1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *	This product includes software developed by the University of
22 *	California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 *    may be used to endorse or promote products derived from this software
25 *    without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
40 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
41 */
42
43#include <sys/cdefs.h>
44__FBSDID("$FreeBSD$");
45
46#include "opt_isa.h"
47#include "opt_npx.h"
48#include "opt_reset.h"
49#include "opt_cpu.h"
50#include "opt_xbox.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/bio.h>
55#include <sys/buf.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/lock.h>
59#include <sys/malloc.h>
60#include <sys/mbuf.h>
61#include <sys/mutex.h>
62#include <sys/pioctl.h>
63#include <sys/proc.h>
64#include <sys/sysent.h>
65#include <sys/sf_buf.h>
66#include <sys/smp.h>
67#include <sys/sched.h>
68#include <sys/sysctl.h>
69#include <sys/unistd.h>
70#include <sys/vnode.h>
71#include <sys/vmmeter.h>
72
73#include <machine/cpu.h>
74#include <machine/cputypes.h>
75#include <machine/md_var.h>
76#include <machine/pcb.h>
77#include <machine/pcb_ext.h>
78#include <machine/smp.h>
79#include <machine/vm86.h>
80
81#ifdef CPU_ELAN
82#include <machine/elan_mmcr.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_extern.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_param.h>
91
92#ifdef XEN
93#include <xen/hypervisor.h>
94#endif
95#ifdef PC98
96#include <pc98/cbus/cbus.h>
97#else
98#include <x86/isa/isa.h>
99#endif
100
101#ifdef XBOX
102#include <machine/xbox.h>
103#endif
104
105#ifndef NSFBUFS
106#define	NSFBUFS		(512 + maxusers * 16)
107#endif
108
109_Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
110    "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
111_Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
112    "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
113
114static void	cpu_reset_real(void);
115#ifdef SMP
116static void	cpu_reset_proxy(void);
117static u_int	cpu_reset_proxyid;
118static volatile u_int	cpu_reset_proxy_active;
119#endif
120
121static int nsfbufs;
122static int nsfbufspeak;
123static int nsfbufsused;
124
125SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0,
126    "Maximum number of sendfile(2) sf_bufs available");
127SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0,
128    "Number of sendfile(2) sf_bufs at peak usage");
129SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0,
130    "Number of sendfile(2) sf_bufs in use");
131
132static void	sf_buf_init(void *arg);
133SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
134
135LIST_HEAD(sf_head, sf_buf);
136
137/*
138 * A hash table of active sendfile(2) buffers
139 */
140static struct sf_head *sf_buf_active;
141static u_long sf_buf_hashmask;
142
143#define	SF_BUF_HASH(m)	(((m) - vm_page_array) & sf_buf_hashmask)
144
145static TAILQ_HEAD(, sf_buf) sf_buf_freelist;
146static u_int	sf_buf_alloc_want;
147
148/*
149 * A lock used to synchronize access to the hash table and free list
150 */
151static struct mtx sf_buf_lock;
152
153extern int	_ucodesel, _udatasel;
154
155/*
156 * Finish a fork operation, with process p2 nearly set up.
157 * Copy and update the pcb, set up the stack so that the child
158 * ready to run and return to user mode.
159 */
160void
161cpu_fork(td1, p2, td2, flags)
162	register struct thread *td1;
163	register struct proc *p2;
164	struct thread *td2;
165	int flags;
166{
167	register struct proc *p1;
168	struct pcb *pcb2;
169	struct mdproc *mdp2;
170
171	p1 = td1->td_proc;
172	if ((flags & RFPROC) == 0) {
173		if ((flags & RFMEM) == 0) {
174			/* unshare user LDT */
175			struct mdproc *mdp1 = &p1->p_md;
176			struct proc_ldt *pldt, *pldt1;
177
178			mtx_lock_spin(&dt_lock);
179			if ((pldt1 = mdp1->md_ldt) != NULL &&
180			    pldt1->ldt_refcnt > 1) {
181				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
182				if (pldt == NULL)
183					panic("could not copy LDT");
184				mdp1->md_ldt = pldt;
185				set_user_ldt(mdp1);
186				user_ldt_deref(pldt1);
187			} else
188				mtx_unlock_spin(&dt_lock);
189		}
190		return;
191	}
192
193	/* Ensure that td1's pcb is up to date. */
194	if (td1 == curthread)
195		td1->td_pcb->pcb_gs = rgs();
196#ifdef DEV_NPX
197	critical_enter();
198	if (PCPU_GET(fpcurthread) == td1)
199		npxsave(td1->td_pcb->pcb_save);
200	critical_exit();
201#endif
202
203	/* Point the pcb to the top of the stack */
204	pcb2 = (struct pcb *)(td2->td_kstack +
205	    td2->td_kstack_pages * PAGE_SIZE) - 1;
206	td2->td_pcb = pcb2;
207
208	/* Copy td1's pcb */
209	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
210
211	/* Properly initialize pcb_save */
212	pcb2->pcb_save = &pcb2->pcb_user_save;
213
214	/* Point mdproc and then copy over td1's contents */
215	mdp2 = &p2->p_md;
216	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));
217
218	/*
219	 * Create a new fresh stack for the new process.
