1/*-
2 * Copyright (c) 2012 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include "opt_inet.h"
31
32#include "common.h"
33#include "t4_regs.h"
34#include "t4_regs_values.h"
35#include "firmware/t4fw_interface.h"
36
37#undef msleep
38#define msleep(x) do { \
39	if (cold) \
40		DELAY((x) * 1000); \
41	else \
42		pause("t4hw", (x) * hz / 1000); \
43} while (0)
44
45/**
46 *	t4_wait_op_done_val - wait until an operation is completed
47 *	@adapter: the adapter performing the operation
48 *	@reg: the register to check for completion
49 *	@mask: a single-bit field within @reg that indicates completion
50 *	@polarity: the value of the field when the operation is completed
51 *	@attempts: number of check iterations
52 *	@delay: delay in usecs between iterations
53 *	@valp: where to store the value of the register at completion time
54 *
55 *	Wait until an operation is completed by checking a bit in a register
56 *	up to @attempts times.  If @valp is not NULL the value of the register
57 *	at the time it indicated completion is stored there.  Returns 0 if the
58 *	operation completes and	-EAGAIN	otherwise.
59 */
60int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
61		        int polarity, int attempts, int delay, u32 *valp)
62{
63	while (1) {
64		u32 val = t4_read_reg(adapter, reg);
65
66		if (!!(val & mask) == polarity) {
67			if (valp)
68				*valp = val;
69			return 0;
70		}
71		if (--attempts == 0)
72			return -EAGAIN;
73		if (delay)
74			udelay(delay);
75	}
76}
77
78/**
79 *	t4_set_reg_field - set a register field to a value
80 *	@adapter: the adapter to program
81 *	@addr: the register address
82 *	@mask: specifies the portion of the register to modify
83 *	@val: the new value for the register field
84 *
85 *	Sets a register field specified by the supplied mask to the
86 *	given value.
87 */
88void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
89		      u32 val)
90{
91	u32 v = t4_read_reg(adapter, addr) & ~mask;
92
93	t4_write_reg(adapter, addr, v | val);
94	(void) t4_read_reg(adapter, addr);      /* flush */
95}
96
97/**
98 *	t4_read_indirect - read indirectly addressed registers
99 *	@adap: the adapter
100 *	@addr_reg: register holding the indirect address
101 *	@data_reg: register holding the value of the indirect register
102 *	@vals: where the read register values are stored
103 *	@nregs: how many indirect registers to read
104 *	@start_idx: index of first indirect register to read
105 *
106 *	Reads registers that are accessed indirectly through an address/data
107 *	register pair.
108 */
109void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
110		      unsigned int data_reg, u32 *vals, unsigned int nregs,
111		      unsigned int start_idx)
112{
113	while (nregs--) {
114		t4_write_reg(adap, addr_reg, start_idx);
115		*vals++ = t4_read_reg(adap, data_reg);
116		start_idx++;
117	}
118}
119
120/**
121 *	t4_write_indirect - write indirectly addressed registers
122 *	@adap: the adapter
123 *	@addr_reg: register holding the indirect addresses
124 *	@data_reg: register holding the value for the indirect registers
125 *	@vals: values to write
126 *	@nregs: how many indirect registers to write
127 *	@start_idx: address of first indirect register to write
128 *
129 *	Writes a sequential block of registers that are accessed indirectly
130 *	through an address/data register pair.
131 */
132void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
133		       unsigned int data_reg, const u32 *vals,
134		       unsigned int nregs, unsigned int start_idx)
135{
136	while (nregs--) {
137		t4_write_reg(adap, addr_reg, start_idx++);
138		t4_write_reg(adap, data_reg, *vals++);
139	}
140}
141
142/*
143 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
144 * mechanism.  This guarantees that we get the real value even if we're
145 * operating within a Virtual Machine and the Hypervisor is trapping our
146 * Configuration Space accesses.
147 */
148u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
149{
150	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
151		     F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
152		     V_REGISTER(reg));
153	return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
154}
155
156/*
157 *	t4_report_fw_error - report firmware error
158 *	@adap: the adapter
159 *
160 *	The adapter firmware can indicate error conditions to the host.
161 *	This routine prints out the reason for the firmware error (as
162 *	reported by the firmware).
163 */
164static void t4_report_fw_error(struct adapter *adap)
165{
166	static const char *reason[] = {
167		"Crash",			/* PCIE_FW_EVAL_CRASH */
168		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
169		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
170		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
171		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
172		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
173		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
174		"Reserved",			/* reserved */
175	};
176	u32 pcie_fw;
177
178	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
179	if (pcie_fw & F_PCIE_FW_ERR)
180		CH_ERR(adap, "Firmware reports adapter error: %s\n",
181		       reason[G_PCIE_FW_EVAL(pcie_fw)]);
182}
183
184/*
185 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
186 */
187static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
188			 u32 mbox_addr)
189{
190	for ( ; nflit; nflit--, mbox_addr += 8)
191		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
192}
193
194/*
195 * Handle a FW assertion reported in a mailbox.
196 */
197static void fw_asrt(struct adapter *adap, u32 mbox_addr)
198{
199	struct fw_debug_cmd asrt;
200
201	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
202	CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
203		 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
204		 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
205}
206
207#define X_CIM_PF_NOACCESS 0xeeeeeeee
208/**
209 *	t4_wr_mbox_meat - send a command to FW through the given mailbox
210 *	@adap: the adapter
211 *	@mbox: index of the mailbox to use
212 *	@cmd: the command to write
213 *	@size: command length in bytes
214 *	@rpl: where to optionally store the reply
215 *	@sleep_ok: if true we may sleep while awaiting command completion
216 *
217 *	Sends the given command to FW through the selected mailbox and waits
218 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
219 *	store the FW's reply to the command.  The command and its optional
220 *	reply are of the same length.  Some FW commands like RESET and
221 *	INITIALIZE can take a considerable amount of time to execute.
222 *	@sleep_ok determines whether we may sleep while awaiting the response.
223 *	If sleeping is allowed we use progressive backoff otherwise we spin.
224 *
225 *	The return value is 0 on success or a negative errno on failure.  A
226 *	failure can happen either because we are not able to execute the
227 *	command or FW executes it but signals an error.  In the latter case
228 *	the return value is the error code indicated by FW (negated).
229 */
230int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
231		    void *rpl, bool sleep_ok)
232{
233	/*
234	 * We delay in small increments at first in an effort to maintain
235	 * responsiveness for simple, fast executing commands but then back
236	 * off to larger delays to a maximum retry delay.
237	 */
238	static const int delay[] = {
239		1, 1, 3, 5, 10, 10, 20, 50, 100
240	};
241
242	u32 v;
243	u64 res;
244	int i, ms, delay_idx;
245	const __be64 *p = cmd;
246	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
247	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
248
249	if ((size & 15) || size > MBOX_LEN)
250		return -EINVAL;
251
252	v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
253	for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
254		v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
255
256	if (v != X_MBOWNER_PL)
257		return v ? -EBUSY : -ETIMEDOUT;
258
259	for (i = 0; i < size; i += 8, p++)
260		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
261
262	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
263	t4_read_reg(adap, ctl_reg);          /* flush write */
264
265	delay_idx = 0;
266	ms = delay[0];
267
268	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
269		if (sleep_ok) {
270			ms = delay[delay_idx];  /* last element may repeat */
271			if (delay_idx < ARRAY_SIZE(delay) - 1)
272				delay_idx++;
273			msleep(ms);
274		} else
275			mdelay(ms);
276
277		v = t4_read_reg(adap, ctl_reg);
278		if (v == X_CIM_PF_NOACCESS)
279			continue;
280		if (G_MBOWNER(v) == X_MBOWNER_PL) {
281			if (!(v & F_MBMSGVALID)) {
282				t4_write_reg(adap, ctl_reg,
283					     V_MBOWNER(X_MBOWNER_NONE));
284				continue;
285			}
286
287			res = t4_read_reg64(adap, data_reg);
288			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
289				fw_asrt(adap, data_reg);
290				res = V_FW_CMD_RETVAL(EIO);
291			} else if (rpl)
292				get_mbox_rpl(adap, rpl, size / 8, data_reg);
293			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
294			return -G_FW_CMD_RETVAL((int)res);
295		}
296	}
297
298	/*
299	 * We timed out waiting for a reply to our mailbox command.  Report
300	 * the error and also check to see if the firmware reported any
301	 * errors ...
302	 */
303	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
304	       *(const u8 *)cmd, mbox);
305	if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
306		t4_report_fw_error(adap);
307	return -ETIMEDOUT;
308}
309
310/**
311 *	t4_mc_read - read from MC through backdoor accesses
312 *	@adap: the adapter
313 *	@idx: which MC to access
314 *	@addr: address of first byte requested
315 *	@data: 64 bytes of data containing the requested address
316 *	@ecc: where to store the corresponding 64-bit ECC word
317 *
318 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
319 *	that covers the requested address @addr.  If @parity is not %NULL it
320 *	is assigned the 64-bit ECC word for the read data.
321 */
322int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
323{
324	int i;
325	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
326	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
327
328	if (is_t4(adap)) {
329		mc_bist_cmd_reg = A_MC_BIST_CMD;
330		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
331		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
332		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
333		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
334	} else {
335		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
336		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
337		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
338		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
339						  idx);
340		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
341						  idx);
342	}
343
344	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
345		return -EBUSY;
346	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
347	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
348	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
349	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
350		     F_START_BIST | V_BIST_CMD_GAP(1));
351	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
352	if (i)
353		return i;
354
355#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
356
357	for (i = 15; i >= 0; i--)
358		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
359	if (ecc)
360		*ecc = t4_read_reg64(adap, MC_DATA(16));
361#undef MC_DATA
362	return 0;
363}
364
365/**
366 *	t4_edc_read - read from EDC through backdoor accesses
367 *	@adap: the adapter
368 *	@idx: which EDC to access
369 *	@addr: address of first byte requested
370 *	@data: 64 bytes of data containing the requested address
371 *	@ecc: where to store the corresponding 64-bit ECC word
372 *
373 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
374 *	that covers the requested address @addr.  If @parity is not %NULL it
375 *	is assigned the 64-bit ECC word for the read data.
376 */
377int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
378{
379	int i;
380	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
381	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
382
383	if (is_t4(adap)) {
384		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
385		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
386		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
387		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
388						    idx);
389		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
390						    idx);
391	} else {
392/*
393 * These macro are missing in t4_regs.h file.
394 * Added temporarily for testing.
395 */
396#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
397#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
398		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
399		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
400		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
401		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
402						    idx);
403		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
404						    idx);
405#undef EDC_REG_T5
406#undef EDC_STRIDE_T5
407	}
408
409	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
410		return -EBUSY;
411	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
412	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
413	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
414	t4_write_reg(adap, edc_bist_cmd_reg,
415		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
416	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
417	if (i)
418		return i;
419
420#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
421
422	for (i = 15; i >= 0; i--)
423		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
424	if (ecc)
425		*ecc = t4_read_reg64(adap, EDC_DATA(16));
426#undef EDC_DATA
427	return 0;
428}
429
430/**
431 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
432 *	@adap: the adapter
433 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
434 *	@addr: address within indicated memory type
435 *	@len: amount of memory to read
436 *	@buf: host memory buffer
437 *
438 *	Reads an [almost] arbitrary memory region in the firmware: the
439 *	firmware memory address, length and host buffer must be aligned on
440 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
441 *	the firmware's memory.  If this memory contains data structures which
442 *	contain multi-byte integers, it's the callers responsibility to
443 *	perform appropriate byte order conversions.
444 */
445int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
446		__be32 *buf)
447{
448	u32 pos, start, end, offset;
449	int ret;
450
451	/*
452	 * Argument sanity checks ...
453	 */
454	if ((addr & 0x3) || (len & 0x3))
455		return -EINVAL;
456
457	/*
458	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
459	 * need to round down the start and round up the end.  We'll start
460	 * copying out of the first line at (addr - start) a word at a time.
461	 */
462	start = addr & ~(64-1);
463	end = (addr + len + 64-1) & ~(64-1);
464	offset = (addr - start)/sizeof(__be32);
465
466	for (pos = start; pos < end; pos += 64, offset = 0) {
467		__be32 data[16];
468
469		/*
470		 * Read the chip's memory block and bail if there's an error.
471		 */
472		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
473			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
474		else
475			ret = t4_edc_read(adap, mtype, pos, data, NULL);
476		if (ret)
477			return ret;
478
479		/*
480		 * Copy the data into the caller's memory buffer.
481		 */
482		while (offset < 16 && len > 0) {
483			*buf++ = data[offset++];
484			len -= sizeof(__be32);
485		}
486	}
487
488	return 0;
489}
490
491/*
492 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
493 * VPD-R header.
494 */
495struct t4_vpd_hdr {
496	u8  id_tag;
497	u8  id_len[2];
498	u8  id_data[ID_LEN];
499	u8  vpdr_tag;
500	u8  vpdr_len[2];
501};
502
503/*
504 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
505 */
506#define EEPROM_MAX_RD_POLL 40
507#define EEPROM_MAX_WR_POLL 6
508#define EEPROM_STAT_ADDR   0x7bfc
509#define VPD_BASE           0x400
510#define VPD_BASE_OLD       0
511#define VPD_LEN            1024
512#define VPD_INFO_FLD_HDR_SIZE	3
513#define CHELSIO_VPD_UNIQUE_ID 0x82
514
515/**
516 *	t4_seeprom_read - read a serial EEPROM location
517 *	@adapter: adapter to read
518 *	@addr: EEPROM virtual address
519 *	@data: where to store the read data
520 *
521 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
522 *	VPD capability.  Note that this function must be called with a virtual
523 *	address.
524 */
525int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
526{
527	u16 val;
528	int attempts = EEPROM_MAX_RD_POLL;
529	unsigned int base = adapter->params.pci.vpd_cap_addr;
530
531	if (addr >= EEPROMVSIZE || (addr & 3))
532		return -EINVAL;
533
534	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
535	do {
536		udelay(10);
537		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
538	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
539
540	if (!(val & PCI_VPD_ADDR_F)) {
541		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
542		return -EIO;
543	}
544	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
545	*data = le32_to_cpu(*data);
546	return 0;
547}
548
549/**
550 *	t4_seeprom_write - write a serial EEPROM location
551 *	@adapter: adapter to write
552 *	@addr: virtual EEPROM address
553 *	@data: value to write
554 *
555 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
556 *	VPD capability.  Note that this function must be called with a virtual
557 *	address.
558 */
559int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
560{
561	u16 val;
562	int attempts = EEPROM_MAX_WR_POLL;
563	unsigned int base = adapter->params.pci.vpd_cap_addr;
564
565	if (addr >= EEPROMVSIZE || (addr & 3))
566		return -EINVAL;
567
568	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
569				 cpu_to_le32(data));
570	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
571				 (u16)addr | PCI_VPD_ADDR_F);
572	do {
573		msleep(1);
574		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
575	} while ((val & PCI_VPD_ADDR_F) && --attempts);
576
577	if (val & PCI_VPD_ADDR_F) {
578		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
579		return -EIO;
580	}
581	return 0;
582}
583
584/**
585 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
586 *	@phys_addr: the physical EEPROM address
587 *	@fn: the PCI function number
588 *	@sz: size of function-specific area
589 *
590 *	Translate a physical EEPROM address to virtual.  The first 1K is
591 *	accessed through virtual addresses starting at 31K, the rest is
592 *	accessed through virtual addresses starting at 0.
593 *
594 *	The mapping is as follows:
595 *	[0..1K) -> [31K..32K)
596 *	[1K..1K+A) -> [ES-A..ES)
597 *	[1K+A..ES) -> [0..ES-A-1K)
598 *
599 *	where A = @fn * @sz, and ES = EEPROM size.
600 */
601int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
602{
603	fn *= sz;
604	if (phys_addr < 1024)
605		return phys_addr + (31 << 10);
606	if (phys_addr < 1024 + fn)
607		return EEPROMSIZE - fn + phys_addr - 1024;
608	if (phys_addr < EEPROMSIZE)
609		return phys_addr - 1024 - fn;
610	return -EINVAL;
611}
612
613/**
614 *	t4_seeprom_wp - enable/disable EEPROM write protection
615 *	@adapter: the adapter
616 *	@enable: whether to enable or disable write protection
617 *
618 *	Enables or disables write protection on the serial EEPROM.
619 */
620int t4_seeprom_wp(struct adapter *adapter, int enable)
621{
622	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
623}
624
625/**
626 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
627 *	@v: Pointer to buffered vpd data structure
628 *	@kw: The keyword to search for
629 *
630 *	Returns the value of the information field keyword or
631 *	-ENOENT otherwise.
632 */
633static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
634{
635         int i;
636	 unsigned int offset , len;
637	 const u8 *buf = &v->id_tag;
638	 const u8 *vpdr_len = &v->vpdr_tag;
639	 offset = sizeof(struct t4_vpd_hdr);
640	 len =  (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
641
642	 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
643		 return -ENOENT;
644	 }
645
646         for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
647		 if(memcmp(buf + i , kw , 2) == 0){
648			 i += VPD_INFO_FLD_HDR_SIZE;
649                         return i;
650		  }
651
652                 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
653         }
654
655         return -ENOENT;
656}
657
658
659/**
660 *	get_vpd_params - read VPD parameters from VPD EEPROM
661 *	@adapter: adapter to read
662 *	@p: where to store the parameters
663 *
664 *	Reads card parameters stored in VPD EEPROM.
665 */
666static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
667{
668	int i, ret, addr;
669	int ec, sn, pn, na;
670	u8 vpd[VPD_LEN], csum;
671	const struct t4_vpd_hdr *v;
672
673	/*
674	 * Card information normally starts at VPD_BASE but early cards had
675	 * it at 0.
