe_buffer.cnt > 0) {
770		if (wpipe->pipe_state & PIPE_WANTR) {
771			wpipe->pipe_state &= ~PIPE_WANTR;
772			wakeup(wpipe);
773		}
774
775		wpipe->pipe_state |= PIPE_WANTW;
776		error = msleep(wpipe, PIPE_MTX(wpipe),
777		    PRIBIO | PCATCH, "pipdwc", 0);
778		if (error)
779			goto error1;
780		if (wpipe->pipe_state & PIPE_EOF) {
781			error = EPIPE;
782			goto error1;
783		}
784		goto retry;
785	}
786
787	wpipe->pipe_state |= PIPE_DIRECTW;
788
789	pipelock(wpipe, 0);
790	PIPE_GET_GIANT(wpipe);
791	error = pipe_build_write_buffer(wpipe, uio);
792	PIPE_DROP_GIANT(wpipe);
793	pipeunlock(wpipe);
794	if (error) {
795		wpipe->pipe_state &= ~PIPE_DIRECTW;
796		goto error1;
797	}
798
799	error = 0;
800	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
801		if (wpipe->pipe_state & PIPE_EOF) {
802			pipelock(wpipe, 0);
803			PIPE_GET_GIANT(wpipe);
804			pipe_destroy_write_buffer(wpipe);
805			PIPE_DROP_GIANT(wpipe);
806			pipeunlock(wpipe);
807			pipeselwakeup(wpipe);
808			error = EPIPE;
809			goto error1;
810		}
811		if (wpipe->pipe_state & PIPE_WANTR) {
812			wpipe->pipe_state &= ~PIPE_WANTR;
813			wakeup(wpipe);
814		}
815		pipeselwakeup(wpipe);
816		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
817		    "pipdwt", 0);
818	}
819
820	pipelock(wpipe,0);
821	if (wpipe->pipe_state & PIPE_DIRECTW) {
822		/*
823		 * this bit of trickery substitutes a kernel buffer for
824		 * the process that might be going away.
825		 */
826		pipe_clone_write_buffer(wpipe);
827	} else {
828		PIPE_GET_GIANT(wpipe);
829		pipe_destroy_write_buffer(wpipe);
830		PIPE_DROP_GIANT(wpipe);
831	}
832	pipeunlock(wpipe);
833	return (error);
834
835error1:
836	wakeup(wpipe);
837	return (error);
838}
839#endif
840
841static int
842pipe_write(fp, uio, cred, flags, td)
843	struct file *fp;
844	struct uio *uio;
845	struct ucred *cred;
846	struct thread *td;
847	int flags;
848{
849	int error = 0;
850	int orig_resid;
851	struct pipe *wpipe, *rpipe;
852
853	rpipe = (struct pipe *) fp->f_data;
854	wpipe = rpipe->pipe_peer;
855
856	PIPE_LOCK(rpipe);
857	/*
858	 * detect loss of pipe read side, issue SIGPIPE if lost.
859	 */
860	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
861		PIPE_UNLOCK(rpipe);
862		return (EPIPE);
863	}
864	++wpipe->pipe_busy;
865
866	/*
867	 * If it is advantageous to resize the pipe buffer, do
868	 * so.
869	 */
870	if ((uio->uio_resid > PIPE_SIZE) &&
871		(nbigpipe < LIMITBIGPIPES) &&
872		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
873		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
874		(wpipe->pipe_buffer.cnt == 0)) {
875
876		if ((error = pipelock(wpipe,1)) == 0) {
877			PIPE_GET_GIANT(wpipe);
878			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
879				nbigpipe++;
880			PIPE_DROP_GIANT(wpipe);
881			pipeunlock(wpipe);
882		}
883	}
884
885	/*
886	 * If an early error occured unbusy and return, waking up any pending
887	 * readers.
888	 */
889	if (error) {
890		--wpipe->pipe_busy;
891		if ((wpipe->pipe_busy == 0) &&
892		    (wpipe->pipe_state & PIPE_WANT)) {
893			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
894			wakeup(wpipe);
895		}
896		PIPE_UNLOCK(rpipe);
897		return(error);
898	}
899
900	KASSERT(wpipe->pipe_buffer.buffer != NULL, ("pipe buffer gone"));
901
902	orig_resid = uio->uio_resid;
903
904	while (uio->uio_resid) {
905		int space;
906
907#ifndef PIPE_NODIRECT
908		/*
909		 * If the transfer is large, we can gain performance if
910		 * we do process-to-process copies directly.