220	 * Copy the trap frame for the return to user mode as if from a
221	 * syscall.  This copies most of the user mode register values.
222	 * The -16 is so we can expand the trapframe if we go to vm86.
223	 */
224	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
225	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));
226
227	td2->td_frame->tf_eax = 0;		/* Child returns zero */
228	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
229	td2->td_frame->tf_edx = 1;
230
231	/*
232	 * If the parent process has the trap bit set (i.e. a debugger had
233	 * single stepped the process to the system call), we need to clear
234	 * the trap flag from the new frame unless the debugger had set PF_FORK
235	 * on the parent.  Otherwise, the child will receive a (likely
236	 * unexpected) SIGTRAP when it executes the first instruction after
237	 * returning  to userland.
238	 */
239	if ((p1->p_pfsflags & PF_FORK) == 0)
240		td2->td_frame->tf_eflags &= ~PSL_T;
241
242	/*
243	 * Set registers for trampoline to user mode.  Leave space for the
244	 * return address on stack.  These are the kernel mode register values.
245	 */
246#ifdef PAE
247	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
248#else
249	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
250#endif
251	pcb2->pcb_edi = 0;
252	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
253	pcb2->pcb_ebp = 0;
254	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
255	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
256	pcb2->pcb_eip = (int)fork_trampoline;
257	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
258	/*-
259	 * pcb2->pcb_dr*:	cloned above.
260	 * pcb2->pcb_savefpu:	cloned above.
261	 * pcb2->pcb_flags:	cloned above.
262	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
263	 * pcb2->pcb_gs:	cloned above.
264	 * pcb2->pcb_ext:	cleared below.
265	 */
266
267	/*
268	 * XXX don't copy the i/o pages.  this should probably be fixed.
269	 */
270	pcb2->pcb_ext = 0;
271
272	/* Copy the LDT, if necessary. */
273	mtx_lock_spin(&dt_lock);
274	if (mdp2->md_ldt != NULL) {
275		if (flags & RFMEM) {
276			mdp2->md_ldt->ldt_refcnt++;
277		} else {
278			mdp2->md_ldt = user_ldt_alloc(mdp2,
279			    mdp2->md_ldt->ldt_len);
280			if (mdp2->md_ldt == NULL)
281				panic("could not copy LDT");
282		}
283	}
284	mtx_unlock_spin(&dt_lock);
285
286	/* Setup to release spin count in fork_exit(). */
287	td2->td_md.md_spinlock_count = 1;
288	/*
289	 * XXX XEN need to check on PSL_USER is handled
290	 */
291	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
292	/*
293	 * Now, cpu_switch() can schedule the new process.
294	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
295	 * containing the return address when exiting cpu_switch.
296	 * This will normally be to fork_trampoline(), which will have
297	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
298	 * will set up a stack to call fork_return(p, frame); to complete
299	 * the return to user-mode.
300	 */
301}
302
303/*
304 * Intercept the return address from a freshly forked process that has NOT
305 * been scheduled yet.
306 *
307 * This is needed to make kernel threads stay in kernel mode.
