1/*-
2 * Copyright (c) 1997,1998,2003 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include "opt_bus.h"
31#include "opt_random.h"
32
33#include <sys/param.h>
34#include <sys/conf.h>
35#include <sys/filio.h>
36#include <sys/lock.h>
37#include <sys/kernel.h>
38#include <sys/kobj.h>
39#include <sys/limits.h>
40#include <sys/malloc.h>
41#include <sys/module.h>
42#include <sys/mutex.h>
43#include <sys/poll.h>
44#include <sys/proc.h>
45#include <sys/condvar.h>
46#include <sys/queue.h>
47#include <machine/bus.h>
48#include <sys/random.h>
49#include <sys/rman.h>
50#include <sys/selinfo.h>
51#include <sys/signalvar.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54#include <sys/uio.h>
55#include <sys/bus.h>
56#include <sys/interrupt.h>
57
58#include <net/vnet.h>
59
60#include <machine/cpu.h>
61#include <machine/stdarg.h>
62
63#include <vm/uma.h>
64
65SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
66SYSCTL_NODE(, OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
67
68/*
69 * Used to attach drivers to devclasses.
70 */
71typedef struct driverlink *driverlink_t;
72struct driverlink {
73	kobj_class_t	driver;
74	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
75	int		pass;
76	TAILQ_ENTRY(driverlink) passlink;
77};
78
79/*
80 * Forward declarations
81 */
82typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
83typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
84typedef TAILQ_HEAD(device_list, device) device_list_t;
85
86struct devclass {
87	TAILQ_ENTRY(devclass) link;
88	devclass_t	parent;		/* parent in devclass hierarchy */
89	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
90	char		*name;
91	device_t	*devices;	/* array of devices indexed by unit */
92	int		maxunit;	/* size of devices array */
93	int		flags;
94#define DC_HAS_CHILDREN		1
95
96	struct sysctl_ctx_list sysctl_ctx;
97	struct sysctl_oid *sysctl_tree;
98};
99
100/**
101 * @brief Implementation of device.
102 */
103struct device {
104	/*
105	 * A device is a kernel object. The first field must be the
106	 * current ops table for the object.
107	 */
108	KOBJ_FIELDS;
109
110	/*
111	 * Device hierarchy.
112	 */
113	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
114	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
115	device_t	parent;		/**< parent of this device  */
116	device_list_t	children;	/**< list of child devices */
117
118	/*
119	 * Details of this device.
120	 */
121	driver_t	*driver;	/**< current driver */
122	devclass_t	devclass;	/**< current device class */
123	int		unit;		/**< current unit number */
124	char*		nameunit;	/**< name+unit e.g. foodev0 */
125	char*		desc;		/**< driver specific description */
126	int		busy;		/**< count of calls to device_busy() */
127	device_state_t	state;		/**< current device state  */
128	uint32_t	devflags;	/**< api level flags for device_get_flags() */
129	u_int		flags;		/**< internal device flags  */
130#define	DF_ENABLED	0x01		/* device should be probed/attached */
131#define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
132#define	DF_WILDCARD	0x04		/* unit was originally wildcard */
133#define	DF_DESCMALLOCED	0x08		/* description was malloced */
134#define	DF_QUIET	0x10		/* don't print verbose attach message */
135#define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
136#define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
137#define	DF_REBID	0x80		/* Can rebid after attach */
138	u_int	order;			/**< order from device_add_child_ordered() */
139	void	*ivars;			/**< instance variables  */
140	void	*softc;			/**< current driver's variables  */
141
142	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
143	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
144};
145
146static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
147static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
148
149#ifdef BUS_DEBUG
150
151static int bus_debug = 1;
152TUNABLE_INT("bus.debug", &bus_debug);
153SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RW, &bus_debug, 0,
154    "Debug bus code");
155
156#define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
157#define DEVICENAME(d)	((d)? device_get_name(d): "no device")
158#define DRIVERNAME(d)	((d)? d->name : "no driver")
159#define DEVCLANAME(d)	((d)? d->name : "no devclass")
160
161/**
162 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
163 * prevent syslog from deleting initial spaces
164 */
165#define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
166
167static void print_device_short(device_t dev, int indent);
168static void print_device(device_t dev, int indent);
169void print_device_tree_short(device_t dev, int indent);
170void print_device_tree(device_t dev, int indent);
171static void print_driver_short(driver_t *driver, int indent);
172static void print_driver(driver_t *driver, int indent);
173static void print_driver_list(driver_list_t drivers, int indent);
174static void print_devclass_short(devclass_t dc, int indent);
175static void print_devclass(devclass_t dc, int indent);
176void print_devclass_list_short(void);
177void print_devclass_list(void);
178
179#else
180/* Make the compiler ignore the function calls */
181#define PDEBUG(a)			/* nop */
182#define DEVICENAME(d)			/* nop */
183#define DRIVERNAME(d)			/* nop */
184#define DEVCLANAME(d)			/* nop */
185
186#define print_device_short(d,i)		/* nop */
187#define print_device(d,i)		/* nop */
188#define print_device_tree_short(d,i)	/* nop */
189#define print_device_tree(d,i)		/* nop */
190#define print_driver_short(d,i)		/* nop */
191#define print_driver(d,i)		/* nop */
192#define print_driver_list(d,i)		/* nop */
193#define print_devclass_short(d,i)	/* nop */
194#define print_devclass(d,i)		/* nop */
195#define print_devclass_list_short()	/* nop */
196#define print_devclass_list()		/* nop */
197#endif
198
199/*
200 * dev sysctl tree
201 */
202
203enum {
204	DEVCLASS_SYSCTL_PARENT,
205};
206
207static int
208devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
209{
210	devclass_t dc = (devclass_t)arg1;
211	const char *value;
212
213	switch (arg2) {
214	case DEVCLASS_SYSCTL_PARENT:
215		value = dc->parent ? dc->parent->name : "";
216		break;
217	default:
218		return (EINVAL);
219	}
220	return (SYSCTL_OUT(req, value, strlen(value)));
221}
222
223static void
224devclass_sysctl_init(devclass_t dc)
225{
226
227	if (dc->sysctl_tree != NULL)
228		return;
229	sysctl_ctx_init(&dc->sysctl_ctx);
230	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
231	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
232	    CTLFLAG_RD, NULL, "");
233	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
234	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
235	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
236	    "parent class");
237}
238
239enum {
240	DEVICE_SYSCTL_DESC,
241	DEVICE_SYSCTL_DRIVER,
242	DEVICE_SYSCTL_LOCATION,
243	DEVICE_SYSCTL_PNPINFO,
244	DEVICE_SYSCTL_PARENT,
245};
246
247static int
248device_sysctl_handler(SYSCTL_HANDLER_ARGS)
249{
250	device_t dev = (device_t)arg1;
251	const char *value;
252	char *buf;
253	int error;
254
255	buf = NULL;
256	switch (arg2) {
257	case DEVICE_SYSCTL_DESC:
258		value = dev->desc ? dev->desc : "";
259		break;
260	case DEVICE_SYSCTL_DRIVER:
261		value = dev->driver ? dev->driver->name : "";
262		break;
263	case DEVICE_SYSCTL_LOCATION:
264		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
265		bus_child_location_str(dev, buf, 1024);
266		break;
267	case DEVICE_SYSCTL_PNPINFO:
268		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
269		bus_child_pnpinfo_str(dev, buf, 1024);
270		break;
271	case DEVICE_SYSCTL_PARENT:
272		value = dev->parent ? dev->parent->nameunit : "";
273		break;
274	default:
275		return (EINVAL);
276	}
277	error = SYSCTL_OUT(req, value, strlen(value));
278	if (buf != NULL)
279		free(buf, M_BUS);
280	return (error);
281}
282
283static void
284device_sysctl_init(device_t dev)
285{
286	devclass_t dc = dev->devclass;
287
288	if (dev->sysctl_tree != NULL)
289		return;
290	devclass_sysctl_init(dc);
291	sysctl_ctx_init(&dev->sysctl_ctx);
292	dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
293	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
294	    dev->nameunit + strlen(dc->name),
295	    CTLFLAG_RD, NULL, "");
296	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
297	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
298	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
299	    "device description");
300	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
301	    OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
302	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
303	    "device driver name");
304	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
305	    OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
306	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
307	    "device location relative to parent");
308	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
309	    OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
310	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
311	    "device identification");
312	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
313	    OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
314	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
315	    "parent device");
316}
317
318static void
319device_sysctl_update(device_t dev)
320{
321	devclass_t dc = dev->devclass;
322
323	if (dev->sysctl_tree == NULL)
324		return;
325	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
326}
327
328static void
329device_sysctl_fini(device_t dev)
330{
331	if (dev->sysctl_tree == NULL)
332		return;
333	sysctl_ctx_free(&dev->sysctl_ctx);
334	dev->sysctl_tree = NULL;
335}
336
337/*
338 * /dev/devctl implementation
339 */
340
341/*
342 * This design allows only one reader for /dev/devctl.  This is not desirable
343 * in the long run, but will get a lot of hair out of this implementation.
344 * Maybe we should make this device a clonable device.
345 *
346 * Also note: we specifically do not attach a device to the device_t tree
347 * to avoid potential chicken and egg problems.  One could argue that all
348 * of this belongs to the root node.  One could also further argue that the
349 * sysctl interface that we have not might more properly be an ioctl
350 * interface, but at this stage of the game, I'm not inclined to rock that
351 * boat.
352 *
353 * I'm also not sure that the SIGIO support is done correctly or not, as
354 * I copied it from a driver that had SIGIO support that likely hasn't been
355 * tested since 3.4 or 2.2.8!
356 */
357
358/* Deprecated way to adjust queue length */
359static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
360/* XXX Need to support old-style tunable hw.bus.devctl_disable" */
361SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RW |
362    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
363    "devctl disable -- deprecated");
364
365#define DEVCTL_DEFAULT_QUEUE_LEN 1000
366static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
367static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
368TUNABLE_INT("hw.bus.devctl_queue", &devctl_queue_length);
369SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RW |
370    CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
371
372static d_open_t		devopen;
373static d_close_t	devclose;
374static d_read_t		devread;
375static d_ioctl_t	devioctl;
376static d_poll_t		devpoll;
377static d_kqfilter_t	devkqfilter;
378
379static struct cdevsw dev_cdevsw = {
380	.d_version =	D_VERSION,
381	.d_open =	devopen,
382	.d_close =	devclose,
383	.d_read =	devread,
384	.d_ioctl =	devioctl,
385	.d_poll =	devpoll,
386	.d_kqfilter =	devkqfilter,
387	.d_name =	"devctl",
388};
389
390struct dev_event_info
391{
392	char *dei_data;
393	TAILQ_ENTRY(dev_event_info) dei_link;
394};
395
396TAILQ_HEAD(devq, dev_event_info);
397
398static struct dev_softc
399{
400	int	inuse;
401	int	nonblock;
402	int	queued;
403	int	async;
404	struct mtx mtx;
405	struct cv cv;
406	struct selinfo sel;
407	struct devq devq;
408	struct sigio *sigio;
409} devsoftc;
410
411static void	filt_devctl_detach(struct knote *kn);
412static int	filt_devctl_read(struct knote *kn, long hint);
413
414struct filterops devctl_rfiltops = {
415	.f_isfd = 1,
416	.f_detach = filt_devctl_detach,
417	.f_event = filt_devctl_read,
418};
419
420static struct cdev *devctl_dev;
421
422static void
423devinit(void)
424{
425	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
426	    UID_ROOT, GID_WHEEL, 0600, "devctl");
427	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
428	cv_init(&devsoftc.cv, "dev cv");
429	TAILQ_INIT(&devsoftc.devq);
430	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
431}
432
433static int
434devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
435{
436
437	mtx_lock(&devsoftc.mtx);
438	if (devsoftc.inuse) {
439		mtx_unlock(&devsoftc.mtx);
440		return (EBUSY);
441	}
442	/* move to init */
443	devsoftc.inuse = 1;
444	mtx_unlock(&devsoftc.mtx);
445	return (0);
446}
447
448static int
449devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
450{
451
452	mtx_lock(&devsoftc.mtx);
453	devsoftc.inuse = 0;
454	devsoftc.nonblock = 0;
455	devsoftc.async = 0;
456	cv_broadcast(&devsoftc.cv);
457	funsetown(&devsoftc.sigio);
458	mtx_unlock(&devsoftc.mtx);
459	return (0);
460}
461
462/*
463 * The read channel for this device is used to report changes to
464 * userland in realtime.  We are required to free the data as well as
465 * the n1 object because we allocate them separately.  Also note that
466 * we return one record at a time.  If you try to read this device a
467 * character at a time, you will lose the rest of the data.  Listening
468 * programs are expected to cope.
469 */
470static int
471devread(struct cdev *dev, struct uio *uio, int ioflag)
472{
473	struct dev_event_info *n1;
474	int rv;
475
476	mtx_lock(&devsoftc.mtx);
477	while (TAILQ_EMPTY(&devsoftc.devq)) {
478		if (devsoftc.nonblock) {
479			mtx_unlock(&devsoftc.mtx);
480			return (EAGAIN);
481		}
482		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
483		if (rv) {
484			/*
485			 * Need to translate ERESTART to EINTR here? -- jake
486			 */
487			mtx_unlock(&devsoftc.mtx);
488			return (rv);
489		}
490	}
491	n1 = TAILQ_FIRST(&devsoftc.devq);
492	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
493	devsoftc.queued--;
494	mtx_unlock(&devsoftc.mtx);
495	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
496	free(n1->dei_data, M_BUS);
497	free(n1, M_BUS);
498	return (rv);
499}
500
501static	int
502devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
503{
504	switch (cmd) {
505
506	case FIONBIO:
507		if (*(int*)data)
508			devsoftc.nonblock = 1;
509		else
510			devsoftc.nonblock = 0;
511		return (0);
512	case FIOASYNC:
513		if (*(int*)data)
514			devsoftc.async = 1;
515		else
516			devsoftc.async = 0;
517		return (0);
518	case FIOSETOWN:
519		return fsetown(*(int *)data, &devsoftc.sigio);
520	case FIOGETOWN:
521		*(int *)data = fgetown(&devsoftc.sigio);
522		return (0);
523
524		/* (un)Support for other fcntl() calls. */
525	case FIOCLEX:
526	case FIONCLEX:
527	case FIONREAD:
528	default:
529		break;
530	}
531	return (ENOTTY);
532}
533
534static	int
535devpoll(struct cdev *dev, int events, struct thread *td)
536{
537	int	revents = 0;
538
539	mtx_lock(&devsoftc.mtx);
540	if (events & (POLLIN | POLLRDNORM)) {
541		if (!TAILQ_EMPTY(&devsoftc.devq))
542			revents = events & (POLLIN | POLLRDNORM);
543		else
544			selrecord(td, &devsoftc.sel);
545	}
546	mtx_unlock(&devsoftc.mtx);
547
548	return (revents);
549}
550
551static int
552devkqfilter(struct cdev *dev, struct knote *kn)
553{
554	int error;
555
556	if (kn->kn_filter == EVFILT_READ) {
557		kn->kn_fop = &devctl_rfiltops;
558		knlist_add(&devsoftc.sel.si_note, kn, 0);
559		error = 0;
560	} else
561		error = EINVAL;
562	return (error);
563}
564
565static void
566filt_devctl_detach(struct knote *kn)
567{
568
569	knlist_remove(&devsoftc.sel.si_note, kn, 0);
570}
571
572static int
573filt_devctl_read(struct knote *kn, long hint)
574{
575	kn->kn_data = devsoftc.queued;
576	return (kn->kn_data != 0);
577}
578
579/**
580 * @brief Return whether the userland process is running
581 */
582boolean_t
583devctl_process_running(void)
584{
585	return (devsoftc.inuse == 1);
586}
587
588/**
589 * @brief Queue data to be read from the devctl device
590 *
591 * Generic interface to queue data to the devctl device.  It is
592 * assumed that @p data is properly formatted.  It is further assumed
593 * that @p data is allocated using the M_BUS malloc type.
594 */
595void
596devctl_queue_data_f(char *data, int flags)
597{
598	struct dev_event_info *n1 = NULL, *n2 = NULL;
599
600	if (strlen(data) == 0)
601		goto out;
602	if (devctl_queue_length == 0)
603		goto out;
604	n1 = malloc(sizeof(*n1), M_BUS, flags);
605	if (n1 == NULL)
606		goto out;
607	n1->dei_data = data;
608	mtx_lock(&devsoftc.mtx);
609	if (devctl_queue_length == 0) {
610		mtx_unlock(&devsoftc.mtx);
611		free(n1->dei_data, M_BUS);
612		free(n1, M_BUS);
613		return;
614	}
615	/* Leave at least one spot in the queue... */
616	while (devsoftc.queued > devctl_queue_length - 1) {
617		n2 = TAILQ_FIRST(&devsoftc.devq);
618		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
619		free(n2->dei_data, M_BUS);
620		free(n2, M_BUS);
621		devsoftc.queued--;
622	}
623	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
624	devsoftc.queued++;
625	cv_broadcast(&devsoftc.cv);
626	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
627	mtx_unlock(&devsoftc.mtx);
628	selwakeup(&devsoftc.sel);
629	if (devsoftc.async && devsoftc.sigio != NULL)
630		pgsigio(&devsoftc.sigio, SIGIO, 0);
631	return;
632out:
633	/*
634	 * We have to free data on all error paths since the caller
635	 * assumes it will be free'd when this item is dequeued.