676	 */
677	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
678	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
679
680	for (i = 0; i < sizeof(vpd); i += 4) {
681		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
682		if (ret)
683			return ret;
684	}
685 	v = (const struct t4_vpd_hdr *)vpd;
686
687#define FIND_VPD_KW(var,name) do { \
688	var = get_vpd_keyword_val(v , name); \
689	if (var < 0) { \
690		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
691		return -EINVAL; \
692	} \
693} while (0)
694
695	FIND_VPD_KW(i, "RV");
696	for (csum = 0; i >= 0; i--)
697		csum += vpd[i];
698
699	if (csum) {
700		CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
701		return -EINVAL;
702	}
703	FIND_VPD_KW(ec, "EC");
704	FIND_VPD_KW(sn, "SN");
705	FIND_VPD_KW(pn, "PN");
706	FIND_VPD_KW(na, "NA");
707#undef FIND_VPD_KW
708
709	memcpy(p->id, v->id_data, ID_LEN);
710	strstrip(p->id);
711	memcpy(p->ec, vpd + ec, EC_LEN);
712	strstrip(p->ec);
713	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
714	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
715	strstrip(p->sn);
716	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
717	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
718	strstrip((char *)p->pn);
719	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
720	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
721	strstrip((char *)p->na);
722
723	return 0;
724}
725
726/* serial flash and firmware constants and flash config file constants */
727enum {
728	SF_ATTEMPTS = 10,             /* max retries for SF operations */
729
730	/* flash command opcodes */
731	SF_PROG_PAGE    = 2,          /* program page */
732	SF_WR_DISABLE   = 4,          /* disable writes */
733	SF_RD_STATUS    = 5,          /* read status register */
734	SF_WR_ENABLE    = 6,          /* enable writes */
735	SF_RD_DATA_FAST = 0xb,        /* read flash */
736	SF_RD_ID        = 0x9f,       /* read ID */
737	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
738};
739
740/**
741 *	sf1_read - read data from the serial flash
742 *	@adapter: the adapter
743 *	@byte_cnt: number of bytes to read
744 *	@cont: whether another operation will be chained
745 *	@lock: whether to lock SF for PL access only
746 *	@valp: where to store the read data
747 *
748 *	Reads up to 4 bytes of data from the serial flash.  The location of
749 *	the read needs to be specified prior to calling this by issuing the
750 *	appropriate commands to the serial flash.
751 */
752static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
753		    int lock, u32 *valp)
754{
755	int ret;
756
757	if (!byte_cnt || byte_cnt > 4)
758		return -EINVAL;
759	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
760		return -EBUSY;
761	t4_write_reg(adapter, A_SF_OP,
762		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
763	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
764	if (!ret)
765		*valp = t4_read_reg(adapter, A_SF_DATA);
766	return ret;
767}
768
769/**
770 *	sf1_write - write data to the serial flash
771 *	@adapter: the adapter
772 *	@byte_cnt: number of bytes to write
773 *	@cont: whether another operation will be chained
774 *	@lock: whether to lock SF for PL access only
775 *	@val: value to write
776 *
777 *	Writes up to 4 bytes of data to the serial flash.  The location of
778 *	the write needs to be specified prior to calling this by issuing the
779 *	appropriate commands to the serial flash.
780 */
781static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
782		     int lock, u32 val)
783{
784	if (!byte_cnt || byte_cnt > 4)
785		return -EINVAL;
786	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
787		return -EBUSY;
788	t4_write_reg(adapter, A_SF_DATA, val);
789	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
790		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
791	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
792}
793
794/**
795 *	flash_wait_op - wait for a flash operation to complete
796 *	@adapter: the adapter
797 *	@attempts: max number of polls of the status register
798 *	@delay: delay between polls in ms
799 *
800 *	Wait for a flash operation to complete by polling the status register.
801 */
802static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
803{
804	int ret;
805	u32 status;
806
807	while (1) {
808		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
809		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
810			return ret;
811		if (!(status & 1))
812			return 0;
813		if (--attempts == 0)
814			return -EAGAIN;
815		if (delay)
816			msleep(delay);
817	}
818}
819
820/**
821 *	t4_read_flash - read words from serial flash
822 *	@adapter: the adapter
823 *	@addr: the start address for the read
824 *	@nwords: how many 32-bit words to read
825 *	@data: where to store the read data
826 *	@byte_oriented: whether to store data as bytes or as words
827 *
828 *	Read the specified number of 32-bit words from the serial flash.
829 *	If @byte_oriented is set the read data is stored as a byte array
830 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
831 *	natural endianess.
832 */
833int t4_read_flash(struct adapter *adapter, unsigned int addr,
834		  unsigned int nwords, u32 *data, int byte_oriented)
835{
836	int ret;
837
838	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
839		return -EINVAL;
840
841	addr = swab32(addr) | SF_RD_DATA_FAST;
842
843	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
844	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
845		return ret;
846
847	for ( ; nwords; nwords--, data++) {
848		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
849		if (nwords == 1)
850			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
851		if (ret)
852			return ret;
853		if (byte_oriented)
854			*data = htonl(*data);
855	}
856	return 0;
857}
858
859/**
860 *	t4_write_flash - write up to a page of data to the serial flash
861 *	@adapter: the adapter
862 *	@addr: the start address to write
863 *	@n: length of data to write in bytes
864 *	@data: the data to write
865 *	@byte_oriented: whether to store data as bytes or as words
866 *
867 *	Writes up to a page of data (256 bytes) to the serial flash starting
868 *	at the given address.  All the data must be written to the same page.
869 *	If @byte_oriented is set the write data is stored as byte stream
870 *	(i.e. matches what on disk), otherwise in big-endian.
871 */
872static int t4_write_flash(struct adapter *adapter, unsigned int addr,
873			  unsigned int n, const u8 *data, int byte_oriented)
874{
875	int ret;
876	u32 buf[SF_PAGE_SIZE / 4];
877	unsigned int i, c, left, val, offset = addr & 0xff;
878
879	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
880		return -EINVAL;
881
882	val = swab32(addr) | SF_PROG_PAGE;
883
884	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
885	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
886		goto unlock;
887
888	for (left = n; left; left -= c) {
889		c = min(left, 4U);
890		for (val = 0, i = 0; i < c; ++i)
891			val = (val << 8) + *data++;
892
893		if (!byte_oriented)
894			val = htonl(val);
895
896		ret = sf1_write(adapter, c, c != left, 1, val);
897		if (ret)
898			goto unlock;
899	}
900	ret = flash_wait_op(adapter, 8, 1);
901	if (ret)
902		goto unlock;
903
904	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
905
906	/* Read the page to verify the write succeeded */
907	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
908			    byte_oriented);
909	if (ret)
910		return ret;
911
912	if (memcmp(data - n, (u8 *)buf + offset, n)) {
913		CH_ERR(adapter, "failed to correctly write the flash page "
914		       "at %#x\n", addr);
915		return -EIO;
916	}
917	return 0;
918
919unlock:
920	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
921	return ret;
922}
923
924/**
925 *	t4_get_fw_version - read the firmware version
926 *	@adapter: the adapter
927 *	@vers: where to place the version
928 *
929 *	Reads the FW version from flash.
930 */
931int t4_get_fw_version(struct adapter *adapter, u32 *vers)
932{
933	return t4_read_flash(adapter,
934			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
935			     vers, 0);
936}
937
938/**
939 *	t4_get_tp_version - read the TP microcode version
940 *	@adapter: the adapter
941 *	@vers: where to place the version
942 *
943 *	Reads the TP microcode version from flash.
944 */
945int t4_get_tp_version(struct adapter *adapter, u32 *vers)
946{
947	return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
948							      tp_microcode_ver),
949			     1, vers, 0);
950}
951
952/**
953 *	t4_check_fw_version - check if the FW is compatible with this driver
954 *	@adapter: the adapter
955 *
956 *	Checks if an adapter's FW is compatible with the driver.  Returns 0
957 *	if there's exact match, a negative error if the version could not be
958 *	read or there's a major version mismatch, and a positive value if the
959 *	expected major version is found but there's a minor version mismatch.
960 */
961int t4_check_fw_version(struct adapter *adapter)
962{
963	int ret, major, minor, micro;
964	int exp_major, exp_minor, exp_micro;
965
966	ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
967	if (!ret)
968		ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
969	if (ret)
970		return ret;
971
972	major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
973	minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
974	micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
975
976	switch (chip_id(adapter)) {
977	case CHELSIO_T4:
978		exp_major = T4FW_VERSION_MAJOR;
979		exp_minor = T4FW_VERSION_MINOR;
980		exp_micro = T4FW_VERSION_MICRO;
981		break;
982	case CHELSIO_T5:
983		exp_major = T5FW_VERSION_MAJOR;
984		exp_minor = T5FW_VERSION_MINOR;
985		exp_micro = T5FW_VERSION_MICRO;
986		break;
987	default:
988		CH_ERR(adapter, "Unsupported chip type, %x\n",
989		    chip_id(adapter));
990		return -EINVAL;
991	}
992
993	if (major != exp_major) {            /* major mismatch - fail */
994		CH_ERR(adapter, "card FW has major version %u, driver wants "
995		       "%u\n", major, exp_major);
996		return -EINVAL;
997	}
998
999	if (minor == exp_minor && micro == exp_micro)
1000		return 0;                                   /* perfect match */
1001
1002	/* Minor/micro version mismatch.  Report it but often it's OK. */
1003	return 1;
1004}
1005
1006/**
1007 *	t4_flash_erase_sectors - erase a range of flash sectors
1008 *	@adapter: the adapter
1009 *	@start: the first sector to erase
1010 *	@end: the last sector to erase
1011 *
1012 *	Erases the sectors in the given inclusive range.
1013 */
1014static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1015{
1016	int ret = 0;
1017
1018	while (start <= end) {
1019		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1020		    (ret = sf1_write(adapter, 4, 0, 1,
1021				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1022		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1023			CH_ERR(adapter, "erase of flash sector %d failed, "
1024			       "error %d\n", start, ret);
1025			break;
1026		}
1027		start++;
1028	}
1029	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
1030	return ret;
1031}
1032
1033/**
1034 *	t4_flash_cfg_addr - return the address of the flash configuration file
1035 *	@adapter: the adapter
1036 *
1037 *	Return the address within the flash where the Firmware Configuration
1038 *	File is stored, or an error if the device FLASH is too small to contain
1039 *	a Firmware Configuration File.
1040 */
1041int t4_flash_cfg_addr(struct adapter *adapter)
1042{
1043	/*
1044	 * If the device FLASH isn't large enough to hold a Firmware
1045	 * Configuration File, return an error.
1046	 */
1047	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
1048		return -ENOSPC;
1049
1050	return FLASH_CFG_START;
1051}
1052
1053/**
1054 *	t4_load_cfg - download config file
1055 *	@adap: the adapter
1056 *	@cfg_data: the cfg text file to write
1057 *	@size: text file size
1058 *
1059 *	Write the supplied config text file to the card's serial flash.
1060 */
1061int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
1062{
1063	int ret, i, n, cfg_addr;
1064	unsigned int addr;
1065	unsigned int flash_cfg_start_sec;
1066	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1067
1068	cfg_addr = t4_flash_cfg_addr(adap);
1069	if (cfg_addr < 0)
1070		return cfg_addr;
1071
1072	addr = cfg_addr;
1073	flash_cfg_start_sec = addr / SF_SEC_SIZE;
1074
1075	if (size > FLASH_CFG_MAX_SIZE) {
1076		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
1077		       FLASH_CFG_MAX_SIZE);
1078		return -EFBIG;
1079	}
1080
1081	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
1082			 sf_sec_size);
1083	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1084				     flash_cfg_start_sec + i - 1);
1085	/*
1086	 * If size == 0 then we're simply erasing the FLASH sectors associated
1087	 * with the on-adapter Firmware Configuration File.
1088	 */
1089	if (ret || size == 0)
1090		goto out;
1091
1092	/* this will write to the flash up to SF_PAGE_SIZE at a time */
1093	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
1094		if ( (size - i) <  SF_PAGE_SIZE)
1095			n = size - i;
1096		else
1097			n = SF_PAGE_SIZE;
1098		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
1099		if (ret)
1100			goto out;
1101
1102		addr += SF_PAGE_SIZE;
1103		cfg_data += SF_PAGE_SIZE;
1104	}
1105
1106out:
1107	if (ret)
1108		CH_ERR(adap, "config file %s failed %d\n",
1109		       (size == 0 ? "clear" : "download"), ret);
1110	return ret;
1111}
1112
1113
1114/**
1115 *	t4_load_fw - download firmware
1116 *	@adap: the adapter
1117 *	@fw_data: the firmware image to write
1118 *	@size: image size
1119 *
1120 *	Write the supplied firmware image to the card's serial flash.
1121 */
1122int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1123{
1124	u32 csum;
1125	int ret, addr;
1126	unsigned int i;
1127	u8 first_page[SF_PAGE_SIZE];
1128	const u32 *p = (const u32 *)fw_data;
1129	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1130	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1131	unsigned int fw_start_sec;
1132	unsigned int fw_start;
1133	unsigned int fw_size;
1134
1135	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
1136		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
1137		fw_start = FLASH_FWBOOTSTRAP_START;
1138		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
1139	} else {
1140		fw_start_sec = FLASH_FW_START_SEC;
1141 		fw_start = FLASH_FW_START;
1142		fw_size = FLASH_FW_MAX_SIZE;
1143	}
1144	if (!size) {
1145		CH_ERR(adap, "FW image has no data\n");
1146		return -EINVAL;
1147	}
1148	if (size & 511) {
1149		CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
1150		return -EINVAL;
1151	}
1152	if (ntohs(hdr->len512) * 512 != size) {
1153		CH_ERR(adap, "FW image size differs from size in FW header\n");
1154		return -EINVAL;
1155	}
1156	if (size > fw_size) {
1157		CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size);
1158		return -EFBIG;
1159	}
1160	if ((is_t4(adap) && hdr->chip != FW_HDR_CHIP_T4) ||
1161	    (is_t5(adap) && hdr->chip != FW_HDR_CHIP_T5)) {
1162		CH_ERR(adap,
1163		    "FW image (%d) is not suitable for this adapter (%d)\n",
1164		    hdr->chip, chip_id(adap));
1165		return -EINVAL;
1166	}
1167
1168	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1169		csum += ntohl(p[i]);
1170
1171	if (csum != 0xffffffff) {
1172		CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
1173		       csum);
1174		return -EINVAL;
1175	}
1176
1177	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
1178	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1179	if (ret)
1180		goto out;
1181
1182	/*
1183	 * We write the correct version at the end so the driver can see a bad
1184	 * version if the FW write fails.  Start by writing a copy of the
1185	 * first page with a bad version.
1186	 */
1187	memcpy(first_page, fw_data, SF_PAGE_SIZE);
1188	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1189	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
1190	if (ret)
1191		goto out;
1192
1193	addr = fw_start;
1194	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1195		addr += SF_PAGE_SIZE;
1196		fw_data += SF_PAGE_SIZE;
1197		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
1198		if (ret)
1199			goto out;
1200	}
1201
1202	ret = t4_write_flash(adap,
1203			     fw_start + offsetof(struct fw_hdr, fw_ver),
1204			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
1205out:
1206	if (ret)
1207		CH_ERR(adap, "firmware download failed, error %d\n", ret);
1208	return ret;
1209}
1210
1211/* BIOS boot headers */
1212typedef struct pci_expansion_rom_header {
1213	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1214	u8	reserved[22]; /* Reserved per processor Architecture data */
1215	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1216} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
1217
1218/* Legacy PCI Expansion ROM Header */
1219typedef struct legacy_pci_expansion_rom_header {
1220	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1221	u8	size512; /* Current Image Size in units of 512 bytes */
1222	u8	initentry_point[4];
1223	u8	cksum; /* Checksum computed on the entire Image */
1224	u8	reserved[16]; /* Reserved */
1225	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
1226} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
1227
1228/* EFI PCI Expansion ROM Header */
1229typedef struct efi_pci_expansion_rom_header {
1230	u8	signature[2]; // ROM signature. The value 0xaa55
1231	u8	initialization_size[2]; /* Units 512. Includes this header */
1232	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
1233	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
1234	u8	efi_machine_type[2]; /* Machine type from EFI image header */
1235	u8	compression_type[2]; /* Compression type. */
1236		/*
1237		 * Compression type definition
1238		 * 0x0: uncompressed
1239		 * 0x1: Compressed
1240		 * 0x2-0xFFFF: Reserved
1241		 */
1242	u8	reserved[8]; /* Reserved */
1243	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
1244	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1245} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
1246
1247/* PCI Data Structure Format */
1248typedef struct pcir_data_structure { /* PCI Data Structure */
1249	u8	signature[4]; /* Signature. The string "PCIR" */
1250	u8	vendor_id[2]; /* Vendor Identification */
1251	u8	device_id[2]; /* Device Identification */
1252	u8	vital_product[2]; /* Pointer to Vital Product Data */
1253	u8	length[2]; /* PCIR Data Structure Length */
1254	u8	revision; /* PCIR Data Structure Revision */
1255	u8	class_code[3]; /* Class Code */
1256	u8	image_length[2]; /* Image Length. Multiple of 512B */
1257	u8	code_revision[2]; /* Revision Level of Code/Data */
1258	u8	code_type; /* Code Type. */
1259		/*
1260		 * PCI Expansion ROM Code Types
1261		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
1262		 * 0x01: Open Firmware standard for PCI. FCODE
1263		 * 0x02: Hewlett-Packard PA RISC. HP reserved
1264		 * 0x03: EFI Image. EFI
1265		 * 0x04-0xFF: Reserved.