308 */
309void
310cpu_set_fork_handler(td, func, arg)
311	struct thread *td;
312	void (*func)(void *);
313	void *arg;
314{
315	/*
316	 * Note that the trap frame follows the args, so the function
317	 * is really called like this:  func(arg, frame);
318	 */
319	td->td_pcb->pcb_esi = (int) func;	/* function */
320	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
321}
322
323void
324cpu_exit(struct thread *td)
325{
326
327	/*
328	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
329	 * and %gs before we free it in case they refer to an LDT entry.
330	 */
331	mtx_lock_spin(&dt_lock);
332	if (td->td_proc->p_md.md_ldt) {
333		td->td_pcb->pcb_gs = _udatasel;
334		load_gs(_udatasel);
335		user_ldt_free(td);
336	} else
337		mtx_unlock_spin(&dt_lock);
338}
339
340void
341cpu_thread_exit(struct thread *td)
342{
343
344#ifdef DEV_NPX
345	critical_enter();
346	if (td == PCPU_GET(fpcurthread))
347		npxdrop();
348	critical_exit();
349#endif
350
351	/* Disable any hardware breakpoints. */
352	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
353		reset_dbregs();
354		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
355	}
356}
357
358void
359cpu_thread_clean(struct thread *td)
360{
361	struct pcb *pcb;
362
363	pcb = td->td_pcb;
364	if (pcb->pcb_ext != NULL) {
365		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
366		/*
367		 * XXX do we need to move the TSS off the allocated pages
368		 * before freeing them?  (not done here)
369		 */
370		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
371		    ctob(IOPAGES + 1));
372		pcb->pcb_ext = NULL;
373	}
374}
375
376void
377cpu_thread_swapin(struct thread *td)
378{
379}
380
381void
382cpu_thread_swapout(struct thread *td)
383{
384}
385
386void
387cpu_thread_alloc(struct thread *td)
388{
389
390	td->td_pcb = (struct pcb *)(td->td_kstack +
391	    td->td_kstack_pages * PAGE_SIZE) - 1;
392	td->td_frame = (struct trapframe *)((caddr_t)td->td_pcb - 16) - 1;
393	td->td_pcb->pcb_ext = NULL;
394	td->td_pcb->pcb_save = &td->td_pcb->pcb_user_save;
395}
396
397void
398cpu_thread_free(struct thread *td)
399{
400
401	cpu_thread_clean(td);
402}
403
404void
405cpu_set_syscall_retval(struct thread *td, int error)
406{
407
408	switch (error) {
409	case 0:
410		td->td_frame->tf_eax = td->td_retval[0];
411		td->td_frame->tf_edx = td->td_retval[1];
412		td->td_frame->tf_eflags &= ~PSL_C;
413		break;
414
415	case ERESTART:
416		/*
417		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
418		 * 0x80 is 2 bytes. We saved this in tf_err.
419		 */
420		td->td_frame->tf_eip -= td->td_frame->tf_err;
421		break;
422
423	case EJUSTRETURN:
424		break;
425
426	default:
427		if (td->td_proc->p_sysent->sv_errsize) {
428			if (error >= td->td_proc->p_sysent->sv_errsize)
429				error = -1;	/* XXX */
430			else
431				error = td->td_proc->p_sysent->sv_errtbl[error];
432		}
433		td->td_frame->tf_eax = error;
434		td->td_frame->tf_eflags |= PSL_C;
435		break;
436	}
437}
438
439/*
440 * Initialize machine state (pcb and trap frame) for a new thread about to
441 * upcall. Put enough state in the new thread's PCB to get it to go back
442 * userret(), where we can intercept it again to set the return (upcall)
443 * Address and stack, along with those from upcals that are from other sources
444 * such as those generated in thread_userret() itself.
445 */
446void
447cpu_set_upcall(struct thread *td, struct thread *td0)
448{
449	struct pcb *pcb2;
450
451	/* Point the pcb to the top of the stack. */
452	pcb2 = td->td_pcb;
453
454	/*
455	 * Copy the upcall pcb.  This loads kernel regs.
456	 * Those not loaded individually below get their default
457	 * values here.
458	 */
459	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
460	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
461	    PCB_KERNNPX);
462	pcb2->pcb_save = &pcb2->pcb_user_save;
463
464	/*
465	 * Create a new fresh stack for the new thread.