636	 */
637	free(data, M_BUS);
638	return;
639}
640
641void
642devctl_queue_data(char *data)
643{
644
645	devctl_queue_data_f(data, M_NOWAIT);
646}
647
648/**
649 * @brief Send a 'notification' to userland, using standard ways
650 */
651void
652devctl_notify_f(const char *system, const char *subsystem, const char *type,
653    const char *data, int flags)
654{
655	int len = 0;
656	char *msg;
657
658	if (system == NULL)
659		return;		/* BOGUS!  Must specify system. */
660	if (subsystem == NULL)
661		return;		/* BOGUS!  Must specify subsystem. */
662	if (type == NULL)
663		return;		/* BOGUS!  Must specify type. */
664	len += strlen(" system=") + strlen(system);
665	len += strlen(" subsystem=") + strlen(subsystem);
666	len += strlen(" type=") + strlen(type);
667	/* add in the data message plus newline. */
668	if (data != NULL)
669		len += strlen(data);
670	len += 3;	/* '!', '\n', and NUL */
671	msg = malloc(len, M_BUS, flags);
672	if (msg == NULL)
673		return;		/* Drop it on the floor */
674	if (data != NULL)
675		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
676		    system, subsystem, type, data);
677	else
678		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
679		    system, subsystem, type);
680	devctl_queue_data_f(msg, flags);
681}
682
683void
684devctl_notify(const char *system, const char *subsystem, const char *type,
685    const char *data)
686{
687
688	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
689}
690
691/*
692 * Common routine that tries to make sending messages as easy as possible.
693 * We allocate memory for the data, copy strings into that, but do not
694 * free it unless there's an error.  The dequeue part of the driver should
695 * free the data.  We don't send data when the device is disabled.  We do
696 * send data, even when we have no listeners, because we wish to avoid
697 * races relating to startup and restart of listening applications.
698 *
699 * devaddq is designed to string together the type of event, with the
700 * object of that event, plus the plug and play info and location info
701 * for that event.  This is likely most useful for devices, but less
702 * useful for other consumers of this interface.  Those should use
703 * the devctl_queue_data() interface instead.
704 */
705static void
706devaddq(const char *type, const char *what, device_t dev)
707{
708	char *data = NULL;
709	char *loc = NULL;
710	char *pnp = NULL;
711	const char *parstr;
712
713	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
714		return;
715	data = malloc(1024, M_BUS, M_NOWAIT);
716	if (data == NULL)
717		goto bad;
718
719	/* get the bus specific location of this device */
720	loc = malloc(1024, M_BUS, M_NOWAIT);
721	if (loc == NULL)
722		goto bad;
723	*loc = '\0';
724	bus_child_location_str(dev, loc, 1024);
725
726	/* Get the bus specific pnp info of this device */
727	pnp = malloc(1024, M_BUS, M_NOWAIT);
728	if (pnp == NULL)
729		goto bad;
730	*pnp = '\0';
731	bus_child_pnpinfo_str(dev, pnp, 1024);
732
733	/* Get the parent of this device, or / if high enough in the tree. */
734	if (device_get_parent(dev) == NULL)
735		parstr = ".";	/* Or '/' ? */
736	else
737		parstr = device_get_nameunit(device_get_parent(dev));
738	/* String it all together. */
739	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
740	  parstr);
741	free(loc, M_BUS);
742	free(pnp, M_BUS);
743	devctl_queue_data(data);
744	return;
745bad:
746	free(pnp, M_BUS);
747	free(loc, M_BUS);
748	free(data, M_BUS);
749	return;
750}
751
752/*
753 * A device was added to the tree.  We are called just after it successfully
754 * attaches (that is, probe and attach success for this device).  No call
755 * is made if a device is merely parented into the tree.  See devnomatch
756 * if probe fails.  If attach fails, no notification is sent (but maybe
757 * we should have a different message for this).
758 */
759static void
760devadded(device_t dev)
761{
762	devaddq("+", device_get_nameunit(dev), dev);
763}
764
765/*
766 * A device was removed from the tree.  We are called just before this
767 * happens.
768 */
769static void
770devremoved(device_t dev)
771{
772	devaddq("-", device_get_nameunit(dev), dev);
773}
774
775/*
776 * Called when there's no match for this device.  This is only called
777 * the first time that no match happens, so we don't keep getting this
778 * message.  Should that prove to be undesirable, we can change it.
779 * This is called when all drivers that can attach to a given bus
780 * decline to accept this device.  Other errors may not be detected.
781 */
782static void
783devnomatch(device_t dev)
784{
785	devaddq("?", "", dev);
786}
787
788static int
789sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
790{
791	struct dev_event_info *n1;
792	int dis, error;
793
794	dis = devctl_queue_length == 0;
795	error = sysctl_handle_int(oidp, &dis, 0, req);
796	if (error || !req->newptr)
797		return (error);
798	mtx_lock(&devsoftc.mtx);
799	if (dis) {
800		while (!TAILQ_EMPTY(&devsoftc.devq)) {
801			n1 = TAILQ_FIRST(&devsoftc.devq);
802			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
803			free(n1->dei_data, M_BUS);
804			free(n1, M_BUS);
805		}
806		devsoftc.queued = 0;
807		devctl_queue_length = 0;
808	} else {
809		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
810	}
811	mtx_unlock(&devsoftc.mtx);
812	return (0);
813}
814
815static int
816sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
817{
818	struct dev_event_info *n1;
819	int q, error;
820
821	q = devctl_queue_length;
822	error = sysctl_handle_int(oidp, &q, 0, req);
823	if (error || !req->newptr)
824		return (error);
825	if (q < 0)
826		return (EINVAL);
827	mtx_lock(&devsoftc.mtx);
828	devctl_queue_length = q;
829	while (devsoftc.queued > devctl_queue_length) {
830		n1 = TAILQ_FIRST(&devsoftc.devq);
831		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
832		free(n1->dei_data, M_BUS);
833		free(n1, M_BUS);
834		devsoftc.queued--;
835	}
836	mtx_unlock(&devsoftc.mtx);
837	return (0);
838}
839
840/* End of /dev/devctl code */
841
842static TAILQ_HEAD(,device)	bus_data_devices;
843static int bus_data_generation = 1;
844
845static kobj_method_t null_methods[] = {
846	KOBJMETHOD_END
847};
848
849DEFINE_CLASS(null, null_methods, 0);
850
851/*
852 * Bus pass implementation
853 */
854
855static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
856int bus_current_pass = BUS_PASS_ROOT;
857
858/**
859 * @internal
860 * @brief Register the pass level of a new driver attachment
861 *
862 * Register a new driver attachment's pass level.  If no driver
863 * attachment with the same pass level has been added, then @p new
864 * will be added to the global passes list.
865 *
866 * @param new		the new driver attachment
867 */
868static void
869driver_register_pass(struct driverlink *new)
870{
871	struct driverlink *dl;
872
873	/* We only consider pass numbers during boot. */
874	if (bus_current_pass == BUS_PASS_DEFAULT)
875		return;
876
877	/*
878	 * Walk the passes list.  If we already know about this pass
879	 * then there is nothing to do.  If we don't, then insert this
880	 * driver link into the list.
881	 */
882	TAILQ_FOREACH(dl, &passes, passlink) {
883		if (dl->pass < new->pass)
884			continue;
885		if (dl->pass == new->pass)
886			return;
887		TAILQ_INSERT_BEFORE(dl, new, passlink);
888		return;
889	}
890	TAILQ_INSERT_TAIL(&passes, new, passlink);
891}
892
893/**
894 * @brief Raise the current bus pass
895 *
896 * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
897 * method on the root bus to kick off a new device tree scan for each
898 * new pass level that has at least one driver.
899 */
900void
901bus_set_pass(int pass)
902{
903	struct driverlink *dl;
904
905	if (bus_current_pass > pass)
906		panic("Attempt to lower bus pass level");
907
908	TAILQ_FOREACH(dl, &passes, passlink) {
909		/* Skip pass values below the current pass level. */
910		if (dl->pass <= bus_current_pass)
911			continue;
912
913		/*
914		 * Bail once we hit a driver with a pass level that is
915		 * too high.
916		 */
917		if (dl->pass > pass)
918			break;
919
920		/*
921		 * Raise the pass level to the next level and rescan
922		 * the tree.
923		 */
924		bus_current_pass = dl->pass;
925		BUS_NEW_PASS(root_bus);
926	}
927
928	/*
929	 * If there isn't a driver registered for the requested pass,
930	 * then bus_current_pass might still be less than 'pass'.  Set
931	 * it to 'pass' in that case.
932	 */
933	if (bus_current_pass < pass)
934		bus_current_pass = pass;
935	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
936}
937
938/*
939 * Devclass implementation
940 */
941
942static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
943
944/**
945 * @internal
946 * @brief Find or create a device class
947 *
948 * If a device class with the name @p classname exists, return it,
949 * otherwise if @p create is non-zero create and return a new device
950 * class.
951 *
952 * If @p parentname is non-NULL, the parent of the devclass is set to
953 * the devclass of that name.
954 *
955 * @param classname	the devclass name to find or create
956 * @param parentname	the parent devclass name or @c NULL
957 * @param create	non-zero to create a devclass
958 */
959static devclass_t
960devclass_find_internal(const char *classname, const char *parentname,
961		       int create)
962{
963	devclass_t dc;
964
965	PDEBUG(("looking for %s", classname));
966	if (!classname)
967		return (NULL);
968
969	TAILQ_FOREACH(dc, &devclasses, link) {
970		if (!strcmp(dc->name, classname))
971			break;
972	}
973
974	if (create && !dc) {
975		PDEBUG(("creating %s", classname));
976		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
977		    M_BUS, M_NOWAIT | M_ZERO);
978		if (!dc)
979			return (NULL);
980		dc->parent = NULL;
981		dc->name = (char*) (dc + 1);
982		strcpy(dc->name, classname);
983		TAILQ_INIT(&dc->drivers);
984		TAILQ_INSERT_TAIL(&devclasses, dc, link);
985
986		bus_data_generation_update();
987	}
988
989	/*
990	 * If a parent class is specified, then set that as our parent so
991	 * that this devclass will support drivers for the parent class as
992	 * well.  If the parent class has the same name don't do this though
993	 * as it creates a cycle that can trigger an infinite loop in
994	 * device_probe_child() if a device exists for which there is no
995	 * suitable driver.
996	 */
997	if (parentname && dc && !dc->parent &&
998	    strcmp(classname, parentname) != 0) {
999		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
1000		dc->parent->flags |= DC_HAS_CHILDREN;
1001	}
1002
1003	return (dc);
1004}
1005
1006/**
1007 * @brief Create a device class
1008 *
1009 * If a device class with the name @p classname exists, return it,
1010 * otherwise create and return a new device class.
1011 *
1012 * @param classname	the devclass name to find or create
1013 */
1014devclass_t
1015devclass_create(const char *classname)
1016{
1017	return (devclass_find_internal(classname, NULL, TRUE));
1018}
1019
1020/**
1021 * @brief Find a device class
1022 *
1023 * If a device class with the name @p classname exists, return it,
1024 * otherwise return @c NULL.
1025 *
1026 * @param classname	the devclass name to find
1027 */
1028devclass_t
1029devclass_find(const char *classname)
1030{
1031	return (devclass_find_internal(classname, NULL, FALSE));
1032}
1033
1034/**
1035 * @brief Register that a device driver has been added to a devclass
1036 *
1037 * Register that a device driver has been added to a devclass.  This
1038 * is called by devclass_add_driver to accomplish the recursive
1039 * notification of all the children classes of dc, as well as dc.
1040 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
1041 * the devclass.
1042 *
1043 * We do a full search here of the devclass list at each iteration
1044 * level to save storing children-lists in the devclass structure.  If
1045 * we ever move beyond a few dozen devices doing this, we may need to
1046 * reevaluate...
1047 *
1048 * @param dc		the devclass to edit
1049 * @param driver	the driver that was just added
1050 */
1051static void
1052devclass_driver_added(devclass_t dc, driver_t *driver)
1053{
1054	devclass_t parent;
1055	int i;
1056
1057	/*
1058	 * Call BUS_DRIVER_ADDED for any existing busses in this class.
1059	 */
1060	for (i = 0; i < dc->maxunit; i++)
1061		if (dc->devices[i] && device_is_attached(dc->devices[i]))
1062			BUS_DRIVER_ADDED(dc->devices[i], driver);
1063
1064	/*
1065	 * Walk through the children classes.  Since we only keep a
1066	 * single parent pointer around, we walk the entire list of
1067	 * devclasses looking for children.  We set the
1068	 * DC_HAS_CHILDREN flag when a child devclass is created on
1069	 * the parent, so we only walk the list for those devclasses
1070	 * that have children.
1071	 */
1072	if (!(dc->flags & DC_HAS_CHILDREN))
1073		return;
1074	parent = dc;
1075	TAILQ_FOREACH(dc, &devclasses, link) {
1076		if (dc->parent == parent)
1077			devclass_driver_added(dc, driver);
1078	}
1079}
1080
1081/**
1082 * @brief Add a device driver to a device class
1083 *
1084 * Add a device driver to a devclass. This is normally called
1085 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
1086 * all devices in the devclass will be called to allow them to attempt
1087 * to re-probe any unmatched children.
1088 *
1089 * @param dc		the devclass to edit
1090 * @param driver	the driver to register
1091 */
1092int
1093devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
1094{
1095	driverlink_t dl;
1096	const char *parentname;
1097
1098	PDEBUG(("%s", DRIVERNAME(driver)));
1099
1100	/* Don't allow invalid pass values. */
1101	if (pass <= BUS_PASS_ROOT)
1102		return (EINVAL);
1103
1104	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
1105	if (!dl)
1106		return (ENOMEM);
1107
1108	/*
1109	 * Compile the driver's methods. Also increase the reference count
1110	 * so that the class doesn't get freed when the last instance
1111	 * goes. This means we can safely use static methods and avoids a
1112	 * double-free in devclass_delete_driver.
1113	 */
1114	kobj_class_compile((kobj_class_t) driver);
1115
1116	/*
1117	 * If the driver has any base classes, make the
1118	 * devclass inherit from the devclass of the driver's
1119	 * first base class. This will allow the system to
1120	 * search for drivers in both devclasses for children
1121	 * of a device using this driver.
1122	 */
1123	if (driver->baseclasses)
1124		parentname = driver->baseclasses[0]->name;
1125	else
1126		parentname = NULL;
1127	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
1128
1129	dl->driver = driver;
1130	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
1131	driver->refs++;		/* XXX: kobj_mtx */
1132	dl->pass = pass;
1133	driver_register_pass(dl);
1134
1135	devclass_driver_added(dc, driver);
1136	bus_data_generation_update();
1137	return (0);
1138}
1139
1140/**
1141 * @brief Register that a device driver has been deleted from a devclass
1142 *
1143 * Register that a device driver has been removed from a devclass.
1144 * This is called by devclass_delete_driver to accomplish the
1145 * recursive notification of all the children classes of busclass, as
1146 * well as busclass.  Each layer will attempt to detach the driver
1147 * from any devices that are children of the bus's devclass.  The function
1148 * will return an error if a device fails to detach.
1149 *
1150 * We do a full search here of the devclass list at each iteration
1151 * level to save storing children-lists in the devclass structure.  If
1152 * we ever move beyond a few dozen devices doing this, we may need to
1153 * reevaluate...
1154 *
1155 * @param busclass	the devclass of the parent bus
1156 * @param dc		the devclass of the driver being deleted
1157 * @param driver	the driver being deleted
1158 */
1159static int
1160devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
1161{
1162	devclass_t parent;
1163	device_t dev;
1164	int error, i;
1165
1166	/*
1167	 * Disassociate from any devices.  We iterate through all the
1168	 * devices in the devclass of the driver and detach any which are
1169	 * using the driver and which have a parent in the devclass which
1170	 * we are deleting from.
1171	 *
1172	 * Note that since a driver can be in multiple devclasses, we
1173	 * should not detach devices which are not children of devices in
1174	 * the affected devclass.
1175	 */
1176	for (i = 0; i < dc->maxunit; i++) {
1177		if (dc->devices[i]) {
1178			dev = dc->devices[i];
1179			if (dev->driver == driver && dev->parent &&
1180			    dev->parent->devclass == busclass) {
1181				if ((error = device_detach(dev)) != 0)
1182					return (error);
1183				BUS_PROBE_NOMATCH(dev->parent, dev);
1184				devnomatch(dev);
1185				dev->flags |= DF_DONENOMATCH;
1186			}
1187		}
1188	}
1189
1190	/*
1191	 * Walk through the children classes.  Since we only keep a
1192	 * single parent pointer around, we walk the entire list of
1193	 * devclasses looking for children.  We set the
1194	 * DC_HAS_CHILDREN flag when a child devclass is created on
1195	 * the parent, so we only walk the list for those devclasses
1196	 * that have children.