911		 * If the write is non-blocking, we don't use the
912		 * direct write mechanism.
913		 *
914		 * The direct write mechanism will detect the reader going
915		 * away on us.
916		 */
917		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
918		    (fp->f_flag & FNONBLOCK) == 0 &&
919			(wpipe->pipe_map.kva || (amountpipekva < LIMITPIPEKVA)) &&
920			(uio->uio_iov->iov_len >= PIPE_MINDIRECT)) {
921			error = pipe_direct_write( wpipe, uio);
922			if (error)
923				break;
924			continue;
925		}
926#endif
927
928		/*
929		 * Pipe buffered writes cannot be coincidental with
930		 * direct writes.  We wait until the currently executing
931		 * direct write is completed before we start filling the
932		 * pipe buffer.  We break out if a signal occurs or the
933		 * reader goes away.
934		 */
935	retrywrite:
936		while (wpipe->pipe_state & PIPE_DIRECTW) {
937			if (wpipe->pipe_state & PIPE_WANTR) {
938				wpipe->pipe_state &= ~PIPE_WANTR;
939				wakeup(wpipe);
940			}
941			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
942			    "pipbww", 0);
943			if (wpipe->pipe_state & PIPE_EOF)
944				break;
945			if (error)
946				break;
947		}
948		if (wpipe->pipe_state & PIPE_EOF) {
949			error = EPIPE;
950			break;
951		}
952
953		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
954
955		/* Writes of size <= PIPE_BUF must be atomic. */
956		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
957			space = 0;
958
959		if (space > 0 && (wpipe->pipe_buffer.cnt < PIPE_SIZE)) {
960			if ((error = pipelock(wpipe,1)) == 0) {
961				int size;	/* Transfer size */
962				int segsize;	/* first segment to transfer */
963
964				/*
965				 * It is possible for a direct write to
966				 * slip in on us... handle it here...
967				 */
968				if (wpipe->pipe_state & PIPE_DIRECTW) {
969					pipeunlock(wpipe);
970					goto retrywrite;
971				}
972				/*
973				 * If a process blocked in uiomove, our
974				 * value for space might be bad.
975				 *
976				 * XXX will we be ok if the reader has gone
977				 * away here?
978				 */
979				if (space > wpipe->pipe_buffer.size -
980				    wpipe->pipe_buffer.cnt) {
981					pipeunlock(wpipe);
982					goto retrywrite;
983				}
984
985				/*
986				 * Transfer size is minimum of uio transfer
987				 * and free space in pipe buffer.
988				 */
989				if (space > uio->uio_resid)
990					size = uio->uio_resid;
991				else
992					size = space;
993				/*
994				 * First segment to transfer is minimum of
995				 * transfer size and contiguous space in
996				 * pipe buffer.  If first segment to transfer
997				 * is less than the transfer size, we've got
998				 * a wraparound in the buffer.
999				 */
1000				segsize = wpipe->pipe_buffer.size -
1001					wpipe->pipe_buffer.in;
1002				if (segsize > size)
1003					segsize = size;
1004
1005				/* Transfer first segment */
1006
1007				PIPE_UNLOCK(rpipe);
1008				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1009						segsize, uio);
1010				PIPE_LOCK(rpipe);
1011
1012				if (error == 0 && segsize < size) {
1013					/*
1014					 * Transfer remaining part now, to
1015					 * support atomic writes.  Wraparound
1016					 * happened.
1017					 */
1018					if (wpipe->pipe_buffer.in + segsize !=
1019					    wpipe->pipe_buffer.size)
1020						panic("Expected pipe buffer wraparound disappeared");
1021
1022					PIPE_UNLOCK(rpipe);
1023					error = uiomove(&wpipe->pipe_buffer.buffer[0],
1024							size - segsize, uio);
1025					PIPE_LOCK(rpipe);
1026				}
1027				if (error == 0) {
1028					wpipe->pipe_buffer.in += size;
1029					if (wpipe->pipe_buffer.in >=
1030					    wpipe->pipe_buffer.size) {
1031						if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
1032							panic("Expected wraparound bad");
1033						wpipe->pipe_buffer.in = size - segsize;
1034					}
1035
1036					wpipe->pipe_buffer.cnt += size;
1037					if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
1038						panic("Pipe buffer overflow");
1039
1040				}
1041				pipeunlock(wpipe);
1042			}
1043			if (error)
1044				break;
1045
1046		} else {
1047			/*
1048			 * If the "read-side" has been blocked, wake it up now.