1266		 */
1267	u8	indicator; /* Indicator. Identifies the last image in the ROM */
1268	u8	reserved[2]; /* Reserved */
1269} pcir_data_t; /* PCI__DATA_STRUCTURE */
1270
1271/* BOOT constants */
1272enum {
1273	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
1274	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
1275	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
1276	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
1277	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
1278	VENDOR_ID = 0x1425, /* Vendor ID */
1279	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
1280};
1281
1282/*
1283 *	modify_device_id - Modifies the device ID of the Boot BIOS image
1284 *	@adatper: the device ID to write.
1285 *	@boot_data: the boot image to modify.
1286 *
1287 *	Write the supplied device ID to the boot BIOS image.
1288 */
1289static void modify_device_id(int device_id, u8 *boot_data)
1290{
1291	legacy_pci_exp_rom_header_t *header;
1292	pcir_data_t *pcir_header;
1293	u32 cur_header = 0;
1294
1295	/*
1296	 * Loop through all chained images and change the device ID's
1297	 */
1298	while (1) {
1299		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
1300		pcir_header = (pcir_data_t *) &boot_data[cur_header +
1301		    le16_to_cpu(*(u16*)header->pcir_offset)];
1302
1303		/*
1304		 * Only modify the Device ID if code type is Legacy or HP.
1305		 * 0x00: Okay to modify
1306		 * 0x01: FCODE. Do not be modify
1307		 * 0x03: Okay to modify
1308		 * 0x04-0xFF: Do not modify
1309		 */
1310		if (pcir_header->code_type == 0x00) {
1311			u8 csum = 0;
1312			int i;
1313
1314			/*
1315			 * Modify Device ID to match current adatper
1316			 */
1317			*(u16*) pcir_header->device_id = device_id;
1318
1319			/*
1320			 * Set checksum temporarily to 0.
1321			 * We will recalculate it later.
1322			 */
1323			header->cksum = 0x0;
1324
1325			/*
1326			 * Calculate and update checksum
1327			 */
1328			for (i = 0; i < (header->size512 * 512); i++)
1329				csum += (u8)boot_data[cur_header + i];
1330
1331			/*
1332			 * Invert summed value to create the checksum
1333			 * Writing new checksum value directly to the boot data
1334			 */
1335			boot_data[cur_header + 7] = -csum;
1336
1337		} else if (pcir_header->code_type == 0x03) {
1338
1339			/*
1340			 * Modify Device ID to match current adatper
1341			 */
1342			*(u16*) pcir_header->device_id = device_id;
1343
1344		}
1345
1346
1347		/*
1348		 * Check indicator element to identify if this is the last
1349		 * image in the ROM.
1350		 */
1351		if (pcir_header->indicator & 0x80)
1352			break;
1353
1354		/*
1355		 * Move header pointer up to the next image in the ROM.
1356		 */
1357		cur_header += header->size512 * 512;
1358	}
1359}
1360
1361/*
1362 *	t4_load_boot - download boot flash
1363 *	@adapter: the adapter
1364 *	@boot_data: the boot image to write
1365 *	@boot_addr: offset in flash to write boot_data
1366 *	@size: image size
1367 *
1368 *	Write the supplied boot image to the card's serial flash.
1369 *	The boot image has the following sections: a 28-byte header and the
1370 *	boot image.
1371 */
1372int t4_load_boot(struct adapter *adap, u8 *boot_data,
1373		 unsigned int boot_addr, unsigned int size)
1374{
1375	pci_exp_rom_header_t *header;
1376	int pcir_offset ;
1377	pcir_data_t *pcir_header;
1378	int ret, addr;
1379	uint16_t device_id;
1380	unsigned int i;
1381	unsigned int boot_sector = boot_addr * 1024;
1382	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1383
1384	/*
1385	 * Make sure the boot image does not encroach on the firmware region
1386	 */
1387	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
1388		CH_ERR(adap, "boot image encroaching on firmware region\n");
1389		return -EFBIG;
1390	}
1391
1392	/*
1393	 * Number of sectors spanned
1394	 */
1395	i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
1396			sf_sec_size);
1397	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
1398				     (boot_sector >> 16) + i - 1);
1399
1400	/*
1401	 * If size == 0 then we're simply erasing the FLASH sectors associated
1402	 * with the on-adapter option ROM file
1403	 */
1404	if (ret || (size == 0))
1405		goto out;
1406
1407	/* Get boot header */
1408	header = (pci_exp_rom_header_t *)boot_data;
1409	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
1410	/* PCIR Data Structure */
1411	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
1412
1413	/*
1414	 * Perform some primitive sanity testing to avoid accidentally
1415	 * writing garbage over the boot sectors.  We ought to check for
1416	 * more but it's not worth it for now ...
1417	 */
1418	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
1419		CH_ERR(adap, "boot image too small/large\n");
1420		return -EFBIG;
1421	}
1422
1423	/*
1424	 * Check BOOT ROM header signature
1425	 */
1426	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
1427		CH_ERR(adap, "Boot image missing signature\n");
1428		return -EINVAL;
1429	}
1430
1431	/*
1432	 * Check PCI header signature
1433	 */
1434	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
1435		CH_ERR(adap, "PCI header missing signature\n");
1436		return -EINVAL;
1437	}
1438
1439	/*
1440	 * Check Vendor ID matches Chelsio ID
1441	 */
1442	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
1443		CH_ERR(adap, "Vendor ID missing signature\n");
1444		return -EINVAL;
1445	}
1446
1447	/*
1448	 * Retrieve adapter's device ID
1449	 */
1450	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
1451	/* Want to deal with PF 0 so I strip off PF 4 indicator */
1452	device_id = (device_id & 0xff) | 0x4000;
1453
1454	/*
1455	 * Check PCIE Device ID
1456	 */
1457	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
1458		/*
1459		 * Change the device ID in the Boot BIOS image to match
1460		 * the Device ID of the current adapter.
1461		 */
1462		modify_device_id(device_id, boot_data);
1463	}
1464
1465	/*
1466	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
1467	 * we finish copying the rest of the boot image. This will ensure
1468	 * that the BIOS boot header will only be written if the boot image
1469	 * was written in full.
1470	 */
1471	addr = boot_sector;
1472	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1473		addr += SF_PAGE_SIZE;
1474		boot_data += SF_PAGE_SIZE;
1475		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
1476		if (ret)
1477			goto out;
1478	}
1479
1480	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
1481
1482out:
1483	if (ret)
1484		CH_ERR(adap, "boot image download failed, error %d\n", ret);
1485	return ret;
1486}
1487
1488/**
1489 *	t4_read_cimq_cfg - read CIM queue configuration
1490 *	@adap: the adapter
1491 *	@base: holds the queue base addresses in bytes
1492 *	@size: holds the queue sizes in bytes
1493 *	@thres: holds the queue full thresholds in bytes
1494 *
1495 *	Returns the current configuration of the CIM queues, starting with
1496 *	the IBQs, then the OBQs.
1497 */
1498void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
1499{
1500	unsigned int i, v;
1501	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1502
1503	for (i = 0; i < CIM_NUM_IBQ; i++) {
1504		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
1505			     V_QUENUMSELECT(i));
1506		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1507		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1508		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1509		*thres++ = G_QUEFULLTHRSH(v) * 8;   /* 8-byte unit */
1510	}
1511	for (i = 0; i < cim_num_obq; i++) {
1512		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1513			     V_QUENUMSELECT(i));
1514		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1515		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1516		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1517	}
1518}
1519
1520/**
1521 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
1522 *	@adap: the adapter
1523 *	@qid: the queue index
1524 *	@data: where to store the queue contents
1525 *	@n: capacity of @data in 32-bit words
1526 *
1527 *	Reads the contents of the selected CIM queue starting at address 0 up
1528 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1529 *	error and the number of 32-bit words actually read on success.
1530 */
1531int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1532{
1533	int i, err;
1534	unsigned int addr;
1535	const unsigned int nwords = CIM_IBQ_SIZE * 4;
1536
1537	if (qid > 5 || (n & 3))
1538		return -EINVAL;
1539
1540	addr = qid * nwords;
1541	if (n > nwords)
1542		n = nwords;
1543
1544	for (i = 0; i < n; i++, addr++) {
1545		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
1546			     F_IBQDBGEN);
1547		/*
1548		 * It might take 3-10ms before the IBQ debug read access is
1549		 * allowed.  Wait for 1 Sec with a delay of 1 usec.
1550		 */
1551		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1552				      1000000, 1);
1553		if (err)
1554			return err;
1555		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
1556	}
1557	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
1558	return i;
1559}
1560
1561/**
1562 *	t4_read_cim_obq - read the contents of a CIM outbound queue
1563 *	@adap: the adapter
1564 *	@qid: the queue index
1565 *	@data: where to store the queue contents
1566 *	@n: capacity of @data in 32-bit words
1567 *
1568 *	Reads the contents of the selected CIM queue starting at address 0 up
1569 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1570 *	error and the number of 32-bit words actually read on success.
1571 */
1572int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1573{
1574	int i, err;
1575	unsigned int addr, v, nwords;
1576	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1577
1578	if (qid >= cim_num_obq || (n & 3))
1579		return -EINVAL;
1580
1581	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1582		     V_QUENUMSELECT(qid));
1583	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1584
1585	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
1586	nwords = G_CIMQSIZE(v) * 64;  /* same */
1587	if (n > nwords)
1588		n = nwords;
1589
1590	for (i = 0; i < n; i++, addr++) {
1591		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
1592			     F_OBQDBGEN);
1593		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
1594				      2, 1);
1595		if (err)
1596			return err;
1597		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
1598	}
1599	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
1600	return i;
1601}
1602
1603enum {
1604	CIM_QCTL_BASE     = 0,
1605	CIM_CTL_BASE      = 0x2000,
1606	CIM_PBT_ADDR_BASE = 0x2800,
1607	CIM_PBT_LRF_BASE  = 0x3000,
1608	CIM_PBT_DATA_BASE = 0x3800
1609};
1610
1611/**
1612 *	t4_cim_read - read a block from CIM internal address space
1613 *	@adap: the adapter
1614 *	@addr: the start address within the CIM address space
1615 *	@n: number of words to read
1616 *	@valp: where to store the result
1617 *
1618 *	Reads a block of 4-byte words from the CIM intenal address space.
1619 */
1620int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
1621		unsigned int *valp)
1622{
1623	int ret = 0;
1624
1625	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1626		return -EBUSY;
1627
1628	for ( ; !ret && n--; addr += 4) {
1629		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
1630		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1631				      0, 5, 2);
1632		if (!ret)
1633			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
1634	}
1635	return ret;
1636}
1637
1638/**
1639 *	t4_cim_write - write a block into CIM internal address space
1640 *	@adap: the adapter
1641 *	@addr: the start address within the CIM address space
1642 *	@n: number of words to write
1643 *	@valp: set of values to write
1644 *
1645 *	Writes a block of 4-byte words into the CIM intenal address space.
1646 */
1647int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
1648		 const unsigned int *valp)
1649{
1650	int ret = 0;
1651
1652	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1653		return -EBUSY;
1654
1655	for ( ; !ret && n--; addr += 4) {
1656		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
1657		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
1658		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1659				      0, 5, 2);
1660	}
1661	return ret;
1662}
1663
1664static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
1665{
1666	return t4_cim_write(adap, addr, 1, &val);
1667}
1668
1669/**
1670 *	t4_cim_ctl_read - read a block from CIM control region
1671 *	@adap: the adapter
1672 *	@addr: the start address within the CIM control region
1673 *	@n: number of words to read
1674 *	@valp: where to store the result
1675 *
1676 *	Reads a block of 4-byte words from the CIM control region.
1677 */
1678int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
1679		    unsigned int *valp)
1680{
1681	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
1682}
1683
1684/**
1685 *	t4_cim_read_la - read CIM LA capture buffer
1686 *	@adap: the adapter
1687 *	@la_buf: where to store the LA data
1688 *	@wrptr: the HW write pointer within the capture buffer
1689 *
1690 *	Reads the contents of the CIM LA buffer with the most recent entry at
1691 *	the end	of the returned data and with the entry at @wrptr first.
1692 *	We try to leave the LA in the running state we find it in.
1693 */
1694int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
1695{
1696	int i, ret;
1697	unsigned int cfg, val, idx;
1698
1699	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
1700	if (ret)
1701		return ret;
1702
1703	if (cfg & F_UPDBGLAEN) {                /* LA is running, freeze it */
1704		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
1705		if (ret)
1706			return ret;
1707	}
1708
1709	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1710	if (ret)
1711		goto restart;
1712
1713	idx = G_UPDBGLAWRPTR(val);
1714	if (wrptr)
1715		*wrptr = idx;
1716
1717	for (i = 0; i < adap->params.cim_la_size; i++) {
1718		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1719				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
1720		if (ret)
1721			break;
1722		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1723		if (ret)
1724			break;
1725		if (val & F_UPDBGLARDEN) {
1726			ret = -ETIMEDOUT;
1727			break;
1728		}
1729		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
1730		if (ret)
1731			break;
1732		idx = (idx + 1) & M_UPDBGLARDPTR;
1733	}
1734restart:
1735	if (cfg & F_UPDBGLAEN) {
1736		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1737				      cfg & ~F_UPDBGLARDEN);
1738		if (!ret)
1739			ret = r;
1740	}
1741	return ret;
1742}
1743
1744void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
1745			unsigned int *pif_req_wrptr,
1746			unsigned int *pif_rsp_wrptr)
1747{
1748	int i, j;
1749	u32 cfg, val, req, rsp;
1750
1751	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1752	if (cfg & F_LADBGEN)
1753		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1754
1755	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
1756	req = G_POLADBGWRPTR(val);
1757	rsp = G_PILADBGWRPTR(val);
1758	if (pif_req_wrptr)
1759		*pif_req_wrptr = req;
1760	if (pif_rsp_wrptr)
1761		*pif_rsp_wrptr = rsp;
1762
1763	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
1764		for (j = 0; j < 6; j++) {
1765			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
1766				     V_PILADBGRDPTR(rsp));
1767			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
1768			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
1769			req++;
1770			rsp++;
1771		}
1772		req = (req + 2) & M_POLADBGRDPTR;
1773		rsp = (rsp + 2) & M_PILADBGRDPTR;
1774	}
1775	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1776}
1777
1778void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
1779{
1780	u32 cfg;
1781	int i, j, idx;
1782
1783	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1784	if (cfg & F_LADBGEN)
1785		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1786
1787	for (i = 0; i < CIM_MALA_SIZE; i++) {
1788		for (j = 0; j < 5; j++) {
1789			idx = 8 * i + j;
1790			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
1791				     V_PILADBGRDPTR(idx));
1792			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
1793			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
1794		}
1795	}
1796	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1797}
1798
1799/**
1800 *	t4_tp_read_la - read TP LA capture buffer
1801 *	@adap: the adapter
1802 *	@la_buf: where to store the LA data
1803 *	@wrptr: the HW write pointer within the capture buffer
1804 *
1805 *	Reads the contents of the TP LA buffer with the most recent entry at
1806 *	the end	of the returned data and with the entry at @wrptr first.
1807 *	We leave the LA in the running state we find it in.
1808 */
1809void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
1810{
1811	bool last_incomplete;
1812	unsigned int i, cfg, val, idx;
1813
1814	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
1815	if (cfg & F_DBGLAENABLE)                    /* freeze LA */
1816		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1817			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
1818
1819	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
1820	idx = G_DBGLAWPTR(val);
1821	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
1822	if (last_incomplete)
1823		idx = (idx + 1) & M_DBGLARPTR;
1824	if (wrptr)
1825		*wrptr = idx;
1826
1827	val &= 0xffff;
1828	val &= ~V_DBGLARPTR(M_DBGLARPTR);
1829	val |= adap->params.tp.la_mask;
1830
1831	for (i = 0; i < TPLA_SIZE; i++) {
1832		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
1833		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
1834		idx = (idx + 1) & M_DBGLARPTR;
1835	}
1836
1837	/* Wipe out last entry if it isn't valid */
1838	if (last_incomplete)
1839		la_buf[TPLA_SIZE - 1] = ~0ULL;
1840
1841	if (cfg & F_DBGLAENABLE)                    /* restore running state */
1842		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1843			     cfg | adap->params.tp.la_mask);
1844}
1845
1846void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1847{
1848	unsigned int i, j;
1849
1850	for (i = 0; i < 8; i++) {
1851		u32 *p = la_buf + i;
1852
1853		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
1854		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
1855		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
1856		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1857			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
1858	}
1859}
1860
1861#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1862		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1863		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1864
1865/**
1866 *	t4_link_start - apply link configuration to MAC/PHY
1867 *	@phy: the PHY to setup
1868 *	@mac: the MAC to setup
1869 *	@lc: the requested link configuration
1870 *
1871 *	Set up a port's MAC and PHY according to a desired link configuration.
1872 *	- If the PHY can auto-negotiate first decide what to advertise, then
1873 *	  enable/disable auto-negotiation as desired, and reset.
1874 *	- If the PHY does not auto-negotiate just reset it.
1875 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1876 *	  otherwise do it later based on the outcome of auto-negotiation.
1877 */
1878int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1879		  struct link_config *lc)
1880{
1881	struct fw_port_cmd c;
1882	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1883
1884	lc->link_ok = 0;
1885	if (lc->requested_fc & PAUSE_RX)
1886		fc |= FW_PORT_CAP_FC_RX;
1887	if (lc->requested_fc & PAUSE_TX)
1888		fc |= FW_PORT_CAP_FC_TX;
1889
1890	memset(&c, 0, sizeof(c));
1891	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1892			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1893	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1894				  FW_LEN16(c));
1895
1896	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1897		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1898		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1899	} else if (lc->autoneg == AUTONEG_DISABLE) {
1900		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1901		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1902	} else
1903		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1904
1905	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1906}
1907
1908/**
1909 *	t4_restart_aneg - restart autonegotiation
1910 *	@adap: the adapter
1911 *	@mbox: mbox to use for the FW command
1912 *	@port: the port id
1913 *
1914 *	Restarts autonegotiation for the selected port.