1197	 */
1198	if (!(busclass->flags & DC_HAS_CHILDREN))
1199		return (0);
1200	parent = busclass;
1201	TAILQ_FOREACH(busclass, &devclasses, link) {
1202		if (busclass->parent == parent) {
1203			error = devclass_driver_deleted(busclass, dc, driver);
1204			if (error)
1205				return (error);
1206		}
1207	}
1208	return (0);
1209}
1210
1211/**
1212 * @brief Delete a device driver from a device class
1213 *
1214 * Delete a device driver from a devclass. This is normally called
1215 * automatically by DRIVER_MODULE().
1216 *
1217 * If the driver is currently attached to any devices,
1218 * devclass_delete_driver() will first attempt to detach from each
1219 * device. If one of the detach calls fails, the driver will not be
1220 * deleted.
1221 *
1222 * @param dc		the devclass to edit
1223 * @param driver	the driver to unregister
1224 */
1225int
1226devclass_delete_driver(devclass_t busclass, driver_t *driver)
1227{
1228	devclass_t dc = devclass_find(driver->name);
1229	driverlink_t dl;
1230	int error;
1231
1232	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1233
1234	if (!dc)
1235		return (0);
1236
1237	/*
1238	 * Find the link structure in the bus' list of drivers.
1239	 */
1240	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1241		if (dl->driver == driver)
1242			break;
1243	}
1244
1245	if (!dl) {
1246		PDEBUG(("%s not found in %s list", driver->name,
1247		    busclass->name));
1248		return (ENOENT);
1249	}
1250
1251	error = devclass_driver_deleted(busclass, dc, driver);
1252	if (error != 0)
1253		return (error);
1254
1255	TAILQ_REMOVE(&busclass->drivers, dl, link);
1256	free(dl, M_BUS);
1257
1258	/* XXX: kobj_mtx */
1259	driver->refs--;
1260	if (driver->refs == 0)
1261		kobj_class_free((kobj_class_t) driver);
1262
1263	bus_data_generation_update();
1264	return (0);
1265}
1266
1267/**
1268 * @brief Quiesces a set of device drivers from a device class
1269 *
1270 * Quiesce a device driver from a devclass. This is normally called
1271 * automatically by DRIVER_MODULE().
1272 *
1273 * If the driver is currently attached to any devices,
1274 * devclass_quiesece_driver() will first attempt to quiesce each
1275 * device.
1276 *
1277 * @param dc		the devclass to edit
1278 * @param driver	the driver to unregister
1279 */
1280static int
1281devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
1282{
1283	devclass_t dc = devclass_find(driver->name);
1284	driverlink_t dl;
1285	device_t dev;
1286	int i;
1287	int error;
1288
1289	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
1290
1291	if (!dc)
1292		return (0);
1293
1294	/*
1295	 * Find the link structure in the bus' list of drivers.
1296	 */
1297	TAILQ_FOREACH(dl, &busclass->drivers, link) {
1298		if (dl->driver == driver)
1299			break;
1300	}
1301
1302	if (!dl) {
1303		PDEBUG(("%s not found in %s list", driver->name,
1304		    busclass->name));
1305		return (ENOENT);
1306	}
1307
1308	/*
1309	 * Quiesce all devices.  We iterate through all the devices in
1310	 * the devclass of the driver and quiesce any which are using
1311	 * the driver and which have a parent in the devclass which we
1312	 * are quiescing.
1313	 *
1314	 * Note that since a driver can be in multiple devclasses, we
1315	 * should not quiesce devices which are not children of
1316	 * devices in the affected devclass.
1317	 */
1318	for (i = 0; i < dc->maxunit; i++) {
1319		if (dc->devices[i]) {
1320			dev = dc->devices[i];
1321			if (dev->driver == driver && dev->parent &&
1322			    dev->parent->devclass == busclass) {
1323				if ((error = device_quiesce(dev)) != 0)
1324					return (error);
1325			}
1326		}
1327	}
1328
1329	return (0);
1330}
1331
1332/**
1333 * @internal
1334 */
1335static driverlink_t
1336devclass_find_driver_internal(devclass_t dc, const char *classname)
1337{
1338	driverlink_t dl;
1339
1340	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
1341
1342	TAILQ_FOREACH(dl, &dc->drivers, link) {
1343		if (!strcmp(dl->driver->name, classname))
1344			return (dl);
1345	}
1346
1347	PDEBUG(("not found"));
1348	return (NULL);
1349}
1350
1351/**
1352 * @brief Return the name of the devclass
1353 */
1354const char *
1355devclass_get_name(devclass_t dc)
1356{
1357	return (dc->name);
1358}
1359
1360/**
1361 * @brief Find a device given a unit number
1362 *
1363 * @param dc		the devclass to search
1364 * @param unit		the unit number to search for
1365 *
1366 * @returns		the device with the given unit number or @c
1367 *			NULL if there is no such device
1368 */
1369device_t
1370devclass_get_device(devclass_t dc, int unit)
1371{
1372	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
1373		return (NULL);
1374	return (dc->devices[unit]);
1375}
1376
1377/**
1378 * @brief Find the softc field of a device given a unit number
1379 *
1380 * @param dc		the devclass to search
1381 * @param unit		the unit number to search for
1382 *
1383 * @returns		the softc field of the device with the given
1384 *			unit number or @c NULL if there is no such
1385 *			device
1386 */
1387void *
1388devclass_get_softc(devclass_t dc, int unit)
1389{
1390	device_t dev;
1391
1392	dev = devclass_get_device(dc, unit);
1393	if (!dev)
1394		return (NULL);
1395
1396	return (device_get_softc(dev));
1397}
1398
1399/**
1400 * @brief Get a list of devices in the devclass
1401 *
1402 * An array containing a list of all the devices in the given devclass
1403 * is allocated and returned in @p *devlistp. The number of devices
1404 * in the array is returned in @p *devcountp. The caller should free
1405 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1406 *
1407 * @param dc		the devclass to examine
1408 * @param devlistp	points at location for array pointer return
1409 *			value
1410 * @param devcountp	points at location for array size return value
1411 *
1412 * @retval 0		success
1413 * @retval ENOMEM	the array allocation failed
1414 */
1415int
1416devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1417{
1418	int count, i;
1419	device_t *list;
1420
1421	count = devclass_get_count(dc);
1422	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1423	if (!list)
1424		return (ENOMEM);
1425
1426	count = 0;
1427	for (i = 0; i < dc->maxunit; i++) {
1428		if (dc->devices[i]) {
1429			list[count] = dc->devices[i];
1430			count++;
1431		}
1432	}
1433
1434	*devlistp = list;
1435	*devcountp = count;
1436
1437	return (0);
1438}
1439
1440/**
1441 * @brief Get a list of drivers in the devclass
1442 *
1443 * An array containing a list of pointers to all the drivers in the
1444 * given devclass is allocated and returned in @p *listp.  The number
1445 * of drivers in the array is returned in @p *countp. The caller should
1446 * free the array using @c free(p, M_TEMP).
1447 *
1448 * @param dc		the devclass to examine
1449 * @param listp		gives location for array pointer return value
1450 * @param countp	gives location for number of array elements
1451 *			return value
1452 *
1453 * @retval 0		success
1454 * @retval ENOMEM	the array allocation failed
1455 */
1456int
1457devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1458{
1459	driverlink_t dl;
1460	driver_t **list;
1461	int count;
1462
1463	count = 0;
1464	TAILQ_FOREACH(dl, &dc->drivers, link)
1465		count++;
1466	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1467	if (list == NULL)
1468		return (ENOMEM);
1469
1470	count = 0;
1471	TAILQ_FOREACH(dl, &dc->drivers, link) {
1472		list[count] = dl->driver;
1473		count++;
1474	}
1475	*listp = list;
1476	*countp = count;
1477
1478	return (0);
1479}
1480
1481/**
1482 * @brief Get the number of devices in a devclass
1483 *
1484 * @param dc		the devclass to examine
1485 */
1486int
1487devclass_get_count(devclass_t dc)
1488{
1489	int count, i;
1490
1491	count = 0;
1492	for (i = 0; i < dc->maxunit; i++)
1493		if (dc->devices[i])
1494			count++;
1495	return (count);
1496}
1497
1498/**
1499 * @brief Get the maximum unit number used in a devclass
1500 *
1501 * Note that this is one greater than the highest currently-allocated
1502 * unit.  If a null devclass_t is passed in, -1 is returned to indicate
1503 * that not even the devclass has been allocated yet.
1504 *
1505 * @param dc		the devclass to examine
1506 */
1507int
1508devclass_get_maxunit(devclass_t dc)
1509{
1510	if (dc == NULL)
1511		return (-1);
1512	return (dc->maxunit);
1513}
1514
1515/**
1516 * @brief Find a free unit number in a devclass
1517 *
1518 * This function searches for the first unused unit number greater
1519 * that or equal to @p unit.
1520 *
1521 * @param dc		the devclass to examine
1522 * @param unit		the first unit number to check
1523 */
1524int
1525devclass_find_free_unit(devclass_t dc, int unit)
1526{
1527	if (dc == NULL)
1528		return (unit);
1529	while (unit < dc->maxunit && dc->devices[unit] != NULL)
1530		unit++;
1531	return (unit);
1532}
1533
1534/**
1535 * @brief Set the parent of a devclass
1536 *
1537 * The parent class is normally initialised automatically by
1538 * DRIVER_MODULE().
1539 *
1540 * @param dc		the devclass to edit
1541 * @param pdc		the new parent devclass
1542 */
1543void
1544devclass_set_parent(devclass_t dc, devclass_t pdc)
1545{
1546	dc->parent = pdc;
1547}
1548
1549/**
1550 * @brief Get the parent of a devclass
1551 *
1552 * @param dc		the devclass to examine
1553 */
1554devclass_t
1555devclass_get_parent(devclass_t dc)
1556{
1557	return (dc->parent);
1558}
1559
1560struct sysctl_ctx_list *
1561devclass_get_sysctl_ctx(devclass_t dc)
1562{
1563	return (&dc->sysctl_ctx);
1564}
1565
1566struct sysctl_oid *
1567devclass_get_sysctl_tree(devclass_t dc)
1568{
1569	return (dc->sysctl_tree);
1570}
1571
1572/**
1573 * @internal
1574 * @brief Allocate a unit number
1575 *
1576 * On entry, @p *unitp is the desired unit number (or @c -1 if any
1577 * will do). The allocated unit number is returned in @p *unitp.
1578
1579 * @param dc		the devclass to allocate from
1580 * @param unitp		points at the location for the allocated unit
1581 *			number
1582 *
1583 * @retval 0		success
1584 * @retval EEXIST	the requested unit number is already allocated
1585 * @retval ENOMEM	memory allocation failure
1586 */
1587static int
1588devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1589{
1590	const char *s;
1591	int unit = *unitp;
1592
1593	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1594
1595	/* Ask the parent bus if it wants to wire this device. */
1596	if (unit == -1)
1597		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1598		    &unit);
1599
1600	/* If we were given a wired unit number, check for existing device */
1601	/* XXX imp XXX */
1602	if (unit != -1) {
1603		if (unit >= 0 && unit < dc->maxunit &&
1604		    dc->devices[unit] != NULL) {
1605			if (bootverbose)
1606				printf("%s: %s%d already exists; skipping it\n",
1607				    dc->name, dc->name, *unitp);
1608			return (EEXIST);
1609		}
1610	} else {
1611		/* Unwired device, find the next available slot for it */
1612		unit = 0;
1613		for (unit = 0;; unit++) {
1614			/* If there is an "at" hint for a unit then skip it. */
1615			if (resource_string_value(dc->name, unit, "at", &s) ==
1616			    0)
1617				continue;
1618
1619			/* If this device slot is already in use, skip it. */
1620			if (unit < dc->maxunit && dc->devices[unit] != NULL)
1621				continue;
1622
1623			break;
1624		}
1625	}
1626
1627	/*
1628	 * We've selected a unit beyond the length of the table, so let's
1629	 * extend the table to make room for all units up to and including
1630	 * this one.
1631	 */
1632	if (unit >= dc->maxunit) {
1633		device_t *newlist, *oldlist;
1634		int newsize;
1635
1636		oldlist = dc->devices;
1637		newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
1638		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
1639		if (!newlist)
1640			return (ENOMEM);
1641		if (oldlist != NULL)
1642			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
1643		bzero(newlist + dc->maxunit,
1644		    sizeof(device_t) * (newsize - dc->maxunit));
1645		dc->devices = newlist;
1646		dc->maxunit = newsize;
1647		if (oldlist != NULL)
1648			free(oldlist, M_BUS);
1649	}
1650	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1651
1652	*unitp = unit;
1653	return (0);
1654}
1655
1656/**
1657 * @internal
1658 * @brief Add a device to a devclass
1659 *
1660 * A unit number is allocated for the device (using the device's
1661 * preferred unit number if any) and the device is registered in the
1662 * devclass. This allows the device to be looked up by its unit
1663 * number, e.g. by decoding a dev_t minor number.
1664 *
1665 * @param dc		the devclass to add to
1666 * @param dev		the device to add
1667 *
1668 * @retval 0		success
1669 * @retval EEXIST	the requested unit number is already allocated
1670 * @retval ENOMEM	memory allocation failure
1671 */
1672static int
1673devclass_add_device(devclass_t dc, device_t dev)
1674{
1675	int buflen, error;
1676
1677	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1678
1679	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1680	if (buflen < 0)
1681		return (ENOMEM);
1682	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1683	if (!dev->nameunit)
1684		return (ENOMEM);
1685
1686	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1687		free(dev->nameunit, M_BUS);
1688		dev->nameunit = NULL;
1689		return (error);
1690	}
1691	dc->devices[dev->unit] = dev;
1692	dev->devclass = dc;
1693	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1694
1695	return (0);
1696}
1697
1698/**
1699 * @internal
1700 * @brief Delete a device from a devclass
1701 *
1702 * The device is removed from the devclass's device list and its unit
1703 * number is freed.
1704
1705 * @param dc		the devclass to delete from
1706 * @param dev		the device to delete
1707 *
1708 * @retval 0		success
1709 */
1710static int
1711devclass_delete_device(devclass_t dc, device_t dev)
1712{
1713	if (!dc || !dev)
1714		return (0);
1715
1716	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1717
1718	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1719		panic("devclass_delete_device: inconsistent device class");
1720	dc->devices[dev->unit] = NULL;
1721	if (dev->flags & DF_WILDCARD)
1722		dev->unit = -1;
1723	dev->devclass = NULL;
1724	free(dev->nameunit, M_BUS);
1725	dev->nameunit = NULL;
1726
1727	return (0);
1728}
1729
1730/**
1731 * @internal
1732 * @brief Make a new device and add it as a child of @p parent
1733 *
1734 * @param parent	the parent of the new device
1735 * @param name		the devclass name of the new device or @c NULL
1736 *			to leave the devclass unspecified
1737 * @parem unit		the unit number of the new device of @c -1 to
1738 *			leave the unit number unspecified
1739 *
1740 * @returns the new device
1741 */
1742static device_t
1743make_device(device_t parent, const char *name, int unit)
1744{
1745	device_t dev;
1746	devclass_t dc;
1747
1748	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1749
1750	if (name) {
1751		dc = devclass_find_internal(name, NULL, TRUE);
1752		if (!dc) {
1753			printf("make_device: can't find device class %s\n",
1754			    name);
1755			return (NULL);
1756		}
1757	} else {
1758		dc = NULL;
1759	}
1760
1761	dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
1762	if (!dev)
1763		return (NULL);
1764
1765	dev->parent = parent;
1766	TAILQ_INIT(&dev->children);
1767	kobj_init((kobj_t) dev, &null_class);
1768	dev->driver = NULL;
1769	dev->devclass = NULL;
1770	dev->unit = unit;
1771	dev->nameunit = NULL;
1772	dev->desc = NULL;
1773	dev->busy = 0;
1774	dev->devflags = 0;
1775	dev->flags = DF_ENABLED;
1776	dev->order = 0;
1777	if (unit == -1)
1778		dev->flags |= DF_WILDCARD;
1779	if (name) {
1780		dev->flags |= DF_FIXEDCLASS;
1781		if (devclass_add_device(dc, dev)) {
1782			kobj_delete((kobj_t) dev, M_BUS);
1783			return (NULL);
1784		}
1785	}
1786	dev->ivars = NULL;
1787	dev->softc = NULL;
1788
1789	dev->state = DS_NOTPRESENT;
1790
1791	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1792	bus_data_generation_update();
1793
1794	return (dev);
1795}
1796
1797/**
1798 * @internal
1799 * @brief Print a description of a device.
1800 */
1801static int
1802device_print_child(device_t dev, device_t child)
1803{
1804	int retval = 0;
1805
1806	if (device_is_alive(child))
1807		retval += BUS_PRINT_CHILD(dev, child);
1808	else
1809		retval += device_printf(child, " not found\n");
1810
1811	return (retval);
1812}
1813
1814/**
1815 * @brief Create a new device
1816 *
1817 * This creates a new device and adds it as a child of an existing
1818 * parent device. The new device will be added after the last existing
1819 * child with order zero.
