1/*-
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27/*-
28 * Copyright (c) 1982, 1986, 1989, 1993
29 *	The Regents of the University of California.  All rights reserved.
30 *
31 * This code is derived from software contributed to Berkeley by
32 * Scooter Morris at Genentech Inc.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 4. Neither the name of the University nor the names of its contributors
43 *    may be used to endorse or promote products derived from this software
44 *    without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD$");
63
64#include "opt_debug_lockf.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/hash.h>
69#include <sys/kernel.h>
70#include <sys/limits.h>
71#include <sys/lock.h>
72#include <sys/mount.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/sx.h>
76#include <sys/unistd.h>
77#include <sys/vnode.h>
78#include <sys/malloc.h>
79#include <sys/fcntl.h>
80#include <sys/lockf.h>
81#include <sys/taskqueue.h>
82
83#ifdef LOCKF_DEBUG
84#include <sys/sysctl.h>
85
86#include <ufs/ufs/quota.h>
87#include <ufs/ufs/inode.h>
88
89static int	lockf_debug = 0; /* control debug output */
90SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
91#endif
92
93static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
94
95struct owner_edge;
96struct owner_vertex;
97struct owner_vertex_list;
98struct owner_graph;
99
100#define NOLOCKF (struct lockf_entry *)0
101#define SELF	0x1
102#define OTHERS	0x2
103static void	 lf_init(void *);
104static int	 lf_hash_owner(caddr_t, struct flock *, int);
105static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
106    int);
107static struct lockf_entry *
108		 lf_alloc_lock(struct lock_owner *);
109static int	 lf_free_lock(struct lockf_entry *);
110static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
111static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
112static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
113static void	 lf_free_edge(struct lockf_edge *);
114static struct lockf_edge *
115		 lf_alloc_edge(void);
116static void	 lf_alloc_vertex(struct lockf_entry *);
117static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
118static void	 lf_remove_edge(struct lockf_edge *);
119static void	 lf_remove_outgoing(struct lockf_entry *);
120static void	 lf_remove_incoming(struct lockf_entry *);
121static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
122static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
123static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
124    int);
125static struct lockf_entry *
126		 lf_getblock(struct lockf *, struct lockf_entry *);
127static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
128static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
129static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
130static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
131    int all, struct lockf_entry_list *);
132static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
133	struct lockf_entry_list*);
134static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
135	struct lockf_entry_list*);
136static int	 lf_setlock(struct lockf *, struct lockf_entry *,
137    struct vnode *, void **cookiep);
138static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
139static void	 lf_split(struct lockf *, struct lockf_entry *,
140    struct lockf_entry *, struct lockf_entry_list *);
141#ifdef LOCKF_DEBUG
142static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
143    struct owner_vertex_list *path);
144static void	 graph_check(struct owner_graph *g, int checkorder);
145static void	 graph_print_vertices(struct owner_vertex_list *set);
146#endif
147static int	 graph_delta_forward(struct owner_graph *g,
148    struct owner_vertex *x, struct owner_vertex *y,
149    struct owner_vertex_list *delta);
150static int	 graph_delta_backward(struct owner_graph *g,
151    struct owner_vertex *x, struct owner_vertex *y,
152    struct owner_vertex_list *delta);
153static int	 graph_add_indices(int *indices, int n,
154    struct owner_vertex_list *set);
155static int	 graph_assign_indices(struct owner_graph *g, int *indices,
156    int nextunused, struct owner_vertex_list *set);
157static int	 graph_add_edge(struct owner_graph *g,
158    struct owner_vertex *x, struct owner_vertex *y);
159static void	 graph_remove_edge(struct owner_graph *g,
160    struct owner_vertex *x, struct owner_vertex *y);
161static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
162    struct lock_owner *lo);
163static void	 graph_free_vertex(struct owner_graph *g,
164    struct owner_vertex *v);
165static struct owner_graph * graph_init(struct owner_graph *g);
166#ifdef LOCKF_DEBUG
167static void	 lf_print(char *, struct lockf_entry *);
168static void	 lf_printlist(char *, struct lockf_entry *);
169static void	 lf_print_owner(struct lock_owner *);
170#endif
171
172/*
173 * This structure is used to keep track of both local and remote lock
174 * owners. The lf_owner field of the struct lockf_entry points back at
175 * the lock owner structure. Each possible lock owner (local proc for
176 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
177 * pair for remote locks) is represented by a unique instance of
178 * struct lock_owner.
179 *
180 * If a lock owner has a lock that blocks some other lock or a lock
181 * that is waiting for some other lock, it also has a vertex in the
182 * owner_graph below.
183 *
184 * Locks:
185 * (s)		locked by state->ls_lock
186 * (S)		locked by lf_lock_states_lock
187 * (l)		locked by lf_lock_owners_lock
188 * (g)		locked by lf_owner_graph_lock
189 * (c)		const until freeing
190 */
191#define	LOCK_OWNER_HASH_SIZE	256
192
193struct lock_owner {
194	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
195	int	lo_refs;	    /* (l) Number of locks referring to this */
196	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
197	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
198	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
199	int	lo_sysid;	    /* (c) System Id of the lock owner */
200	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
201};
202
203LIST_HEAD(lock_owner_list, lock_owner);
204
205static struct sx		lf_lock_states_lock;
206static struct lockf_list	lf_lock_states; /* (S) */
207static struct sx		lf_lock_owners_lock;
208static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
209
210/*
211 * Structures for deadlock detection.
212 *
213 * We have two types of directed graph, the first is the set of locks,
214 * both active and pending on a vnode. Within this graph, active locks
215 * are terminal nodes in the graph (i.e. have no out-going
216 * edges). Pending locks have out-going edges to each blocking active
217 * lock that prevents the lock from being granted and also to each
218 * older pending lock that would block them if it was active. The
219 * graph for each vnode is naturally acyclic; new edges are only ever
220 * added to or from new nodes (either new pending locks which only add
221 * out-going edges or new active locks which only add in-coming edges)
222 * therefore they cannot create loops in the lock graph.
223 *
224 * The second graph is a global graph of lock owners. Each lock owner
225 * is a vertex in that graph and an edge is added to the graph
226 * whenever an edge is added to a vnode graph, with end points
227 * corresponding to owner of the new pending lock and the owner of the
228 * lock upon which it waits. In order to prevent deadlock, we only add
229 * an edge to this graph if the new edge would not create a cycle.
230 *
231 * The lock owner graph is topologically sorted, i.e. if a node has
232 * any outgoing edges, then it has an order strictly less than any
233 * node to which it has an outgoing edge. We preserve this ordering
234 * (and detect cycles) on edge insertion using Algorithm PK from the
235 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
236 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
237 * No. 1.7)
238 */
239struct owner_vertex;
240
241struct owner_edge {
242	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
243	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
244	int		e_refs;		  /* (g) number of times added */
245	struct owner_vertex *e_from;	  /* (c) out-going from here */
246	struct owner_vertex *e_to;	  /* (c) in-coming to here */
247};
248LIST_HEAD(owner_edge_list, owner_edge);
249
250struct owner_vertex {
251	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
252	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
253	int		v_order;	  /* (g) order of vertex in graph */
254	struct owner_edge_list v_outedges;/* (g) list of out-edges */
255	struct owner_edge_list v_inedges; /* (g) list of in-edges */
256	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
257};
258TAILQ_HEAD(owner_vertex_list, owner_vertex);
259
260struct owner_graph {
261	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
262	int		g_size;		  /* (g) number of vertices */
263	int		g_space;	  /* (g) space allocated for vertices */
264	int		*g_indexbuf;	  /* (g) workspace for loop detection */
265	uint32_t	g_gen;		  /* (g) increment when re-ordering */
266};
267
268static struct sx		lf_owner_graph_lock;
269static struct owner_graph	lf_owner_graph;
270
271/*
272 * Initialise various structures and locks.
273 */
274static void
275lf_init(void *dummy)
276{
277	int i;
278
279	sx_init(&lf_lock_states_lock, "lock states lock");
280	LIST_INIT(&lf_lock_states);
281
282	sx_init(&lf_lock_owners_lock, "lock owners lock");
283	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
284		LIST_INIT(&lf_lock_owners[i]);
285
286	sx_init(&lf_owner_graph_lock, "owner graph lock");
287	graph_init(&lf_owner_graph);
288}
289SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
290
291/*
292 * Generate a hash value for a lock owner.
293 */
294static int
295lf_hash_owner(caddr_t id, struct flock *fl, int flags)
296{
297	uint32_t h;
298
299	if (flags & F_REMOTE) {
300		h = HASHSTEP(0, fl->l_pid);
301		h = HASHSTEP(h, fl->l_sysid);
302	} else if (flags & F_FLOCK) {
303		h = ((uintptr_t) id) >> 7;
304	} else {
305		struct proc *p = (struct proc *) id;
306		h = HASHSTEP(0, p->p_pid);
307		h = HASHSTEP(h, 0);
308	}
309
310	return (h % LOCK_OWNER_HASH_SIZE);
311}
312
313/*
314 * Return true if a lock owner matches the details passed to
315 * lf_advlock.
316 */
317static int
318lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
319    int flags)
320{
321	if (flags & F_REMOTE) {
322		return lo->lo_pid == fl->l_pid
323			&& lo->lo_sysid == fl->l_sysid;
324	} else {
325		return lo->lo_id == id;
326	}
327}
328
329static struct lockf_entry *
330lf_alloc_lock(struct lock_owner *lo)
331{
332	struct lockf_entry *lf;
333
334	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
335
336#ifdef LOCKF_DEBUG
337	if (lockf_debug & 4)
338		printf("Allocated lock %p\n", lf);
339#endif
340	if (lo) {
341		sx_xlock(&lf_lock_owners_lock);
342		lo->lo_refs++;
343		sx_xunlock(&lf_lock_owners_lock);
344		lf->lf_owner = lo;
345	}
346
347	return (lf);
348}
349
350static int
351lf_free_lock(struct lockf_entry *lock)
352{
353
354	KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
355	if (--lock->lf_refs > 0)
356		return (0);
357	/*
358	 * Adjust the lock_owner reference count and
359	 * reclaim the entry if this is the last lock
360	 * for that owner.