1915 */
1916int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1917{
1918	struct fw_port_cmd c;
1919
1920	memset(&c, 0, sizeof(c));
1921	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1922			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1923	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1924				  FW_LEN16(c));
1925	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1926	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1927}
1928
1929struct intr_info {
1930	unsigned int mask;       /* bits to check in interrupt status */
1931	const char *msg;         /* message to print or NULL */
1932	short stat_idx;          /* stat counter to increment or -1 */
1933	unsigned short fatal;    /* whether the condition reported is fatal */
1934};
1935
1936/**
1937 *	t4_handle_intr_status - table driven interrupt handler
1938 *	@adapter: the adapter that generated the interrupt
1939 *	@reg: the interrupt status register to process
1940 *	@acts: table of interrupt actions
1941 *
1942 *	A table driven interrupt handler that applies a set of masks to an
1943 *	interrupt status word and performs the corresponding actions if the
1944 *	interrupts described by the mask have occured.  The actions include
1945 *	optionally emitting a warning or alert message.  The table is terminated
1946 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
1947 *	conditions.
1948 */
1949static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1950				 const struct intr_info *acts)
1951{
1952	int fatal = 0;
1953	unsigned int mask = 0;
1954	unsigned int status = t4_read_reg(adapter, reg);
1955
1956	for ( ; acts->mask; ++acts) {
1957		if (!(status & acts->mask))
1958			continue;
1959		if (acts->fatal) {
1960			fatal++;
1961			CH_ALERT(adapter, "%s (0x%x)\n",
1962				 acts->msg, status & acts->mask);
1963		} else if (acts->msg)
1964			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
1965					  acts->msg, status & acts->mask);
1966		mask |= acts->mask;
1967	}
1968	status &= mask;
1969	if (status)                           /* clear processed interrupts */
1970		t4_write_reg(adapter, reg, status);
1971	return fatal;
1972}
1973
1974/*
1975 * Interrupt handler for the PCIE module.
1976 */
1977static void pcie_intr_handler(struct adapter *adapter)
1978{
1979	static struct intr_info sysbus_intr_info[] = {
1980		{ F_RNPP, "RXNP array parity error", -1, 1 },
1981		{ F_RPCP, "RXPC array parity error", -1, 1 },
1982		{ F_RCIP, "RXCIF array parity error", -1, 1 },
1983		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
1984		{ F_RFTP, "RXFT array parity error", -1, 1 },
1985		{ 0 }
1986	};
1987	static struct intr_info pcie_port_intr_info[] = {
1988		{ F_TPCP, "TXPC array parity error", -1, 1 },
1989		{ F_TNPP, "TXNP array parity error", -1, 1 },
1990		{ F_TFTP, "TXFT array parity error", -1, 1 },
1991		{ F_TCAP, "TXCA array parity error", -1, 1 },
1992		{ F_TCIP, "TXCIF array parity error", -1, 1 },
1993		{ F_RCAP, "RXCA array parity error", -1, 1 },
1994		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
1995		{ F_RDPE, "Rx data parity error", -1, 1 },
1996		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
1997		{ 0 }
1998	};
1999	static struct intr_info pcie_intr_info[] = {
2000		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
2001		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
2002		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
2003		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2004		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2005		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2006		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2007		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
2008		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
2009		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2010		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
2011		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2012		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2013		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
2014		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2015		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2016		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
2017		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2018		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2019		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2020		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2021		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
2022		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
2023		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2024		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
2025		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
2026		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
2027		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
2028		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
2029		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
2030		  0 },
2031		{ 0 }
2032	};
2033
2034	static struct intr_info t5_pcie_intr_info[] = {
2035		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
2036		  -1, 1 },
2037		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
2038		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
2039		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2040		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2041		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2042		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2043		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
2044		  -1, 1 },
2045		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
2046		  -1, 1 },
2047		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2048		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
2049		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2050		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2051		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
2052		  -1, 1 },
2053		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2054		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2055		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
2056		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2057		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2058		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2059		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2060		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
2061		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
2062		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2063		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
2064		  -1, 1 },
2065		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
2066		  -1, 1 },
2067		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
2068		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
2069		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2070		{ F_READRSPERR, "Outbound read error", -1,
2071		  0 },
2072		{ 0 }
2073	};
2074
2075	int fat;
2076
2077	if (is_t4(adapter))
2078		fat = t4_handle_intr_status(adapter,
2079					    A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2080					    sysbus_intr_info) +
2081		      t4_handle_intr_status(adapter,
2082					    A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2083					    pcie_port_intr_info) +
2084		      t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2085					    pcie_intr_info);
2086	else
2087		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2088					    t5_pcie_intr_info);
2089	if (fat)
2090		t4_fatal_err(adapter);
2091}
2092
2093/*
2094 * TP interrupt handler.
2095 */
2096static void tp_intr_handler(struct adapter *adapter)
2097{
2098	static struct intr_info tp_intr_info[] = {
2099		{ 0x3fffffff, "TP parity error", -1, 1 },
2100		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2101		{ 0 }
2102	};
2103
2104	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
2105		t4_fatal_err(adapter);
2106}
2107
2108/*
2109 * SGE interrupt handler.
2110 */
2111static void sge_intr_handler(struct adapter *adapter)
2112{
2113	u64 v;
2114	u32 err;
2115
2116	static struct intr_info sge_intr_info[] = {
2117		{ F_ERR_CPL_EXCEED_IQE_SIZE,
2118		  "SGE received CPL exceeding IQE size", -1, 1 },
2119		{ F_ERR_INVALID_CIDX_INC,
2120		  "SGE GTS CIDX increment too large", -1, 0 },
2121		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2122		{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2123		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
2124		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2125		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2126		  0 },
2127		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2128		  0 },
2129		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2130		  0 },
2131		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2132		  0 },
2133		{ F_ERR_ING_CTXT_PRIO,
2134		  "SGE too many priority ingress contexts", -1, 0 },
2135		{ F_ERR_EGR_CTXT_PRIO,
2136		  "SGE too many priority egress contexts", -1, 0 },
2137		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2138		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2139		{ 0 }
2140	};
2141
2142	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
2143	    ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
2144	if (v) {
2145		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
2146			 (unsigned long long)v);
2147		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
2148		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
2149	}
2150
2151	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
2152
2153	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
2154	if (err & F_ERROR_QID_VALID) {
2155		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
2156		if (err & F_UNCAPTURED_ERROR)
2157			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
2158		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
2159			     F_UNCAPTURED_ERROR);
2160	}
2161
2162	if (v != 0)
2163		t4_fatal_err(adapter);
2164}
2165
2166#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
2167		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
2168#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
2169		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
2170
2171/*
2172 * CIM interrupt handler.
2173 */
2174static void cim_intr_handler(struct adapter *adapter)
2175{
2176	static struct intr_info cim_intr_info[] = {
2177		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2178		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2179		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2180		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2181		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2182		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2183		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2184		{ 0 }
2185	};
2186	static struct intr_info cim_upintr_info[] = {
2187		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2188		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2189		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
2190		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
2191		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2192		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2193		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2194		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2195		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2196		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2197		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2198		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2199		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2200		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2201		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2202		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2203		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2204		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2205		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2206		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2207		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2208		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2209		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2210		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2211		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2212		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2213		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2214		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2215		{ 0 }
2216	};
2217	int fat;
2218
2219	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
2220		t4_report_fw_error(adapter);
2221
2222	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
2223				    cim_intr_info) +
2224	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
2225				    cim_upintr_info);
2226	if (fat)
2227		t4_fatal_err(adapter);
2228}
2229
2230/*
2231 * ULP RX interrupt handler.
2232 */
2233static void ulprx_intr_handler(struct adapter *adapter)
2234{
2235	static struct intr_info ulprx_intr_info[] = {
2236		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
2237		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
2238		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2239		{ 0 }
2240	};
2241
2242	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
2243		t4_fatal_err(adapter);
2244}
2245
2246/*
2247 * ULP TX interrupt handler.
2248 */
2249static void ulptx_intr_handler(struct adapter *adapter)
2250{
2251	static struct intr_info ulptx_intr_info[] = {
2252		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2253		  0 },
2254		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2255		  0 },
2256		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2257		  0 },
2258		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2259		  0 },
2260		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2261		{ 0 }
2262	};
2263
2264	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
2265		t4_fatal_err(adapter);
2266}
2267
2268/*
2269 * PM TX interrupt handler.
2270 */
2271static void pmtx_intr_handler(struct adapter *adapter)
2272{
2273	static struct intr_info pmtx_intr_info[] = {
2274		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2275		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2276		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2277		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2278		{ 0xffffff0, "PMTX framing error", -1, 1 },
2279		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2280		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2281		  1 },
2282		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2283		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2284		{ 0 }
2285	};
2286
2287	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
2288		t4_fatal_err(adapter);
2289}
2290
2291/*
2292 * PM RX interrupt handler.
2293 */
2294static void pmrx_intr_handler(struct adapter *adapter)
2295{
2296	static struct intr_info pmrx_intr_info[] = {
2297		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2298		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2299		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2300		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2301		  1 },
2302		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2303		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2304		{ 0 }
2305	};
2306
2307	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
2308		t4_fatal_err(adapter);
2309}
2310
2311/*
2312 * CPL switch interrupt handler.
2313 */
2314static void cplsw_intr_handler(struct adapter *adapter)
2315{
2316	static struct intr_info cplsw_intr_info[] = {
2317		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2318		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2319		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2320		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2321		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2322		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2323		{ 0 }
2324	};
2325
2326	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
2327		t4_fatal_err(adapter);
2328}
2329
2330/*
2331 * LE interrupt handler.
2332 */
2333static void le_intr_handler(struct adapter *adap)
2334{
2335	static struct intr_info le_intr_info[] = {
2336		{ F_LIPMISS, "LE LIP miss", -1, 0 },
2337		{ F_LIP0, "LE 0 LIP error", -1, 0 },
2338		{ F_PARITYERR, "LE parity error", -1, 1 },
2339		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
2340		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
2341		{ 0 }
2342	};
2343
2344	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
2345		t4_fatal_err(adap);
2346}
2347
2348/*
2349 * MPS interrupt handler.
2350 */
2351static void mps_intr_handler(struct adapter *adapter)
2352{
2353	static struct intr_info mps_rx_intr_info[] = {
2354		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2355		{ 0 }
2356	};
2357	static struct intr_info mps_tx_intr_info[] = {
2358		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
2359		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2360		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
2361		  -1, 1 },
2362		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
2363		  -1, 1 },
2364		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
2365		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2366		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
2367		{ 0 }
2368	};
2369	static struct intr_info mps_trc_intr_info[] = {
2370		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
2371		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
2372		  1 },
2373		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
2374		{ 0 }
2375	};
2376	static struct intr_info mps_stat_sram_intr_info[] = {
2377		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2378		{ 0 }
2379	};
2380	static struct intr_info mps_stat_tx_intr_info[] = {
2381		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2382		{ 0 }
2383	};
2384	static struct intr_info mps_stat_rx_intr_info[] = {
2385		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2386		{ 0 }
2387	};
2388	static struct intr_info mps_cls_intr_info[] = {
2389		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2390		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2391		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2392		{ 0 }
2393	};
2394
2395	int fat;
2396
2397	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
2398				    mps_rx_intr_info) +
2399	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
2400				    mps_tx_intr_info) +
2401	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
2402				    mps_trc_intr_info) +
2403	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
2404				    mps_stat_sram_intr_info) +
2405	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2406				    mps_stat_tx_intr_info) +
2407	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2408				    mps_stat_rx_intr_info) +
2409	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
2410				    mps_cls_intr_info);
2411
2412	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
2413	t4_read_reg(adapter, A_MPS_INT_CAUSE);                    /* flush */
2414	if (fat)
2415		t4_fatal_err(adapter);
2416}
2417
2418#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
2419
2420/*
2421 * EDC/MC interrupt handler.
2422 */
2423static void mem_intr_handler(struct adapter *adapter, int idx)
2424{
2425	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2426
2427	unsigned int addr, cnt_addr, v;
2428
2429	if (idx <= MEM_EDC1) {
2430		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
2431		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
2432	} else {
2433		if (is_t4(adapter)) {
2434			addr = A_MC_INT_CAUSE;
2435			cnt_addr = A_MC_ECC_STATUS;
2436		} else {
2437			addr = A_MC_P_INT_CAUSE;
2438			cnt_addr = A_MC_P_ECC_STATUS;
2439		}
2440	}
2441
2442	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2443	if (v & F_PERR_INT_CAUSE)
2444		CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
2445	if (v & F_ECC_CE_INT_CAUSE) {
2446		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
2447
2448		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
2449		CH_WARN_RATELIMIT(adapter,
2450				  "%u %s correctable ECC data error%s\n",
2451				  cnt, name[idx], cnt > 1 ? "s" : "");
2452	}
2453	if (v & F_ECC_UE_INT_CAUSE)
2454		CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
2455			 name[idx]);
2456
2457	t4_write_reg(adapter, addr, v);
2458	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
2459		t4_fatal_err(adapter);
2460}
2461
2462/*
2463 * MA interrupt handler.
2464 */
2465static void ma_intr_handler(struct adapter *adapter)
2466{
2467	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
2468
2469	if (status & F_MEM_PERR_INT_CAUSE) {
2470		CH_ALERT(adapter, "MA parity error, parity status %#x\n",
2471			 t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
2472		if (is_t5(adapter))
2473			CH_ALERT(adapter,
2474				 "MA parity error, parity status %#x\n",
2475				 t4_read_reg(adapter,
2476				 	     A_MA_PARITY_ERROR_STATUS2));
2477	}
2478	if (status & F_MEM_WRAP_INT_CAUSE) {
2479		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
2480		CH_ALERT(adapter, "MA address wrap-around error by client %u to"
2481			 " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
2482			 G_MEM_WRAP_ADDRESS(v) << 4);
2483	}
2484	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
2485	t4_fatal_err(adapter);
2486}
2487
2488/*
2489 * SMB interrupt handler.
2490 */
2491static void smb_intr_handler(struct adapter *adap)
2492{
2493	static struct intr_info smb_intr_info[] = {
2494		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
2495		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
2496		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
2497		{ 0 }
2498	};
2499
2500	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
2501		t4_fatal_err(adap);
2502}
2503
2504/*
2505 * NC-SI interrupt handler.
2506 */
2507static void ncsi_intr_handler(struct adapter *adap)
2508{
2509	static struct intr_info ncsi_intr_info[] = {
2510		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
2511		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
2512		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
2513		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
2514		{ 0 }
2515	};
2516
2517	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
2518		t4_fatal_err(adap);
2519}
2520
2521/*
2522 * XGMAC interrupt handler.
2523 */
2524static void xgmac_intr_handler(struct adapter *adap, int port)
2525{
2526	u32 v, int_cause_reg;
2527
2528	if (is_t4(adap))
2529		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
2530	else
2531		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
2532
2533	v = t4_read_reg(adap, int_cause_reg);
2534	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
2535	if (!v)
2536		return;
2537
2538	if (v & F_TXFIFO_PRTY_ERR)
2539		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
2540	if (v & F_RXFIFO_PRTY_ERR)
2541		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
2542	t4_write_reg(adap, int_cause_reg, v);
2543	t4_fatal_err(adap);
2544}
2545
2546/*
2547 * PL interrupt handler.
2548 */
2549static void pl_intr_handler(struct adapter *adap)
2550{
2551	static struct intr_info pl_intr_info[] = {
2552		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2553		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
2554		{ 0 }
2555	};
2556
2557	static struct intr_info t5_pl_intr_info[] = {
2558		{ F_PL_BUSPERR, "PL bus parity error", -1, 1 },
2559		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2560		{ 0 }
2561	};
2562
2563	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
2564	    is_t4(adap) ?  pl_intr_info : t5_pl_intr_info))
2565		t4_fatal_err(adap);
2566}
2567
2568#define PF_INTR_MASK (F_PFSW | F_PFCIM)
2569#define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
2570		F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
2571		F_CPL_SWITCH | F_SGE | F_ULP_TX)
2572
2573/**
2574 *	t4_slow_intr_handler - control path interrupt handler
2575 *	@adapter: the adapter
2576 *
2577 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2578 *	The designation 'slow' is because it involves register reads, while
2579 *	data interrupts typically don't involve any MMIOs.
2580 */
2581int t4_slow_intr_handler(struct adapter *adapter)
2582{
2583	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
2584
2585	if (!(cause & GLBL_INTR_MASK))
2586		return 0;
2587	if (cause & F_CIM)
2588		cim_intr_handler(adapter);
2589	if (cause & F_MPS)
2590		mps_intr_handler(adapter);
2591	if (cause & F_NCSI)
2592		ncsi_intr_handler(adapter);
2593	if (cause & F_PL)
2594		pl_intr_handler(adapter);
2595	if (cause & F_SMB)
2596		smb_intr_handler(adapter);
2597	if (cause & F_XGMAC0)
2598		xgmac_intr_handler(adapter, 0);
2599	if (cause & F_XGMAC1)
2600		xgmac_intr_handler(adapter, 1);
2601	if (cause & F_XGMAC_KR0)
2602		xgmac_intr_handler(adapter, 2);
2603	if (cause & F_XGMAC_KR1)
2604		xgmac_intr_handler(adapter, 3);
2605	if (cause & F_PCIE)
2606		pcie_intr_handler(adapter);
2607	if (cause & F_MC)
2608		mem_intr_handler(adapter, MEM_MC);
2609	if (cause & F_EDC0)
2610		mem_intr_handler(adapter, MEM_EDC0);
2611	if (cause & F_EDC1)
2612		mem_intr_handler(adapter, MEM_EDC1);
2613	if (cause & F_LE)
2614		le_intr_handler(adapter);
2615	if (cause & F_TP)
2616		tp_intr_handler(adapter);
2617	if (cause & F_MA)
2618		ma_intr_handler(adapter);
2619	if (cause & F_PM_TX)
2620		pmtx_intr_handler(adapter);
2621	if (cause & F_PM_RX)
2622		pmrx_intr_handler(adapter);
2623	if (cause & F_ULP_RX)
2624		ulprx_intr_handler(adapter);
2625	if (cause & F_CPL_SWITCH)
2626		cplsw_intr_handler(adapter);
2627	if (cause & F_SGE)
2628		sge_intr_handler(adapter);
2629	if (cause & F_ULP_TX)
2630		ulptx_intr_handler(adapter);
2631
2632	/* Clear the interrupts just processed for which we are the master. */
2633	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2634	(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
2635	return 1;
2636}
2637
2638/**
2639 *	t4_intr_enable - enable interrupts
2640 *	@adapter: the adapter whose interrupts should be enabled
2641 *
2642 *	Enable PF-specific interrupts for the calling function and the top-level
2643 *	interrupt concentrator for global interrupts.  Interrupts are already
2644 *	enabled at each module,	here we just enable the roots of the interrupt
2645 *	hierarchies.