1820 *
1821 * @param dev		the device which will be the parent of the
1822 *			new child device
1823 * @param name		devclass name for new device or @c NULL if not
1824 *			specified
1825 * @param unit		unit number for new device or @c -1 if not
1826 *			specified
1827 *
1828 * @returns		the new device
1829 */
1830device_t
1831device_add_child(device_t dev, const char *name, int unit)
1832{
1833	return (device_add_child_ordered(dev, 0, name, unit));
1834}
1835
1836/**
1837 * @brief Create a new device
1838 *
1839 * This creates a new device and adds it as a child of an existing
1840 * parent device. The new device will be added after the last existing
1841 * child with the same order.
1842 *
1843 * @param dev		the device which will be the parent of the
1844 *			new child device
1845 * @param order		a value which is used to partially sort the
1846 *			children of @p dev - devices created using
1847 *			lower values of @p order appear first in @p
1848 *			dev's list of children
1849 * @param name		devclass name for new device or @c NULL if not
1850 *			specified
1851 * @param unit		unit number for new device or @c -1 if not
1852 *			specified
1853 *
1854 * @returns		the new device
1855 */
1856device_t
1857device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1858{
1859	device_t child;
1860	device_t place;
1861
1862	PDEBUG(("%s at %s with order %u as unit %d",
1863	    name, DEVICENAME(dev), order, unit));
1864	KASSERT(name != NULL || unit == -1,
1865	    ("child device with wildcard name and specific unit number"));
1866
1867	child = make_device(dev, name, unit);
1868	if (child == NULL)
1869		return (child);
1870	child->order = order;
1871
1872	TAILQ_FOREACH(place, &dev->children, link) {
1873		if (place->order > order)
1874			break;
1875	}
1876
1877	if (place) {
1878		/*
1879		 * The device 'place' is the first device whose order is
1880		 * greater than the new child.
1881		 */
1882		TAILQ_INSERT_BEFORE(place, child, link);
1883	} else {
1884		/*
1885		 * The new child's order is greater or equal to the order of
1886		 * any existing device. Add the child to the tail of the list.
1887		 */
1888		TAILQ_INSERT_TAIL(&dev->children, child, link);
1889	}
1890
1891	bus_data_generation_update();
1892	return (child);
1893}
1894
1895/**
1896 * @brief Delete a device
1897 *
1898 * This function deletes a device along with all of its children. If
1899 * the device currently has a driver attached to it, the device is
1900 * detached first using device_detach().
1901 *
1902 * @param dev		the parent device
1903 * @param child		the device to delete
1904 *
1905 * @retval 0		success
1906 * @retval non-zero	a unit error code describing the error
1907 */
1908int
1909device_delete_child(device_t dev, device_t child)
1910{
1911	int error;
1912	device_t grandchild;
1913
1914	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1915
1916	/* remove children first */
1917	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1918		error = device_delete_child(child, grandchild);
1919		if (error)
1920			return (error);
1921	}
1922
1923	if ((error = device_detach(child)) != 0)
1924		return (error);
1925	if (child->devclass)
1926		devclass_delete_device(child->devclass, child);
1927	if (child->parent)
1928		BUS_CHILD_DELETED(dev, child);
1929	TAILQ_REMOVE(&dev->children, child, link);
1930	TAILQ_REMOVE(&bus_data_devices, child, devlink);
1931	kobj_delete((kobj_t) child, M_BUS);
1932
1933	bus_data_generation_update();
1934	return (0);
1935}
1936
1937/**
1938 * @brief Delete all children devices of the given device, if any.
1939 *
1940 * This function deletes all children devices of the given device, if
1941 * any, using the device_delete_child() function for each device it
1942 * finds. If a child device cannot be deleted, this function will
1943 * return an error code.
1944 *
1945 * @param dev		the parent device
1946 *
1947 * @retval 0		success
1948 * @retval non-zero	a device would not detach
1949 */
1950int
1951device_delete_children(device_t dev)
1952{
1953	device_t child;
1954	int error;
1955
1956	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1957
1958	error = 0;
1959
1960	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1961		error = device_delete_child(dev, child);
1962		if (error) {
1963			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1964			break;
1965		}
1966	}
1967	return (error);
1968}
1969
1970/**
1971 * @brief Find a device given a unit number
1972 *
1973 * This is similar to devclass_get_devices() but only searches for
1974 * devices which have @p dev as a parent.
1975 *
1976 * @param dev		the parent device to search
1977 * @param unit		the unit number to search for.  If the unit is -1,
1978 *			return the first child of @p dev which has name
1979 *			@p classname (that is, the one with the lowest unit.)
1980 *
1981 * @returns		the device with the given unit number or @c
1982 *			NULL if there is no such device
1983 */
1984device_t
1985device_find_child(device_t dev, const char *classname, int unit)
1986{
1987	devclass_t dc;
1988	device_t child;
1989
1990	dc = devclass_find(classname);
1991	if (!dc)
1992		return (NULL);
1993
1994	if (unit != -1) {
1995		child = devclass_get_device(dc, unit);
1996		if (child && child->parent == dev)
1997			return (child);
1998	} else {
1999		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
2000			child = devclass_get_device(dc, unit);
2001			if (child && child->parent == dev)
2002				return (child);
2003		}
2004	}
2005	return (NULL);
2006}
2007
2008/**
2009 * @internal
2010 */
2011static driverlink_t
2012first_matching_driver(devclass_t dc, device_t dev)
2013{
2014	if (dev->devclass)
2015		return (devclass_find_driver_internal(dc, dev->devclass->name));
2016	return (TAILQ_FIRST(&dc->drivers));
2017}
2018
2019/**
2020 * @internal
2021 */
2022static driverlink_t
2023next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2024{
2025	if (dev->devclass) {
2026		driverlink_t dl;
2027		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2028			if (!strcmp(dev->devclass->name, dl->driver->name))
2029				return (dl);
2030		return (NULL);
2031	}
2032	return (TAILQ_NEXT(last, link));
2033}
2034
2035/**
2036 * @internal
2037 */
2038int
2039device_probe_child(device_t dev, device_t child)
2040{
2041	devclass_t dc;
2042	driverlink_t best = NULL;
2043	driverlink_t dl;
2044	int result, pri = 0;
2045	int hasclass = (child->devclass != NULL);
2046
2047	GIANT_REQUIRED;
2048
2049	dc = dev->devclass;
2050	if (!dc)
2051		panic("device_probe_child: parent device has no devclass");
2052
2053	/*
2054	 * If the state is already probed, then return.  However, don't
2055	 * return if we can rebid this object.
2056	 */
2057	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2058		return (0);
2059
2060	for (; dc; dc = dc->parent) {
2061		for (dl = first_matching_driver(dc, child);
2062		     dl;
2063		     dl = next_matching_driver(dc, child, dl)) {
2064			/* If this driver's pass is too high, then ignore it. */
2065			if (dl->pass > bus_current_pass)
2066				continue;
2067
2068			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2069			result = device_set_driver(child, dl->driver);
2070			if (result == ENOMEM)
2071				return (result);
2072			else if (result != 0)
2073				continue;
2074			if (!hasclass) {
2075				if (device_set_devclass(child,
2076				    dl->driver->name) != 0) {
2077					char const * devname =
2078					    device_get_name(child);
2079					if (devname == NULL)
2080						devname = "(unknown)";
2081					printf("driver bug: Unable to set "
2082					    "devclass (class: %s "
2083					    "devname: %s)\n",
2084					    dl->driver->name,
2085					    devname);
2086					(void)device_set_driver(child, NULL);
2087					continue;
2088				}
2089			}
2090
2091			/* Fetch any flags for the device before probing. */
2092			resource_int_value(dl->driver->name, child->unit,
2093			    "flags", &child->devflags);
2094
2095			result = DEVICE_PROBE(child);
2096
2097			/* Reset flags and devclass before the next probe. */
2098			child->devflags = 0;
2099			if (!hasclass)
2100				(void)device_set_devclass(child, NULL);
2101
2102			/*
2103			 * If the driver returns SUCCESS, there can be
2104			 * no higher match for this device.
2105			 */
2106			if (result == 0) {
2107				best = dl;
2108				pri = 0;
2109				break;
2110			}
2111
2112			/*
2113			 * The driver returned an error so it
2114			 * certainly doesn't match.
2115			 */
2116			if (result > 0) {
2117				(void)device_set_driver(child, NULL);
2118				continue;
2119			}
2120
2121			/*
2122			 * A priority lower than SUCCESS, remember the
2123			 * best matching driver. Initialise the value
2124			 * of pri for the first match.
2125			 */
2126			if (best == NULL || result > pri) {
2127				/*
2128				 * Probes that return BUS_PROBE_NOWILDCARD
2129				 * or lower only match on devices whose
2130				 * driver was explicitly specified.
2131				 */
2132				if (result <= BUS_PROBE_NOWILDCARD &&
2133				    !(child->flags & DF_FIXEDCLASS))
2134					continue;
2135				best = dl;
2136				pri = result;
2137				continue;
2138			}
2139		}
2140		/*
2141		 * If we have an unambiguous match in this devclass,
2142		 * don't look in the parent.
2143		 */
2144		if (best && pri == 0)
2145			break;
2146	}
2147
2148	/*
2149	 * If we found a driver, change state and initialise the devclass.
2150	 */
2151	/* XXX What happens if we rebid and got no best? */
2152	if (best) {
2153		/*
2154		 * If this device was attached, and we were asked to
2155		 * rescan, and it is a different driver, then we have
2156		 * to detach the old driver and reattach this new one.
2157		 * Note, we don't have to check for DF_REBID here
2158		 * because if the state is > DS_ALIVE, we know it must
2159		 * be.
2160		 *
2161		 * This assumes that all DF_REBID drivers can have
2162		 * their probe routine called at any time and that
2163		 * they are idempotent as well as completely benign in
2164		 * normal operations.
2165		 *
2166		 * We also have to make sure that the detach
2167		 * succeeded, otherwise we fail the operation (or
2168		 * maybe it should just fail silently?  I'm torn).
2169		 */
2170		if (child->state > DS_ALIVE && best->driver != child->driver)
2171			if ((result = device_detach(dev)) != 0)
2172				return (result);
2173
2174		/* Set the winning driver, devclass, and flags. */
2175		if (!child->devclass) {
2176			result = device_set_devclass(child, best->driver->name);
2177			if (result != 0)
2178				return (result);
2179		}
2180		result = device_set_driver(child, best->driver);
2181		if (result != 0)
2182			return (result);
2183		resource_int_value(best->driver->name, child->unit,
2184		    "flags", &child->devflags);
2185
2186		if (pri < 0) {
2187			/*
2188			 * A bit bogus. Call the probe method again to make
2189			 * sure that we have the right description.
2190			 */
2191			DEVICE_PROBE(child);
2192#if 0
2193			child->flags |= DF_REBID;
2194#endif
2195		} else
2196			child->flags &= ~DF_REBID;
2197		child->state = DS_ALIVE;
2198
2199		bus_data_generation_update();
2200		return (0);
2201	}
2202
2203	return (ENXIO);
2204}
2205
2206/**
2207 * @brief Return the parent of a device
2208 */
2209device_t
2210device_get_parent(device_t dev)
2211{
2212	return (dev->parent);
2213}
2214
2215/**
2216 * @brief Get a list of children of a device
2217 *
2218 * An array containing a list of all the children of the given device
2219 * is allocated and returned in @p *devlistp. The number of devices
2220 * in the array is returned in @p *devcountp. The caller should free
2221 * the array using @c free(p, M_TEMP).
2222 *
2223 * @param dev		the device to examine
2224 * @param devlistp	points at location for array pointer return
2225 *			value
2226 * @param devcountp	points at location for array size return value
2227 *
2228 * @retval 0		success
2229 * @retval ENOMEM	the array allocation failed
2230 */
2231int
2232device_get_children(device_t dev, device_t **devlistp, int *devcountp)
2233{
2234	int count;
2235	device_t child;
2236	device_t *list;
2237
2238	count = 0;
2239	TAILQ_FOREACH(child, &dev->children, link) {
2240		count++;
2241	}
2242	if (count == 0) {
2243		*devlistp = NULL;
2244		*devcountp = 0;
2245		return (0);
2246	}
2247
2248	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
2249	if (!list)
2250		return (ENOMEM);
2251
2252	count = 0;
2253	TAILQ_FOREACH(child, &dev->children, link) {
2254		list[count] = child;
2255		count++;
2256	}
2257
2258	*devlistp = list;
2259	*devcountp = count;
2260
2261	return (0);
2262}
2263
2264/**
2265 * @brief Return the current driver for the device or @c NULL if there
2266 * is no driver currently attached
2267 */
2268driver_t *
2269device_get_driver(device_t dev)
2270{
2271	return (dev->driver);
2272}
2273
2274/**
2275 * @brief Return the current devclass for the device or @c NULL if
2276 * there is none.
2277 */
2278devclass_t
2279device_get_devclass(device_t dev)
2280{
2281	return (dev->devclass);
2282}
2283
2284/**
2285 * @brief Return the name of the device's devclass or @c NULL if there
2286 * is none.
2287 */
2288const char *
2289device_get_name(device_t dev)
2290{
2291	if (dev != NULL && dev->devclass)
2292		return (devclass_get_name(dev->devclass));
2293	return (NULL);
2294}
2295
2296/**
2297 * @brief Return a string containing the device's devclass name
2298 * followed by an ascii representation of the device's unit number
2299 * (e.g. @c "foo2").
2300 */
2301const char *
2302device_get_nameunit(device_t dev)
2303{
2304	return (dev->nameunit);
2305}
2306
2307/**
2308 * @brief Return the device's unit number.
2309 */
2310int
2311device_get_unit(device_t dev)
2312{
2313	return (dev->unit);
2314}
2315
2316/**
2317 * @brief Return the device's description string
2318 */
2319const char *
2320device_get_desc(device_t dev)
2321{
2322	return (dev->desc);
2323}
2324
2325/**
2326 * @brief Return the device's flags
2327 */
2328uint32_t
2329device_get_flags(device_t dev)
2330{
2331	return (dev->devflags);
2332}
2333
2334struct sysctl_ctx_list *
2335device_get_sysctl_ctx(device_t dev)
2336{
2337	return (&dev->sysctl_ctx);
2338}
2339
2340struct sysctl_oid *
2341device_get_sysctl_tree(device_t dev)
2342{
2343	return (dev->sysctl_tree);
2344}
2345
2346/**
2347 * @brief Print the name of the device followed by a colon and a space
2348 *
2349 * @returns the number of characters printed
2350 */
2351int
2352device_print_prettyname(device_t dev)
2353{
2354	const char *name = device_get_name(dev);
2355
2356	if (name == NULL)
2357		return (printf("unknown: "));
2358	return (printf("%s%d: ", name, device_get_unit(dev)));
2359}
2360
2361/**
2362 * @brief Print the name of the device followed by a colon, a space
2363 * and the result of calling vprintf() with the value of @p fmt and
2364 * the following arguments.
2365 *
2366 * @returns the number of characters printed
2367 */
2368int
2369device_printf(device_t dev, const char * fmt, ...)
2370{
2371	va_list ap;
2372	int retval;
2373
2374	retval = device_print_prettyname(dev);
2375	va_start(ap, fmt);
2376	retval += vprintf(fmt, ap);
2377	va_end(ap);
2378	return (retval);
2379}
2380
2381/**
2382 * @internal
2383 */
2384static void
2385device_set_desc_internal(device_t dev, const char* desc, int copy)
2386{
2387	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2388		free(dev->desc, M_BUS);
2389		dev->flags &= ~DF_DESCMALLOCED;
2390		dev->desc = NULL;
2391	}
2392
2393	if (copy && desc) {
2394		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
2395		if (dev->desc) {
2396			strcpy(dev->desc, desc);
2397			dev->flags |= DF_DESCMALLOCED;
2398		}
2399	} else {
2400		/* Avoid a -Wcast-qual warning */
2401		dev->desc = (char *)(uintptr_t) desc;
2402	}
2403
2404	bus_data_generation_update();
2405}
2406
2407/**
2408 * @brief Set the device's description
2409 *
2410 * The value of @c desc should be a string constant that will not
2411 * change (at least until the description is changed in a subsequent
2412 * call to device_set_desc() or device_set_desc_copy()).
2413 */
2414void
2415device_set_desc(device_t dev, const char* desc)
2416{
2417	device_set_desc_internal(dev, desc, FALSE);
2418}
2419
2420/**
2421 * @brief Set the device's description
2422 *
2423 * The string pointed to by @c desc is copied. Use this function if
2424 * the device description is generated, (e.g. with sprintf()).
2425 */
2426void
2427device_set_desc_copy(device_t dev, const char* desc)
2428{
2429	device_set_desc_internal(dev, desc, TRUE);
2430}
2431
2432/**
2433 * @brief Set the device's flags
2434 */
2435void
2436device_set_flags(device_t dev, uint32_t flags)
2437{
2438	dev->devflags = flags;
2439}
2440
2441/**
2442 * @brief Return the device's softc field
2443 *
2444 * The softc is allocated and zeroed when a driver is attached, based
2445 * on the size field of the driver.
2446 */
2447void *
2448device_get_softc(device_t dev)
2449{
2450	return (dev->softc);
2451}
2452
2453/**
2454 * @brief Set the device's softc field
2455 *
2456 * Most drivers do not need to use this since the softc is allocated
2457 * automatically when the driver is attached.