361	 */
362	struct lock_owner *lo = lock->lf_owner;
363	if (lo) {
364		KASSERT(LIST_EMPTY(&lock->lf_outedges),
365		    ("freeing lock with dependancies"));
366		KASSERT(LIST_EMPTY(&lock->lf_inedges),
367		    ("freeing lock with dependants"));
368		sx_xlock(&lf_lock_owners_lock);
369		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
370		lo->lo_refs--;
371		if (lo->lo_refs == 0) {
372#ifdef LOCKF_DEBUG
373			if (lockf_debug & 1)
374				printf("lf_free_lock: freeing lock owner %p\n",
375				    lo);
376#endif
377			if (lo->lo_vertex) {
378				sx_xlock(&lf_owner_graph_lock);
379				graph_free_vertex(&lf_owner_graph,
380				    lo->lo_vertex);
381				sx_xunlock(&lf_owner_graph_lock);
382			}
383			LIST_REMOVE(lo, lo_link);
384			free(lo, M_LOCKF);
385#ifdef LOCKF_DEBUG
386			if (lockf_debug & 4)
387				printf("Freed lock owner %p\n", lo);
388#endif
389		}
390		sx_unlock(&lf_lock_owners_lock);
391	}
392	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
393		vrele(lock->lf_vnode);
394		lock->lf_vnode = NULL;
395	}
396#ifdef LOCKF_DEBUG
397	if (lockf_debug & 4)
398		printf("Freed lock %p\n", lock);
399#endif
400	free(lock, M_LOCKF);
401	return (1);
402}
403
404/*
405 * Advisory record locking support
406 */
407int
408lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
409    u_quad_t size)
410{
411	struct lockf *state, *freestate = NULL;
412	struct flock *fl = ap->a_fl;
413	struct lockf_entry *lock;
414	struct vnode *vp = ap->a_vp;
415	caddr_t id = ap->a_id;
416	int flags = ap->a_flags;
417	int hash;
418	struct lock_owner *lo;
419	off_t start, end, oadd;
420	int error;
421
422	/*
423	 * Handle the F_UNLKSYS case first - no need to mess about
424	 * creating a lock owner for this one.
425	 */
426	if (ap->a_op == F_UNLCKSYS) {
427		lf_clearremotesys(fl->l_sysid);
428		return (0);
429	}
430
431	/*
432	 * Convert the flock structure into a start and end.
433	 */
434	switch (fl->l_whence) {
435
436	case SEEK_SET:
437	case SEEK_CUR:
438		/*
439		 * Caller is responsible for adding any necessary offset
440		 * when SEEK_CUR is used.
441		 */
442		start = fl->l_start;
443		break;
444
445	case SEEK_END:
446		if (size > OFF_MAX ||
447		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
448			return (EOVERFLOW);
449		start = size + fl->l_start;
450		break;
451
452	default:
453		return (EINVAL);
454	}
455	if (start < 0)
456		return (EINVAL);
457	if (fl->l_len < 0) {
458		if (start == 0)
459			return (EINVAL);
460		end = start - 1;
461		start += fl->l_len;
462		if (start < 0)
463			return (EINVAL);
464	} else if (fl->l_len == 0) {
465		end = OFF_MAX;
466	} else {
467		oadd = fl->l_len - 1;
468		if (oadd > OFF_MAX - start)
469			return (EOVERFLOW);
470		end = start + oadd;
471	}
472
473retry_setlock:
474
475	/*
476	 * Avoid the common case of unlocking when inode has no locks.
477	 */
478	VI_LOCK(vp);
479	if ((*statep) == NULL) {
480		if (ap->a_op != F_SETLK) {
481			fl->l_type = F_UNLCK;
482			VI_UNLOCK(vp);
483			return (0);
484		}
485	}
486	VI_UNLOCK(vp);
487
488	/*
489	 * Map our arguments to an existing lock owner or create one
490	 * if this is the first time we have seen this owner.
491	 */
492	hash = lf_hash_owner(id, fl, flags);
493	sx_xlock(&lf_lock_owners_lock);
494	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
495		if (lf_owner_matches(lo, id, fl, flags))
496			break;
497	if (!lo) {
498		/*
499		 * We initialise the lock with a reference
500		 * count which matches the new lockf_entry
501		 * structure created below.
502		 */
503		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
504		    M_WAITOK|M_ZERO);
505#ifdef LOCKF_DEBUG
506		if (lockf_debug & 4)
507			printf("Allocated lock owner %p\n", lo);
508#endif
509
510		lo->lo_refs = 1;
511		lo->lo_flags = flags;
512		lo->lo_id = id;
513		if (flags & F_REMOTE) {
514			lo->lo_pid = fl->l_pid;
515			lo->lo_sysid = fl->l_sysid;
516		} else if (flags & F_FLOCK) {
517			lo->lo_pid = -1;
518			lo->lo_sysid = 0;
519		} else {
520			struct proc *p = (struct proc *) id;
521			lo->lo_pid = p->p_pid;
522			lo->lo_sysid = 0;
523		}
524		lo->lo_vertex = NULL;
525
526#ifdef LOCKF_DEBUG
527		if (lockf_debug & 1) {
528			printf("lf_advlockasync: new lock owner %p ", lo);
529			lf_print_owner(lo);
530			printf("\n");
531		}
532#endif
533
534		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
535	} else {
536		/*
537		 * We have seen this lock owner before, increase its
538		 * reference count to account for the new lockf_entry
539		 * structure we create below.
540		 */
541		lo->lo_refs++;
542	}
543	sx_xunlock(&lf_lock_owners_lock);
544
545	/*
546	 * Create the lockf structure. We initialise the lf_owner
547	 * field here instead of in lf_alloc_lock() to avoid paying
548	 * the lf_lock_owners_lock tax twice.
549	 */
550	lock = lf_alloc_lock(NULL);
551	lock->lf_refs = 1;
552	lock->lf_start = start;
553	lock->lf_end = end;
554	lock->lf_owner = lo;
555	lock->lf_vnode = vp;
556	if (flags & F_REMOTE) {
557		/*
558		 * For remote locks, the caller may release its ref to
559		 * the vnode at any time - we have to ref it here to
560		 * prevent it from being recycled unexpectedly.
561		 */
562		vref(vp);
563	}
564
565	/*
566	 * XXX The problem is that VTOI is ufs specific, so it will
567	 * break LOCKF_DEBUG for all other FS's other than UFS because
568	 * it casts the vnode->data ptr to struct inode *.
569	 */
570/*	lock->lf_inode = VTOI(ap->a_vp); */
571	lock->lf_inode = (struct inode *)0;
572	lock->lf_type = fl->l_type;
573	LIST_INIT(&lock->lf_outedges);
574	LIST_INIT(&lock->lf_inedges);
575	lock->lf_async_task = ap->a_task;
576	lock->lf_flags = ap->a_flags;
577
578	/*
579	 * Do the requested operation. First find our state structure
580	 * and create a new one if necessary - the caller's *statep
581	 * variable and the state's ls_threads count is protected by
582	 * the vnode interlock.
583	 */
584	VI_LOCK(vp);
585	if (vp->v_iflag & VI_DOOMED) {
586		VI_UNLOCK(vp);
587		lf_free_lock(lock);
588		return (ENOENT);
589	}
590
591	/*
592	 * Allocate a state structure if necessary.
593	 */
594	state = *statep;
595	if (state == NULL) {
596		struct lockf *ls;
597
598		VI_UNLOCK(vp);
599
600		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
601		sx_init(&ls->ls_lock, "ls_lock");
602		LIST_INIT(&ls->ls_active);
603		LIST_INIT(&ls->ls_pending);
604		ls->ls_threads = 1;
605
606		sx_xlock(&lf_lock_states_lock);
607		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
608		sx_xunlock(&lf_lock_states_lock);
609
610		/*
611		 * Cope if we lost a race with some other thread while
612		 * trying to allocate memory.
613		 */
614		VI_LOCK(vp);
615		if (vp->v_iflag & VI_DOOMED) {
616			VI_UNLOCK(vp);
617			sx_xlock(&lf_lock_states_lock);
618			LIST_REMOVE(ls, ls_link);
619			sx_xunlock(&lf_lock_states_lock);
620			sx_destroy(&ls->ls_lock);
621			free(ls, M_LOCKF);
622			lf_free_lock(lock);
623			return (ENOENT);
624		}
625		if ((*statep) == NULL) {
626			state = *statep = ls;
627			VI_UNLOCK(vp);
628		} else {
629			state = *statep;
630			state->ls_threads++;
631			VI_UNLOCK(vp);
632
633			sx_xlock(&lf_lock_states_lock);
634			LIST_REMOVE(ls, ls_link);
635			sx_xunlock(&lf_lock_states_lock);
636			sx_destroy(&ls->ls_lock);
637			free(ls, M_LOCKF);
638		}
639	} else {
640		state->ls_threads++;
641		VI_UNLOCK(vp);
642	}
643
644	sx_xlock(&state->ls_lock);
645	/*
646	 * Recheck the doomed vnode after state->ls_lock is
647	 * locked. lf_purgelocks() requires that no new threads add
648	 * pending locks when vnode is marked by VI_DOOMED flag.