1049			 */
1050			if (wpipe->pipe_state & PIPE_WANTR) {
1051				wpipe->pipe_state &= ~PIPE_WANTR;
1052				wakeup(wpipe);
1053			}
1054
1055			/*
1056			 * don't block on non-blocking I/O
1057			 */
1058			if (fp->f_flag & FNONBLOCK) {
1059				error = EAGAIN;
1060				break;
1061			}
1062
1063			/*
1064			 * We have no more space and have something to offer,
1065			 * wake up select/poll.
1066			 */
1067			pipeselwakeup(wpipe);
1068
1069			wpipe->pipe_state |= PIPE_WANTW;
1070			error = msleep(wpipe, PIPE_MTX(rpipe),
1071			    PRIBIO | PCATCH, "pipewr", 0);
1072			if (error != 0)
1073				break;
1074			/*
1075			 * If read side wants to go away, we just issue a signal
1076			 * to ourselves.
1077			 */
1078			if (wpipe->pipe_state & PIPE_EOF) {
1079				error = EPIPE;
1080				break;
1081			}
1082		}
1083	}
1084
1085	--wpipe->pipe_busy;
1086
1087	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1088		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1089		wakeup(wpipe);
1090	} else if (wpipe->pipe_buffer.cnt > 0) {
1091		/*
1092		 * If we have put any characters in the buffer, we wake up
1093		 * the reader.
1094		 */
1095		if (wpipe->pipe_state & PIPE_WANTR) {
1096			wpipe->pipe_state &= ~PIPE_WANTR;
1097			wakeup(wpipe);
1098		}
1099	}
1100
1101	/*
1102	 * Don't return EPIPE if I/O was successful
1103	 */
1104	if ((wpipe->pipe_buffer.cnt == 0) &&
1105	    (uio->uio_resid == 0) &&
1106	    (error == EPIPE)) {
1107		error = 0;
1108	}
1109
1110	if (error == 0)
1111		vfs_timestamp(&wpipe->pipe_mtime);
1112
1113	/*
1114	 * We have something to offer,
1115	 * wake up select/poll.
1116	 */
1117	if (wpipe->pipe_buffer.cnt)
1118		pipeselwakeup(wpipe);
1119
1120	PIPE_UNLOCK(rpipe);
1121	return (error);
1122}
1123
1124/*
1125 * we implement a very minimal set of ioctls for compatibility with sockets.
1126 */
1127int
1128pipe_ioctl(fp, cmd, data, td)
1129	struct file *fp;
1130	u_long cmd;
1131	void *data;
1132	struct thread *td;
1133{
1134	struct pipe *mpipe = (struct pipe *)fp->f_data;
1135
1136	switch (cmd) {
1137
1138	case FIONBIO:
1139		return (0);
1140
1141	case FIOASYNC:
1142		PIPE_LOCK(mpipe);
1143		if (*(int *)data) {
1144			mpipe->pipe_state |= PIPE_ASYNC;
1145		} else {
1146			mpipe->pipe_state &= ~PIPE_ASYNC;
1147		}
1148		PIPE_UNLOCK(mpipe);
1149		return (0);
1150
1151	case FIONREAD:
1152		PIPE_LOCK(mpipe);
1153		if (mpipe->pipe_state & PIPE_DIRECTW)
1154			*(int *)data = mpipe->pipe_map.cnt;
1155		else
1156			*(int *)data = mpipe->pipe_buffer.cnt;
1157		PIPE_UNLOCK(mpipe);
1158		return (0);
1159
1160	case FIOSETOWN:
1161		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1162
1163	case FIOGETOWN:
1164		*(int *)data = fgetown(mpipe->pipe_sigio);
1165		return (0);
1166
1167	/* This is deprecated, FIOSETOWN should be used instead. */
1168	case TIOCSPGRP:
1169		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1170
1171	/* This is deprecated, FIOGETOWN should be used instead. */
1172	case TIOCGPGRP:
1173		*(int *)data = -fgetown(mpipe->pipe_sigio);
1174		return (0);
1175
1176	}
1177	return (ENOTTY);
1178}
1179
1180int
1181pipe_poll(fp, events, cred, td)
1182	struct file *fp;
1183	int events;
1184	struct ucred *cred;
1185	struct thread *td;
1186{
1187	struct pipe *rpipe = (struct pipe *)fp->f_data;
1188	struct pipe *wpipe;
1189	int revents = 0;
1190
1191	wpipe = rpipe->pipe_peer;
1192	PIPE_LOCK(rpipe);
1193	if (events & (POLLIN | POLLRDNORM))
1194		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1195		    (rpipe->pipe_buffer.cnt > 0) ||