2458 */
2459void
2460device_set_softc(device_t dev, void *softc)
2461{
2462	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2463		free(dev->softc, M_BUS_SC);
2464	dev->softc = softc;
2465	if (dev->softc)
2466		dev->flags |= DF_EXTERNALSOFTC;
2467	else
2468		dev->flags &= ~DF_EXTERNALSOFTC;
2469}
2470
2471/**
2472 * @brief Free claimed softc
2473 *
2474 * Most drivers do not need to use this since the softc is freed
2475 * automatically when the driver is detached.
2476 */
2477void
2478device_free_softc(void *softc)
2479{
2480	free(softc, M_BUS_SC);
2481}
2482
2483/**
2484 * @brief Claim softc
2485 *
2486 * This function can be used to let the driver free the automatically
2487 * allocated softc using "device_free_softc()". This function is
2488 * useful when the driver is refcounting the softc and the softc
2489 * cannot be freed when the "device_detach" method is called.
2490 */
2491void
2492device_claim_softc(device_t dev)
2493{
2494	if (dev->softc)
2495		dev->flags |= DF_EXTERNALSOFTC;
2496	else
2497		dev->flags &= ~DF_EXTERNALSOFTC;
2498}
2499
2500/**
2501 * @brief Get the device's ivars field
2502 *
2503 * The ivars field is used by the parent device to store per-device
2504 * state (e.g. the physical location of the device or a list of
2505 * resources).
2506 */
2507void *
2508device_get_ivars(device_t dev)
2509{
2510
2511	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2512	return (dev->ivars);
2513}
2514
2515/**
2516 * @brief Set the device's ivars field
2517 */
2518void
2519device_set_ivars(device_t dev, void * ivars)
2520{
2521
2522	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2523	dev->ivars = ivars;
2524}
2525
2526/**
2527 * @brief Return the device's state
2528 */
2529device_state_t
2530device_get_state(device_t dev)
2531{
2532	return (dev->state);
2533}
2534
2535/**
2536 * @brief Set the DF_ENABLED flag for the device
2537 */
2538void
2539device_enable(device_t dev)
2540{
2541	dev->flags |= DF_ENABLED;
2542}
2543
2544/**
2545 * @brief Clear the DF_ENABLED flag for the device
2546 */
2547void
2548device_disable(device_t dev)
2549{
2550	dev->flags &= ~DF_ENABLED;
2551}
2552
2553/**
2554 * @brief Increment the busy counter for the device
2555 */
2556void
2557device_busy(device_t dev)
2558{
2559	if (dev->state < DS_ATTACHING)
2560		panic("device_busy: called for unattached device");
2561	if (dev->busy == 0 && dev->parent)
2562		device_busy(dev->parent);
2563	dev->busy++;
2564	if (dev->state == DS_ATTACHED)
2565		dev->state = DS_BUSY;
2566}
2567
2568/**
2569 * @brief Decrement the busy counter for the device
2570 */
2571void
2572device_unbusy(device_t dev)
2573{
2574	if (dev->busy != 0 && dev->state != DS_BUSY &&
2575	    dev->state != DS_ATTACHING)
2576		panic("device_unbusy: called for non-busy device %s",
2577		    device_get_nameunit(dev));
2578	dev->busy--;
2579	if (dev->busy == 0) {
2580		if (dev->parent)
2581			device_unbusy(dev->parent);
2582		if (dev->state == DS_BUSY)
2583			dev->state = DS_ATTACHED;
2584	}
2585}
2586
2587/**
2588 * @brief Set the DF_QUIET flag for the device
2589 */
2590void
2591device_quiet(device_t dev)
2592{
2593	dev->flags |= DF_QUIET;
2594}
2595
2596/**
2597 * @brief Clear the DF_QUIET flag for the device
2598 */
2599void
2600device_verbose(device_t dev)
2601{
2602	dev->flags &= ~DF_QUIET;
2603}
2604
2605/**
2606 * @brief Return non-zero if the DF_QUIET flag is set on the device
2607 */
2608int
2609device_is_quiet(device_t dev)
2610{
2611	return ((dev->flags & DF_QUIET) != 0);
2612}
2613
2614/**
2615 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2616 */
2617int
2618device_is_enabled(device_t dev)
2619{
2620	return ((dev->flags & DF_ENABLED) != 0);
2621}
2622
2623/**
2624 * @brief Return non-zero if the device was successfully probed
2625 */
2626int
2627device_is_alive(device_t dev)
2628{
2629	return (dev->state >= DS_ALIVE);
2630}
2631
2632/**
2633 * @brief Return non-zero if the device currently has a driver
2634 * attached to it
2635 */
2636int
2637device_is_attached(device_t dev)
2638{
2639	return (dev->state >= DS_ATTACHED);
2640}
2641
2642/**
2643 * @brief Set the devclass of a device
2644 * @see devclass_add_device().
2645 */
2646int
2647device_set_devclass(device_t dev, const char *classname)
2648{
2649	devclass_t dc;
2650	int error;
2651
2652	if (!classname) {
2653		if (dev->devclass)
2654			devclass_delete_device(dev->devclass, dev);
2655		return (0);
2656	}
2657
2658	if (dev->devclass) {
2659		printf("device_set_devclass: device class already set\n");
2660		return (EINVAL);
2661	}
2662
2663	dc = devclass_find_internal(classname, NULL, TRUE);
2664	if (!dc)
2665		return (ENOMEM);
2666
2667	error = devclass_add_device(dc, dev);
2668
2669	bus_data_generation_update();
2670	return (error);
2671}
2672
2673/**
2674 * @brief Set the driver of a device
2675 *
2676 * @retval 0		success
2677 * @retval EBUSY	the device already has a driver attached
2678 * @retval ENOMEM	a memory allocation failure occurred
2679 */
2680int
2681device_set_driver(device_t dev, driver_t *driver)
2682{
2683	if (dev->state >= DS_ATTACHED)
2684		return (EBUSY);
2685
2686	if (dev->driver == driver)
2687		return (0);
2688
2689	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2690		free(dev->softc, M_BUS_SC);
2691		dev->softc = NULL;
2692	}
2693	device_set_desc(dev, NULL);
2694	kobj_delete((kobj_t) dev, NULL);
2695	dev->driver = driver;
2696	if (driver) {
2697		kobj_init((kobj_t) dev, (kobj_class_t) driver);
2698		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2699			dev->softc = malloc(driver->size, M_BUS_SC,
2700			    M_NOWAIT | M_ZERO);
2701			if (!dev->softc) {
2702				kobj_delete((kobj_t) dev, NULL);
2703				kobj_init((kobj_t) dev, &null_class);
2704				dev->driver = NULL;
2705				return (ENOMEM);
2706			}
2707		}
2708	} else {
2709		kobj_init((kobj_t) dev, &null_class);
2710	}
2711
2712	bus_data_generation_update();
2713	return (0);
2714}
2715
2716/**
2717 * @brief Probe a device, and return this status.
2718 *
2719 * This function is the core of the device autoconfiguration
2720 * system. Its purpose is to select a suitable driver for a device and
2721 * then call that driver to initialise the hardware appropriately. The
2722 * driver is selected by calling the DEVICE_PROBE() method of a set of
2723 * candidate drivers and then choosing the driver which returned the
2724 * best value. This driver is then attached to the device using
2725 * device_attach().
2726 *
2727 * The set of suitable drivers is taken from the list of drivers in
2728 * the parent device's devclass. If the device was originally created
2729 * with a specific class name (see device_add_child()), only drivers
2730 * with that name are probed, otherwise all drivers in the devclass
2731 * are probed. If no drivers return successful probe values in the
2732 * parent devclass, the search continues in the parent of that
2733 * devclass (see devclass_get_parent()) if any.
2734 *
2735 * @param dev		the device to initialise
2736 *
2737 * @retval 0		success
2738 * @retval ENXIO	no driver was found
2739 * @retval ENOMEM	memory allocation failure
2740 * @retval non-zero	some other unix error code
2741 * @retval -1		Device already attached
2742 */
2743int
2744device_probe(device_t dev)
2745{
2746	int error;
2747
2748	GIANT_REQUIRED;
2749
2750	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
2751		return (-1);
2752
2753	if (!(dev->flags & DF_ENABLED)) {
2754		if (bootverbose && device_get_name(dev) != NULL) {
2755			device_print_prettyname(dev);
2756			printf("not probed (disabled)\n");
2757		}
2758		return (-1);
2759	}
2760	if ((error = device_probe_child(dev->parent, dev)) != 0) {
2761		if (bus_current_pass == BUS_PASS_DEFAULT &&
2762		    !(dev->flags & DF_DONENOMATCH)) {
2763			BUS_PROBE_NOMATCH(dev->parent, dev);
2764			devnomatch(dev);
2765			dev->flags |= DF_DONENOMATCH;
2766		}
2767		return (error);
2768	}
2769	return (0);
2770}
2771
2772/**
2773 * @brief Probe a device and attach a driver if possible
2774 *
2775 * calls device_probe() and attaches if that was successful.
2776 */
2777int
2778device_probe_and_attach(device_t dev)
2779{
2780	int error;
2781
2782	GIANT_REQUIRED;
2783
2784	error = device_probe(dev);
2785	if (error == -1)
2786		return (0);
2787	else if (error != 0)
2788		return (error);
2789
2790	CURVNET_SET_QUIET(vnet0);
2791	error = device_attach(dev);
2792	CURVNET_RESTORE();
2793	return error;
2794}
2795
2796/**
2797 * @brief Attach a device driver to a device
2798 *
2799 * This function is a wrapper around the DEVICE_ATTACH() driver
2800 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2801 * device's sysctl tree, optionally prints a description of the device
2802 * and queues a notification event for user-based device management
2803 * services.
2804 *
2805 * Normally this function is only called internally from
2806 * device_probe_and_attach().
2807 *
2808 * @param dev		the device to initialise
2809 *
2810 * @retval 0		success
2811 * @retval ENXIO	no driver was found
2812 * @retval ENOMEM	memory allocation failure
2813 * @retval non-zero	some other unix error code
2814 */
2815int
2816device_attach(device_t dev)
2817{
2818	uint64_t attachtime;
2819	int error;
2820
2821	if (resource_disabled(dev->driver->name, dev->unit)) {
2822		device_disable(dev);
2823		if (bootverbose)
2824			 device_printf(dev, "disabled via hints entry\n");
2825		return (ENXIO);
2826	}
2827
2828	device_sysctl_init(dev);
2829	if (!device_is_quiet(dev))
2830		device_print_child(dev->parent, dev);
2831	attachtime = get_cyclecount();
2832	dev->state = DS_ATTACHING;
2833	if ((error = DEVICE_ATTACH(dev)) != 0) {
2834		printf("device_attach: %s%d attach returned %d\n",
2835		    dev->driver->name, dev->unit, error);
2836		if (!(dev->flags & DF_FIXEDCLASS))
2837			devclass_delete_device(dev->devclass, dev);
2838		(void)device_set_driver(dev, NULL);
2839		device_sysctl_fini(dev);
2840		KASSERT(dev->busy == 0, ("attach failed but busy"));
2841		dev->state = DS_NOTPRESENT;
2842		return (error);
2843	}
2844	attachtime = get_cyclecount() - attachtime;
2845	/*
2846	 * 4 bits per device is a reasonable value for desktop and server
2847	 * hardware with good get_cyclecount() implementations, but may
2848	 * need to be adjusted on other platforms.
2849	 */
2850#ifdef RANDOM_DEBUG
2851	printf("%s(): feeding %d bit(s) of entropy from %s%d\n",
2852	    __func__, 4, dev->driver->name, dev->unit);
2853#endif
2854	random_harvest(&attachtime, sizeof(attachtime), 4, RANDOM_ATTACH);
2855	device_sysctl_update(dev);
2856	if (dev->busy)
2857		dev->state = DS_BUSY;
2858	else
2859		dev->state = DS_ATTACHED;
2860	dev->flags &= ~DF_DONENOMATCH;
2861	devadded(dev);
2862	return (0);
2863}
2864
2865/**
2866 * @brief Detach a driver from a device
2867 *
2868 * This function is a wrapper around the DEVICE_DETACH() driver
2869 * method. If the call to DEVICE_DETACH() succeeds, it calls
2870 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2871 * notification event for user-based device management services and
2872 * cleans up the device's sysctl tree.
2873 *
2874 * @param dev		the device to un-initialise
2875 *
2876 * @retval 0		success
2877 * @retval ENXIO	no driver was found
2878 * @retval ENOMEM	memory allocation failure
2879 * @retval non-zero	some other unix error code
2880 */
2881int
2882device_detach(device_t dev)
2883{
2884	int error;
2885
2886	GIANT_REQUIRED;
2887
2888	PDEBUG(("%s", DEVICENAME(dev)));
2889	if (dev->state == DS_BUSY)
2890		return (EBUSY);
2891	if (dev->state != DS_ATTACHED)
2892		return (0);
2893
2894	if ((error = DEVICE_DETACH(dev)) != 0)
2895		return (error);
2896	devremoved(dev);
2897	if (!device_is_quiet(dev))
2898		device_printf(dev, "detached\n");
2899	if (dev->parent)
2900		BUS_CHILD_DETACHED(dev->parent, dev);
2901
2902	if (!(dev->flags & DF_FIXEDCLASS))
2903		devclass_delete_device(dev->devclass, dev);
2904
2905	dev->state = DS_NOTPRESENT;
2906	(void)device_set_driver(dev, NULL);
2907	device_sysctl_fini(dev);
2908
2909	return (0);
2910}
2911
2912/**
2913 * @brief Tells a driver to quiesce itself.
2914 *
2915 * This function is a wrapper around the DEVICE_QUIESCE() driver
2916 * method. If the call to DEVICE_QUIESCE() succeeds.
2917 *
2918 * @param dev		the device to quiesce
2919 *
2920 * @retval 0		success
2921 * @retval ENXIO	no driver was found
2922 * @retval ENOMEM	memory allocation failure
2923 * @retval non-zero	some other unix error code
2924 */
2925int
2926device_quiesce(device_t dev)
2927{
2928
2929	PDEBUG(("%s", DEVICENAME(dev)));
2930	if (dev->state == DS_BUSY)
2931		return (EBUSY);
2932	if (dev->state != DS_ATTACHED)
2933		return (0);
2934
2935	return (DEVICE_QUIESCE(dev));
2936}
2937
2938/**
2939 * @brief Notify a device of system shutdown
2940 *
2941 * This function calls the DEVICE_SHUTDOWN() driver method if the
2942 * device currently has an attached driver.
2943 *
2944 * @returns the value returned by DEVICE_SHUTDOWN()
2945 */
2946int
2947device_shutdown(device_t dev)
2948{
2949	if (dev->state < DS_ATTACHED)
2950		return (0);
2951	return (DEVICE_SHUTDOWN(dev));
2952}
2953
2954/**
2955 * @brief Set the unit number of a device
2956 *
2957 * This function can be used to override the unit number used for a
2958 * device (e.g. to wire a device to a pre-configured unit number).
2959 */
2960int
2961device_set_unit(device_t dev, int unit)
2962{
2963	devclass_t dc;
2964	int err;
2965
2966	dc = device_get_devclass(dev);
2967	if (unit < dc->maxunit && dc->devices[unit])
2968		return (EBUSY);
2969	err = devclass_delete_device(dc, dev);
2970	if (err)
2971		return (err);
2972	dev->unit = unit;
2973	err = devclass_add_device(dc, dev);
2974	if (err)
2975		return (err);
2976
2977	bus_data_generation_update();
2978	return (0);
2979}
2980
2981/*======================================*/
2982/*
2983 * Some useful method implementations to make life easier for bus drivers.
2984 */
2985
2986/**
2987 * @brief Initialise a resource list.
2988 *
2989 * @param rl		the resource list to initialise
2990 */
2991void
2992resource_list_init(struct resource_list *rl)
2993{
2994	STAILQ_INIT(rl);
2995}
2996
2997/**
2998 * @brief Reclaim memory used by a resource list.
2999 *
3000 * This function frees the memory for all resource entries on the list
3001 * (if any).
3002 *
3003 * @param rl		the resource list to free
3004 */
3005void
3006resource_list_free(struct resource_list *rl)
3007{
3008	struct resource_list_entry *rle;
3009
3010	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3011		if (rle->res)
3012			panic("resource_list_free: resource entry is busy");
3013		STAILQ_REMOVE_HEAD(rl, link);
3014		free(rle, M_BUS);
3015	}
3016}
3017
3018/**
3019 * @brief Add a resource entry.
3020 *
3021 * This function adds a resource entry using the given @p type, @p
3022 * start, @p end and @p count values. A rid value is chosen by
3023 * searching sequentially for the first unused rid starting at zero.
3024 *
3025 * @param rl		the resource list to edit
3026 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3027 * @param start		the start address of the resource
3028 * @param end		the end address of the resource
3029 * @param count		XXX end-start+1
3030 */
3031int
3032resource_list_add_next(struct resource_list *rl, int type, u_long start,
3033    u_long end, u_long count)
3034{
3035	int rid;
3036
3037	rid = 0;
3038	while (resource_list_find(rl, type, rid) != NULL)
3039		rid++;
3040	resource_list_add(rl, type, rid, start, end, count);
3041	return (rid);
3042}
3043
3044/**
3045 * @brief Add or modify a resource entry.
3046 *
3047 * If an existing entry exists with the same type and rid, it will be
3048 * modified using the given values of @p start, @p end and @p
3049 * count. If no entry exists, a new one will be created using the
3050 * given values.  The resource list entry that matches is then returned.