649	 */
650	VI_LOCK(vp);
651	if (vp->v_iflag & VI_DOOMED) {
652		state->ls_threads--;
653		wakeup(state);
654		VI_UNLOCK(vp);
655		sx_xunlock(&state->ls_lock);
656		lf_free_lock(lock);
657		return (ENOENT);
658	}
659	VI_UNLOCK(vp);
660
661	switch (ap->a_op) {
662	case F_SETLK:
663		error = lf_setlock(state, lock, vp, ap->a_cookiep);
664		break;
665
666	case F_UNLCK:
667		error = lf_clearlock(state, lock);
668		lf_free_lock(lock);
669		break;
670
671	case F_GETLK:
672		error = lf_getlock(state, lock, fl);
673		lf_free_lock(lock);
674		break;
675
676	case F_CANCEL:
677		if (ap->a_cookiep)
678			error = lf_cancel(state, lock, *ap->a_cookiep);
679		else
680			error = EINVAL;
681		lf_free_lock(lock);
682		break;
683
684	default:
685		lf_free_lock(lock);
686		error = EINVAL;
687		break;
688	}
689
690#ifdef INVARIANTS
691	/*
692	 * Check for some can't happen stuff. In this case, the active
693	 * lock list becoming disordered or containing mutually
694	 * blocking locks. We also check the pending list for locks
695	 * which should be active (i.e. have no out-going edges).
696	 */
697	LIST_FOREACH(lock, &state->ls_active, lf_link) {
698		struct lockf_entry *lf;
699		if (LIST_NEXT(lock, lf_link))
700			KASSERT((lock->lf_start
701				<= LIST_NEXT(lock, lf_link)->lf_start),
702			    ("locks disordered"));
703		LIST_FOREACH(lf, &state->ls_active, lf_link) {
704			if (lock == lf)
705				break;
706			KASSERT(!lf_blocks(lock, lf),
707			    ("two conflicting active locks"));
708			if (lock->lf_owner == lf->lf_owner)
709				KASSERT(!lf_overlaps(lock, lf),
710				    ("two overlapping locks from same owner"));
711		}
712	}
713	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
714		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
715		    ("pending lock which should be active"));
716	}
717#endif
718	sx_xunlock(&state->ls_lock);
719
720	/*
721	 * If we have removed the last active lock on the vnode and
722	 * this is the last thread that was in-progress, we can free
723	 * the state structure. We update the caller's pointer inside
724	 * the vnode interlock but call free outside.
725	 *
726	 * XXX alternatively, keep the state structure around until
727	 * the filesystem recycles - requires a callback from the
728	 * filesystem.
729	 */
730	VI_LOCK(vp);
731
732	state->ls_threads--;
733	wakeup(state);
734	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
735		KASSERT(LIST_EMPTY(&state->ls_pending),
736		    ("freeing state with pending locks"));
737		freestate = state;
738		*statep = NULL;
739	}
740
741	VI_UNLOCK(vp);
742
743	if (freestate) {
744		sx_xlock(&lf_lock_states_lock);
745		LIST_REMOVE(freestate, ls_link);
746		sx_xunlock(&lf_lock_states_lock);
747		sx_destroy(&freestate->ls_lock);
748		free(freestate, M_LOCKF);
749	}
750
751	if (error == EDOOFUS) {
752		KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
753		goto retry_setlock;
754	}
755	return (error);
756}
757
758int
759lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
760{
761	struct vop_advlockasync_args a;
762
763	a.a_vp = ap->a_vp;
764	a.a_id = ap->a_id;
765	a.a_op = ap->a_op;
766	a.a_fl = ap->a_fl;
767	a.a_flags = ap->a_flags;
768	a.a_task = NULL;
769	a.a_cookiep = NULL;
770
771	return (lf_advlockasync(&a, statep, size));
772}
773
774void
775lf_purgelocks(struct vnode *vp, struct lockf **statep)
776{
777	struct lockf *state;
778	struct lockf_entry *lock, *nlock;
779
780	/*
781	 * For this to work correctly, the caller must ensure that no
782	 * other threads enter the locking system for this vnode,
783	 * e.g. by checking VI_DOOMED. We wake up any threads that are
784	 * sleeping waiting for locks on this vnode and then free all
785	 * the remaining locks.
786	 */
787	VI_LOCK(vp);
788	KASSERT(vp->v_iflag & VI_DOOMED,
789	    ("lf_purgelocks: vp %p has not vgone yet", vp));
790	state = *statep;
791	if (state) {
792		*statep = NULL;
793		state->ls_threads++;
794		VI_UNLOCK(vp);
795
796		sx_xlock(&state->ls_lock);
797		sx_xlock(&lf_owner_graph_lock);
798		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
799			LIST_REMOVE(lock, lf_link);
800			lf_remove_outgoing(lock);
801			lf_remove_incoming(lock);
802
803			/*
804			 * If its an async lock, we can just free it
805			 * here, otherwise we let the sleeping thread
806			 * free it.
807			 */
808			if (lock->lf_async_task) {
809				lf_free_lock(lock);
810			} else {
811				lock->lf_flags |= F_INTR;
812				wakeup(lock);
813			}
814		}
815		sx_xunlock(&lf_owner_graph_lock);
816		sx_xunlock(&state->ls_lock);
817
818		/*
819		 * Wait for all other threads, sleeping and otherwise
820		 * to leave.
821		 */
822		VI_LOCK(vp);
823		while (state->ls_threads > 1)
824			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
825		VI_UNLOCK(vp);
826
827		/*
828		 * We can just free all the active locks since they
829		 * will have no dependancies (we removed them all
830		 * above). We don't need to bother locking since we
831		 * are the last thread using this state structure.
832		 */
833		KASSERT(LIST_EMPTY(&state->ls_pending),
834		    ("lock pending for %p", state));
835		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
836			LIST_REMOVE(lock, lf_link);
837			lf_free_lock(lock);
838		}
839		sx_xlock(&lf_lock_states_lock);
840		LIST_REMOVE(state, ls_link);
841		sx_xunlock(&lf_lock_states_lock);
842		sx_destroy(&state->ls_lock);
843		free(state, M_LOCKF);
844	} else {
845		VI_UNLOCK(vp);
846	}
847}
848
849/*
850 * Return non-zero if locks 'x' and 'y' overlap.
851 */
852static int
853lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
854{
855
856	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
857}
858
859/*
860 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
861 */
862static int
863lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
864{
865
866	return x->lf_owner != y->lf_owner
867		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
868		&& lf_overlaps(x, y);
869}
870
871/*
872 * Allocate a lock edge from the free list
873 */
874static struct lockf_edge *
875lf_alloc_edge(void)
876{
877
878	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
879}
880
881/*
882 * Free a lock edge.
883 */
884static void
885lf_free_edge(struct lockf_edge *e)
886{
887
888	free(e, M_LOCKF);
889}
890
891
892/*
893 * Ensure that the lock's owner has a corresponding vertex in the
894 * owner graph.
895 */
896static void
897lf_alloc_vertex(struct lockf_entry *lock)
898{
899	struct owner_graph *g = &lf_owner_graph;
900
901	if (!lock->lf_owner->lo_vertex)
902		lock->lf_owner->lo_vertex =
903			graph_alloc_vertex(g, lock->lf_owner);
904}
905
906/*
907 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
908 * the new edge would cause a cycle in the owner graph.
909 */
910static int
911lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
912{
913	struct owner_graph *g = &lf_owner_graph;
914	struct lockf_edge *e;
915	int error;
916
917#ifdef INVARIANTS
918	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
919		KASSERT(e->le_to != y, ("adding lock edge twice"));
920#endif
921
922	/*
923	 * Make sure the two owners have entries in the owner graph.
924	 */
925	lf_alloc_vertex(x);
926	lf_alloc_vertex(y);
927
928	error = graph_add_edge(g, x->lf_owner->lo_vertex,
929	    y->lf_owner->lo_vertex);
930	if (error)
931		return (error);
932
933	e = lf_alloc_edge();
934	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
935	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
936	e->le_from = x;
937	e->le_to = y;
938
939	return (0);
940}
941
942/*
943 * Remove an edge from the lock graph.
944 */
945static void
946lf_remove_edge(struct lockf_edge *e)
947{
948	struct owner_graph *g = &lf_owner_graph;
949	struct lockf_entry *x = e->le_from;
950	struct lockf_entry *y = e->le_to;
951
952	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
953	LIST_REMOVE(e, le_outlink);
954	LIST_REMOVE(e, le_inlink);
955	e->le_from = NULL;
956	e->le_to = NULL;
957	lf_free_edge(e);
958}
959
960/*
961 * Remove all out-going edges from lock x.
962 */
963static void
964lf_remove_outgoing(struct lockf_entry *x)
965{
966	struct lockf_edge *e;
967
968	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
969		lf_remove_edge(e);
970	}
971}
972
973/*
974 * Remove all in-coming edges from lock x.
975 */
976static void
977lf_remove_incoming(struct lockf_entry *x)
978{
979	struct lockf_edge *e;
980
981	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
982		lf_remove_edge(e);
983	}
984}
985
986/*
987 * Walk the list of locks for the file and create an out-going edge
988 * from lock to each blocking lock.
989 */
990static int
991lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
992{
993	struct lockf_entry *overlap;
994	int error;
995
996	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
997		/*
998		 * We may assume that the active list is sorted by
999		 * lf_start.
1000		 */
1001		if (overlap->lf_start > lock->lf_end)
1002			break;
1003		if (!lf_blocks(lock, overlap))
1004			continue;
1005
1006		/*
1007		 * We've found a blocking lock. Add the corresponding
1008		 * edge to the graphs and see if it would cause a
1009		 * deadlock.
1010		 */
1011		error = lf_add_edge(lock, overlap);
1012
1013		/*
1014		 * The only error that lf_add_edge returns is EDEADLK.
1015		 * Remove any edges we added and return the error.