1196		    (rpipe->pipe_state & PIPE_EOF))
1197			revents |= events & (POLLIN | POLLRDNORM);
1198
1199	if (events & (POLLOUT | POLLWRNORM))
1200		if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1201		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1202		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1203			revents |= events & (POLLOUT | POLLWRNORM);
1204
1205	if ((rpipe->pipe_state & PIPE_EOF) ||
1206	    (wpipe == NULL) ||
1207	    (wpipe->pipe_state & PIPE_EOF))
1208		revents |= POLLHUP;
1209
1210	if (revents == 0) {
1211		if (events & (POLLIN | POLLRDNORM)) {
1212			selrecord(td, &rpipe->pipe_sel);
1213			rpipe->pipe_state |= PIPE_SEL;
1214		}
1215
1216		if (events & (POLLOUT | POLLWRNORM)) {
1217			selrecord(td, &wpipe->pipe_sel);
1218			wpipe->pipe_state |= PIPE_SEL;
1219		}
1220	}
1221	PIPE_UNLOCK(rpipe);
1222
1223	return (revents);
1224}
1225
1226/*
1227 * We shouldn't need locks here as we're doing a read and this should
1228 * be a natural race.
1229 */
1230static int
1231pipe_stat(fp, ub, td)
1232	struct file *fp;
1233	struct stat *ub;
1234	struct thread *td;
1235{
1236	struct pipe *pipe = (struct pipe *)fp->f_data;
1237
1238	bzero(ub, sizeof(*ub));
1239	ub->st_mode = S_IFIFO;
1240	ub->st_blksize = pipe->pipe_buffer.size;
1241	ub->st_size = pipe->pipe_buffer.cnt;
1242	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1243	ub->st_atimespec = pipe->pipe_atime;
1244	ub->st_mtimespec = pipe->pipe_mtime;
1245	ub->st_ctimespec = pipe->pipe_ctime;
1246	ub->st_uid = fp->f_cred->cr_uid;
1247	ub->st_gid = fp->f_cred->cr_gid;
1248	/*
1249	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1250	 * XXX (st_dev, st_ino) should be unique.
1251	 */
1252	return (0);
1253}
1254
1255/* ARGSUSED */
1256static int
1257pipe_close(fp, td)
1258	struct file *fp;
1259	struct thread *td;
1260{
1261	struct pipe *cpipe = (struct pipe *)fp->f_data;
1262
1263	fp->f_ops = &badfileops;
1264	fp->f_data = NULL;
1265	funsetown(&cpipe->pipe_sigio);
1266	pipeclose(cpipe);
1267	return (0);
1268}
1269
1270static void
1271pipe_free_kmem(cpipe)
1272	struct pipe *cpipe;
1273{
1274
1275	GIANT_REQUIRED;
1276	KASSERT(cpipe->pipe_mtxp == NULL || !mtx_owned(PIPE_MTX(cpipe)),
1277	       ("pipespace: pipe mutex locked"));
1278
1279	if (cpipe->pipe_buffer.buffer != NULL) {
1280		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1281			--nbigpipe;
1282		amountpipekva -= cpipe->pipe_buffer.size;
1283		kmem_free(kernel_map,
1284			(vm_offset_t)cpipe->pipe_buffer.buffer,
1285			cpipe->pipe_buffer.size);
1286		cpipe->pipe_buffer.buffer = NULL;
1287	}
1288#ifndef PIPE_NODIRECT
1289	if (cpipe->pipe_map.kva != NULL) {
1290		amountpipekva -= cpipe->pipe_buffer.size + PAGE_SIZE;
1291		kmem_free(kernel_map,
1292			cpipe->pipe_map.kva,
1293			cpipe->pipe_buffer.size + PAGE_SIZE);
1294		cpipe->pipe_map.cnt = 0;
1295		cpipe->pipe_map.kva = 0;
1296		cpipe->pipe_map.pos = 0;
1297		cpipe->pipe_map.npages = 0;
1298	}
1299#endif
1300}
1301
1302/*
1303 * shutdown the pipe
1304 */
1305static void
1306pipeclose(cpipe)
1307	struct pipe *cpipe;
1308{
1309	struct pipe *ppipe;
1310	int hadpeer;
1311
1312	if (cpipe == NULL)
1313		return;
1314
1315	hadpeer = 0;
1316
1317	/* partially created pipes won't have a valid mutex. */
1318	if (PIPE_MTX(cpipe) != NULL)
1319		PIPE_LOCK(cpipe);
1320
1321	pipeselwakeup(cpipe);
1322
1323	/*
1324	 * If the other side is blocked, wake it up saying that
1325	 * we want to close it down.