3051 *
3052 * @param rl		the resource list to edit
3053 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3054 * @param rid		the resource identifier
3055 * @param start		the start address of the resource
3056 * @param end		the end address of the resource
3057 * @param count		XXX end-start+1
3058 */
3059struct resource_list_entry *
3060resource_list_add(struct resource_list *rl, int type, int rid,
3061    u_long start, u_long end, u_long count)
3062{
3063	struct resource_list_entry *rle;
3064
3065	rle = resource_list_find(rl, type, rid);
3066	if (!rle) {
3067		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
3068		    M_NOWAIT);
3069		if (!rle)
3070			panic("resource_list_add: can't record entry");
3071		STAILQ_INSERT_TAIL(rl, rle, link);
3072		rle->type = type;
3073		rle->rid = rid;
3074		rle->res = NULL;
3075		rle->flags = 0;
3076	}
3077
3078	if (rle->res)
3079		panic("resource_list_add: resource entry is busy");
3080
3081	rle->start = start;
3082	rle->end = end;
3083	rle->count = count;
3084	return (rle);
3085}
3086
3087/**
3088 * @brief Determine if a resource entry is busy.
3089 *
3090 * Returns true if a resource entry is busy meaning that it has an
3091 * associated resource that is not an unallocated "reserved" resource.
3092 *
3093 * @param rl		the resource list to search
3094 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3095 * @param rid		the resource identifier
3096 *
3097 * @returns Non-zero if the entry is busy, zero otherwise.
3098 */
3099int
3100resource_list_busy(struct resource_list *rl, int type, int rid)
3101{
3102	struct resource_list_entry *rle;
3103
3104	rle = resource_list_find(rl, type, rid);
3105	if (rle == NULL || rle->res == NULL)
3106		return (0);
3107	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
3108		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
3109		    ("reserved resource is active"));
3110		return (0);
3111	}
3112	return (1);
3113}
3114
3115/**
3116 * @brief Determine if a resource entry is reserved.
3117 *
3118 * Returns true if a resource entry is reserved meaning that it has an
3119 * associated "reserved" resource.  The resource can either be
3120 * allocated or unallocated.
3121 *
3122 * @param rl		the resource list to search
3123 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3124 * @param rid		the resource identifier
3125 *
3126 * @returns Non-zero if the entry is reserved, zero otherwise.
3127 */
3128int
3129resource_list_reserved(struct resource_list *rl, int type, int rid)
3130{
3131	struct resource_list_entry *rle;
3132
3133	rle = resource_list_find(rl, type, rid);
3134	if (rle != NULL && rle->flags & RLE_RESERVED)
3135		return (1);
3136	return (0);
3137}
3138
3139/**
3140 * @brief Find a resource entry by type and rid.
3141 *
3142 * @param rl		the resource list to search
3143 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3144 * @param rid		the resource identifier
3145 *
3146 * @returns the resource entry pointer or NULL if there is no such
3147 * entry.
3148 */
3149struct resource_list_entry *
3150resource_list_find(struct resource_list *rl, int type, int rid)
3151{
3152	struct resource_list_entry *rle;
3153
3154	STAILQ_FOREACH(rle, rl, link) {
3155		if (rle->type == type && rle->rid == rid)
3156			return (rle);
3157	}
3158	return (NULL);
3159}
3160
3161/**
3162 * @brief Delete a resource entry.
3163 *
3164 * @param rl		the resource list to edit
3165 * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
3166 * @param rid		the resource identifier
3167 */
3168void
3169resource_list_delete(struct resource_list *rl, int type, int rid)
3170{
3171	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3172
3173	if (rle) {
3174		if (rle->res != NULL)
3175			panic("resource_list_delete: resource has not been released");
3176		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3177		free(rle, M_BUS);
3178	}
3179}
3180
3181/**
3182 * @brief Allocate a reserved resource
3183 *
3184 * This can be used by busses to force the allocation of resources
3185 * that are always active in the system even if they are not allocated
3186 * by a driver (e.g. PCI BARs).  This function is usually called when
3187 * adding a new child to the bus.  The resource is allocated from the
3188 * parent bus when it is reserved.  The resource list entry is marked
3189 * with RLE_RESERVED to note that it is a reserved resource.
3190 *
3191 * Subsequent attempts to allocate the resource with
3192 * resource_list_alloc() will succeed the first time and will set
3193 * RLE_ALLOCATED to note that it has been allocated.  When a reserved
3194 * resource that has been allocated is released with
3195 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3196 * the actual resource remains allocated.  The resource can be released to
3197 * the parent bus by calling resource_list_unreserve().
3198 *
3199 * @param rl		the resource list to allocate from
3200 * @param bus		the parent device of @p child
3201 * @param child		the device for which the resource is being reserved
3202 * @param type		the type of resource to allocate
3203 * @param rid		a pointer to the resource identifier
3204 * @param start		hint at the start of the resource range - pass
3205 *			@c 0UL for any start address
3206 * @param end		hint at the end of the resource range - pass
3207 *			@c ~0UL for any end address
3208 * @param count		hint at the size of range required - pass @c 1
3209 *			for any size
3210 * @param flags		any extra flags to control the resource
3211 *			allocation - see @c RF_XXX flags in
3212 *			<sys/rman.h> for details
3213 *
3214 * @returns		the resource which was allocated or @c NULL if no
3215 *			resource could be allocated
3216 */
3217struct resource *
3218resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3219    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3220{
3221	struct resource_list_entry *rle = NULL;
3222	int passthrough = (device_get_parent(child) != bus);
3223	struct resource *r;
3224
3225	if (passthrough)
3226		panic(
3227    "resource_list_reserve() should only be called for direct children");
3228	if (flags & RF_ACTIVE)
3229		panic(
3230    "resource_list_reserve() should only reserve inactive resources");
3231
3232	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3233	    flags);
3234	if (r != NULL) {
3235		rle = resource_list_find(rl, type, *rid);
3236		rle->flags |= RLE_RESERVED;
3237	}
3238	return (r);
3239}
3240
3241/**
3242 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3243 *
3244 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3245 * and passing the allocation up to the parent of @p bus. This assumes
3246 * that the first entry of @c device_get_ivars(child) is a struct
3247 * resource_list. This also handles 'passthrough' allocations where a
3248 * child is a remote descendant of bus by passing the allocation up to
3249 * the parent of bus.
3250 *
3251 * Typically, a bus driver would store a list of child resources
3252 * somewhere in the child device's ivars (see device_get_ivars()) and
3253 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3254 * then call resource_list_alloc() to perform the allocation.
3255 *
3256 * @param rl		the resource list to allocate from
3257 * @param bus		the parent device of @p child
3258 * @param child		the device which is requesting an allocation
3259 * @param type		the type of resource to allocate
3260 * @param rid		a pointer to the resource identifier
3261 * @param start		hint at the start of the resource range - pass
3262 *			@c 0UL for any start address
3263 * @param end		hint at the end of the resource range - pass
3264 *			@c ~0UL for any end address
3265 * @param count		hint at the size of range required - pass @c 1
3266 *			for any size
3267 * @param flags		any extra flags to control the resource
3268 *			allocation - see @c RF_XXX flags in
3269 *			<sys/rman.h> for details
3270 *
3271 * @returns		the resource which was allocated or @c NULL if no
3272 *			resource could be allocated
3273 */
3274struct resource *
3275resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3276    int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
3277{
3278	struct resource_list_entry *rle = NULL;
3279	int passthrough = (device_get_parent(child) != bus);
3280	int isdefault = (start == 0UL && end == ~0UL);
3281
3282	if (passthrough) {
3283		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3284		    type, rid, start, end, count, flags));
3285	}
3286
3287	rle = resource_list_find(rl, type, *rid);
3288
3289	if (!rle)
3290		return (NULL);		/* no resource of that type/rid */
3291
3292	if (rle->res) {
3293		if (rle->flags & RLE_RESERVED) {
3294			if (rle->flags & RLE_ALLOCATED)
3295				return (NULL);
3296			if ((flags & RF_ACTIVE) &&
3297			    bus_activate_resource(child, type, *rid,
3298			    rle->res) != 0)
3299				return (NULL);
3300			rle->flags |= RLE_ALLOCATED;
3301			return (rle->res);
3302		}
3303		panic("resource_list_alloc: resource entry is busy");
3304	}
3305
3306	if (isdefault) {
3307		start = rle->start;
3308		count = ulmax(count, rle->count);
3309		end = ulmax(rle->end, start + count - 1);
3310	}
3311
3312	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3313	    type, rid, start, end, count, flags);
3314
3315	/*
3316	 * Record the new range.
3317	 */
3318	if (rle->res) {
3319		rle->start = rman_get_start(rle->res);
3320		rle->end = rman_get_end(rle->res);
3321		rle->count = count;
3322	}
3323
3324	return (rle->res);
3325}
3326
3327/**
3328 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3329 *
3330 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3331 * used with resource_list_alloc().
3332 *
3333 * @param rl		the resource list which was allocated from
3334 * @param bus		the parent device of @p child
3335 * @param child		the device which is requesting a release
3336 * @param type		the type of resource to release
3337 * @param rid		the resource identifier
3338 * @param res		the resource to release
3339 *
3340 * @retval 0		success
3341 * @retval non-zero	a standard unix error code indicating what
3342 *			error condition prevented the operation
3343 */
3344int
3345resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3346    int type, int rid, struct resource *res)
3347{
3348	struct resource_list_entry *rle = NULL;
3349	int passthrough = (device_get_parent(child) != bus);
3350	int error;
3351
3352	if (passthrough) {
3353		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3354		    type, rid, res));
3355	}
3356
3357	rle = resource_list_find(rl, type, rid);
3358
3359	if (!rle)
3360		panic("resource_list_release: can't find resource");
3361	if (!rle->res)
3362		panic("resource_list_release: resource entry is not busy");
3363	if (rle->flags & RLE_RESERVED) {
3364		if (rle->flags & RLE_ALLOCATED) {
3365			if (rman_get_flags(res) & RF_ACTIVE) {
3366				error = bus_deactivate_resource(child, type,
3367				    rid, res);
3368				if (error)
3369					return (error);
3370			}
3371			rle->flags &= ~RLE_ALLOCATED;
3372			return (0);
3373		}
3374		return (EINVAL);
3375	}
3376
3377	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3378	    type, rid, res);
3379	if (error)
3380		return (error);
3381
3382	rle->res = NULL;
3383	return (0);
3384}
3385
3386/**
3387 * @brief Release all active resources of a given type
3388 *
3389 * Release all active resources of a specified type.  This is intended
3390 * to be used to cleanup resources leaked by a driver after detach or
3391 * a failed attach.
3392 *
3393 * @param rl		the resource list which was allocated from
3394 * @param bus		the parent device of @p child
3395 * @param child		the device whose active resources are being released
3396 * @param type		the type of resources to release
3397 *
3398 * @retval 0		success
3399 * @retval EBUSY	at least one resource was active
3400 */
3401int
3402resource_list_release_active(struct resource_list *rl, device_t bus,
3403    device_t child, int type)
3404{
3405	struct resource_list_entry *rle;
3406	int error, retval;
3407
3408	retval = 0;
3409	STAILQ_FOREACH(rle, rl, link) {
3410		if (rle->type != type)
3411			continue;
3412		if (rle->res == NULL)
3413			continue;
3414		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3415		    RLE_RESERVED)
3416			continue;
3417		retval = EBUSY;
3418		error = resource_list_release(rl, bus, child, type,
3419		    rman_get_rid(rle->res), rle->res);
3420		if (error != 0)
3421			device_printf(bus,
3422			    "Failed to release active resource: %d\n", error);
3423	}
3424	return (retval);
3425}
3426
3427
3428/**
3429 * @brief Fully release a reserved resource
3430 *
3431 * Fully releases a resource reserved via resource_list_reserve().
3432 *
3433 * @param rl		the resource list which was allocated from
3434 * @param bus		the parent device of @p child
3435 * @param child		the device whose reserved resource is being released
3436 * @param type		the type of resource to release
3437 * @param rid		the resource identifier
3438 * @param res		the resource to release
3439 *
3440 * @retval 0		success
3441 * @retval non-zero	a standard unix error code indicating what
3442 *			error condition prevented the operation
3443 */
3444int
3445resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3446    int type, int rid)
3447{
3448	struct resource_list_entry *rle = NULL;
3449	int passthrough = (device_get_parent(child) != bus);
3450
3451	if (passthrough)
3452		panic(
3453    "resource_list_unreserve() should only be called for direct children");
3454
3455	rle = resource_list_find(rl, type, rid);
3456
3457	if (!rle)
3458		panic("resource_list_unreserve: can't find resource");
3459	if (!(rle->flags & RLE_RESERVED))
3460		return (EINVAL);
3461	if (rle->flags & RLE_ALLOCATED)
3462		return (EBUSY);
3463	rle->flags &= ~RLE_RESERVED;
3464	return (resource_list_release(rl, bus, child, type, rid, rle->res));
3465}
3466
3467/**
3468 * @brief Print a description of resources in a resource list
3469 *
3470 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3471 * The name is printed if at least one resource of the given type is available.
3472 * The format is used to print resource start and end.
3473 *
3474 * @param rl		the resource list to print
3475 * @param name		the name of @p type, e.g. @c "memory"
3476 * @param type		type type of resource entry to print
3477 * @param format	printf(9) format string to print resource
3478 *			start and end values
3479 *
3480 * @returns		the number of characters printed
3481 */
3482int
3483resource_list_print_type(struct resource_list *rl, const char *name, int type,
3484    const char *format)
3485{
3486	struct resource_list_entry *rle;
3487	int printed, retval;
3488
3489	printed = 0;
3490	retval = 0;
3491	/* Yes, this is kinda cheating */
3492	STAILQ_FOREACH(rle, rl, link) {
3493		if (rle->type == type) {
3494			if (printed == 0)
3495				retval += printf(" %s ", name);
3496			else
3497				retval += printf(",");
3498			printed++;
3499			retval += printf(format, rle->start);
3500			if (rle->count > 1) {
3501				retval += printf("-");
3502				retval += printf(format, rle->start +
3503						 rle->count - 1);
3504			}
3505		}
3506	}
3507	return (retval);
3508}
3509
3510/**
3511 * @brief Releases all the resources in a list.
3512 *
3513 * @param rl		The resource list to purge.
3514 *
3515 * @returns		nothing
3516 */
3517void
3518resource_list_purge(struct resource_list *rl)
3519{
3520	struct resource_list_entry *rle;
3521
3522	while ((rle = STAILQ_FIRST(rl)) != NULL) {
3523		if (rle->res)
3524			bus_release_resource(rman_get_device(rle->res),
3525			    rle->type, rle->rid, rle->res);
3526		STAILQ_REMOVE_HEAD(rl, link);
3527		free(rle, M_BUS);
3528	}
3529}
3530
3531device_t
3532bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3533{
3534
3535	return (device_add_child_ordered(dev, order, name, unit));
3536}
3537
3538/**
3539 * @brief Helper function for implementing DEVICE_PROBE()
3540 *
3541 * This function can be used to help implement the DEVICE_PROBE() for
3542 * a bus (i.e. a device which has other devices attached to it). It
3543 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3544 * devclass.
3545 */
3546int
3547bus_generic_probe(device_t dev)
3548{
3549	devclass_t dc = dev->devclass;
3550	driverlink_t dl;
3551
3552	TAILQ_FOREACH(dl, &dc->drivers, link) {
3553		/*
3554		 * If this driver's pass is too high, then ignore it.
3555		 * For most drivers in the default pass, this will
3556		 * never be true.  For early-pass drivers they will
3557		 * only call the identify routines of eligible drivers
3558		 * when this routine is called.  Drivers for later
3559		 * passes should have their identify routines called
3560		 * on early-pass busses during BUS_NEW_PASS().
3561		 */
3562		if (dl->pass > bus_current_pass)
3563			continue;
3564		DEVICE_IDENTIFY(dl->driver, dev);
3565	}
3566
3567	return (0);
3568}
3569
3570/**
3571 * @brief Helper function for implementing DEVICE_ATTACH()
3572 *
3573 * This function can be used to help implement the DEVICE_ATTACH() for
3574 * a bus. It calls device_probe_and_attach() for each of the device's
3575 * children.
3576 */
3577int
3578bus_generic_attach(device_t dev)
3579{
3580	device_t child;
3581
3582	TAILQ_FOREACH(child, &dev->children, link) {
3583		device_probe_and_attach(child);
3584	}
3585
3586	return (0);
3587}
3588
3589/**
3590 * @brief Helper function for implementing DEVICE_DETACH()
3591 *
3592 * This function can be used to help implement the DEVICE_DETACH() for
3593 * a bus. It calls device_detach() for each of the device's
3594 * children.
3595 */
3596int
3597bus_generic_detach(device_t dev)
3598{
3599	device_t child;
3600	int error;
3601
3602	if (dev->state != DS_ATTACHED)
3603		return (EBUSY);
3604
3605	TAILQ_FOREACH(child, &dev->children, link) {
3606		if ((error = device_detach(child)) != 0)
3607			return (error);
3608	}
3609
3610	return (0);
3611}
3612
3613/**
3614 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3615 *
3616 * This function can be used to help implement the DEVICE_SHUTDOWN()
3617 * for a bus. It calls device_shutdown() for each of the device's
3618 * children.