1016		 */
1017		if (error) {
1018			lf_remove_outgoing(lock);
1019			return (error);
1020		}
1021	}
1022
1023	/*
1024	 * We also need to add edges to sleeping locks that block
1025	 * us. This ensures that lf_wakeup_lock cannot grant two
1026	 * mutually blocking locks simultaneously and also enforces a
1027	 * 'first come, first served' fairness model. Note that this
1028	 * only happens if we are blocked by at least one active lock
1029	 * due to the call to lf_getblock in lf_setlock below.
1030	 */
1031	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1032		if (!lf_blocks(lock, overlap))
1033			continue;
1034		/*
1035		 * We've found a blocking lock. Add the corresponding
1036		 * edge to the graphs and see if it would cause a
1037		 * deadlock.
1038		 */
1039		error = lf_add_edge(lock, overlap);
1040
1041		/*
1042		 * The only error that lf_add_edge returns is EDEADLK.
1043		 * Remove any edges we added and return the error.
1044		 */
1045		if (error) {
1046			lf_remove_outgoing(lock);
1047			return (error);
1048		}
1049	}
1050
1051	return (0);
1052}
1053
1054/*
1055 * Walk the list of pending locks for the file and create an in-coming
1056 * edge from lock to each blocking lock.
1057 */
1058static int
1059lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
1060{
1061	struct lockf_entry *overlap;
1062	int error;
1063
1064	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
1065		if (!lf_blocks(lock, overlap))
1066			continue;
1067
1068		/*
1069		 * We've found a blocking lock. Add the corresponding
1070		 * edge to the graphs and see if it would cause a
1071		 * deadlock.
1072		 */
1073		error = lf_add_edge(overlap, lock);
1074
1075		/*
1076		 * The only error that lf_add_edge returns is EDEADLK.
1077		 * Remove any edges we added and return the error.
1078		 */
1079		if (error) {
1080			lf_remove_incoming(lock);
1081			return (error);
1082		}
1083	}
1084	return (0);
1085}
1086
1087/*
1088 * Insert lock into the active list, keeping list entries ordered by
1089 * increasing values of lf_start.
1090 */
1091static void
1092lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
1093{
1094	struct lockf_entry *lf, *lfprev;
1095
1096	if (LIST_EMPTY(&state->ls_active)) {
1097		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
1098		return;
1099	}
1100
1101	lfprev = NULL;
1102	LIST_FOREACH(lf, &state->ls_active, lf_link) {
1103		if (lf->lf_start > lock->lf_start) {
1104			LIST_INSERT_BEFORE(lf, lock, lf_link);
1105			return;
1106		}
1107		lfprev = lf;
1108	}
1109	LIST_INSERT_AFTER(lfprev, lock, lf_link);
1110}
1111
1112/*
1113 * Wake up a sleeping lock and remove it from the pending list now
1114 * that all its dependancies have been resolved. The caller should
1115 * arrange for the lock to be added to the active list, adjusting any
1116 * existing locks for the same owner as needed.
1117 */
1118static void
1119lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
1120{
1121
1122	/*
1123	 * Remove from ls_pending list and wake up the caller
1124	 * or start the async notification, as appropriate.
1125	 */
1126	LIST_REMOVE(wakelock, lf_link);
1127#ifdef LOCKF_DEBUG
1128	if (lockf_debug & 1)
1129		lf_print("lf_wakeup_lock: awakening", wakelock);
1130#endif /* LOCKF_DEBUG */
1131	if (wakelock->lf_async_task) {
1132		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
1133	} else {
1134		wakeup(wakelock);
1135	}
1136}
1137
1138/*
1139 * Re-check all dependant locks and remove edges to locks that we no
1140 * longer block. If 'all' is non-zero, the lock has been removed and
1141 * we must remove all the dependancies, otherwise it has simply been
1142 * reduced but remains active. Any pending locks which have been been
1143 * unblocked are added to 'granted'
1144 */
1145static void
1146lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
1147	struct lockf_entry_list *granted)
1148{
1149	struct lockf_edge *e, *ne;
1150	struct lockf_entry *deplock;
1151
1152	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
1153		deplock = e->le_from;
1154		if (all || !lf_blocks(lock, deplock)) {
1155			sx_xlock(&lf_owner_graph_lock);
1156			lf_remove_edge(e);
1157			sx_xunlock(&lf_owner_graph_lock);
1158			if (LIST_EMPTY(&deplock->lf_outedges)) {
1159				lf_wakeup_lock(state, deplock);
1160				LIST_INSERT_HEAD(granted, deplock, lf_link);
1161			}
1162		}
1163	}
1164}
1165
1166/*
1167 * Set the start of an existing active lock, updating dependancies and
1168 * adding any newly woken locks to 'granted'.
1169 */
1170static void
1171lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
1172	struct lockf_entry_list *granted)
1173{
1174
1175	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
1176	lock->lf_start = new_start;
1177	LIST_REMOVE(lock, lf_link);
1178	lf_insert_lock(state, lock);
1179	lf_update_dependancies(state, lock, FALSE, granted);
1180}
1181
1182/*
1183 * Set the end of an existing active lock, updating dependancies and
1184 * adding any newly woken locks to 'granted'.
1185 */
1186static void
1187lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
1188	struct lockf_entry_list *granted)
1189{
1190
1191	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
1192	lock->lf_end = new_end;
1193	lf_update_dependancies(state, lock, FALSE, granted);
1194}
1195
1196/*
1197 * Add a lock to the active list, updating or removing any current
1198 * locks owned by the same owner and processing any pending locks that
1199 * become unblocked as a result. This code is also used for unlock
1200 * since the logic for updating existing locks is identical.
1201 *
1202 * As a result of processing the new lock, we may unblock existing
1203 * pending locks as a result of downgrading/unlocking. We simply
1204 * activate the newly granted locks by looping.
1205 *
1206 * Since the new lock already has its dependancies set up, we always
1207 * add it to the list (unless its an unlock request). This may
1208 * fragment the lock list in some pathological cases but its probably
1209 * not a real problem.
1210 */
1211static void
1212lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
1213{
1214	struct lockf_entry *overlap, *lf;
1215	struct lockf_entry_list granted;
1216	int ovcase;
1217
1218	LIST_INIT(&granted);
1219	LIST_INSERT_HEAD(&granted, lock, lf_link);
1220
1221	while (!LIST_EMPTY(&granted)) {
1222		lock = LIST_FIRST(&granted);
1223		LIST_REMOVE(lock, lf_link);
1224
1225		/*
1226		 * Skip over locks owned by other processes.  Handle
1227		 * any locks that overlap and are owned by ourselves.
1228		 */
1229		overlap = LIST_FIRST(&state->ls_active);
1230		for (;;) {
1231			ovcase = lf_findoverlap(&overlap, lock, SELF);
1232
1233#ifdef LOCKF_DEBUG
1234			if (ovcase && (lockf_debug & 2)) {
1235				printf("lf_setlock: overlap %d", ovcase);
1236				lf_print("", overlap);
1237			}
1238#endif
1239			/*
1240			 * Six cases:
1241			 *	0) no overlap
1242			 *	1) overlap == lock
1243			 *	2) overlap contains lock
1244			 *	3) lock contains overlap
1245			 *	4) overlap starts before lock
1246			 *	5) overlap ends after lock
1247			 */
1248			switch (ovcase) {
1249			case 0: /* no overlap */
1250				break;
1251
1252			case 1: /* overlap == lock */
1253				/*
1254				 * We have already setup the
1255				 * dependants for the new lock, taking
1256				 * into account a possible downgrade
1257				 * or unlock. Remove the old lock.
1258				 */
1259				LIST_REMOVE(overlap, lf_link);
1260				lf_update_dependancies(state, overlap, TRUE,
1261					&granted);
1262				lf_free_lock(overlap);
1263				break;
1264
1265			case 2: /* overlap contains lock */
1266				/*
1267				 * Just split the existing lock.
1268				 */
1269				lf_split(state, overlap, lock, &granted);
1270				break;
1271
1272			case 3: /* lock contains overlap */
1273				/*
1274				 * Delete the overlap and advance to
1275				 * the next entry in the list.
1276				 */
1277				lf = LIST_NEXT(overlap, lf_link);
1278				LIST_REMOVE(overlap, lf_link);
1279				lf_update_dependancies(state, overlap, TRUE,
1280					&granted);
1281				lf_free_lock(overlap);
1282				overlap = lf;
1283				continue;
1284
1285			case 4: /* overlap starts before lock */
1286				/*
1287				 * Just update the overlap end and
1288				 * move on.
1289				 */
1290				lf_set_end(state, overlap, lock->lf_start - 1,
1291				    &granted);
1292				overlap = LIST_NEXT(overlap, lf_link);
1293				continue;
1294
1295			case 5: /* overlap ends after lock */
1296				/*
1297				 * Change the start of overlap and
1298				 * re-insert.
1299				 */
1300				lf_set_start(state, overlap, lock->lf_end + 1,
1301				    &granted);
1302				break;
1303			}
1304			break;
1305		}
1306#ifdef LOCKF_DEBUG
1307		if (lockf_debug & 1) {
1308			if (lock->lf_type != F_UNLCK)
1309				lf_print("lf_activate_lock: activated", lock);
1310			else
1311				lf_print("lf_activate_lock: unlocked", lock);
1312			lf_printlist("lf_activate_lock", lock);
1313		}
1314#endif /* LOCKF_DEBUG */
1315		if (lock->lf_type != F_UNLCK)
1316			lf_insert_lock(state, lock);
1317	}
1318}
1319
1320/*
1321 * Cancel a pending lock request, either as a result of a signal or a
1322 * cancel request for an async lock.