2646 *
2647 *	Note: this function should be called only when the driver manages
2648 *	non PF-specific interrupts from the various HW modules.  Only one PCI
2649 *	function at a time should be doing this.
2650 */
2651void t4_intr_enable(struct adapter *adapter)
2652{
2653	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2654
2655	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2656		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2657		     F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
2658		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2659		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2660		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2661		     F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
2662		     F_EGRESS_SIZE_ERR);
2663	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2664	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2665}
2666
2667/**
2668 *	t4_intr_disable - disable interrupts
2669 *	@adapter: the adapter whose interrupts should be disabled
2670 *
2671 *	Disable interrupts.  We only disable the top-level interrupt
2672 *	concentrators.  The caller must be a PCI function managing global
2673 *	interrupts.
2674 */
2675void t4_intr_disable(struct adapter *adapter)
2676{
2677	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2678
2679	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2680	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2681}
2682
2683/**
2684 *	t4_intr_clear - clear all interrupts
2685 *	@adapter: the adapter whose interrupts should be cleared
2686 *
2687 *	Clears all interrupts.  The caller must be a PCI function managing
2688 *	global interrupts.
2689 */
2690void t4_intr_clear(struct adapter *adapter)
2691{
2692	static const unsigned int cause_reg[] = {
2693		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
2694		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
2695		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
2696		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
2697		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
2698		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
2699		A_TP_INT_CAUSE,
2700		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
2701		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
2702		A_MPS_RX_PERR_INT_CAUSE,
2703		A_CPL_INTR_CAUSE,
2704		MYPF_REG(A_PL_PF_INT_CAUSE),
2705		A_PL_PL_INT_CAUSE,
2706		A_LE_DB_INT_CAUSE,
2707	};
2708
2709	unsigned int i;
2710
2711	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
2712		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
2713
2714	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
2715				A_MC_P_INT_CAUSE, 0xffffffff);
2716
2717	if (is_t4(adapter)) {
2718		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2719				0xffffffff);
2720		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2721				0xffffffff);
2722	} else
2723		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
2724
2725	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
2726	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
2727}
2728
2729/**
2730 *	hash_mac_addr - return the hash value of a MAC address
2731 *	@addr: the 48-bit Ethernet MAC address
2732 *
2733 *	Hashes a MAC address according to the hash function used by HW inexact
2734 *	(hash) address matching.
2735 */
2736static int hash_mac_addr(const u8 *addr)
2737{
2738	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2739	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2740	a ^= b;
2741	a ^= (a >> 12);
2742	a ^= (a >> 6);
2743	return a & 0x3f;
2744}
2745
2746/**
2747 *	t4_config_rss_range - configure a portion of the RSS mapping table
2748 *	@adapter: the adapter
2749 *	@mbox: mbox to use for the FW command
2750 *	@viid: virtual interface whose RSS subtable is to be written
2751 *	@start: start entry in the table to write
2752 *	@n: how many table entries to write
2753 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
2754 *	@nrspq: number of values in @rspq
2755 *
2756 *	Programs the selected part of the VI's RSS mapping table with the
2757 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2758 *	until the full table range is populated.
2759 *
2760 *	The caller must ensure the values in @rspq are in the range allowed for
2761 *	@viid.
2762 */
2763int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2764			int start, int n, const u16 *rspq, unsigned int nrspq)
2765{
2766	int ret;
2767	const u16 *rsp = rspq;
2768	const u16 *rsp_end = rspq + nrspq;
2769	struct fw_rss_ind_tbl_cmd cmd;
2770
2771	memset(&cmd, 0, sizeof(cmd));
2772	cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2773			       F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2774			       V_FW_RSS_IND_TBL_CMD_VIID(viid));
2775	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2776
2777
2778	/*
2779	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2780	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2781	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2782	 * reserved.
2783	 */
2784	while (n > 0) {
2785		int nq = min(n, 32);
2786		int nq_packed = 0;
2787		__be32 *qp = &cmd.iq0_to_iq2;
2788
2789		/*
2790		 * Set up the firmware RSS command header to send the next
2791		 * "nq" Ingress Queue IDs to the firmware.
2792		 */
2793		cmd.niqid = htons(nq);
2794		cmd.startidx = htons(start);
2795
2796		/*
2797		 * "nq" more done for the start of the next loop.
2798		 */
2799		start += nq;
2800		n -= nq;
2801
2802		/*
2803		 * While there are still Ingress Queue IDs to stuff into the
2804		 * current firmware RSS command, retrieve them from the
2805		 * Ingress Queue ID array and insert them into the command.
2806		 */
2807		while (nq > 0) {
2808			/*
2809			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2810			 * around the Ingress Queue ID array if necessary) and
2811			 * insert them into the firmware RSS command at the
2812			 * current 3-tuple position within the commad.
2813			 */
2814			u16 qbuf[3];
2815			u16 *qbp = qbuf;
2816			int nqbuf = min(3, nq);
2817
2818			nq -= nqbuf;
2819			qbuf[0] = qbuf[1] = qbuf[2] = 0;
2820			while (nqbuf && nq_packed < 32) {
2821				nqbuf--;
2822				nq_packed++;
2823				*qbp++ = *rsp++;
2824				if (rsp >= rsp_end)
2825					rsp = rspq;
2826			}
2827			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2828					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2829					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2830		}
2831
2832		/*
2833		 * Send this portion of the RRS table update to the firmware;
2834		 * bail out on any errors.
2835		 */
2836		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2837		if (ret)
2838			return ret;
2839	}
2840
2841	return 0;
2842}
2843
2844/**
2845 *	t4_config_glbl_rss - configure the global RSS mode
2846 *	@adapter: the adapter
2847 *	@mbox: mbox to use for the FW command
2848 *	@mode: global RSS mode
2849 *	@flags: mode-specific flags
2850 *
2851 *	Sets the global RSS mode.
2852 */
2853int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2854		       unsigned int flags)
2855{
2856	struct fw_rss_glb_config_cmd c;
2857
2858	memset(&c, 0, sizeof(c));
2859	c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2860			      F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
2861	c.retval_len16 = htonl(FW_LEN16(c));
2862	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2863		c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2864	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2865		c.u.basicvirtual.mode_pkd =
2866			htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2867		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2868	} else
2869		return -EINVAL;
2870	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2871}
2872
2873/**
2874 *	t4_config_vi_rss - configure per VI RSS settings
2875 *	@adapter: the adapter
2876 *	@mbox: mbox to use for the FW command
2877 *	@viid: the VI id
2878 *	@flags: RSS flags
2879 *	@defq: id of the default RSS queue for the VI.
2880 *
2881 *	Configures VI-specific RSS properties.
2882 */
2883int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2884		     unsigned int flags, unsigned int defq)
2885{
2886	struct fw_rss_vi_config_cmd c;
2887
2888	memset(&c, 0, sizeof(c));
2889	c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2890			     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2891			     V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2892	c.retval_len16 = htonl(FW_LEN16(c));
2893	c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
2894					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2895	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2896}
2897
2898/* Read an RSS table row */
2899static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2900{
2901	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
2902	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
2903				   5, 0, val);
2904}
2905
2906/**
2907 *	t4_read_rss - read the contents of the RSS mapping table
2908 *	@adapter: the adapter
2909 *	@map: holds the contents of the RSS mapping table
2910 *
2911 *	Reads the contents of the RSS hash->queue mapping table.
2912 */
2913int t4_read_rss(struct adapter *adapter, u16 *map)
2914{
2915	u32 val;
2916	int i, ret;
2917
2918	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2919		ret = rd_rss_row(adapter, i, &val);
2920		if (ret)
2921			return ret;
2922		*map++ = G_LKPTBLQUEUE0(val);
2923		*map++ = G_LKPTBLQUEUE1(val);
2924	}
2925	return 0;
2926}
2927
2928/**
2929 *	t4_read_rss_key - read the global RSS key
2930 *	@adap: the adapter
2931 *	@key: 10-entry array holding the 320-bit RSS key
2932 *
2933 *	Reads the global 320-bit RSS key.
2934 */
2935void t4_read_rss_key(struct adapter *adap, u32 *key)
2936{
2937	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2938			 A_TP_RSS_SECRET_KEY0);
2939}
2940
2941/**
2942 *	t4_write_rss_key - program one of the RSS keys
2943 *	@adap: the adapter
2944 *	@key: 10-entry array holding the 320-bit RSS key
2945 *	@idx: which RSS key to write
2946 *
2947 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
2948 *	0..15 the corresponding entry in the RSS key table is written,
2949 *	otherwise the global RSS key is written.
2950 */
2951void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2952{
2953	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2954			  A_TP_RSS_SECRET_KEY0);
2955	if (idx >= 0 && idx < 16)
2956		t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2957			     V_KEYWRADDR(idx) | F_KEYWREN);
2958}
2959
2960/**
2961 *	t4_read_rss_pf_config - read PF RSS Configuration Table
2962 *	@adapter: the adapter
2963 *	@index: the entry in the PF RSS table to read
2964 *	@valp: where to store the returned value
2965 *
2966 *	Reads the PF RSS Configuration Table at the specified index and returns
2967 *	the value found there.
2968 */
2969void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
2970{
2971	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2972			 valp, 1, A_TP_RSS_PF0_CONFIG + index);
2973}
2974
2975/**
2976 *	t4_write_rss_pf_config - write PF RSS Configuration Table
2977 *	@adapter: the adapter
2978 *	@index: the entry in the VF RSS table to read
2979 *	@val: the value to store
2980 *
2981 *	Writes the PF RSS Configuration Table at the specified index with the
2982 *	specified value.
2983 */
2984void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
2985{
2986	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2987			  &val, 1, A_TP_RSS_PF0_CONFIG + index);
2988}
2989
2990/**
2991 *	t4_read_rss_vf_config - read VF RSS Configuration Table
2992 *	@adapter: the adapter
2993 *	@index: the entry in the VF RSS table to read
2994 *	@vfl: where to store the returned VFL
2995 *	@vfh: where to store the returned VFH
2996 *
2997 *	Reads the VF RSS Configuration Table at the specified index and returns
2998 *	the (VFL, VFH) values found there.
2999 */
3000void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3001			   u32 *vfl, u32 *vfh)
3002{
3003	u32 vrt;
3004
3005	/*
3006	 * Request that the index'th VF Table values be read into VFL/VFH.
3007	 */
3008	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3009	vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
3010	vrt |= V_VFWRADDR(index) | F_VFRDEN;
3011	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3012
3013	/*
3014	 * Grab the VFL/VFH values ...
3015	 */
3016	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3017			 vfl, 1, A_TP_RSS_VFL_CONFIG);
3018	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3019			 vfh, 1, A_TP_RSS_VFH_CONFIG);
3020}
3021
3022/**
3023 *	t4_write_rss_vf_config - write VF RSS Configuration Table
3024 *
3025 *	@adapter: the adapter
3026 *	@index: the entry in the VF RSS table to write
3027 *	@vfl: the VFL to store
3028 *	@vfh: the VFH to store
3029 *
3030 *	Writes the VF RSS Configuration Table at the specified index with the
3031 *	specified (VFL, VFH) values.
3032 */
3033void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
3034			    u32 vfl, u32 vfh)
3035{
3036	u32 vrt;
3037
3038	/*
3039	 * Load up VFL/VFH with the values to be written ...
3040	 */
3041	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3042			  &vfl, 1, A_TP_RSS_VFL_CONFIG);
3043	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3044			  &vfh, 1, A_TP_RSS_VFH_CONFIG);
3045
3046	/*
3047	 * Write the VFL/VFH into the VF Table at index'th location.
3048	 */
3049	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3050	vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
3051	vrt |= V_VFWRADDR(index) | F_VFWREN;
3052	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3053}
3054
3055/**
3056 *	t4_read_rss_pf_map - read PF RSS Map
3057 *	@adapter: the adapter
3058 *
3059 *	Reads the PF RSS Map register and returns its value.
3060 */
3061u32 t4_read_rss_pf_map(struct adapter *adapter)
3062{
3063	u32 pfmap;
3064
3065	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3066			 &pfmap, 1, A_TP_RSS_PF_MAP);
3067	return pfmap;
3068}
3069
3070/**
3071 *	t4_write_rss_pf_map - write PF RSS Map
3072 *	@adapter: the adapter
3073 *	@pfmap: PF RSS Map value
3074 *
3075 *	Writes the specified value to the PF RSS Map register.
3076 */
3077void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
3078{
3079	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3080			  &pfmap, 1, A_TP_RSS_PF_MAP);
3081}
3082
3083/**
3084 *	t4_read_rss_pf_mask - read PF RSS Mask
3085 *	@adapter: the adapter
3086 *
3087 *	Reads the PF RSS Mask register and returns its value.
3088 */
3089u32 t4_read_rss_pf_mask(struct adapter *adapter)
3090{
3091	u32 pfmask;
3092
3093	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3094			 &pfmask, 1, A_TP_RSS_PF_MSK);
3095	return pfmask;
3096}
3097
3098/**
3099 *	t4_write_rss_pf_mask - write PF RSS Mask
3100 *	@adapter: the adapter
3101 *	@pfmask: PF RSS Mask value
3102 *
3103 *	Writes the specified value to the PF RSS Mask register.
3104 */
3105void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
3106{
3107	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3108			  &pfmask, 1, A_TP_RSS_PF_MSK);
3109}
3110
3111/**
3112 *	t4_set_filter_mode - configure the optional components of filter tuples
3113 *	@adap: the adapter
3114 *	@mode_map: a bitmap selcting which optional filter components to enable
3115 *
3116 *	Sets the filter mode by selecting the optional components to enable
3117 *	in filter tuples.  Returns 0 on success and a negative error if the
3118 *	requested mode needs more bits than are available for optional
3119 *	components.
3120 */
3121int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
3122{
3123	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
3124
3125	int i, nbits = 0;
3126
3127	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
3128		if (mode_map & (1 << i))
3129			nbits += width[i];
3130	if (nbits > FILTER_OPT_LEN)
3131		return -EINVAL;
3132	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
3133			  A_TP_VLAN_PRI_MAP);
3134	return 0;
3135}
3136
3137/**
3138 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3139 *	@adap: the adapter
3140 *	@v4: holds the TCP/IP counter values
3141 *	@v6: holds the TCP/IPv6 counter values
3142 *
3143 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3144 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3145 */
3146void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3147			 struct tp_tcp_stats *v6)
3148{
3149	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
3150
3151#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
3152#define STAT(x)     val[STAT_IDX(x)]
3153#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3154
3155	if (v4) {
3156		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3157				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
3158		v4->tcpOutRsts = STAT(OUT_RST);
3159		v4->tcpInSegs  = STAT64(IN_SEG);
3160		v4->tcpOutSegs = STAT64(OUT_SEG);
3161		v4->tcpRetransSegs = STAT64(RXT_SEG);
3162	}
3163	if (v6) {
3164		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3165				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
3166		v6->tcpOutRsts = STAT(OUT_RST);
3167		v6->tcpInSegs  = STAT64(IN_SEG);
3168		v6->tcpOutSegs = STAT64(OUT_SEG);
3169		v6->tcpRetransSegs = STAT64(RXT_SEG);
3170	}
3171#undef STAT64
3172#undef STAT
3173#undef STAT_IDX
3174}
3175
3176/**
3177 *	t4_tp_get_err_stats - read TP's error MIB counters
3178 *	@adap: the adapter
3179 *	@st: holds the counter values
3180 *
3181 *	Returns the values of TP's error counters.
3182 */
3183void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3184{
3185	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
3186			 12, A_TP_MIB_MAC_IN_ERR_0);
3187	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
3188			 8, A_TP_MIB_TNL_CNG_DROP_0);
3189	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
3190			 4, A_TP_MIB_TNL_DROP_0);
3191	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
3192			 4, A_TP_MIB_OFD_VLN_DROP_0);
3193	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
3194			 4, A_TP_MIB_TCP_V6IN_ERR_0);
3195	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
3196			 2, A_TP_MIB_OFD_ARP_DROP);
3197}
3198
3199/**
3200 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
3201 *	@adap: the adapter
3202 *	@st: holds the counter values
3203 *
3204 *	Returns the values of TP's proxy counters.
3205 */
3206void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
3207{
3208	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
3209			 4, A_TP_MIB_TNL_LPBK_0);
3210}
3211
3212/**
3213 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
3214 *	@adap: the adapter
3215 *	@st: holds the counter values
3216 *
3217 *	Returns the values of TP's CPL counters.