3619 */
3620int
3621bus_generic_shutdown(device_t dev)
3622{
3623	device_t child;
3624
3625	TAILQ_FOREACH(child, &dev->children, link) {
3626		device_shutdown(child);
3627	}
3628
3629	return (0);
3630}
3631
3632/**
3633 * @brief Helper function for implementing DEVICE_SUSPEND()
3634 *
3635 * This function can be used to help implement the DEVICE_SUSPEND()
3636 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3637 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3638 * operation is aborted and any devices which were suspended are
3639 * resumed immediately by calling their DEVICE_RESUME() methods.
3640 */
3641int
3642bus_generic_suspend(device_t dev)
3643{
3644	int		error;
3645	device_t	child, child2;
3646
3647	TAILQ_FOREACH(child, &dev->children, link) {
3648		error = DEVICE_SUSPEND(child);
3649		if (error) {
3650			for (child2 = TAILQ_FIRST(&dev->children);
3651			     child2 && child2 != child;
3652			     child2 = TAILQ_NEXT(child2, link))
3653				DEVICE_RESUME(child2);
3654			return (error);
3655		}
3656	}
3657	return (0);
3658}
3659
3660/**
3661 * @brief Helper function for implementing DEVICE_RESUME()
3662 *
3663 * This function can be used to help implement the DEVICE_RESUME() for
3664 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3665 */
3666int
3667bus_generic_resume(device_t dev)
3668{
3669	device_t	child;
3670
3671	TAILQ_FOREACH(child, &dev->children, link) {
3672		DEVICE_RESUME(child);
3673		/* if resume fails, there's nothing we can usefully do... */
3674	}
3675	return (0);
3676}
3677
3678/**
3679 * @brief Helper function for implementing BUS_PRINT_CHILD().
3680 *
3681 * This function prints the first part of the ascii representation of
3682 * @p child, including its name, unit and description (if any - see
3683 * device_set_desc()).
3684 *
3685 * @returns the number of characters printed
3686 */
3687int
3688bus_print_child_header(device_t dev, device_t child)
3689{
3690	int	retval = 0;
3691
3692	if (device_get_desc(child)) {
3693		retval += device_printf(child, "<%s>", device_get_desc(child));
3694	} else {
3695		retval += printf("%s", device_get_nameunit(child));
3696	}
3697
3698	return (retval);
3699}
3700
3701/**
3702 * @brief Helper function for implementing BUS_PRINT_CHILD().
3703 *
3704 * This function prints the last part of the ascii representation of
3705 * @p child, which consists of the string @c " on " followed by the
3706 * name and unit of the @p dev.
3707 *
3708 * @returns the number of characters printed
3709 */
3710int
3711bus_print_child_footer(device_t dev, device_t child)
3712{
3713	return (printf(" on %s\n", device_get_nameunit(dev)));
3714}
3715
3716/**
3717 * @brief Helper function for implementing BUS_PRINT_CHILD().
3718 *
3719 * This function simply calls bus_print_child_header() followed by
3720 * bus_print_child_footer().
3721 *
3722 * @returns the number of characters printed
3723 */
3724int
3725bus_generic_print_child(device_t dev, device_t child)
3726{
3727	int	retval = 0;
3728
3729	retval += bus_print_child_header(dev, child);
3730	retval += bus_print_child_footer(dev, child);
3731
3732	return (retval);
3733}
3734
3735/**
3736 * @brief Stub function for implementing BUS_READ_IVAR().
3737 *
3738 * @returns ENOENT
3739 */
3740int
3741bus_generic_read_ivar(device_t dev, device_t child, int index,
3742    uintptr_t * result)
3743{
3744	return (ENOENT);
3745}
3746
3747/**
3748 * @brief Stub function for implementing BUS_WRITE_IVAR().
3749 *
3750 * @returns ENOENT
3751 */
3752int
3753bus_generic_write_ivar(device_t dev, device_t child, int index,
3754    uintptr_t value)
3755{
3756	return (ENOENT);
3757}
3758
3759/**
3760 * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
3761 *
3762 * @returns NULL
3763 */
3764struct resource_list *
3765bus_generic_get_resource_list(device_t dev, device_t child)
3766{
3767	return (NULL);
3768}
3769
3770/**
3771 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3772 *
3773 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3774 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3775 * and then calls device_probe_and_attach() for each unattached child.
3776 */
3777void
3778bus_generic_driver_added(device_t dev, driver_t *driver)
3779{
3780	device_t child;
3781
3782	DEVICE_IDENTIFY(driver, dev);
3783	TAILQ_FOREACH(child, &dev->children, link) {
3784		if (child->state == DS_NOTPRESENT ||
3785		    (child->flags & DF_REBID))
3786			device_probe_and_attach(child);
3787	}
3788}
3789
3790/**
3791 * @brief Helper function for implementing BUS_NEW_PASS().
3792 *
3793 * This implementing of BUS_NEW_PASS() first calls the identify
3794 * routines for any drivers that probe at the current pass.  Then it
3795 * walks the list of devices for this bus.  If a device is already
3796 * attached, then it calls BUS_NEW_PASS() on that device.  If the
3797 * device is not already attached, it attempts to attach a driver to
3798 * it.
3799 */
3800void
3801bus_generic_new_pass(device_t dev)
3802{
3803	driverlink_t dl;
3804	devclass_t dc;
3805	device_t child;
3806
3807	dc = dev->devclass;
3808	TAILQ_FOREACH(dl, &dc->drivers, link) {
3809		if (dl->pass == bus_current_pass)
3810			DEVICE_IDENTIFY(dl->driver, dev);
3811	}
3812	TAILQ_FOREACH(child, &dev->children, link) {
3813		if (child->state >= DS_ATTACHED)
3814			BUS_NEW_PASS(child);
3815		else if (child->state == DS_NOTPRESENT)
3816			device_probe_and_attach(child);
3817	}
3818}
3819
3820/**
3821 * @brief Helper function for implementing BUS_SETUP_INTR().
3822 *
3823 * This simple implementation of BUS_SETUP_INTR() simply calls the
3824 * BUS_SETUP_INTR() method of the parent of @p dev.
3825 */
3826int
3827bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3828    int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3829    void **cookiep)
3830{
3831	/* Propagate up the bus hierarchy until someone handles it. */
3832	if (dev->parent)
3833		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3834		    filter, intr, arg, cookiep));
3835	return (EINVAL);
3836}
3837
3838/**
3839 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3840 *
3841 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3842 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3843 */
3844int
3845bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3846    void *cookie)
3847{
3848	/* Propagate up the bus hierarchy until someone handles it. */
3849	if (dev->parent)
3850		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3851	return (EINVAL);
3852}
3853
3854/**
3855 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3856 *
3857 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3858 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3859 */
3860int
3861bus_generic_adjust_resource(device_t dev, device_t child, int type,
3862    struct resource *r, u_long start, u_long end)
3863{
3864	/* Propagate up the bus hierarchy until someone handles it. */
3865	if (dev->parent)
3866		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
3867		    end));
3868	return (EINVAL);
3869}
3870
3871/**
3872 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
3873 *
3874 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
3875 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
3876 */
3877struct resource *
3878bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
3879    u_long start, u_long end, u_long count, u_int flags)
3880{
3881	/* Propagate up the bus hierarchy until someone handles it. */
3882	if (dev->parent)
3883		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
3884		    start, end, count, flags));
3885	return (NULL);
3886}
3887
3888/**
3889 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
3890 *
3891 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
3892 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
3893 */
3894int
3895bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
3896    struct resource *r)
3897{
3898	/* Propagate up the bus hierarchy until someone handles it. */
3899	if (dev->parent)
3900		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
3901		    r));
3902	return (EINVAL);
3903}
3904
3905/**
3906 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
3907 *
3908 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
3909 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
3910 */
3911int
3912bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
3913    struct resource *r)
3914{
3915	/* Propagate up the bus hierarchy until someone handles it. */
3916	if (dev->parent)
3917		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
3918		    r));
3919	return (EINVAL);
3920}
3921
3922/**
3923 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
3924 *
3925 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
3926 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
3927 */
3928int
3929bus_generic_deactivate_resource(device_t dev, device_t child, int type,
3930    int rid, struct resource *r)
3931{
3932	/* Propagate up the bus hierarchy until someone handles it. */
3933	if (dev->parent)
3934		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
3935		    r));
3936	return (EINVAL);
3937}
3938
3939/**
3940 * @brief Helper function for implementing BUS_BIND_INTR().
3941 *
3942 * This simple implementation of BUS_BIND_INTR() simply calls the
3943 * BUS_BIND_INTR() method of the parent of @p dev.
3944 */
3945int
3946bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
3947    int cpu)
3948{
3949
3950	/* Propagate up the bus hierarchy until someone handles it. */
3951	if (dev->parent)
3952		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
3953	return (EINVAL);
3954}
3955
3956/**
3957 * @brief Helper function for implementing BUS_CONFIG_INTR().
3958 *
3959 * This simple implementation of BUS_CONFIG_INTR() simply calls the
3960 * BUS_CONFIG_INTR() method of the parent of @p dev.
3961 */
3962int
3963bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
3964    enum intr_polarity pol)
3965{
3966
3967	/* Propagate up the bus hierarchy until someone handles it. */
3968	if (dev->parent)
3969		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
3970	return (EINVAL);
3971}
3972
3973/**
3974 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
3975 *
3976 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
3977 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
3978 */
3979int
3980bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
3981    void *cookie, const char *descr)
3982{
3983
3984	/* Propagate up the bus hierarchy until someone handles it. */
3985	if (dev->parent)
3986		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
3987		    descr));
3988	return (EINVAL);
3989}
3990
3991/**
3992 * @brief Helper function for implementing BUS_GET_DMA_TAG().
3993 *
3994 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
3995 * BUS_GET_DMA_TAG() method of the parent of @p dev.
3996 */
3997bus_dma_tag_t
3998bus_generic_get_dma_tag(device_t dev, device_t child)
3999{
4000
4001	/* Propagate up the bus hierarchy until someone handles it. */
4002	if (dev->parent != NULL)
4003		return (BUS_GET_DMA_TAG(dev->parent, child));
4004	return (NULL);
4005}
4006
4007/**
4008 * @brief Helper function for implementing BUS_GET_RESOURCE().
4009 *
4010 * This implementation of BUS_GET_RESOURCE() uses the
4011 * resource_list_find() function to do most of the work. It calls
4012 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4013 * search.
4014 */
4015int
4016bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4017    u_long *startp, u_long *countp)
4018{
4019	struct resource_list *		rl = NULL;
4020	struct resource_list_entry *	rle = NULL;
4021
4022	rl = BUS_GET_RESOURCE_LIST(dev, child);
4023	if (!rl)
4024		return (EINVAL);
4025
4026	rle = resource_list_find(rl, type, rid);
4027	if (!rle)
4028		return (ENOENT);
4029
4030	if (startp)
4031		*startp = rle->start;
4032	if (countp)
4033		*countp = rle->count;
4034
4035	return (0);
4036}
4037
4038/**
4039 * @brief Helper function for implementing BUS_SET_RESOURCE().
4040 *
4041 * This implementation of BUS_SET_RESOURCE() uses the
4042 * resource_list_add() function to do most of the work. It calls
4043 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4044 * edit.
4045 */
4046int
4047bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4048    u_long start, u_long count)
4049{
4050	struct resource_list *		rl = NULL;
4051
4052	rl = BUS_GET_RESOURCE_LIST(dev, child);
4053	if (!rl)
4054		return (EINVAL);
4055
4056	resource_list_add(rl, type, rid, start, (start + count - 1), count);
4057
4058	return (0);
4059}
4060
4061/**
4062 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4063 *
4064 * This implementation of BUS_DELETE_RESOURCE() uses the
4065 * resource_list_delete() function to do most of the work. It calls
4066 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4067 * edit.
4068 */
4069void
4070bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4071{
4072	struct resource_list *		rl = NULL;
4073
4074	rl = BUS_GET_RESOURCE_LIST(dev, child);
4075	if (!rl)
4076		return;
4077
4078	resource_list_delete(rl, type, rid);
4079
4080	return;
4081}
4082
4083/**
4084 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4085 *
4086 * This implementation of BUS_RELEASE_RESOURCE() uses the
4087 * resource_list_release() function to do most of the work. It calls
4088 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4089 */
4090int
4091bus_generic_rl_release_resource(device_t dev, device_t child, int type,
4092    int rid, struct resource *r)
4093{
4094	struct resource_list *		rl = NULL;
4095
4096	if (device_get_parent(child) != dev)
4097		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
4098		    type, rid, r));
4099
4100	rl = BUS_GET_RESOURCE_LIST(dev, child);
4101	if (!rl)
4102		return (EINVAL);
4103
4104	return (resource_list_release(rl, dev, child, type, rid, r));
4105}
4106
4107/**
4108 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4109 *
4110 * This implementation of BUS_ALLOC_RESOURCE() uses the
4111 * resource_list_alloc() function to do most of the work. It calls
4112 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4113 */
4114struct resource *
4115bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4116    int *rid, u_long start, u_long end, u_long count, u_int flags)
4117{
4118	struct resource_list *		rl = NULL;
4119
4120	if (device_get_parent(child) != dev)
4121		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4122		    type, rid, start, end, count, flags));
4123
4124	rl = BUS_GET_RESOURCE_LIST(dev, child);
4125	if (!rl)
4126		return (NULL);
4127
4128	return (resource_list_alloc(rl, dev, child, type, rid,
4129	    start, end, count, flags));
4130}
4131
4132/**
4133 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4134 *
4135 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4136 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4137 */
4138int
4139bus_generic_child_present(device_t dev, device_t child)
4140{
4141	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4142}
4143
4144/*
4145 * Some convenience functions to make it easier for drivers to use the
4146 * resource-management functions.  All these really do is hide the
4147 * indirection through the parent's method table, making for slightly
4148 * less-wordy code.  In the future, it might make sense for this code
4149 * to maintain some sort of a list of resources allocated by each device.
4150 */
4151
4152int
4153bus_alloc_resources(device_t dev, struct resource_spec *rs,
4154    struct resource **res)
4155{
4156	int i;
4157
4158	for (i = 0; rs[i].type != -1; i++)
4159		res[i] = NULL;
4160	for (i = 0; rs[i].type != -1; i++) {
4161		res[i] = bus_alloc_resource_any(dev,
4162		    rs[i].type, &rs[i].rid, rs[i].flags);
4163		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4164			bus_release_resources(dev, rs, res);
4165			return (ENXIO);
4166		}
4167	}
4168	return (0);
4169}
4170
4171void
4172bus_release_resources(device_t dev, const struct resource_spec *rs,
4173    struct resource **res)
4174{
4175	int i;
4176
4177	for (i = 0; rs[i].type != -1; i++)
4178		if (res[i] != NULL) {
4179			bus_release_resource(
4180			    dev, rs[i].type, rs[i].rid, res[i]);
4181			res[i] = NULL;
4182		}
4183}
4184
4185/**
4186 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4187 *
4188 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4189 * parent of @p dev.
4190 */
4191struct resource *
4192bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
4193    u_long count, u_int flags)
4194{
4195	if (dev->parent == NULL)
4196		return (NULL);
4197	return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4198	    count, flags));
4199}
4200
4201/**
4202 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4203 *
4204 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4205 * parent of @p dev.
4206 */
4207int
4208bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
4209    u_long end)
4210{
4211	if (dev->parent == NULL)
4212		return (EINVAL);
4213	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
4214}
4215
4216/**
4217 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4218 *
4219 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4220 * parent of @p dev.
4221 */
4222int
4223bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
4224{
4225	if (dev->parent == NULL)
4226		return (EINVAL);
4227	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4228}
4229
4230/**
4231 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4232 *
4233 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4234 * parent of @p dev.
4235 */
4236int
4237bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
4238{
4239	if (dev->parent == NULL)
4240		return (EINVAL);
4241	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
4242}
4243
4244/**
4245 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4246 *
4247 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4248 * parent of @p dev.
4249 */
4250int
4251bus_release_resource(device_t dev, int type, int rid, struct resource *r)
4252{
4253	if (dev->parent == NULL)
4254		return (EINVAL);
4255	return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
4256}
4257
4258/**
4259 * @brief Wrapper function for BUS_SETUP_INTR().
4260 *
4261 * This function simply calls the BUS_SETUP_INTR() method of the
4262 * parent of @p dev.
4263 */
4264int
4265bus_setup_intr(device_t dev, struct resource *r, int flags,
4266    driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4267{
4268	int error;
4269
4270	if (dev->parent == NULL)
4271		return (EINVAL);
4272	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4273	    arg, cookiep);
4274	if (error != 0)
4275		return (error);
4276	if (handler != NULL && !(flags & INTR_MPSAFE))
4277		device_printf(dev, "[GIANT-LOCKED]\n");
4278	return (0);
4279}
4280
4281/**
4282 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4283 *
4284 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4285 * parent of @p dev.
4286 */
4287int
4288bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4289{
4290	if (dev->parent == NULL)
4291		return (EINVAL);
4292	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4293}
4294
4295/**
4296 * @brief Wrapper function for BUS_BIND_INTR().