1323 */
1324static void
1325lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
1326{
1327	struct lockf_entry_list granted;
1328
1329	/*
1330	 * Note it is theoretically possible that cancelling this lock
1331	 * may allow some other pending lock to become
1332	 * active. Consider this case:
1333	 *
1334	 * Owner	Action		Result		Dependancies
1335	 *
1336	 * A:		lock [0..0]	succeeds
1337	 * B:		lock [2..2]	succeeds
1338	 * C:		lock [1..2]	blocked		C->B
1339	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
1340	 * A:		unlock [0..0]			C->B,D->C
1341	 * C:		cancel [1..2]
1342	 */
1343
1344	LIST_REMOVE(lock, lf_link);
1345
1346	/*
1347	 * Removing out-going edges is simple.
1348	 */
1349	sx_xlock(&lf_owner_graph_lock);
1350	lf_remove_outgoing(lock);
1351	sx_xunlock(&lf_owner_graph_lock);
1352
1353	/*
1354	 * Removing in-coming edges may allow some other lock to
1355	 * become active - we use lf_update_dependancies to figure
1356	 * this out.
1357	 */
1358	LIST_INIT(&granted);
1359	lf_update_dependancies(state, lock, TRUE, &granted);
1360	lf_free_lock(lock);
1361
1362	/*
1363	 * Feed any newly active locks to lf_activate_lock.
1364	 */
1365	while (!LIST_EMPTY(&granted)) {
1366		lock = LIST_FIRST(&granted);
1367		LIST_REMOVE(lock, lf_link);
1368		lf_activate_lock(state, lock);
1369	}
1370}
1371
1372/*
1373 * Set a byte-range lock.
1374 */
1375static int
1376lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
1377    void **cookiep)
1378{
1379	static char lockstr[] = "lockf";
1380	int priority, error;
1381
1382#ifdef LOCKF_DEBUG
1383	if (lockf_debug & 1)
1384		lf_print("lf_setlock", lock);
1385#endif /* LOCKF_DEBUG */
1386
1387	/*
1388	 * Set the priority
1389	 */
1390	priority = PLOCK;
1391	if (lock->lf_type == F_WRLCK)
1392		priority += 4;
1393	if (!(lock->lf_flags & F_NOINTR))
1394		priority |= PCATCH;
1395	/*
1396	 * Scan lock list for this file looking for locks that would block us.
1397	 */
1398	if (lf_getblock(state, lock)) {
1399		/*
1400		 * Free the structure and return if nonblocking.
1401		 */
1402		if ((lock->lf_flags & F_WAIT) == 0
1403		    && lock->lf_async_task == NULL) {
1404			lf_free_lock(lock);
1405			error = EAGAIN;
1406			goto out;
1407		}
1408
1409		/*
1410		 * For flock type locks, we must first remove
1411		 * any shared locks that we hold before we sleep
1412		 * waiting for an exclusive lock.
1413		 */
1414		if ((lock->lf_flags & F_FLOCK) &&
1415		    lock->lf_type == F_WRLCK) {
1416			lock->lf_type = F_UNLCK;
1417			lf_activate_lock(state, lock);
1418			lock->lf_type = F_WRLCK;
1419		}
1420
1421		/*
1422		 * We are blocked. Create edges to each blocking lock,
1423		 * checking for deadlock using the owner graph. For
1424		 * simplicity, we run deadlock detection for all
1425		 * locks, posix and otherwise.
1426		 */
1427		sx_xlock(&lf_owner_graph_lock);
1428		error = lf_add_outgoing(state, lock);
1429		sx_xunlock(&lf_owner_graph_lock);
1430
1431		if (error) {
1432#ifdef LOCKF_DEBUG
1433			if (lockf_debug & 1)
1434				lf_print("lf_setlock: deadlock", lock);
1435#endif
1436			lf_free_lock(lock);
1437			goto out;
1438		}
1439
1440		/*
1441		 * We have added edges to everything that blocks
1442		 * us. Sleep until they all go away.
1443		 */
1444		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
1445#ifdef LOCKF_DEBUG
1446		if (lockf_debug & 1) {
1447			struct lockf_edge *e;
1448			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
1449				lf_print("lf_setlock: blocking on", e->le_to);
1450				lf_printlist("lf_setlock", e->le_to);
1451			}
1452		}
1453#endif /* LOCKF_DEBUG */
1454
1455		if ((lock->lf_flags & F_WAIT) == 0) {
1456			/*
1457			 * The caller requested async notification -
1458			 * this callback happens when the blocking
1459			 * lock is released, allowing the caller to
1460			 * make another attempt to take the lock.
1461			 */
1462			*cookiep = (void *) lock;
1463			error = EINPROGRESS;
1464			goto out;
1465		}
1466
1467		lock->lf_refs++;
1468		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
1469		if (lf_free_lock(lock)) {
1470			error = EDOOFUS;
1471			goto out;
1472		}
1473
1474		/*
1475		 * We may have been awakened by a signal and/or by a
1476		 * debugger continuing us (in which cases we must
1477		 * remove our lock graph edges) and/or by another
1478		 * process releasing a lock (in which case our edges
1479		 * have already been removed and we have been moved to
1480		 * the active list). We may also have been woken by
1481		 * lf_purgelocks which we report to the caller as
1482		 * EINTR. In that case, lf_purgelocks will have
1483		 * removed our lock graph edges.
1484		 *
1485		 * Note that it is possible to receive a signal after
1486		 * we were successfully woken (and moved to the active
1487		 * list) but before we resumed execution. In this
1488		 * case, our lf_outedges list will be clear. We
1489		 * pretend there was no error.
1490		 *
1491		 * Note also, if we have been sleeping long enough, we
1492		 * may now have incoming edges from some newer lock
1493		 * which is waiting behind us in the queue.
1494		 */
1495		if (lock->lf_flags & F_INTR) {
1496			error = EINTR;
1497			lf_free_lock(lock);
1498			goto out;
1499		}
1500		if (LIST_EMPTY(&lock->lf_outedges)) {
1501			error = 0;
1502		} else {
1503			lf_cancel_lock(state, lock);
1504			goto out;
1505		}
1506#ifdef LOCKF_DEBUG
1507		if (lockf_debug & 1) {
1508			lf_print("lf_setlock: granted", lock);
1509		}
1510#endif
1511		goto out;
1512	}
1513	/*
1514	 * It looks like we are going to grant the lock. First add
1515	 * edges from any currently pending lock that the new lock
1516	 * would block.
1517	 */
1518	sx_xlock(&lf_owner_graph_lock);
1519	error = lf_add_incoming(state, lock);
1520	sx_xunlock(&lf_owner_graph_lock);
1521	if (error) {
1522#ifdef LOCKF_DEBUG
1523		if (lockf_debug & 1)
1524			lf_print("lf_setlock: deadlock", lock);
1525#endif
1526		lf_free_lock(lock);
1527		goto out;
1528	}
1529
1530	/*
1531	 * No blocks!!  Add the lock.  Note that we will
1532	 * downgrade or upgrade any overlapping locks this
1533	 * process already owns.
1534	 */
1535	lf_activate_lock(state, lock);
1536	error = 0;
1537out:
1538	return (error);
1539}
1540
1541/*
1542 * Remove a byte-range lock on an inode.
1543 *
1544 * Generally, find the lock (or an overlap to that lock)
1545 * and remove it (or shrink it), then wakeup anyone we can.
1546 */
1547static int
1548lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
1549{
1550	struct lockf_entry *overlap;
1551
1552	overlap = LIST_FIRST(&state->ls_active);
1553
1554	if (overlap == NOLOCKF)
1555		return (0);
1556#ifdef LOCKF_DEBUG
1557	if (unlock->lf_type != F_UNLCK)
1558		panic("lf_clearlock: bad type");
1559	if (lockf_debug & 1)
1560		lf_print("lf_clearlock", unlock);
1561#endif /* LOCKF_DEBUG */
1562
1563	lf_activate_lock(state, unlock);
1564
1565	return (0);
1566}
1567
1568/*
1569 * Check whether there is a blocking lock, and if so return its
1570 * details in '*fl'.
1571 */
1572static int
1573lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
1574{
1575	struct lockf_entry *block;
1576
1577#ifdef LOCKF_DEBUG
1578	if (lockf_debug & 1)
1579		lf_print("lf_getlock", lock);
1580#endif /* LOCKF_DEBUG */
1581
1582	if ((block = lf_getblock(state, lock))) {
1583		fl->l_type = block->lf_type;
1584		fl->l_whence = SEEK_SET;
1585		fl->l_start = block->lf_start;
1586		if (block->lf_end == OFF_MAX)
1587			fl->l_len = 0;
1588		else
1589			fl->l_len = block->lf_end - block->lf_start + 1;
1590		fl->l_pid = block->lf_owner->lo_pid;
1591		fl->l_sysid = block->lf_owner->lo_sysid;
1592	} else {
1593		fl->l_type = F_UNLCK;
1594	}
1595	return (0);
1596}
1597
1598/*
1599 * Cancel an async lock request.
1600 */
1601static int
1602lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
1603{
1604	struct lockf_entry *reallock;
1605
1606	/*
1607	 * We need to match this request with an existing lock
1608	 * request.
1609	 */
1610	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
1611		if ((void *) reallock == cookie) {
1612			/*
1613			 * Double-check that this lock looks right
1614			 * (maybe use a rolling ID for the cancel
1615			 * cookie instead?)
1616			 */
1617			if (!(reallock->lf_vnode == lock->lf_vnode
1618				&& reallock->lf_start == lock->lf_start
1619				&& reallock->lf_end == lock->lf_end)) {
1620				return (ENOENT);
1621			}
1622
1623			/*
1624			 * Make sure this lock was async and then just
1625			 * remove it from its wait lists.