466	 */
467	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));
468
469	/* If the current thread has the trap bit set (i.e. a debugger had
470	 * single stepped the process to the system call), we need to clear
471	 * the trap flag from the new frame. Otherwise, the new thread will
472	 * receive a (likely unexpected) SIGTRAP when it executes the first
473	 * instruction after returning to userland.
474	 */
475	td->td_frame->tf_eflags &= ~PSL_T;
476
477	/*
478	 * Set registers for trampoline to user mode.  Leave space for the
479	 * return address on stack.  These are the kernel mode register values.
480	 */
481	pcb2->pcb_edi = 0;
482	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
483	pcb2->pcb_ebp = 0;
484	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
485	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
486	pcb2->pcb_eip = (int)fork_trampoline;
487	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
488	pcb2->pcb_gs = rgs();
489	/*
490	 * If we didn't copy the pcb, we'd need to do the following registers:
491	 * pcb2->pcb_cr3:	cloned above.
492	 * pcb2->pcb_dr*:	cloned above.
493	 * pcb2->pcb_savefpu:	cloned above.
494	 * pcb2->pcb_flags:	cloned above.
495	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
496	 * pcb2->pcb_gs:	cloned above.
497	 * pcb2->pcb_ext:	cleared below.
498	 */
499	pcb2->pcb_ext = NULL;
500
501	/* Setup to release spin count in fork_exit(). */
502	td->td_md.md_spinlock_count = 1;
503	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
504}
505
506/*
507 * Set that machine state for performing an upcall that has to
508 * be done in thread_userret() so that those upcalls generated
509 * in thread_userret() itself can be done as well.
510 */
511void
512cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
513	stack_t *stack)
514{
515
516	/*
517	 * Do any extra cleaning that needs to be done.
518	 * The thread may have optional components
519	 * that are not present in a fresh thread.
520	 * This may be a recycled thread so make it look
521	 * as though it's newly allocated.
522	 */
523	cpu_thread_clean(td);
524
525	/*
526	 * Set the trap frame to point at the beginning of the uts
527	 * function.
528	 */
529	td->td_frame->tf_ebp = 0;
530	td->td_frame->tf_esp =
531	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
532	td->td_frame->tf_eip = (int)entry;
533
534	/*
535	 * Pass the address of the mailbox for this kse to the uts
536	 * function as a parameter on the stack.
537	 */
538	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
539	    (int)arg);
540}
541
542int
543cpu_set_user_tls(struct thread *td, void *tls_base)
544{
545	struct segment_descriptor sd;
546	uint32_t base;
547
548	/*
549	 * Construct a descriptor and store it in the pcb for
550	 * the next context switch.  Also store it in the gdt
551	 * so that the load of tf_fs into %fs will activate it
552	 * at return to userland.
553	 */
554	base = (uint32_t)tls_base;
555	sd.sd_lobase = base & 0xffffff;
556	sd.sd_hibase = (base >> 24) & 0xff;
557	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
558	sd.sd_hilimit = 0xf;
559	sd.sd_type  = SDT_MEMRWA;
560	sd.sd_dpl   = SEL_UPL;
561	sd.sd_p     = 1;
562	sd.sd_xx    = 0;
563	sd.sd_def32 = 1;
564	sd.sd_gran  = 1;
565	critical_enter();
566	/* set %gs */
567	td->td_pcb->pcb_gsd = sd;
568	if (td == curthread) {
569		PCPU_GET(fsgs_gdt)[1] = sd;
570		load_gs(GSEL(GUGS_SEL, SEL_UPL));
571	}
572	critical_exit();
573	return (0);
574}
575
576/*
577 * Convert kernel VA to physical address
578 */
579vm_paddr_t
580kvtop(void *addr)
581{
582	vm_paddr_t pa;
583
584	pa = pmap_kextract((vm_offset_t)addr);
585	if (pa == 0)