3218 */
3219void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3220{
3221	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
3222			 8, A_TP_MIB_CPL_IN_REQ_0);
3223}
3224
3225/**
3226 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3227 *	@adap: the adapter
3228 *	@st: holds the counter values
3229 *
3230 *	Returns the values of TP's RDMA counters.
3231 */
3232void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3233{
3234	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
3235			 2, A_TP_MIB_RQE_DFR_MOD);
3236}
3237
3238/**
3239 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3240 *	@adap: the adapter
3241 *	@idx: the port index
3242 *	@st: holds the counter values
3243 *
3244 *	Returns the values of TP's FCoE counters for the selected port.
3245 */
3246void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3247		       struct tp_fcoe_stats *st)
3248{
3249	u32 val[2];
3250
3251	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
3252			 1, A_TP_MIB_FCOE_DDP_0 + idx);
3253	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
3254			 1, A_TP_MIB_FCOE_DROP_0 + idx);
3255	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3256			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
3257	st->octetsDDP = ((u64)val[0] << 32) | val[1];
3258}
3259
3260/**
3261 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3262 *	@adap: the adapter
3263 *	@st: holds the counter values
3264 *
3265 *	Returns the values of TP's counters for non-TCP directly-placed packets.
3266 */
3267void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3268{
3269	u32 val[4];
3270
3271	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
3272			 A_TP_MIB_USM_PKTS);
3273	st->frames = val[0];
3274	st->drops = val[1];
3275	st->octets = ((u64)val[2] << 32) | val[3];
3276}
3277
3278/**
3279 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3280 *	@adap: the adapter
3281 *	@mtus: where to store the MTU values
3282 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3283 *
3284 *	Reads the HW path MTU table.
3285 */
3286void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3287{
3288	u32 v;
3289	int i;
3290
3291	for (i = 0; i < NMTUS; ++i) {
3292		t4_write_reg(adap, A_TP_MTU_TABLE,
3293			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
3294		v = t4_read_reg(adap, A_TP_MTU_TABLE);
3295		mtus[i] = G_MTUVALUE(v);
3296		if (mtu_log)
3297			mtu_log[i] = G_MTUWIDTH(v);
3298	}
3299}
3300
3301/**
3302 *	t4_read_cong_tbl - reads the congestion control table
3303 *	@adap: the adapter
3304 *	@incr: where to store the alpha values
3305 *
3306 *	Reads the additive increments programmed into the HW congestion
3307 *	control table.
3308 */
3309void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3310{
3311	unsigned int mtu, w;
3312
3313	for (mtu = 0; mtu < NMTUS; ++mtu)
3314		for (w = 0; w < NCCTRL_WIN; ++w) {
3315			t4_write_reg(adap, A_TP_CCTRL_TABLE,
3316				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
3317			incr[mtu][w] = (u16)t4_read_reg(adap,
3318						A_TP_CCTRL_TABLE) & 0x1fff;
3319		}
3320}
3321
3322/**
3323 *	t4_read_pace_tbl - read the pace table
3324 *	@adap: the adapter
3325 *	@pace_vals: holds the returned values
3326 *
3327 *	Returns the values of TP's pace table in microseconds.
3328 */
3329void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
3330{
3331	unsigned int i, v;
3332
3333	for (i = 0; i < NTX_SCHED; i++) {
3334		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
3335		v = t4_read_reg(adap, A_TP_PACE_TABLE);
3336		pace_vals[i] = dack_ticks_to_usec(adap, v);
3337	}
3338}
3339
3340/**
3341 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3342 *	@adap: the adapter
3343 *	@addr: the indirect TP register address
3344 *	@mask: specifies the field within the register to modify
3345 *	@val: new value for the field
3346 *
3347 *	Sets a field of an indirect TP register to the given value.
3348 */
3349void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3350			    unsigned int mask, unsigned int val)
3351{
3352	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
3353	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
3354	t4_write_reg(adap, A_TP_PIO_DATA, val);
3355}
3356
3357/**
3358 *	init_cong_ctrl - initialize congestion control parameters
3359 *	@a: the alpha values for congestion control
3360 *	@b: the beta values for congestion control
3361 *
3362 *	Initialize the congestion control parameters.
3363 */
3364static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
3365{
3366	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3367	a[9] = 2;
3368	a[10] = 3;
3369	a[11] = 4;
3370	a[12] = 5;
3371	a[13] = 6;
3372	a[14] = 7;
3373	a[15] = 8;
3374	a[16] = 9;
3375	a[17] = 10;
3376	a[18] = 14;
3377	a[19] = 17;
3378	a[20] = 21;
3379	a[21] = 25;
3380	a[22] = 30;
3381	a[23] = 35;
3382	a[24] = 45;
3383	a[25] = 60;
3384	a[26] = 80;
3385	a[27] = 100;
3386	a[28] = 200;
3387	a[29] = 300;
3388	a[30] = 400;
3389	a[31] = 500;
3390
3391	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3392	b[9] = b[10] = 1;
3393	b[11] = b[12] = 2;
3394	b[13] = b[14] = b[15] = b[16] = 3;
3395	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3396	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3397	b[28] = b[29] = 6;
3398	b[30] = b[31] = 7;
3399}
3400
3401/* The minimum additive increment value for the congestion control table */
3402#define CC_MIN_INCR 2U
3403
3404/**
3405 *	t4_load_mtus - write the MTU and congestion control HW tables
3406 *	@adap: the adapter
3407 *	@mtus: the values for the MTU table
3408 *	@alpha: the values for the congestion control alpha parameter
3409 *	@beta: the values for the congestion control beta parameter
3410 *
3411 *	Write the HW MTU table with the supplied MTUs and the high-speed
3412 *	congestion control table with the supplied alpha, beta, and MTUs.
3413 *	We write the two tables together because the additive increments
3414 *	depend on the MTUs.
3415 */
3416void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3417		  const unsigned short *alpha, const unsigned short *beta)
3418{
3419	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3420		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3421		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3422		28672, 40960, 57344, 81920, 114688, 163840, 229376
3423	};
3424
3425	unsigned int i, w;
3426
3427	for (i = 0; i < NMTUS; ++i) {
3428		unsigned int mtu = mtus[i];
3429		unsigned int log2 = fls(mtu);
3430
3431		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3432			log2--;
3433		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
3434			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
3435
3436		for (w = 0; w < NCCTRL_WIN; ++w) {
3437			unsigned int inc;
3438
3439			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3440				  CC_MIN_INCR);
3441
3442			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3443				     (w << 16) | (beta[w] << 13) | inc);
3444		}
3445	}
3446}
3447
3448/**
3449 *	t4_set_pace_tbl - set the pace table
3450 *	@adap: the adapter
3451 *	@pace_vals: the pace values in microseconds
3452 *	@start: index of the first entry in the HW pace table to set
3453 *	@n: how many entries to set
3454 *
3455 *	Sets (a subset of the) HW pace table.
3456 */
3457int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
3458		     unsigned int start, unsigned int n)
3459{
3460	unsigned int vals[NTX_SCHED], i;
3461	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
3462
3463	if (n > NTX_SCHED)
3464	    return -ERANGE;
3465
3466	/* convert values from us to dack ticks, rounding to closest value */
3467	for (i = 0; i < n; i++, pace_vals++) {
3468		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
3469		if (vals[i] > 0x7ff)
3470			return -ERANGE;
3471		if (*pace_vals && vals[i] == 0)
3472			return -ERANGE;
3473	}
3474	for (i = 0; i < n; i++, start++)
3475		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
3476	return 0;
3477}
3478
3479/**
3480 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
3481 *	@adap: the adapter
3482 *	@kbps: target rate in Kbps
3483 *	@sched: the scheduler index
3484 *
3485 *	Configure a Tx HW scheduler for the target rate.
3486 */
3487int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
3488{
3489	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3490	unsigned int clk = adap->params.vpd.cclk * 1000;
3491	unsigned int selected_cpt = 0, selected_bpt = 0;
3492
3493	if (kbps > 0) {
3494		kbps *= 125;     /* -> bytes */
3495		for (cpt = 1; cpt <= 255; cpt++) {
3496			tps = clk / cpt;
3497			bpt = (kbps + tps / 2) / tps;
3498			if (bpt > 0 && bpt <= 255) {
3499				v = bpt * tps;
3500				delta = v >= kbps ? v - kbps : kbps - v;
3501				if (delta < mindelta) {
3502					mindelta = delta;
3503					selected_cpt = cpt;
3504					selected_bpt = bpt;
3505				}
3506			} else if (selected_cpt)
3507				break;
3508		}
3509		if (!selected_cpt)
3510			return -EINVAL;
3511	}
3512	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
3513		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3514	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3515	if (sched & 1)
3516		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3517	else
3518		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3519	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3520	return 0;
3521}
3522
3523/**
3524 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
3525 *	@adap: the adapter
3526 *	@sched: the scheduler index
3527 *	@ipg: the interpacket delay in tenths of nanoseconds
3528 *
3529 *	Set the interpacket delay for a HW packet rate scheduler.
3530 */
3531int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
3532{
3533	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3534
3535	/* convert ipg to nearest number of core clocks */
3536	ipg *= core_ticks_per_usec(adap);
3537	ipg = (ipg + 5000) / 10000;
3538	if (ipg > M_TXTIMERSEPQ0)
3539		return -EINVAL;
3540
3541	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3542	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3543	if (sched & 1)
3544		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
3545	else
3546		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
3547	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3548	t4_read_reg(adap, A_TP_TM_PIO_DATA);
3549	return 0;
3550}
3551
3552/**
3553 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
3554 *	@adap: the adapter
3555 *	@sched: the scheduler index
3556 *	@kbps: the byte rate in Kbps
3557 *	@ipg: the interpacket delay in tenths of nanoseconds
3558 *
3559 *	Return the current configuration of a HW Tx scheduler.
3560 */
3561void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
3562		     unsigned int *ipg)
3563{
3564	unsigned int v, addr, bpt, cpt;
3565
3566	if (kbps) {
3567		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
3568		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3569		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3570		if (sched & 1)
3571			v >>= 16;
3572		bpt = (v >> 8) & 0xff;
3573		cpt = v & 0xff;
3574		if (!cpt)
3575			*kbps = 0;        /* scheduler disabled */
3576		else {
3577			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
3578			*kbps = (v * bpt) / 125;
3579		}
3580	}
3581	if (ipg) {
3582		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3583		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3584		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3585		if (sched & 1)
3586			v >>= 16;
3587		v &= 0xffff;
3588		*ipg = (10000 * v) / core_ticks_per_usec(adap);
3589	}
3590}
3591
3592/*
3593 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
3594 * clocks.  The formula is
3595 *
3596 * bytes/s = bytes256 * 256 * ClkFreq / 4096
3597 *
3598 * which is equivalent to
3599 *
3600 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
3601 */
3602static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
3603{
3604	u64 v = bytes256 * adap->params.vpd.cclk;
3605
3606	return v * 62 + v / 2;
3607}
3608
3609/**
3610 *	t4_get_chan_txrate - get the current per channel Tx rates
3611 *	@adap: the adapter
3612 *	@nic_rate: rates for NIC traffic
3613 *	@ofld_rate: rates for offloaded traffic
3614 *
3615 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
3616 *	for each channel.
3617 */
3618void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
3619{
3620	u32 v;
3621
3622	v = t4_read_reg(adap, A_TP_TX_TRATE);
3623	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
3624	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
3625	nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
3626	nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
3627
3628	v = t4_read_reg(adap, A_TP_TX_ORATE);
3629	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
3630	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
3631	ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
3632	ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
3633}
3634
3635/**
3636 *	t4_set_trace_filter - configure one of the tracing filters
3637 *	@adap: the adapter
3638 *	@tp: the desired trace filter parameters
3639 *	@idx: which filter to configure
3640 *	@enable: whether to enable or disable the filter
3641 *
3642 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
3643 *	it indicates that the filter is already written in the register and it
3644 *	just needs to be enabled or disabled.
3645 */
3646int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
3647    int idx, int enable)
3648{
3649	int i, ofst = idx * 4;
3650	u32 data_reg, mask_reg, cfg;
3651	u32 multitrc = F_TRCMULTIFILTER;
3652	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
3653
3654	if (idx < 0 || idx >= NTRACE)
3655		return -EINVAL;
3656
3657	if (tp == NULL || !enable) {
3658		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
3659		    enable ? en : 0);
3660		return 0;
3661	}
3662
3663	/*
3664	 * TODO - After T4 data book is updated, specify the exact
3665	 * section below.
3666	 *
3667	 * See T4 data book - MPS section for a complete description
3668	 * of the below if..else handling of A_MPS_TRC_CFG register
3669	 * value.
3670	 */
3671	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
3672	if (cfg & F_TRCMULTIFILTER) {
3673		/*
3674		 * If multiple tracers are enabled, then maximum
3675		 * capture size is 2.5KB (FIFO size of a single channel)
3676		 * minus 2 flits for CPL_TRACE_PKT header.
3677		 */
3678		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
3679			return -EINVAL;
3680	} else {
3681		/*
3682		 * If multiple tracers are disabled, to avoid deadlocks
3683		 * maximum packet capture size of 9600 bytes is recommended.
3684		 * Also in this mode, only trace0 can be enabled and running.
3685		 */
3686		multitrc = 0;
3687		if (tp->snap_len > 9600 || idx)
3688			return -EINVAL;
3689	}
3690
3691	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
3692	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
3693	    tp->min_len > M_TFMINPKTSIZE)
3694		return -EINVAL;
3695
3696	/* stop the tracer we'll be changing */
3697	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
3698
3699	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
3700	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
3701	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
3702
3703	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3704		t4_write_reg(adap, data_reg, tp->data[i]);
3705		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
3706	}
3707	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
3708		     V_TFCAPTUREMAX(tp->snap_len) |
3709		     V_TFMINPKTSIZE(tp->min_len));
3710	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
3711		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
3712		     (is_t4(adap) ?
3713		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
3714		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
3715
3716	return 0;
3717}
3718
3719/**
3720 *	t4_get_trace_filter - query one of the tracing filters
3721 *	@adap: the adapter
3722 *	@tp: the current trace filter parameters
3723 *	@idx: which trace filter to query
3724 *	@enabled: non-zero if the filter is enabled
3725 *
3726 *	Returns the current settings of one of the HW tracing filters.
3727 */
3728void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
3729			 int *enabled)
3730{
3731	u32 ctla, ctlb;
3732	int i, ofst = idx * 4;
3733	u32 data_reg, mask_reg;
3734
3735	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
3736	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
3737
3738	if (is_t4(adap)) {
3739		*enabled = !!(ctla & F_TFEN);
3740		tp->port =  G_TFPORT(ctla);
3741		tp->invert = !!(ctla & F_TFINVERTMATCH);
3742	} else {
3743		*enabled = !!(ctla & F_T5_TFEN);
3744		tp->port = G_T5_TFPORT(ctla);
3745		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
3746	}
3747	tp->snap_len = G_TFCAPTUREMAX(ctlb);
3748	tp->min_len = G_TFMINPKTSIZE(ctlb);
3749	tp->skip_ofst = G_TFOFFSET(ctla);
3750	tp->skip_len = G_TFLENGTH(ctla);
3751
3752	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
3753	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
3754	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
3755
3756	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3757		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
3758		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
3759	}
3760}
3761
3762/**
3763 *	t4_pmtx_get_stats - returns the HW stats from PMTX
3764 *	@adap: the adapter
3765 *	@cnt: where to store the count statistics
3766 *	@cycles: where to store the cycle statistics
3767 *
3768 *	Returns performance statistics from PMTX.
3769 */
3770void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3771{
3772	int i;
3773	u32 data[2];
3774
3775	for (i = 0; i < PM_NSTATS; i++) {
3776		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
3777		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
3778		if (is_t4(adap))
3779			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
3780		else {
3781			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
3782					 A_PM_TX_DBG_DATA, data, 2,
3783					 A_PM_TX_DBG_STAT_MSB);
3784			cycles[i] = (((u64)data[0] << 32) | data[1]);
3785		}
3786	}
3787}
3788
3789/**
3790 *	t4_pmrx_get_stats - returns the HW stats from PMRX
3791 *	@adap: the adapter
3792 *	@cnt: where to store the count statistics
3793 *	@cycles: where to store the cycle statistics
3794 *
3795 *	Returns performance statistics from PMRX.
3796 */
3797void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3798{
3799	int i;
3800	u32 data[2];
3801
3802	for (i = 0; i < PM_NSTATS; i++) {
3803		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
3804		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
3805		if (is_t4(adap))
3806			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
3807		else {
3808			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
3809					 A_PM_RX_DBG_DATA, data, 2,
3810					 A_PM_RX_DBG_STAT_MSB);
3811			cycles[i] = (((u64)data[0] << 32) | data[1]);
3812		}
3813	}
3814}
3815
3816/**
3817 *	get_mps_bg_map - return the buffer groups associated with a port
3818 *	@adap: the adapter
3819 *	@idx: the port index
3820 *
3821 *	Returns a bitmap indicating which MPS buffer groups are associated
3822 *	with the given port.  Bit i is set if buffer group i is used by the
3823 *	port.
3824 */
3825static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3826{
3827	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
3828
3829	if (n == 0)
3830		return idx == 0 ? 0xf : 0;
3831	if (n == 1)
3832		return idx < 2 ? (3 << (2 * idx)) : 0;
3833	return 1 << idx;
3834}
3835
3836/**
3837 *      t4_get_port_stats_offset - collect port stats relative to a previous
3838 *                                 snapshot
3839 *      @adap: The adapter
3840 *      @idx: The port
3841 *      @stats: Current stats to fill
3842 *      @offset: Previous stats snapshot
3843 */
3844void t4_get_port_stats_offset(struct adapter *adap, int idx,
3845		struct port_stats *stats,
3846		struct port_stats *offset)
3847{
3848	u64 *s, *o;
3849	int i;
3850
3851	t4_get_port_stats(adap, idx, stats);
3852	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
3853			i < (sizeof(struct port_stats)/sizeof(u64)) ;
3854			i++, s++, o++)
3855		*s -= *o;
3856}
3857
3858/**
3859 *	t4_get_port_stats - collect port statistics
3860 *	@adap: the adapter
3861 *	@idx: the port index
3862 *	@p: the stats structure to fill
3863 *
3864 *	Collect statistics related to the given port from HW.