1626			 */
1627			if (!reallock->lf_async_task) {
1628				return (ENOENT);
1629			}
1630
1631			/*
1632			 * Note that since any other thread must take
1633			 * state->ls_lock before it can possibly
1634			 * trigger the async callback, we are safe
1635			 * from a race with lf_wakeup_lock, i.e. we
1636			 * can free the lock (actually our caller does
1637			 * this).
1638			 */
1639			lf_cancel_lock(state, reallock);
1640			return (0);
1641		}
1642	}
1643
1644	/*
1645	 * We didn't find a matching lock - not much we can do here.
1646	 */
1647	return (ENOENT);
1648}
1649
1650/*
1651 * Walk the list of locks for an inode and
1652 * return the first blocking lock.
1653 */
1654static struct lockf_entry *
1655lf_getblock(struct lockf *state, struct lockf_entry *lock)
1656{
1657	struct lockf_entry *overlap;
1658
1659	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
1660		/*
1661		 * We may assume that the active list is sorted by
1662		 * lf_start.
1663		 */
1664		if (overlap->lf_start > lock->lf_end)
1665			break;
1666		if (!lf_blocks(lock, overlap))
1667			continue;
1668		return (overlap);
1669	}
1670	return (NOLOCKF);
1671}
1672
1673/*
1674 * Walk the list of locks for an inode to find an overlapping lock (if
1675 * any) and return a classification of that overlap.
1676 *
1677 * Arguments:
1678 *	*overlap	The place in the lock list to start looking
1679 *	lock		The lock which is being tested
1680 *	type		Pass 'SELF' to test only locks with the same
1681 *			owner as lock, or 'OTHER' to test only locks
1682 *			with a different owner
1683 *
1684 * Returns one of six values:
1685 *	0) no overlap
1686 *	1) overlap == lock
1687 *	2) overlap contains lock
1688 *	3) lock contains overlap
1689 *	4) overlap starts before lock
1690 *	5) overlap ends after lock
1691 *
1692 * If there is an overlapping lock, '*overlap' is set to point at the
1693 * overlapping lock.
1694 *
1695 * NOTE: this returns only the FIRST overlapping lock.  There
1696 *	 may be more than one.
1697 */
1698static int
1699lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
1700{
1701	struct lockf_entry *lf;
1702	off_t start, end;
1703	int res;
1704
1705	if ((*overlap) == NOLOCKF) {
1706		return (0);
1707	}
1708#ifdef LOCKF_DEBUG
1709	if (lockf_debug & 2)
1710		lf_print("lf_findoverlap: looking for overlap in", lock);
1711#endif /* LOCKF_DEBUG */
1712	start = lock->lf_start;
1713	end = lock->lf_end;
1714	res = 0;
1715	while (*overlap) {
1716		lf = *overlap;
1717		if (lf->lf_start > end)
1718			break;
1719		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
1720		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
1721			*overlap = LIST_NEXT(lf, lf_link);
1722			continue;
1723		}
1724#ifdef LOCKF_DEBUG
1725		if (lockf_debug & 2)
1726			lf_print("\tchecking", lf);
1727#endif /* LOCKF_DEBUG */
1728		/*
1729		 * OK, check for overlap
1730		 *
1731		 * Six cases:
1732		 *	0) no overlap
1733		 *	1) overlap == lock
1734		 *	2) overlap contains lock
1735		 *	3) lock contains overlap
1736		 *	4) overlap starts before lock
1737		 *	5) overlap ends after lock
1738		 */
1739		if (start > lf->lf_end) {
1740			/* Case 0 */
1741#ifdef LOCKF_DEBUG
1742			if (lockf_debug & 2)
1743				printf("no overlap\n");
1744#endif /* LOCKF_DEBUG */
1745			*overlap = LIST_NEXT(lf, lf_link);
1746			continue;
1747		}
1748		if (lf->lf_start == start && lf->lf_end == end) {
1749			/* Case 1 */
1750#ifdef LOCKF_DEBUG
1751			if (lockf_debug & 2)
1752				printf("overlap == lock\n");
1753#endif /* LOCKF_DEBUG */
1754			res = 1;
1755			break;
1756		}
1757		if (lf->lf_start <= start && lf->lf_end >= end) {
1758			/* Case 2 */
1759#ifdef LOCKF_DEBUG
1760			if (lockf_debug & 2)
1761				printf("overlap contains lock\n");
1762#endif /* LOCKF_DEBUG */
1763			res = 2;
1764			break;
1765		}
1766		if (start <= lf->lf_start && end >= lf->lf_end) {
1767			/* Case 3 */
1768#ifdef LOCKF_DEBUG
1769			if (lockf_debug & 2)
1770				printf("lock contains overlap\n");
1771#endif /* LOCKF_DEBUG */
1772			res = 3;
1773			break;
1774		}
1775		if (lf->lf_start < start && lf->lf_end >= start) {
1776			/* Case 4 */
1777#ifdef LOCKF_DEBUG
1778			if (lockf_debug & 2)
1779				printf("overlap starts before lock\n");
1780#endif /* LOCKF_DEBUG */
1781			res = 4;
1782			break;
1783		}
1784		if (lf->lf_start > start && lf->lf_end > end) {
1785			/* Case 5 */
1786#ifdef LOCKF_DEBUG
1787			if (lockf_debug & 2)
1788				printf("overlap ends after lock\n");
1789#endif /* LOCKF_DEBUG */
1790			res = 5;
1791			break;
1792		}
1793		panic("lf_findoverlap: default");
1794	}
1795	return (res);
1796}
1797
1798/*
1799 * Split an the existing 'lock1', based on the extent of the lock
1800 * described by 'lock2'. The existing lock should cover 'lock2'
1801 * entirely.
1802 *
1803 * Any pending locks which have been been unblocked are added to
1804 * 'granted'
1805 */
1806static void
1807lf_split(struct lockf *state, struct lockf_entry *lock1,
1808    struct lockf_entry *lock2, struct lockf_entry_list *granted)
1809{
1810	struct lockf_entry *splitlock;
1811
1812#ifdef LOCKF_DEBUG
1813	if (lockf_debug & 2) {
1814		lf_print("lf_split", lock1);
1815		lf_print("splitting from", lock2);
1816	}
1817#endif /* LOCKF_DEBUG */
1818	/*
1819	 * Check to see if we don't need to split at all.
1820	 */
1821	if (lock1->lf_start == lock2->lf_start) {
1822		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
1823		return;
1824	}
1825	if (lock1->lf_end == lock2->lf_end) {
1826		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1827		return;
1828	}
1829	/*
1830	 * Make a new lock consisting of the last part of
1831	 * the encompassing lock.
1832	 */
1833	splitlock = lf_alloc_lock(lock1->lf_owner);
1834	memcpy(splitlock, lock1, sizeof *splitlock);
1835	splitlock->lf_refs = 1;
1836	if (splitlock->lf_flags & F_REMOTE)
1837		vref(splitlock->lf_vnode);
1838
1839	/*
1840	 * This cannot cause a deadlock since any edges we would add
1841	 * to splitlock already exist in lock1. We must be sure to add
1842	 * necessary dependancies to splitlock before we reduce lock1
1843	 * otherwise we may accidentally grant a pending lock that
1844	 * was blocked by the tail end of lock1.
1845	 */
1846	splitlock->lf_start = lock2->lf_end + 1;
1847	LIST_INIT(&splitlock->lf_outedges);
1848	LIST_INIT(&splitlock->lf_inedges);
1849	sx_xlock(&lf_owner_graph_lock);
1850	lf_add_incoming(state, splitlock);
1851	sx_xunlock(&lf_owner_graph_lock);
1852
1853	lf_set_end(state, lock1, lock2->lf_start - 1, granted);
1854
1855	/*
1856	 * OK, now link it in
1857	 */
1858	lf_insert_lock(state, splitlock);
1859}
1860
1861struct lockdesc {
1862	STAILQ_ENTRY(lockdesc) link;
1863	struct vnode *vp;
1864	struct flock fl;
1865};
1866STAILQ_HEAD(lockdesclist, lockdesc);
1867
1868int
1869lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
1870{
1871	struct lockf *ls;
1872	struct lockf_entry *lf;
1873	struct lockdesc *ldesc;
1874	struct lockdesclist locks;
1875	int error;
1876
1877	/*
1878	 * In order to keep the locking simple, we iterate over the
1879	 * active lock lists to build a list of locks that need
1880	 * releasing. We then call the iterator for each one in turn.
1881	 *
1882	 * We take an extra reference to the vnode for the duration to
1883	 * make sure it doesn't go away before we are finished.
1884	 */
1885	STAILQ_INIT(&locks);
1886	sx_xlock(&lf_lock_states_lock);
1887	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
1888		sx_xlock(&ls->ls_lock);
1889		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1890			if (lf->lf_owner->lo_sysid != sysid)
1891				continue;
1892
1893			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1894			    M_WAITOK);
1895			ldesc->vp = lf->lf_vnode;
1896			vref(ldesc->vp);
1897			ldesc->fl.l_start = lf->lf_start;
1898			if (lf->lf_end == OFF_MAX)
1899				ldesc->fl.l_len = 0;
1900			else
1901				ldesc->fl.l_len =
1902					lf->lf_end - lf->lf_start + 1;
1903			ldesc->fl.l_whence = SEEK_SET;
1904			ldesc->fl.l_type = F_UNLCK;
1905			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1906			ldesc->fl.l_sysid = sysid;
1907			STAILQ_INSERT_TAIL(&locks, ldesc, link);
1908		}
1909		sx_xunlock(&ls->ls_lock);
1910	}
1911	sx_xunlock(&lf_lock_states_lock);
1912
1913	/*
1914	 * Call the iterator function for each lock in turn. If the
1915	 * iterator returns an error code, just free the rest of the
1916	 * lockdesc structures.