586		panic("kvtop: zero page frame");
587	return (pa);
588}
589
590#ifdef SMP
591static void
592cpu_reset_proxy()
593{
594	cpuset_t tcrp;
595
596	cpu_reset_proxy_active = 1;
597	while (cpu_reset_proxy_active == 1)
598		;	/* Wait for other cpu to see that we've started */
599	CPU_SETOF(cpu_reset_proxyid, &tcrp);
600	stop_cpus(tcrp);
601	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
602	DELAY(1000000);
603	cpu_reset_real();
604}
605#endif
606
607void
608cpu_reset()
609{
610#ifdef XBOX
611	if (arch_i386_is_xbox) {
612		/* Kick the PIC16L, it can reboot the box */
613		pic16l_reboot();
614		for (;;);
615	}
616#endif
617
618#ifdef SMP
619	cpuset_t map;
620	u_int cnt;
621
622	if (smp_started) {
623		map = all_cpus;
624		CPU_CLR(PCPU_GET(cpuid), &map);
625		CPU_NAND(&map, &stopped_cpus);
626		if (!CPU_EMPTY(&map)) {
627			printf("cpu_reset: Stopping other CPUs\n");
628			stop_cpus(map);
629		}
630
631		if (PCPU_GET(cpuid) != 0) {
632			cpu_reset_proxyid = PCPU_GET(cpuid);
633			cpustop_restartfunc = cpu_reset_proxy;
634			cpu_reset_proxy_active = 0;
635			printf("cpu_reset: Restarting BSP\n");
636
637			/* Restart CPU #0. */
638			/* XXX: restart_cpus(1 << 0); */
639			CPU_SETOF(0, &started_cpus);
640			wmb();
641
642			cnt = 0;
643			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
644				cnt++;	/* Wait for BSP to announce restart */
645			if (cpu_reset_proxy_active == 0)
646				printf("cpu_reset: Failed to restart BSP\n");
647			enable_intr();
648			cpu_reset_proxy_active = 2;
649
650			while (1);
651			/* NOTREACHED */
652		}
653
654		DELAY(1000000);
655	}
656#endif
657	cpu_reset_real();
658	/* NOTREACHED */
659}
660
661static void
662cpu_reset_real()
663{
664	struct region_descriptor null_idt;
665#ifndef PC98
666	int b;
667#endif
668
669	disable_intr();
670#ifdef XEN
671	if (smp_processor_id() == 0)
672		HYPERVISOR_shutdown(SHUTDOWN_reboot);
673	else
674		HYPERVISOR_shutdown(SHUTDOWN_poweroff);
675#endif
676#ifdef CPU_ELAN
677	if (elan_mmcr != NULL)
678		elan_mmcr->RESCFG = 1;
679#endif
680
681	if (cpu == CPU_GEODE1100) {
682		/* Attempt Geode's own reset */
683		outl(0xcf8, 0x80009044ul);
684		outl(0xcfc, 0xf);
685	}
686
687#ifdef PC98
688	/*
689	 * Attempt to do a CPU reset via CPU reset port.
690	 */
691	if ((inb(0x35) & 0xa0) != 0xa0) {
692		outb(0x37, 0x0f);		/* SHUT0 = 0. */
693		outb(0x37, 0x0b);		/* SHUT1 = 0. */
694	}
695	outb(0xf0, 0x00);		/* Reset. */
696#else
697#if !defined(BROKEN_KEYBOARD_RESET)
698	/*
699	 * Attempt to do a CPU reset via the keyboard controller,
700	 * do not turn off GateA20, as any machine that fails
701	 * to do the reset here would then end up in no man's land.
702	 */
703	outb(IO_KBD + 4, 0xFE);
704	DELAY(500000);	/* wait 0.5 sec to see if that did it */
705#endif
706
707	/*
708	 * Attempt to force a reset via the Reset Control register at
709	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
710	 * transitions from 0 to 1.  Bit 1 selects the type of reset
711	 * to attempt: 0 selects a "soft" reset, and 1 selects a
712	 * "hard" reset.  We try a "hard" reset.  The first write sets
713	 * bit 1 to select a "hard" reset and clears bit 2.  The
714	 * second write forces a 0 -> 1 transition in bit 2 to trigger
715	 * a reset.
716	 */
717	outb(0xcf9, 0x2);
718	outb(0xcf9, 0x6);
719	DELAY(500000);  /* wait 0.5 sec to see if that did it */
720
721	/*
722	 * Attempt to force a reset via the Fast A20 and Init register
723	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
724	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
725	 * preserve bit 1 while setting bit 0.  We also must clear bit
726	 * 0 before setting it if it isn't already clear.