3865 */
3866void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3867{
3868	u32 bgmap = get_mps_bg_map(adap, idx);
3869
3870#define GET_STAT(name) \
3871	t4_read_reg64(adap, \
3872	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
3873	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3874#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3875
3876	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3877	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3878	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3879	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3880	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3881	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3882	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3883	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3884	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3885	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3886	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3887	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3888	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3889	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3890	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3891	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3892	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3893	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3894	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3895	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3896	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3897	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3898	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3899
3900	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3901	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3902	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3903	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3904	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3905	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3906	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3907	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3908	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3909	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3910	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3911	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3912	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3913	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3914	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3915	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3916	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3917	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3918	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3919	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3920	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3921	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3922	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3923	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3924	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3925	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3926	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3927
3928	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3929	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3930	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3931	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3932	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3933	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3934	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3935	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3936
3937#undef GET_STAT
3938#undef GET_STAT_COM
3939}
3940
3941/**
3942 *	t4_clr_port_stats - clear port statistics
3943 *	@adap: the adapter
3944 *	@idx: the port index
3945 *
3946 *	Clear HW statistics for the given port.
3947 */
3948void t4_clr_port_stats(struct adapter *adap, int idx)
3949{
3950	unsigned int i;
3951	u32 bgmap = get_mps_bg_map(adap, idx);
3952	u32 port_base_addr;
3953
3954	if (is_t4(adap))
3955		port_base_addr = PORT_BASE(idx);
3956	else
3957		port_base_addr = T5_PORT_BASE(idx);
3958
3959	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3960			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3961		t4_write_reg(adap, port_base_addr + i, 0);
3962	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3963			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3964		t4_write_reg(adap, port_base_addr + i, 0);
3965	for (i = 0; i < 4; i++)
3966		if (bgmap & (1 << i)) {
3967			t4_write_reg(adap,
3968				A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
3969			t4_write_reg(adap,
3970				A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
3971		}
3972}
3973
3974/**
3975 *	t4_get_lb_stats - collect loopback port statistics
3976 *	@adap: the adapter
3977 *	@idx: the loopback port index
3978 *	@p: the stats structure to fill
3979 *
3980 *	Return HW statistics for the given loopback port.
3981 */
3982void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
3983{
3984	u32 bgmap = get_mps_bg_map(adap, idx);
3985
3986#define GET_STAT(name) \
3987	t4_read_reg64(adap, \
3988	(is_t4(adap) ? \
3989	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
3990	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
3991#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3992
3993	p->octets           = GET_STAT(BYTES);
3994	p->frames           = GET_STAT(FRAMES);
3995	p->bcast_frames     = GET_STAT(BCAST);
3996	p->mcast_frames     = GET_STAT(MCAST);
3997	p->ucast_frames     = GET_STAT(UCAST);
3998	p->error_frames     = GET_STAT(ERROR);
3999
4000	p->frames_64        = GET_STAT(64B);
4001	p->frames_65_127    = GET_STAT(65B_127B);
4002	p->frames_128_255   = GET_STAT(128B_255B);
4003	p->frames_256_511   = GET_STAT(256B_511B);
4004	p->frames_512_1023  = GET_STAT(512B_1023B);
4005	p->frames_1024_1518 = GET_STAT(1024B_1518B);
4006	p->frames_1519_max  = GET_STAT(1519B_MAX);
4007	p->drop             = GET_STAT(DROP_FRAMES);
4008
4009	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4010	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4011	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4012	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4013	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4014	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4015	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4016	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4017
4018#undef GET_STAT
4019#undef GET_STAT_COM
4020}
4021
4022/**
4023 *	t4_wol_magic_enable - enable/disable magic packet WoL
4024 *	@adap: the adapter
4025 *	@port: the physical port index
4026 *	@addr: MAC address expected in magic packets, %NULL to disable
4027 *
4028 *	Enables/disables magic packet wake-on-LAN for the selected port.
4029 */
4030void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
4031			 const u8 *addr)
4032{
4033	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
4034
4035	if (is_t4(adap)) {
4036		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
4037		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
4038		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4039	} else {
4040		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
4041		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
4042		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4043	}
4044
4045	if (addr) {
4046		t4_write_reg(adap, mag_id_reg_l,
4047			     (addr[2] << 24) | (addr[3] << 16) |
4048			     (addr[4] << 8) | addr[5]);
4049		t4_write_reg(adap, mag_id_reg_h,
4050			     (addr[0] << 8) | addr[1]);
4051	}
4052	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
4053			 V_MAGICEN(addr != NULL));
4054}
4055
4056/**
4057 *	t4_wol_pat_enable - enable/disable pattern-based WoL
4058 *	@adap: the adapter
4059 *	@port: the physical port index
4060 *	@map: bitmap of which HW pattern filters to set
4061 *	@mask0: byte mask for bytes 0-63 of a packet
4062 *	@mask1: byte mask for bytes 64-127 of a packet
4063 *	@crc: Ethernet CRC for selected bytes
4064 *	@enable: enable/disable switch
4065 *
4066 *	Sets the pattern filters indicated in @map to mask out the bytes
4067 *	specified in @mask0/@mask1 in received packets and compare the CRC of
4068 *	the resulting packet against @crc.  If @enable is %true pattern-based
4069 *	WoL is enabled, otherwise disabled.
4070 */
4071int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
4072		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
4073{
4074	int i;
4075	u32 port_cfg_reg;
4076
4077	if (is_t4(adap))
4078		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4079	else
4080		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4081
4082	if (!enable) {
4083		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
4084		return 0;
4085	}
4086	if (map > 0xff)
4087		return -EINVAL;
4088
4089#define EPIO_REG(name) \
4090	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
4091	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
4092
4093	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
4094	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
4095	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
4096
4097	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
4098		if (!(map & 1))
4099			continue;
4100
4101		/* write byte masks */
4102		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
4103		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
4104		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4105		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4106			return -ETIMEDOUT;
4107
4108		/* write CRC */
4109		t4_write_reg(adap, EPIO_REG(DATA0), crc);
4110		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
4111		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4112		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4113			return -ETIMEDOUT;
4114	}
4115#undef EPIO_REG
4116
4117	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
4118	return 0;
4119}
4120
4121/**
4122 *	t4_mk_filtdelwr - create a delete filter WR
4123 *	@ftid: the filter ID
4124 *	@wr: the filter work request to populate
4125 *	@qid: ingress queue to receive the delete notification
4126 *
4127 *	Creates a filter work request to delete the supplied filter.  If @qid is
4128 *	negative the delete notification is suppressed.
4129 */
4130void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4131{
4132	memset(wr, 0, sizeof(*wr));
4133	wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
4134	wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
4135	wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
4136			      V_FW_FILTER_WR_NOREPLY(qid < 0));
4137	wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
4138	if (qid >= 0)
4139		wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
4140}
4141
4142#define INIT_CMD(var, cmd, rd_wr) do { \
4143	(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
4144				  F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
4145	(var).retval_len16 = htonl(FW_LEN16(var)); \
4146} while (0)
4147
4148int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
4149{
4150	struct fw_ldst_cmd c;
4151
4152	memset(&c, 0, sizeof(c));
4153	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4154		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
4155	c.cycles_to_len16 = htonl(FW_LEN16(c));
4156	c.u.addrval.addr = htonl(addr);
4157	c.u.addrval.val = htonl(val);
4158
4159	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4160}
4161
4162/**
4163 *	t4_mdio_rd - read a PHY register through MDIO
4164 *	@adap: the adapter
4165 *	@mbox: mailbox to use for the FW command
4166 *	@phy_addr: the PHY address
4167 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4168 *	@reg: the register to read
4169 *	@valp: where to store the value
4170 *
4171 *	Issues a FW command through the given mailbox to read a PHY register.
4172 */
4173int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4174	       unsigned int mmd, unsigned int reg, unsigned int *valp)
4175{
4176	int ret;
4177	struct fw_ldst_cmd c;
4178
4179	memset(&c, 0, sizeof(c));
4180	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4181		F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4182	c.cycles_to_len16 = htonl(FW_LEN16(c));
4183	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4184				   V_FW_LDST_CMD_MMD(mmd));
4185	c.u.mdio.raddr = htons(reg);
4186
4187	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4188	if (ret == 0)
4189		*valp = ntohs(c.u.mdio.rval);
4190	return ret;
4191}
4192
4193/**
4194 *	t4_mdio_wr - write a PHY register through MDIO
4195 *	@adap: the adapter
4196 *	@mbox: mailbox to use for the FW command
4197 *	@phy_addr: the PHY address
4198 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4199 *	@reg: the register to write
4200 *	@valp: value to write
4201 *
4202 *	Issues a FW command through the given mailbox to write a PHY register.
4203 */
4204int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4205	       unsigned int mmd, unsigned int reg, unsigned int val)
4206{
4207	struct fw_ldst_cmd c;
4208
4209	memset(&c, 0, sizeof(c));
4210	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4211		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4212	c.cycles_to_len16 = htonl(FW_LEN16(c));
4213	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4214				   V_FW_LDST_CMD_MMD(mmd));
4215	c.u.mdio.raddr = htons(reg);
4216	c.u.mdio.rval = htons(val);
4217
4218	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4219}
4220
4221/**
4222 *	t4_i2c_rd - read I2C data from adapter
4223 *	@adap: the adapter
4224 *	@port: Port number if per-port device; <0 if not
4225 *	@devid: per-port device ID or absolute device ID
4226 *	@offset: byte offset into device I2C space
4227 *	@len: byte length of I2C space data
4228 *	@buf: buffer in which to return I2C data
4229 *
4230 *	Reads the I2C data from the indicated device and location.
4231 */
4232int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
4233	      int port, unsigned int devid,
4234	      unsigned int offset, unsigned int len,
4235	      u8 *buf)
4236{
4237	struct fw_ldst_cmd ldst;
4238	int ret;
4239
4240	if (port >= 4 ||
4241	    devid >= 256 ||
4242	    offset >= 256 ||
4243	    len > sizeof ldst.u.i2c.data)
4244		return -EINVAL;
4245
4246	memset(&ldst, 0, sizeof ldst);
4247	ldst.op_to_addrspace =
4248		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4249			    F_FW_CMD_REQUEST |
4250			    F_FW_CMD_READ |
4251			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4252	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4253	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4254	ldst.u.i2c.did = devid;
4255	ldst.u.i2c.boffset = offset;
4256	ldst.u.i2c.blen = len;
4257	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4258	if (!ret)
4259		memcpy(buf, ldst.u.i2c.data, len);
4260	return ret;
4261}
4262
4263/**
4264 *	t4_i2c_wr - write I2C data to adapter
4265 *	@adap: the adapter
4266 *	@port: Port number if per-port device; <0 if not
4267 *	@devid: per-port device ID or absolute device ID
4268 *	@offset: byte offset into device I2C space
4269 *	@len: byte length of I2C space data
4270 *	@buf: buffer containing new I2C data
4271 *
4272 *	Write the I2C data to the indicated device and location.
4273 */
4274int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
4275	      int port, unsigned int devid,
4276	      unsigned int offset, unsigned int len,
4277	      u8 *buf)
4278{
4279	struct fw_ldst_cmd ldst;
4280
4281	if (port >= 4 ||
4282	    devid >= 256 ||
4283	    offset >= 256 ||
4284	    len > sizeof ldst.u.i2c.data)
4285		return -EINVAL;
4286
4287	memset(&ldst, 0, sizeof ldst);
4288	ldst.op_to_addrspace =
4289		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4290			    F_FW_CMD_REQUEST |
4291			    F_FW_CMD_WRITE |
4292			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4293	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4294	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4295	ldst.u.i2c.did = devid;
4296	ldst.u.i2c.boffset = offset;
4297	ldst.u.i2c.blen = len;
4298	memcpy(ldst.u.i2c.data, buf, len);
4299	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4300}
4301
4302/**
4303 *	t4_sge_ctxt_flush - flush the SGE context cache
4304 *	@adap: the adapter
4305 *	@mbox: mailbox to use for the FW command
4306 *
4307 *	Issues a FW command through the given mailbox to flush the
4308 *	SGE context cache.
4309 */
4310int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4311{
4312	int ret;
4313	struct fw_ldst_cmd c;
4314
4315	memset(&c, 0, sizeof(c));
4316	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4317			F_FW_CMD_READ |
4318			V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
4319	c.cycles_to_len16 = htonl(FW_LEN16(c));
4320	c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
4321
4322	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4323	return ret;
4324}
4325
4326/**
4327 *	t4_sge_ctxt_rd - read an SGE context through FW
4328 *	@adap: the adapter
4329 *	@mbox: mailbox to use for the FW command
4330 *	@cid: the context id
4331 *	@ctype: the context type
4332 *	@data: where to store the context data
4333 *
4334 *	Issues a FW command through the given mailbox to read an SGE context.
4335 */
4336int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
4337		   enum ctxt_type ctype, u32 *data)
4338{
4339	int ret;
4340	struct fw_ldst_cmd c;
4341
4342	if (ctype == CTXT_EGRESS)
4343		ret = FW_LDST_ADDRSPC_SGE_EGRC;
4344	else if (ctype == CTXT_INGRESS)
4345		ret = FW_LDST_ADDRSPC_SGE_INGC;
4346	else if (ctype == CTXT_FLM)
4347		ret = FW_LDST_ADDRSPC_SGE_FLMC;
4348	else
4349		ret = FW_LDST_ADDRSPC_SGE_CONMC;
4350
4351	memset(&c, 0, sizeof(c));
4352	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4353				  F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
4354	c.cycles_to_len16 = htonl(FW_LEN16(c));
4355	c.u.idctxt.physid = htonl(cid);
4356
4357	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4358	if (ret == 0) {
4359		data[0] = ntohl(c.u.idctxt.ctxt_data0);
4360		data[1] = ntohl(c.u.idctxt.ctxt_data1);
4361		data[2] = ntohl(c.u.idctxt.ctxt_data2);
4362		data[3] = ntohl(c.u.idctxt.ctxt_data3);
4363		data[4] = ntohl(c.u.idctxt.ctxt_data4);
4364		data[5] = ntohl(c.u.idctxt.ctxt_data5);
4365	}
4366	return ret;
4367}
4368
4369/**
4370 *	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
4371 *	@adap: the adapter
4372 *	@cid: the context id
4373 *	@ctype: the context type
4374 *	@data: where to store the context data
4375 *
4376 *	Reads an SGE context directly, bypassing FW.  This is only for
4377 *	debugging when FW is unavailable.
4378 */
4379int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
4380		      u32 *data)
4381{
4382	int i, ret;
4383
4384	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
4385	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
4386	if (!ret)
4387		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
4388			*data++ = t4_read_reg(adap, i);
4389	return ret;
4390}
4391
4392/**
4393 *	t4_fw_hello - establish communication with FW
4394 *	@adap: the adapter
4395 *	@mbox: mailbox to use for the FW command
4396 *	@evt_mbox: mailbox to receive async FW events
4397 *	@master: specifies the caller's willingness to be the device master
4398 *	@state: returns the current device state (if non-NULL)
4399 *
4400 *	Issues a command to establish communication with FW.  Returns either
4401 *	an error (negative integer) or the mailbox of the Master PF.
4402 */
4403int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4404		enum dev_master master, enum dev_state *state)
4405{
4406	int ret;
4407	struct fw_hello_cmd c;
4408	u32 v;
4409	unsigned int master_mbox;
4410	int retries = FW_CMD_HELLO_RETRIES;
4411
4412retry:
4413	memset(&c, 0, sizeof(c));
4414	INIT_CMD(c, HELLO, WRITE);
4415	c.err_to_clearinit = htonl(
4416		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
4417		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
4418		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
4419			M_FW_HELLO_CMD_MBMASTER) |
4420		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
4421		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
4422		F_FW_HELLO_CMD_CLEARINIT);
4423
4424	/*
4425	 * Issue the HELLO command to the firmware.  If it's not successful
4426	 * but indicates that we got a "busy" or "timeout" condition, retry
4427	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4428	 * retry limit, check to see if the firmware left us any error
4429	 * information and report that if so ...
4430	 */
4431	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4432	if (ret != FW_SUCCESS) {
4433		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4434			goto retry;
4435		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
4436			t4_report_fw_error(adap);
4437		return ret;
4438	}
4439
4440	v = ntohl(c.err_to_clearinit);
4441	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
4442	if (state) {
4443		if (v & F_FW_HELLO_CMD_ERR)
4444			*state = DEV_STATE_ERR;
4445		else if (v & F_FW_HELLO_CMD_INIT)
4446			*state = DEV_STATE_INIT;
4447		else
4448			*state = DEV_STATE_UNINIT;
4449	}
4450
4451	/*
4452	 * If we're not the Master PF then we need to wait around for the
4453	 * Master PF Driver to finish setting up the adapter.
4454	 *
4455	 * Note that we also do this wait if we're a non-Master-capable PF and
4456	 * there is no current Master PF; a Master PF may show up momentarily
4457	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4458	 * OS loads lots of different drivers rapidly at the same time).  In
4459	 * this case, the Master PF returned by the firmware will be
4460	 * M_PCIE_FW_MASTER so the test below will work ...