1917	 */
1918	error = 0;
1919	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1920		STAILQ_REMOVE_HEAD(&locks, link);
1921		if (!error)
1922			error = fn(ldesc->vp, &ldesc->fl, arg);
1923		vrele(ldesc->vp);
1924		free(ldesc, M_LOCKF);
1925	}
1926
1927	return (error);
1928}
1929
1930int
1931lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
1932{
1933	struct lockf *ls;
1934	struct lockf_entry *lf;
1935	struct lockdesc *ldesc;
1936	struct lockdesclist locks;
1937	int error;
1938
1939	/*
1940	 * In order to keep the locking simple, we iterate over the
1941	 * active lock lists to build a list of locks that need
1942	 * releasing. We then call the iterator for each one in turn.
1943	 *
1944	 * We take an extra reference to the vnode for the duration to
1945	 * make sure it doesn't go away before we are finished.
1946	 */
1947	STAILQ_INIT(&locks);
1948	VI_LOCK(vp);
1949	ls = vp->v_lockf;
1950	if (!ls) {
1951		VI_UNLOCK(vp);
1952		return (0);
1953	}
1954	ls->ls_threads++;
1955	VI_UNLOCK(vp);
1956
1957	sx_xlock(&ls->ls_lock);
1958	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
1959		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
1960		    M_WAITOK);
1961		ldesc->vp = lf->lf_vnode;
1962		vref(ldesc->vp);
1963		ldesc->fl.l_start = lf->lf_start;
1964		if (lf->lf_end == OFF_MAX)
1965			ldesc->fl.l_len = 0;
1966		else
1967			ldesc->fl.l_len =
1968				lf->lf_end - lf->lf_start + 1;
1969		ldesc->fl.l_whence = SEEK_SET;
1970		ldesc->fl.l_type = F_UNLCK;
1971		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
1972		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
1973		STAILQ_INSERT_TAIL(&locks, ldesc, link);
1974	}
1975	sx_xunlock(&ls->ls_lock);
1976	VI_LOCK(vp);
1977	ls->ls_threads--;
1978	wakeup(ls);
1979	VI_UNLOCK(vp);
1980
1981	/*
1982	 * Call the iterator function for each lock in turn. If the
1983	 * iterator returns an error code, just free the rest of the
1984	 * lockdesc structures.
1985	 */
1986	error = 0;
1987	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
1988		STAILQ_REMOVE_HEAD(&locks, link);
1989		if (!error)
1990			error = fn(ldesc->vp, &ldesc->fl, arg);
1991		vrele(ldesc->vp);
1992		free(ldesc, M_LOCKF);
1993	}
1994
1995	return (error);
1996}
1997
1998static int
1999lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
2000{
2001
2002	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
2003	return (0);
2004}
2005
2006void
2007lf_clearremotesys(int sysid)
2008{
2009
2010	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
2011	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
2012}
2013
2014int
2015lf_countlocks(int sysid)
2016{
2017	int i;
2018	struct lock_owner *lo;
2019	int count;
2020
2021	count = 0;
2022	sx_xlock(&lf_lock_owners_lock);
2023	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
2024		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
2025			if (lo->lo_sysid == sysid)
2026				count += lo->lo_refs;
2027	sx_xunlock(&lf_lock_owners_lock);
2028
2029	return (count);
2030}
2031
2032#ifdef LOCKF_DEBUG
2033
2034/*
2035 * Return non-zero if y is reachable from x using a brute force
2036 * search. If reachable and path is non-null, return the route taken
2037 * in path.
2038 */
2039static int
2040graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
2041    struct owner_vertex_list *path)
2042{
2043	struct owner_edge *e;
2044
2045	if (x == y) {
2046		if (path)
2047			TAILQ_INSERT_HEAD(path, x, v_link);
2048		return 1;
2049	}
2050
2051	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2052		if (graph_reaches(e->e_to, y, path)) {
2053			if (path)
2054				TAILQ_INSERT_HEAD(path, x, v_link);
2055			return 1;
2056		}
2057	}
2058	return 0;
2059}
2060
2061/*
2062 * Perform consistency checks on the graph. Make sure the values of
2063 * v_order are correct. If checkorder is non-zero, check no vertex can
2064 * reach any other vertex with a smaller order.
2065 */
2066static void
2067graph_check(struct owner_graph *g, int checkorder)
2068{
2069	int i, j;
2070
2071	for (i = 0; i < g->g_size; i++) {
2072		if (!g->g_vertices[i]->v_owner)
2073			continue;
2074		KASSERT(g->g_vertices[i]->v_order == i,
2075		    ("lock graph vertices disordered"));
2076		if (checkorder) {
2077			for (j = 0; j < i; j++) {
2078				if (!g->g_vertices[j]->v_owner)
2079					continue;
2080				KASSERT(!graph_reaches(g->g_vertices[i],
2081					g->g_vertices[j], NULL),
2082				    ("lock graph vertices disordered"));
2083			}
2084		}
2085	}
2086}
2087
2088static void
2089graph_print_vertices(struct owner_vertex_list *set)
2090{
2091	struct owner_vertex *v;
2092
2093	printf("{ ");
2094	TAILQ_FOREACH(v, set, v_link) {
2095		printf("%d:", v->v_order);
2096		lf_print_owner(v->v_owner);
2097		if (TAILQ_NEXT(v, v_link))
2098			printf(", ");
2099	}
2100	printf(" }\n");
2101}
2102
2103#endif
2104
2105/*
2106 * Calculate the sub-set of vertices v from the affected region [y..x]
2107 * where v is reachable from y. Return -1 if a loop was detected
2108 * (i.e. x is reachable from y, otherwise the number of vertices in
2109 * this subset.
2110 */
2111static int
2112graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
2113    struct owner_vertex *y, struct owner_vertex_list *delta)
2114{
2115	uint32_t gen;
2116	struct owner_vertex *v;
2117	struct owner_edge *e;
2118	int n;
2119
2120	/*
2121	 * We start with a set containing just y. Then for each vertex
2122	 * v in the set so far unprocessed, we add each vertex that v
2123	 * has an out-edge to and that is within the affected region
2124	 * [y..x]. If we see the vertex x on our travels, stop
2125	 * immediately.
2126	 */
2127	TAILQ_INIT(delta);
2128	TAILQ_INSERT_TAIL(delta, y, v_link);
2129	v = y;
2130	n = 1;
2131	gen = g->g_gen;
2132	while (v) {
2133		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
2134			if (e->e_to == x)
2135				return -1;
2136			if (e->e_to->v_order < x->v_order
2137			    && e->e_to->v_gen != gen) {
2138				e->e_to->v_gen = gen;
2139				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
2140				n++;
2141			}
2142		}
2143		v = TAILQ_NEXT(v, v_link);
2144	}
2145
2146	return (n);
2147}
2148
2149/*
2150 * Calculate the sub-set of vertices v from the affected region [y..x]
2151 * where v reaches x. Return the number of vertices in this subset.
2152 */
2153static int
2154graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
2155    struct owner_vertex *y, struct owner_vertex_list *delta)
2156{
2157	uint32_t gen;
2158	struct owner_vertex *v;
2159	struct owner_edge *e;
2160	int n;
2161
2162	/*
2163	 * We start with a set containing just x. Then for each vertex
2164	 * v in the set so far unprocessed, we add each vertex that v
2165	 * has an in-edge from and that is within the affected region
2166	 * [y..x].
2167	 */
2168	TAILQ_INIT(delta);
2169	TAILQ_INSERT_TAIL(delta, x, v_link);
2170	v = x;
2171	n = 1;
2172	gen = g->g_gen;
2173	while (v) {
2174		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
2175			if (e->e_from->v_order > y->v_order
2176			    && e->e_from->v_gen != gen) {
2177				e->e_from->v_gen = gen;
2178				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
2179				n++;
2180			}
2181		}
2182		v = TAILQ_PREV(v, owner_vertex_list, v_link);
2183	}
2184
2185	return (n);
2186}
2187
2188static int
2189graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
2190{
2191	struct owner_vertex *v;
2192	int i, j;
2193
2194	TAILQ_FOREACH(v, set, v_link) {
2195		for (i = n;
2196		     i > 0 && indices[i - 1] > v->v_order; i--)
2197			;
2198		for (j = n - 1; j >= i; j--)
2199			indices[j + 1] = indices[j];
2200		indices[i] = v->v_order;
2201		n++;
2202	}
2203
2204	return (n);
2205}
2206
2207static int
2208graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
2209    struct owner_vertex_list *set)
2210{
2211	struct owner_vertex *v, *vlowest;
2212
2213	while (!TAILQ_EMPTY(set)) {
2214		vlowest = NULL;
2215		TAILQ_FOREACH(v, set, v_link) {
2216			if (!vlowest || v->v_order < vlowest->v_order)
2217				vlowest = v;
2218		}
2219		TAILQ_REMOVE(set, vlowest, v_link);
2220		vlowest->v_order = indices[nextunused];
2221		g->g_vertices[vlowest->v_order] = vlowest;
2222		nextunused++;
2223	}
2224
2225	return (nextunused);
2226}
2227
2228static int
2229graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
2230    struct owner_vertex *y)
2231{
2232	struct owner_edge *e;
2233	struct owner_vertex_list deltaF, deltaB;
2234	int nF, nB, n, vi, i;
2235	int *indices;
2236
2237	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2238
2239	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2240		if (e->e_to == y) {
2241			e->e_refs++;
2242			return (0);
2243		}
2244	}
2245
2246#ifdef LOCKF_DEBUG
2247	if (lockf_debug & 8) {
2248		printf("adding edge %d:", x->v_order);
2249		lf_print_owner(x->v_owner);
2250		printf(" -> %d:", y->v_order);
2251		lf_print_owner(y->v_owner);
2252		printf("\n");
2253	}
2254#endif
2255	if (y->v_order < x->v_order) {
2256		/*
2257		 * The new edge violates the order. First find the set
2258		 * of affected vertices reachable from y (deltaF) and
2259		 * the set of affect vertices affected that reach x
2260		 * (deltaB), using the graph generation number to
2261		 * detect whether we have visited a given vertex
2262		 * already. We re-order the graph so that each vertex
2263		 * in deltaB appears before each vertex in deltaF.