727	 */
728	b = inb(0x92);
729	if (b != 0xff) {
730		if ((b & 0x1) != 0)
731			outb(0x92, b & 0xfe);
732		outb(0x92, b | 0x1);
733		DELAY(500000);  /* wait 0.5 sec to see if that did it */
734	}
735#endif /* PC98 */
736
737	printf("No known reset method worked, attempting CPU shutdown\n");
738	DELAY(1000000); /* wait 1 sec for printf to complete */
739
740	/* Wipe the IDT. */
741	null_idt.rd_limit = 0;
742	null_idt.rd_base = 0;
743	lidt(&null_idt);
744
745	/* "good night, sweet prince .... <THUNK!>" */
746	breakpoint();
747
748	/* NOTREACHED */
749	while(1);
750}
751
752/*
753 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
754 */
755static void
756sf_buf_init(void *arg)
757{
758	struct sf_buf *sf_bufs;
759	vm_offset_t sf_base;
760	int i;
761
762	nsfbufs = NSFBUFS;
763	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
764
765	sf_buf_active = hashinit(nsfbufs, M_TEMP, &sf_buf_hashmask);
766	TAILQ_INIT(&sf_buf_freelist);
767	sf_base = kva_alloc(nsfbufs * PAGE_SIZE);
768	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
769	    M_NOWAIT | M_ZERO);
770	for (i = 0; i < nsfbufs; i++) {
771		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
772		TAILQ_INSERT_TAIL(&sf_buf_freelist, &sf_bufs[i], free_entry);
773	}
774	sf_buf_alloc_want = 0;
775	mtx_init(&sf_buf_lock, "sf_buf", NULL, MTX_DEF);
776}
777
778/*
779 * Invalidate the cache lines that may belong to the page, if
780 * (possibly old) mapping of the page by sf buffer exists.  Returns
781 * TRUE when mapping was found and cache invalidated.
782 */
783boolean_t
784sf_buf_invalidate_cache(vm_page_t m)
785{
786	struct sf_head *hash_list;
787	struct sf_buf *sf;
788	boolean_t ret;
789
790	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
791	ret = FALSE;
792	mtx_lock(&sf_buf_lock);
793	LIST_FOREACH(sf, hash_list, list_entry) {
794		if (sf->m == m) {
795			/*
796			 * Use pmap_qenter to update the pte for
797			 * existing mapping, in particular, the PAT
798			 * settings are recalculated.
799			 */
800			pmap_qenter(sf->kva, &m, 1);
801			pmap_invalidate_cache_range(sf->kva, sf->kva +
802			    PAGE_SIZE);
803			ret = TRUE;
804			break;
805		}
806	}
807	mtx_unlock(&sf_buf_lock);
808	return (ret);
809}
810
811/*
812 * Get an sf_buf from the freelist.  May block if none are available.
813 */
814struct sf_buf *
815sf_buf_alloc(struct vm_page *m, int flags)
816{
817	pt_entry_t opte, *ptep;
818	struct sf_head *hash_list;
819	struct sf_buf *sf;
820#ifdef SMP
821	cpuset_t other_cpus;
822	u_int cpuid;
823#endif
824	int error;
825
826	KASSERT(curthread->td_pinned > 0 || (flags & SFB_CPUPRIVATE) == 0,
827	    ("sf_buf_alloc(SFB_CPUPRIVATE): curthread not pinned"));
828	hash_list = &sf_buf_active[SF_BUF_HASH(m)];
829	mtx_lock(&sf_buf_lock);
830	LIST_FOREACH(sf, hash_list, list_entry) {
831		if (sf->m == m) {
832			sf->ref_count++;
833			if (sf->ref_count == 1) {
834				TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
835				nsfbufsused++;
836				nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
837			}
838#ifdef SMP
839			goto shootdown;
840#else
841			goto done;
842#endif
843		}
844	}
845	while ((sf = TAILQ_FIRST(&sf_buf_freelist)) == NULL) {
846		if (flags & SFB_NOWAIT)
847			goto done;
848		sf_buf_alloc_want++;
849		SFSTAT_INC(sf_allocwait);
850		error = msleep(&sf_buf_freelist, &sf_buf_lock,
851		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
852		sf_buf_alloc_want--;
853
854		/*
855		 * If we got a signal, don't risk going back to sleep.