4297 *
4298 * This function simply calls the BUS_BIND_INTR() method of the
4299 * parent of @p dev.
4300 */
4301int
4302bus_bind_intr(device_t dev, struct resource *r, int cpu)
4303{
4304	if (dev->parent == NULL)
4305		return (EINVAL);
4306	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4307}
4308
4309/**
4310 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4311 *
4312 * This function first formats the requested description into a
4313 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4314 * the parent of @p dev.
4315 */
4316int
4317bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4318    const char *fmt, ...)
4319{
4320	va_list ap;
4321	char descr[MAXCOMLEN + 1];
4322
4323	if (dev->parent == NULL)
4324		return (EINVAL);
4325	va_start(ap, fmt);
4326	vsnprintf(descr, sizeof(descr), fmt, ap);
4327	va_end(ap);
4328	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4329}
4330
4331/**
4332 * @brief Wrapper function for BUS_SET_RESOURCE().
4333 *
4334 * This function simply calls the BUS_SET_RESOURCE() method of the
4335 * parent of @p dev.
4336 */
4337int
4338bus_set_resource(device_t dev, int type, int rid,
4339    u_long start, u_long count)
4340{
4341	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4342	    start, count));
4343}
4344
4345/**
4346 * @brief Wrapper function for BUS_GET_RESOURCE().
4347 *
4348 * This function simply calls the BUS_GET_RESOURCE() method of the
4349 * parent of @p dev.
4350 */
4351int
4352bus_get_resource(device_t dev, int type, int rid,
4353    u_long *startp, u_long *countp)
4354{
4355	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4356	    startp, countp));
4357}
4358
4359/**
4360 * @brief Wrapper function for BUS_GET_RESOURCE().
4361 *
4362 * This function simply calls the BUS_GET_RESOURCE() method of the
4363 * parent of @p dev and returns the start value.
4364 */
4365u_long
4366bus_get_resource_start(device_t dev, int type, int rid)
4367{
4368	u_long start, count;
4369	int error;
4370
4371	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4372	    &start, &count);
4373	if (error)
4374		return (0);
4375	return (start);
4376}
4377
4378/**
4379 * @brief Wrapper function for BUS_GET_RESOURCE().
4380 *
4381 * This function simply calls the BUS_GET_RESOURCE() method of the
4382 * parent of @p dev and returns the count value.
4383 */
4384u_long
4385bus_get_resource_count(device_t dev, int type, int rid)
4386{
4387	u_long start, count;
4388	int error;
4389
4390	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4391	    &start, &count);
4392	if (error)
4393		return (0);
4394	return (count);
4395}
4396
4397/**
4398 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4399 *
4400 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4401 * parent of @p dev.
4402 */
4403void
4404bus_delete_resource(device_t dev, int type, int rid)
4405{
4406	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4407}
4408
4409/**
4410 * @brief Wrapper function for BUS_CHILD_PRESENT().
4411 *
4412 * This function simply calls the BUS_CHILD_PRESENT() method of the
4413 * parent of @p dev.
4414 */
4415int
4416bus_child_present(device_t child)
4417{
4418	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4419}
4420
4421/**
4422 * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
4423 *
4424 * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
4425 * parent of @p dev.
4426 */
4427int
4428bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
4429{
4430	device_t parent;
4431
4432	parent = device_get_parent(child);
4433	if (parent == NULL) {
4434		*buf = '\0';
4435		return (0);
4436	}
4437	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
4438}
4439
4440/**
4441 * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
4442 *
4443 * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
4444 * parent of @p dev.
4445 */
4446int
4447bus_child_location_str(device_t child, char *buf, size_t buflen)
4448{
4449	device_t parent;
4450
4451	parent = device_get_parent(child);
4452	if (parent == NULL) {
4453		*buf = '\0';
4454		return (0);
4455	}
4456	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
4457}
4458
4459/**
4460 * @brief Wrapper function for BUS_GET_DMA_TAG().
4461 *
4462 * This function simply calls the BUS_GET_DMA_TAG() method of the
4463 * parent of @p dev.
4464 */
4465bus_dma_tag_t
4466bus_get_dma_tag(device_t dev)
4467{
4468	device_t parent;
4469
4470	parent = device_get_parent(dev);
4471	if (parent == NULL)
4472		return (NULL);
4473	return (BUS_GET_DMA_TAG(parent, dev));
4474}
4475
4476/* Resume all devices and then notify userland that we're up again. */
4477static int
4478root_resume(device_t dev)
4479{
4480	int error;
4481
4482	error = bus_generic_resume(dev);
4483	if (error == 0)
4484		devctl_notify("kern", "power", "resume", NULL);
4485	return (error);
4486}
4487
4488static int
4489root_print_child(device_t dev, device_t child)
4490{
4491	int	retval = 0;
4492
4493	retval += bus_print_child_header(dev, child);
4494	retval += printf("\n");
4495
4496	return (retval);
4497}
4498
4499static int
4500root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4501    driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4502{
4503	/*
4504	 * If an interrupt mapping gets to here something bad has happened.
4505	 */
4506	panic("root_setup_intr");
4507}
4508
4509/*
4510 * If we get here, assume that the device is permanant and really is
4511 * present in the system.  Removable bus drivers are expected to intercept
4512 * this call long before it gets here.  We return -1 so that drivers that
4513 * really care can check vs -1 or some ERRNO returned higher in the food
4514 * chain.
4515 */
4516static int
4517root_child_present(device_t dev, device_t child)
4518{
4519	return (-1);
4520}
4521
4522static kobj_method_t root_methods[] = {
4523	/* Device interface */
4524	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
4525	KOBJMETHOD(device_suspend,	bus_generic_suspend),
4526	KOBJMETHOD(device_resume,	root_resume),
4527
4528	/* Bus interface */
4529	KOBJMETHOD(bus_print_child,	root_print_child),
4530	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
4531	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
4532	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
4533	KOBJMETHOD(bus_child_present,	root_child_present),
4534
4535	KOBJMETHOD_END
4536};
4537
4538static driver_t root_driver = {
4539	"root",
4540	root_methods,
4541	1,			/* no softc */
4542};
4543
4544device_t	root_bus;
4545devclass_t	root_devclass;
4546
4547static int
4548root_bus_module_handler(module_t mod, int what, void* arg)
4549{
4550	switch (what) {
4551	case MOD_LOAD:
4552		TAILQ_INIT(&bus_data_devices);
4553		kobj_class_compile((kobj_class_t) &root_driver);
4554		root_bus = make_device(NULL, "root", 0);
4555		root_bus->desc = "System root bus";
4556		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
4557		root_bus->driver = &root_driver;
4558		root_bus->state = DS_ATTACHED;
4559		root_devclass = devclass_find_internal("root", NULL, FALSE);
4560		devinit();
4561		return (0);
4562
4563	case MOD_SHUTDOWN:
4564		device_shutdown(root_bus);
4565		return (0);
4566	default:
4567		return (EOPNOTSUPP);
4568	}
4569
4570	return (0);
4571}
4572
4573static moduledata_t root_bus_mod = {
4574	"rootbus",
4575	root_bus_module_handler,
4576	NULL
4577};
4578DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
4579
4580/**
4581 * @brief Automatically configure devices
4582 *
4583 * This function begins the autoconfiguration process by calling
4584 * device_probe_and_attach() for each child of the @c root0 device.
4585 */
4586void
4587root_bus_configure(void)
4588{
4589
4590	PDEBUG(("."));
4591
4592	/* Eventually this will be split up, but this is sufficient for now. */
4593	bus_set_pass(BUS_PASS_DEFAULT);
4594}
4595
4596/**
4597 * @brief Module handler for registering device drivers
4598 *
4599 * This module handler is used to automatically register device
4600 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
4601 * devclass_add_driver() for the driver described by the
4602 * driver_module_data structure pointed to by @p arg
4603 */
4604int
4605driver_module_handler(module_t mod, int what, void *arg)
4606{
4607	struct driver_module_data *dmd;
4608	devclass_t bus_devclass;
4609	kobj_class_t driver;
4610	int error, pass;
4611
4612	dmd = (struct driver_module_data *)arg;
4613	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
4614	error = 0;
4615
4616	switch (what) {
4617	case MOD_LOAD:
4618		if (dmd->dmd_chainevh)
4619			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4620
4621		pass = dmd->dmd_pass;
4622		driver = dmd->dmd_driver;
4623		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
4624		    DRIVERNAME(driver), dmd->dmd_busname, pass));
4625		error = devclass_add_driver(bus_devclass, driver, pass,
4626		    dmd->dmd_devclass);
4627		break;
4628
4629	case MOD_UNLOAD:
4630		PDEBUG(("Unloading module: driver %s from bus %s",
4631		    DRIVERNAME(dmd->dmd_driver),
4632		    dmd->dmd_busname));
4633		error = devclass_delete_driver(bus_devclass,
4634		    dmd->dmd_driver);
4635
4636		if (!error && dmd->dmd_chainevh)
4637			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4638		break;
4639	case MOD_QUIESCE:
4640		PDEBUG(("Quiesce module: driver %s from bus %s",
4641		    DRIVERNAME(dmd->dmd_driver),
4642		    dmd->dmd_busname));
4643		error = devclass_quiesce_driver(bus_devclass,
4644		    dmd->dmd_driver);
4645
4646		if (!error && dmd->dmd_chainevh)
4647			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
4648		break;
4649	default:
4650		error = EOPNOTSUPP;
4651		break;
4652	}
4653
4654	return (error);
4655}
4656
4657/**
4658 * @brief Enumerate all hinted devices for this bus.
4659 *
4660 * Walks through the hints for this bus and calls the bus_hinted_child
4661 * routine for each one it fines.  It searches first for the specific
4662 * bus that's being probed for hinted children (eg isa0), and then for
4663 * generic children (eg isa).
4664 *
4665 * @param	dev	bus device to enumerate
4666 */
4667void
4668bus_enumerate_hinted_children(device_t bus)
4669{
4670	int i;
4671	const char *dname, *busname;
4672	int dunit;
4673
4674	/*
4675	 * enumerate all devices on the specific bus
4676	 */
4677	busname = device_get_nameunit(bus);
4678	i = 0;
4679	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4680		BUS_HINTED_CHILD(bus, dname, dunit);
4681
4682	/*
4683	 * and all the generic ones.
4684	 */
4685	busname = device_get_name(bus);
4686	i = 0;
4687	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
4688		BUS_HINTED_CHILD(bus, dname, dunit);
4689}
4690
4691#ifdef BUS_DEBUG
4692
4693/* the _short versions avoid iteration by not calling anything that prints
4694 * more than oneliners. I love oneliners.
4695 */
4696
4697static void
4698print_device_short(device_t dev, int indent)
4699{
4700	if (!dev)
4701		return;
4702
4703	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
4704	    dev->unit, dev->desc,
4705	    (dev->parent? "":"no "),
4706	    (TAILQ_EMPTY(&dev->children)? "no ":""),
4707	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
4708	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
4709	    (dev->flags&DF_WILDCARD? "wildcard,":""),
4710	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
4711	    (dev->flags&DF_REBID? "rebiddable,":""),
4712	    (dev->ivars? "":"no "),
4713	    (dev->softc? "":"no "),
4714	    dev->busy));
4715}
4716
4717static void
4718print_device(device_t dev, int indent)
4719{
4720	if (!dev)
4721		return;
4722
4723	print_device_short(dev, indent);
4724
4725	indentprintf(("Parent:\n"));
4726	print_device_short(dev->parent, indent+1);
4727	indentprintf(("Driver:\n"));
4728	print_driver_short(dev->driver, indent+1);
4729	indentprintf(("Devclass:\n"));
4730	print_devclass_short(dev->devclass, indent+1);
4731}
4732
4733void
4734print_device_tree_short(device_t dev, int indent)
4735/* print the device and all its children (indented) */
4736{
4737	device_t child;
4738
4739	if (!dev)
4740		return;
4741
4742	print_device_short(dev, indent);
4743
4744	TAILQ_FOREACH(child, &dev->children, link) {
4745		print_device_tree_short(child, indent+1);
4746	}
4747}
4748
4749void
4750print_device_tree(device_t dev, int indent)
4751/* print the device and all its children (indented) */
4752{
4753	device_t child;
4754
4755	if (!dev)
4756		return;
4757
4758	print_device(dev, indent);
4759
4760	TAILQ_FOREACH(child, &dev->children, link) {
4761		print_device_tree(child, indent+1);
4762	}
4763}
4764
4765static void
4766print_driver_short(driver_t *driver, int indent)
4767{
4768	if (!driver)
4769		return;
4770
4771	indentprintf(("driver %s: softc size = %zd\n",
4772	    driver->name, driver->size));
4773}
4774
4775static void
4776print_driver(driver_t *driver, int indent)
4777{
4778	if (!driver)
4779		return;
4780
4781	print_driver_short(driver, indent);
4782}
4783
4784static void
4785print_driver_list(driver_list_t drivers, int indent)
4786{
4787	driverlink_t driver;
4788
4789	TAILQ_FOREACH(driver, &drivers, link) {
4790		print_driver(driver->driver, indent);
4791	}
4792}
4793
4794static void
4795print_devclass_short(devclass_t dc, int indent)
4796{
4797	if ( !dc )
4798		return;
4799
4800	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
4801}
4802
4803static void
4804print_devclass(devclass_t dc, int indent)
4805{
4806	int i;
4807
4808	if ( !dc )
4809		return;
4810
4811	print_devclass_short(dc, indent);
4812	indentprintf(("Drivers:\n"));
4813	print_driver_list(dc->drivers, indent+1);
4814
4815	indentprintf(("Devices:\n"));
4816	for (i = 0; i < dc->maxunit; i++)
4817		if (dc->devices[i])
4818			print_device(dc->devices[i], indent+1);
4819}
4820
4821void
4822print_devclass_list_short(void)
4823{
4824	devclass_t dc;
4825
4826	printf("Short listing of devclasses, drivers & devices:\n");
4827	TAILQ_FOREACH(dc, &devclasses, link) {
4828		print_devclass_short(dc, 0);
4829	}
4830}
4831
4832void
4833print_devclass_list(void)
4834{
4835	devclass_t dc;
4836
4837	printf("Full listing of devclasses, drivers & devices:\n");
4838	TAILQ_FOREACH(dc, &devclasses, link) {
4839		print_devclass(dc, 0);
4840	}
4841}
4842
4843#endif
4844
4845/*
4846 * User-space access to the device tree.
4847 *
4848 * We implement a small set of nodes:
4849 *
4850 * hw.bus			Single integer read method to obtain the
4851 *				current generation count.
4852 * hw.bus.devices		Reads the entire device tree in flat space.
4853 * hw.bus.rman			Resource manager interface
4854 *
4855 * We might like to add the ability to scan devclasses and/or drivers to
4856 * determine what else is currently loaded/available.
4857 */
4858
4859static int
4860sysctl_bus(SYSCTL_HANDLER_ARGS)
4861{
4862	struct u_businfo	ubus;
4863
4864	ubus.ub_version = BUS_USER_VERSION;
4865	ubus.ub_generation = bus_data_generation;
4866
4867	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
4868}
4869SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
4870    "bus-related data");
4871
4872static int
4873sysctl_devices(SYSCTL_HANDLER_ARGS)
4874{
4875	int			*name = (int *)arg1;
4876	u_int			namelen = arg2;
4877	int			index;
4878	struct device		*dev;
4879	struct u_device		udev;	/* XXX this is a bit big */
4880	int			error;
4881
4882	if (namelen != 2)
4883		return (EINVAL);
4884
4885	if (bus_data_generation_check(name[0]))
4886		return (EINVAL);
4887
4888	index = name[1];
4889
4890	/*
4891	 * Scan the list of devices, looking for the requested index.
4892	 */
4893	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
4894		if (index-- == 0)
4895			break;
4896	}
4897	if (dev == NULL)
4898		return (ENOENT);
4899
4900	/*
4901	 * Populate the return array.
4902	 */
4903	bzero(&udev, sizeof(udev));
4904	udev.dv_handle = (uintptr_t)dev;
4905	udev.dv_parent = (uintptr_t)dev->parent;
4906	if (dev->nameunit != NULL)
4907		strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
4908	if (dev->desc != NULL)
4909		strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
4910	if (dev->driver != NULL && dev->driver->name != NULL)
4911		strlcpy(udev.dv_drivername, dev->driver->name,
4912		    sizeof(udev.dv_drivername));
4913	bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
4914	bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
4915	udev.dv_devflags = dev->devflags;
4916	udev.dv_flags = dev->flags;
4917	udev.dv_state = dev->state;
4918	error = SYSCTL_OUT(req, &udev, sizeof(udev));
4919	return (error);
4920}
4921
4922SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
4923    "system device tree");
4924
4925int
4926bus_data_generation_check(int generation)
4927{
4928	if (generation != bus_data_generation)
4929		return (1);
4930
4931	/* XXX generate optimised lists here? */
4932	return (0);
4933}
4934
4935void
4936bus_data_generation_update(void)
4937{
4938	bus_data_generation++;
4939}
4940
4941int
4942bus_free_resource(device_t dev, int type, struct resource *r)
4943{
4944	if (r == NULL)
4945		return (0);
4946	return (bus_release_resource(dev, type, rman_get_rid(r), r));
4947}
4948