1326	 */
1327	while (cpipe->pipe_busy) {
1328		wakeup(cpipe);
1329		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1330		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1331	}
1332
1333	/*
1334	 * Disconnect from peer
1335	 */
1336	if ((ppipe = cpipe->pipe_peer) != NULL) {
1337		hadpeer++;
1338		pipeselwakeup(ppipe);
1339
1340		ppipe->pipe_state |= PIPE_EOF;
1341		wakeup(ppipe);
1342		KNOTE(&ppipe->pipe_sel.si_note, 0);
1343		ppipe->pipe_peer = NULL;
1344	}
1345	/*
1346	 * free resources
1347	 */
1348	if (PIPE_MTX(cpipe) != NULL) {
1349		PIPE_UNLOCK(cpipe);
1350		if (!hadpeer) {
1351			mtx_destroy(PIPE_MTX(cpipe));
1352			free(PIPE_MTX(cpipe), M_TEMP);
1353		}
1354	}
1355	mtx_lock(&Giant);
1356	pipe_free_kmem(cpipe);
1357	uma_zfree(pipe_zone, cpipe);
1358	mtx_unlock(&Giant);
1359}
1360
1361/*ARGSUSED*/
1362static int
1363pipe_kqfilter(struct file *fp, struct knote *kn)
1364{
1365	struct pipe *cpipe;
1366
1367	cpipe = (struct pipe *)kn->kn_fp->f_data;
1368	switch (kn->kn_filter) {
1369	case EVFILT_READ:
1370		kn->kn_fop = &pipe_rfiltops;
1371		break;
1372	case EVFILT_WRITE:
1373		kn->kn_fop = &pipe_wfiltops;
1374		cpipe = cpipe->pipe_peer;
1375		break;
1376	default:
1377		return (1);
1378	}
1379	kn->kn_hook = cpipe;
1380
1381	PIPE_LOCK(cpipe);
1382	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1383	PIPE_UNLOCK(cpipe);
1384	return (0);
1385}
1386
1387static void
1388filt_pipedetach(struct knote *kn)
1389{
1390	struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1391
1392	PIPE_LOCK(cpipe);
1393	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1394	PIPE_UNLOCK(cpipe);
1395}
1396
1397/*ARGSUSED*/
1398static int
1399filt_piperead(struct knote *kn, long hint)
1400{
1401	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1402	struct pipe *wpipe = rpipe->pipe_peer;
1403
1404	PIPE_LOCK(rpipe);
1405	kn->kn_data = rpipe->pipe_buffer.cnt;
1406	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1407		kn->kn_data = rpipe->pipe_map.cnt;
1408
1409	if ((rpipe->pipe_state & PIPE_EOF) ||
1410	    (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1411		kn->kn_flags |= EV_EOF;
1412		PIPE_UNLOCK(rpipe);
1413		return (1);
1414	}
1415	PIPE_UNLOCK(rpipe);
1416	return (kn->kn_data > 0);
1417}
1418
1419/*ARGSUSED*/
1420static int
1421filt_pipewrite(struct knote *kn, long hint)
1422{
1423	struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1424	struct pipe *wpipe = rpipe->pipe_peer;
1425
1426	PIPE_LOCK(rpipe);
1427	if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1428		kn->kn_data = 0;
1429		kn->kn_flags |= EV_EOF;
1430		PIPE_UNLOCK(rpipe);
1431		return (1);
1432	}
1433	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1434	if (wpipe->pipe_state & PIPE_DIRECTW)
1435		kn->kn_data = 0;
1436
1437	PIPE_UNLOCK(rpipe);
1438	return (kn->kn_data >= PIPE_BUF);
1439}
1440