2264		 *
2265		 * If x is a member of deltaF, then the new edge would
2266		 * create a cycle. Otherwise, we may assume that
2267		 * deltaF and deltaB are disjoint.
2268		 */
2269		g->g_gen++;
2270		if (g->g_gen == 0) {
2271			/*
2272			 * Generation wrap.
2273			 */
2274			for (vi = 0; vi < g->g_size; vi++) {
2275				g->g_vertices[vi]->v_gen = 0;
2276			}
2277			g->g_gen++;
2278		}
2279		nF = graph_delta_forward(g, x, y, &deltaF);
2280		if (nF < 0) {
2281#ifdef LOCKF_DEBUG
2282			if (lockf_debug & 8) {
2283				struct owner_vertex_list path;
2284				printf("deadlock: ");
2285				TAILQ_INIT(&path);
2286				graph_reaches(y, x, &path);
2287				graph_print_vertices(&path);
2288			}
2289#endif
2290			return (EDEADLK);
2291		}
2292
2293#ifdef LOCKF_DEBUG
2294		if (lockf_debug & 8) {
2295			printf("re-ordering graph vertices\n");
2296			printf("deltaF = ");
2297			graph_print_vertices(&deltaF);
2298		}
2299#endif
2300
2301		nB = graph_delta_backward(g, x, y, &deltaB);
2302
2303#ifdef LOCKF_DEBUG
2304		if (lockf_debug & 8) {
2305			printf("deltaB = ");
2306			graph_print_vertices(&deltaB);
2307		}
2308#endif
2309
2310		/*
2311		 * We first build a set of vertex indices (vertex
2312		 * order values) that we may use, then we re-assign
2313		 * orders first to those vertices in deltaB, then to
2314		 * deltaF. Note that the contents of deltaF and deltaB
2315		 * may be partially disordered - we perform an
2316		 * insertion sort while building our index set.
2317		 */
2318		indices = g->g_indexbuf;
2319		n = graph_add_indices(indices, 0, &deltaF);
2320		graph_add_indices(indices, n, &deltaB);
2321
2322		/*
2323		 * We must also be sure to maintain the relative
2324		 * ordering of deltaF and deltaB when re-assigning
2325		 * vertices. We do this by iteratively removing the
2326		 * lowest ordered element from the set and assigning
2327		 * it the next value from our new ordering.
2328		 */
2329		i = graph_assign_indices(g, indices, 0, &deltaB);
2330		graph_assign_indices(g, indices, i, &deltaF);
2331
2332#ifdef LOCKF_DEBUG
2333		if (lockf_debug & 8) {
2334			struct owner_vertex_list set;
2335			TAILQ_INIT(&set);
2336			for (i = 0; i < nB + nF; i++)
2337				TAILQ_INSERT_TAIL(&set,
2338				    g->g_vertices[indices[i]], v_link);
2339			printf("new ordering = ");
2340			graph_print_vertices(&set);
2341		}
2342#endif
2343	}
2344
2345	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
2346
2347#ifdef LOCKF_DEBUG
2348	if (lockf_debug & 8) {
2349		graph_check(g, TRUE);
2350	}
2351#endif
2352
2353	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
2354
2355	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
2356	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
2357	e->e_refs = 1;
2358	e->e_from = x;
2359	e->e_to = y;
2360
2361	return (0);
2362}
2363
2364/*
2365 * Remove an edge x->y from the graph.
2366 */
2367static void
2368graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
2369    struct owner_vertex *y)
2370{
2371	struct owner_edge *e;
2372
2373	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2374
2375	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
2376		if (e->e_to == y)
2377			break;
2378	}
2379	KASSERT(e, ("Removing non-existent edge from deadlock graph"));
2380
2381	e->e_refs--;
2382	if (e->e_refs == 0) {
2383#ifdef LOCKF_DEBUG
2384		if (lockf_debug & 8) {
2385			printf("removing edge %d:", x->v_order);
2386			lf_print_owner(x->v_owner);
2387			printf(" -> %d:", y->v_order);
2388			lf_print_owner(y->v_owner);
2389			printf("\n");
2390		}
2391#endif
2392		LIST_REMOVE(e, e_outlink);
2393		LIST_REMOVE(e, e_inlink);
2394		free(e, M_LOCKF);
2395	}
2396}
2397
2398/*
2399 * Allocate a vertex from the free list. Return ENOMEM if there are
2400 * none.
2401 */
2402static struct owner_vertex *
2403graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
2404{
2405	struct owner_vertex *v;
2406
2407	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2408
2409	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
2410	if (g->g_size == g->g_space) {
2411		g->g_vertices = realloc(g->g_vertices,
2412		    2 * g->g_space * sizeof(struct owner_vertex *),
2413		    M_LOCKF, M_WAITOK);
2414		free(g->g_indexbuf, M_LOCKF);
2415		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
2416		    M_LOCKF, M_WAITOK);
2417		g->g_space = 2 * g->g_space;
2418	}
2419	v->v_order = g->g_size;
2420	v->v_gen = g->g_gen;
2421	g->g_vertices[g->g_size] = v;
2422	g->g_size++;
2423
2424	LIST_INIT(&v->v_outedges);
2425	LIST_INIT(&v->v_inedges);
2426	v->v_owner = lo;
2427
2428	return (v);
2429}
2430
2431static void
2432graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
2433{
2434	struct owner_vertex *w;
2435	int i;
2436
2437	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
2438
2439	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
2440	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
2441
2442	/*
2443	 * Remove from the graph's array and close up the gap,
2444	 * renumbering the other vertices.
2445	 */
2446	for (i = v->v_order + 1; i < g->g_size; i++) {
2447		w = g->g_vertices[i];
2448		w->v_order--;
2449		g->g_vertices[i - 1] = w;
2450	}
2451	g->g_size--;
2452
2453	free(v, M_LOCKF);
2454}
2455
2456static struct owner_graph *
2457graph_init(struct owner_graph *g)
2458{
2459
2460	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
2461	    M_LOCKF, M_WAITOK);
2462	g->g_size = 0;
2463	g->g_space = 10;
2464	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
2465	g->g_gen = 0;
2466
2467	return (g);
2468}
2469
2470#ifdef LOCKF_DEBUG
2471/*
2472 * Print description of a lock owner
2473 */
2474static void
2475lf_print_owner(struct lock_owner *lo)
2476{
2477
2478	if (lo->lo_flags & F_REMOTE) {
2479		printf("remote pid %d, system %d",
2480		    lo->lo_pid, lo->lo_sysid);
2481	} else if (lo->lo_flags & F_FLOCK) {
2482		printf("file %p", lo->lo_id);
2483	} else {
2484		printf("local pid %d", lo->lo_pid);
2485	}
2486}
2487
2488/*
2489 * Print out a lock.
2490 */
2491static void
2492lf_print(char *tag, struct lockf_entry *lock)
2493{
2494
2495	printf("%s: lock %p for ", tag, (void *)lock);
2496	lf_print_owner(lock->lf_owner);
2497	if (lock->lf_inode != (struct inode *)0)
2498		printf(" in ino %ju on dev <%s>,",
2499		    (uintmax_t)lock->lf_inode->i_number,
2500		    devtoname(lock->lf_inode->i_dev));
2501	printf(" %s, start %jd, end ",
2502	    lock->lf_type == F_RDLCK ? "shared" :
2503	    lock->lf_type == F_WRLCK ? "exclusive" :
2504	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
2505	    (intmax_t)lock->lf_start);
2506	if (lock->lf_end == OFF_MAX)
2507		printf("EOF");
2508	else
2509		printf("%jd", (intmax_t)lock->lf_end);
2510	if (!LIST_EMPTY(&lock->lf_outedges))
2511		printf(" block %p\n",
2512		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
2513	else
2514		printf("\n");
2515}
2516
2517static void
2518lf_printlist(char *tag, struct lockf_entry *lock)
2519{
2520	struct lockf_entry *lf, *blk;
2521	struct lockf_edge *e;
2522
2523	if (lock->lf_inode == (struct inode *)0)
2524		return;
2525
2526	printf("%s: Lock list for ino %ju on dev <%s>:\n",
2527	    tag, (uintmax_t)lock->lf_inode->i_number,
2528	    devtoname(lock->lf_inode->i_dev));
2529	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
2530		printf("\tlock %p for ",(void *)lf);
2531		lf_print_owner(lock->lf_owner);
2532		printf(", %s, start %jd, end %jd",
2533		    lf->lf_type == F_RDLCK ? "shared" :
2534		    lf->lf_type == F_WRLCK ? "exclusive" :
2535		    lf->lf_type == F_UNLCK ? "unlock" :
2536		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
2537		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
2538			blk = e->le_to;
2539			printf("\n\t\tlock request %p for ", (void *)blk);
2540			lf_print_owner(blk->lf_owner);
2541			printf(", %s, start %jd, end %jd",
2542			    blk->lf_type == F_RDLCK ? "shared" :
2543			    blk->lf_type == F_WRLCK ? "exclusive" :
2544			    blk->lf_type == F_UNLCK ? "unlock" :
2545			    "unknown", (intmax_t)blk->lf_start,
2546			    (intmax_t)blk->lf_end);
2547			if (!LIST_EMPTY(&blk->lf_inedges))
2548				panic("lf_printlist: bad list");
2549		}
2550		printf("\n");
2551	}
2552}
2553#endif /* LOCKF_DEBUG */
2554