856		 */
857		if (error)
858			goto done;
859	}
860	TAILQ_REMOVE(&sf_buf_freelist, sf, free_entry);
861	if (sf->m != NULL)
862		LIST_REMOVE(sf, list_entry);
863	LIST_INSERT_HEAD(hash_list, sf, list_entry);
864	sf->ref_count = 1;
865	sf->m = m;
866	nsfbufsused++;
867	nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
868
869	/*
870	 * Update the sf_buf's virtual-to-physical mapping, flushing the
871	 * virtual address from the TLB.  Since the reference count for
872	 * the sf_buf's old mapping was zero, that mapping is not
873	 * currently in use.  Consequently, there is no need to exchange
874	 * the old and new PTEs atomically, even under PAE.
875	 */
876	ptep = vtopte(sf->kva);
877	opte = *ptep;
878#ifdef XEN
879       PT_SET_MA(sf->kva, xpmap_ptom(VM_PAGE_TO_PHYS(m)) | pgeflag
880	   | PG_RW | PG_V | pmap_cache_bits(m->md.pat_mode, 0));
881#else
882	*ptep = VM_PAGE_TO_PHYS(m) | pgeflag | PG_RW | PG_V |
883	    pmap_cache_bits(m->md.pat_mode, 0);
884#endif
885
886	/*
887	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
888	 * virtual-to-physical mapping was not used, then any processor
889	 * that has invalidated the sf_buf's virtual address from its TLB
890	 * since the last used mapping need not invalidate again.
891	 */
892#ifdef SMP
893	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
894		CPU_ZERO(&sf->cpumask);
895shootdown:
896	sched_pin();
897	cpuid = PCPU_GET(cpuid);
898	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
899		CPU_SET(cpuid, &sf->cpumask);
900		invlpg(sf->kva);
901	}
902	if ((flags & SFB_CPUPRIVATE) == 0) {
903		other_cpus = all_cpus;
904		CPU_CLR(cpuid, &other_cpus);
905		CPU_NAND(&other_cpus, &sf->cpumask);
906		if (!CPU_EMPTY(&other_cpus)) {
907			CPU_OR(&sf->cpumask, &other_cpus);
908			smp_masked_invlpg(other_cpus, sf->kva);
909		}
910	}
911	sched_unpin();
912#else
913	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
914		pmap_invalidate_page(kernel_pmap, sf->kva);
915#endif
916done:
917	mtx_unlock(&sf_buf_lock);
918	return (sf);
919}
920
921/*
922 * Remove a reference from the given sf_buf, adding it to the free
923 * list when its reference count reaches zero.  A freed sf_buf still,
924 * however, retains its virtual-to-physical mapping until it is
925 * recycled or reactivated by sf_buf_alloc(9).
926 */
927void
928sf_buf_free(struct sf_buf *sf)
929{
930
931	mtx_lock(&sf_buf_lock);
932	sf->ref_count--;
933	if (sf->ref_count == 0) {
934		TAILQ_INSERT_TAIL(&sf_buf_freelist, sf, free_entry);
935		nsfbufsused--;
936#ifdef XEN
937/*
938 * Xen doesn't like having dangling R/W mappings
939 */
940		pmap_qremove(sf->kva, 1);
941		sf->m = NULL;
942		LIST_REMOVE(sf, list_entry);
943#endif
944		if (sf_buf_alloc_want > 0)
945			wakeup(&sf_buf_freelist);
946	}
947	mtx_unlock(&sf_buf_lock);
948}
949
950/*
951 * Software interrupt handler for queued VM system processing.
952 */
953void
954swi_vm(void *dummy)
955{
956	if (busdma_swi_pending != 0)
957		busdma_swi();
958}
959
960/*
961 * Tell whether this address is in some physical memory region.
962 * Currently used by the kernel coredump code in order to avoid
963 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
964 * or other unpredictable behaviour.
965 */
966
967int
968is_physical_memory(vm_paddr_t addr)
969{
970
971#ifdef DEV_ISA
972	/* The ISA ``memory hole''. */
973	if (addr >= 0xa0000 && addr < 0x100000)
974		return 0;
975#endif
976
977	/*
978	 * stuff other tests for known memory-mapped devices (PCI?)
979	 * here
980	 */
981
982	return 1;
983}
984