4461	 */
4462	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
4463	    master_mbox != mbox) {
4464		int waiting = FW_CMD_HELLO_TIMEOUT;
4465
4466		/*
4467		 * Wait for the firmware to either indicate an error or
4468		 * initialized state.  If we see either of these we bail out
4469		 * and report the issue to the caller.  If we exhaust the
4470		 * "hello timeout" and we haven't exhausted our retries, try
4471		 * again.  Otherwise bail with a timeout error.
4472		 */
4473		for (;;) {
4474			u32 pcie_fw;
4475
4476			msleep(50);
4477			waiting -= 50;
4478
4479			/*
4480			 * If neither Error nor Initialialized are indicated
4481			 * by the firmware keep waiting till we exhaust our
4482			 * timeout ... and then retry if we haven't exhausted
4483			 * our retries ...
4484			 */
4485			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
4486			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
4487				if (waiting <= 0) {
4488					if (retries-- > 0)
4489						goto retry;
4490
4491					return -ETIMEDOUT;
4492				}
4493				continue;
4494			}
4495
4496			/*
4497			 * We either have an Error or Initialized condition
4498			 * report errors preferentially.
4499			 */
4500			if (state) {
4501				if (pcie_fw & F_PCIE_FW_ERR)
4502					*state = DEV_STATE_ERR;
4503				else if (pcie_fw & F_PCIE_FW_INIT)
4504					*state = DEV_STATE_INIT;
4505			}
4506
4507			/*
4508			 * If we arrived before a Master PF was selected and
4509			 * there's not a valid Master PF, grab its identity
4510			 * for our caller.
4511			 */
4512			if (master_mbox == M_PCIE_FW_MASTER &&
4513			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
4514				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
4515			break;
4516		}
4517	}
4518
4519	return master_mbox;
4520}
4521
4522/**
4523 *	t4_fw_bye - end communication with FW
4524 *	@adap: the adapter
4525 *	@mbox: mailbox to use for the FW command
4526 *
4527 *	Issues a command to terminate communication with FW.
4528 */
4529int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4530{
4531	struct fw_bye_cmd c;
4532
4533	memset(&c, 0, sizeof(c));
4534	INIT_CMD(c, BYE, WRITE);
4535	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4536}
4537
4538/**
4539 *	t4_fw_reset - issue a reset to FW
4540 *	@adap: the adapter
4541 *	@mbox: mailbox to use for the FW command
4542 *	@reset: specifies the type of reset to perform
4543 *
4544 *	Issues a reset command of the specified type to FW.
4545 */
4546int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4547{
4548	struct fw_reset_cmd c;
4549
4550	memset(&c, 0, sizeof(c));
4551	INIT_CMD(c, RESET, WRITE);
4552	c.val = htonl(reset);
4553	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4554}
4555
4556/**
4557 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4558 *	@adap: the adapter
4559 *	@mbox: mailbox to use for the FW RESET command (if desired)
4560 *	@force: force uP into RESET even if FW RESET command fails
4561 *
4562 *	Issues a RESET command to firmware (if desired) with a HALT indication
4563 *	and then puts the microprocessor into RESET state.  The RESET command
4564 *	will only be issued if a legitimate mailbox is provided (mbox <=
4565 *	M_PCIE_FW_MASTER).
4566 *
4567 *	This is generally used in order for the host to safely manipulate the
4568 *	adapter without fear of conflicting with whatever the firmware might
4569 *	be doing.  The only way out of this state is to RESTART the firmware
4570 *	...
4571 */
4572int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4573{
4574	int ret = 0;
4575
4576	/*
4577	 * If a legitimate mailbox is provided, issue a RESET command
4578	 * with a HALT indication.
4579	 */
4580	if (mbox <= M_PCIE_FW_MASTER) {
4581		struct fw_reset_cmd c;
4582
4583		memset(&c, 0, sizeof(c));
4584		INIT_CMD(c, RESET, WRITE);
4585		c.val = htonl(F_PIORST | F_PIORSTMODE);
4586		c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
4587		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4588	}
4589
4590	/*
4591	 * Normally we won't complete the operation if the firmware RESET
4592	 * command fails but if our caller insists we'll go ahead and put the
4593	 * uP into RESET.  This can be useful if the firmware is hung or even
4594	 * missing ...  We'll have to take the risk of putting the uP into
4595	 * RESET without the cooperation of firmware in that case.
4596	 *
4597	 * We also force the firmware's HALT flag to be on in case we bypassed
4598	 * the firmware RESET command above or we're dealing with old firmware
4599	 * which doesn't have the HALT capability.  This will serve as a flag
4600	 * for the incoming firmware to know that it's coming out of a HALT
4601	 * rather than a RESET ... if it's new enough to understand that ...
4602	 */
4603	if (ret == 0 || force) {
4604		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
4605		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
4606	}
4607
4608	/*
4609	 * And we always return the result of the firmware RESET command
4610	 * even when we force the uP into RESET ...
4611	 */
4612	return ret;
4613}
4614
4615/**
4616 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4617 *	@adap: the adapter
4618 *	@reset: if we want to do a RESET to restart things
4619 *
4620 *	Restart firmware previously halted by t4_fw_halt().  On successful
4621 *	return the previous PF Master remains as the new PF Master and there
4622 *	is no need to issue a new HELLO command, etc.
4623 *
4624 *	We do this in two ways:
4625 *
4626 *	 1. If we're dealing with newer firmware we'll simply want to take
4627 *	    the chip's microprocessor out of RESET.  This will cause the
4628 *	    firmware to start up from its start vector.  And then we'll loop
4629 *	    until the firmware indicates it's started again (PCIE_FW.HALT
4630 *	    reset to 0) or we timeout.
4631 *
4632 *	 2. If we're dealing with older firmware then we'll need to RESET
4633 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4634 *	    flag and automatically RESET itself on startup.
4635 */
4636int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4637{
4638	if (reset) {
4639		/*
4640		 * Since we're directing the RESET instead of the firmware
4641		 * doing it automatically, we need to clear the PCIE_FW.HALT
4642		 * bit.
4643		 */
4644		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
4645
4646		/*
4647		 * If we've been given a valid mailbox, first try to get the
4648		 * firmware to do the RESET.  If that works, great and we can
4649		 * return success.  Otherwise, if we haven't been given a
4650		 * valid mailbox or the RESET command failed, fall back to
4651		 * hitting the chip with a hammer.
4652		 */
4653		if (mbox <= M_PCIE_FW_MASTER) {
4654			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4655			msleep(100);
4656			if (t4_fw_reset(adap, mbox,
4657					F_PIORST | F_PIORSTMODE) == 0)
4658				return 0;
4659		}
4660
4661		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
4662		msleep(2000);
4663	} else {
4664		int ms;
4665
4666		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4667		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4668			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
4669				return FW_SUCCESS;
4670			msleep(100);
4671			ms += 100;
4672		}
4673		return -ETIMEDOUT;
4674	}
4675	return 0;
4676}
4677
4678/**
4679 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4680 *	@adap: the adapter
4681 *	@mbox: mailbox to use for the FW RESET command (if desired)
4682 *	@fw_data: the firmware image to write
4683 *	@size: image size
4684 *	@force: force upgrade even if firmware doesn't cooperate
4685 *
4686 *	Perform all of the steps necessary for upgrading an adapter's
4687 *	firmware image.  Normally this requires the cooperation of the
4688 *	existing firmware in order to halt all existing activities
4689 *	but if an invalid mailbox token is passed in we skip that step
4690 *	(though we'll still put the adapter microprocessor into RESET in
4691 *	that case).
4692 *
4693 *	On successful return the new firmware will have been loaded and
4694 *	the adapter will have been fully RESET losing all previous setup
4695 *	state.  On unsuccessful return the adapter may be completely hosed ...
4696 *	positive errno indicates that the adapter is ~probably~ intact, a
4697 *	negative errno indicates that things are looking bad ...
4698 */
4699int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4700		  const u8 *fw_data, unsigned int size, int force)
4701{
4702	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4703	unsigned int bootstrap = ntohl(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
4704	int reset, ret;
4705
4706	if (!bootstrap) {
4707		ret = t4_fw_halt(adap, mbox, force);
4708		if (ret < 0 && !force)
4709			return ret;
4710	}
4711
4712	ret = t4_load_fw(adap, fw_data, size);
4713	if (ret < 0 || bootstrap)
4714		return ret;
4715
4716	/*
4717	 * Older versions of the firmware don't understand the new
4718	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4719	 * restart.  So for newly loaded older firmware we'll have to do the
4720	 * RESET for it so it starts up on a clean slate.  We can tell if
4721	 * the newly loaded firmware will handle this right by checking
4722	 * its header flags to see if it advertises the capability.
4723	 */
4724	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4725	return t4_fw_restart(adap, mbox, reset);
4726}
4727
4728/**
4729 *	t4_fw_initialize - ask FW to initialize the device
4730 *	@adap: the adapter
4731 *	@mbox: mailbox to use for the FW command
4732 *
4733 *	Issues a command to FW to partially initialize the device.  This
4734 *	performs initialization that generally doesn't depend on user input.
4735 */
4736int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4737{
4738	struct fw_initialize_cmd c;
4739
4740	memset(&c, 0, sizeof(c));
4741	INIT_CMD(c, INITIALIZE, WRITE);
4742	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4743}
4744
4745/**
4746 *	t4_query_params - query FW or device parameters
4747 *	@adap: the adapter
4748 *	@mbox: mailbox to use for the FW command
4749 *	@pf: the PF
4750 *	@vf: the VF
4751 *	@nparams: the number of parameters
4752 *	@params: the parameter names
4753 *	@val: the parameter values
4754 *
4755 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4756 *	queried at once.
4757 */
4758int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4759		    unsigned int vf, unsigned int nparams, const u32 *params,
4760		    u32 *val)
4761{
4762	int i, ret;
4763	struct fw_params_cmd c;
4764	__be32 *p = &c.param[0].mnem;
4765
4766	if (nparams > 7)
4767		return -EINVAL;
4768
4769	memset(&c, 0, sizeof(c));
4770	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4771			    F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
4772			    V_FW_PARAMS_CMD_VFN(vf));
4773	c.retval_len16 = htonl(FW_LEN16(c));
4774
4775	for (i = 0; i < nparams; i++, p += 2, params++)
4776		*p = htonl(*params);
4777
4778	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4779	if (ret == 0)
4780		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4781			*val++ = ntohl(*p);
4782	return ret;
4783}
4784
4785/**
4786 *	t4_set_params - sets FW or device parameters
4787 *	@adap: the adapter
4788 *	@mbox: mailbox to use for the FW command
4789 *	@pf: the PF
4790 *	@vf: the VF
4791 *	@nparams: the number of parameters
4792 *	@params: the parameter names
4793 *	@val: the parameter values
4794 *
4795 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4796 *	specified at once.
4797 */
4798int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4799		  unsigned int vf, unsigned int nparams, const u32 *params,
4800		  const u32 *val)
4801{
4802	struct fw_params_cmd c;
4803	__be32 *p = &c.param[0].mnem;
4804
4805	if (nparams > 7)
4806		return -EINVAL;
4807
4808	memset(&c, 0, sizeof(c));
4809	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4810			    F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
4811			    V_FW_PARAMS_CMD_VFN(vf));
4812	c.retval_len16 = htonl(FW_LEN16(c));
4813
4814	while (nparams--) {
4815		*p++ = htonl(*params);
4816		params++;
4817		*p++ = htonl(*val);
4818		val++;
4819	}
4820
4821	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4822}
4823
4824/**
4825 *	t4_cfg_pfvf - configure PF/VF resource limits
4826 *	@adap: the adapter
4827 *	@mbox: mailbox to use for the FW command
4828 *	@pf: the PF being configured
4829 *	@vf: the VF being configured
4830 *	@txq: the max number of egress queues
4831 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4832 *	@rxqi: the max number of interrupt-capable ingress queues
4833 *	@rxq: the max number of interruptless ingress queues
4834 *	@tc: the PCI traffic class
4835 *	@vi: the max number of virtual interfaces
4836 *	@cmask: the channel access rights mask for the PF/VF
4837 *	@pmask: the port access rights mask for the PF/VF
4838 *	@nexact: the maximum number of exact MPS filters
4839 *	@rcaps: read capabilities
4840 *	@wxcaps: write/execute capabilities
4841 *
4842 *	Configures resource limits and capabilities for a physical or virtual
4843 *	function.
4844 */
4845int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4846		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4847		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4848		unsigned int vi, unsigned int cmask, unsigned int pmask,
4849		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4850{
4851	struct fw_pfvf_cmd c;
4852
4853	memset(&c, 0, sizeof(c));
4854	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
4855			    F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
4856			    V_FW_PFVF_CMD_VFN(vf));
4857	c.retval_len16 = htonl(FW_LEN16(c));
4858	c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
4859			       V_FW_PFVF_CMD_NIQ(rxq));
4860	c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
4861			      V_FW_PFVF_CMD_PMASK(pmask) |
4862			      V_FW_PFVF_CMD_NEQ(txq));
4863	c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
4864				V_FW_PFVF_CMD_NEXACTF(nexact));
4865	c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
4866				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
4867				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
4868	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4869}
4870
4871/**
4872 *	t4_alloc_vi_func - allocate a virtual interface
4873 *	@adap: the adapter
4874 *	@mbox: mailbox to use for the FW command
4875 *	@port: physical port associated with the VI
4876 *	@pf: the PF owning the VI
4877 *	@vf: the VF owning the VI
4878 *	@nmac: number of MAC addresses needed (1 to 5)
4879 *	@mac: the MAC addresses of the VI
4880 *	@rss_size: size of RSS table slice associated with this VI
4881 *	@portfunc: which Port Application Function MAC Address is desired
4882 *	@idstype: Intrusion Detection Type
4883 *
4884 *	Allocates a virtual interface for the given physical port.  If @mac is
4885 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4886 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4887 *	stored consecutively so the space needed is @nmac * 6 bytes.
4888 *	Returns a negative error number or the non-negative VI id.
4889 */
4890int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4891		     unsigned int port, unsigned int pf, unsigned int vf,
4892		     unsigned int nmac, u8 *mac, u16 *rss_size,
4893		     unsigned int portfunc, unsigned int idstype)
4894{
4895	int ret;
4896	struct fw_vi_cmd c;
4897
4898	memset(&c, 0, sizeof(c));
4899	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4900			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4901			    V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4902	c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4903	c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
4904			       V_FW_VI_CMD_FUNC(portfunc));
4905	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4906	c.nmac = nmac - 1;
4907
4908	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4909	if (ret)
4910		return ret;
4911
4912	if (mac) {
4913		memcpy(mac, c.mac, sizeof(c.mac));
4914		switch (nmac) {
4915		case 5:
4916			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4917		case 4:
4918			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4919		case 3:
4920			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4921		case 2:
4922			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4923		}
4924	}
4925	if (rss_size)
4926		*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
4927	return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
4928}
4929
4930/**
4931 *	t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4932 *	@adap: the adapter
4933 *	@mbox: mailbox to use for the FW command
4934 *	@port: physical port associated with the VI
4935 *	@pf: the PF owning the VI
4936 *	@vf: the VF owning the VI
4937 *	@nmac: number of MAC addresses needed (1 to 5)
4938 *	@mac: the MAC addresses of the VI
4939 *	@rss_size: size of RSS table slice associated with this VI
4940 *
4941 *	backwards compatible and convieniance routine to allocate a Virtual
4942 *	Interface with a Ethernet Port Application Function and Intrustion
4943 *	Detection System disabled.
4944 */
4945int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4946		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4947		u16 *rss_size)
4948{
4949	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4950				FW_VI_FUNC_ETH, 0);
4951}
4952
4953/**
4954 *	t4_free_vi - free a virtual interface
4955 *	@adap: the adapter
4956 *	@mbox: mailbox to use for the FW command
4957 *	@pf: the PF owning the VI
4958 *	@vf: the VF owning the VI
4959 *	@viid: virtual interface identifiler
4960 *
4961 *	Free a previously allocated virtual interface.
4962 */
4963int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4964	       unsigned int vf, unsigned int viid)
4965{
4966	struct fw_vi_cmd c;
4967
4968	memset(&c, 0, sizeof(c));
4969	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
4970			    F_FW_CMD_REQUEST |
4971			    F_FW_CMD_EXEC |
4972			    V_FW_VI_CMD_PFN(pf) |
4973			    V_FW_VI_CMD_VFN(vf));
4974	c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
4975	c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
4976
4977	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4978}
4979
4980/**
4981 *	t4_set_rxmode - set Rx properties of a virtual interface
4982 *	@adap: the adapter
4983 *	@mbox: mailbox to use for the FW command
4984 *	@viid: the VI id
4985 *	@mtu: the new MTU or -1
4986 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4987 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4988 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4989 *	@vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
4990 *	@sleep_ok: if true we may sleep while awaiting command completion
4991 *
4992 *	Sets Rx properties of a virtual interface.
4993 */
4994int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4995		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
4996		  bool sleep_ok)
4997{
4998	struct fw_vi_rxmode_cmd c;
4999
5000	/* convert to FW values */
5001	if (mtu < 0)
5002		mtu = M_FW_VI_RXMODE_CMD_MTU;
5003	if (promisc < 0)
5004		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
5005	if (all_multi < 0)
5006		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
5007	if (bcast < 0)
5008		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
5009	if (vlanex < 0)
5010		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
5011
5012	memset(&c, 0, sizeof(c));
5013	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
5014			     F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
5015	c.retval_len16 = htonl(FW_LEN16(c));
5016	c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
5017				  V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
5018				  V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
5019				  V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
5020				  V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
5021	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5022}
5023
5024/**
5025 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5026 *	@adap: the adapter
5027 *	@mbox: mailbox to use for the FW command
5028 *	@viid: the VI id
5029 *	@free: if true any existing filters for this VI id are first removed
5030 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
5031 *	@addr: the MAC address(es)
5032 *	@idx: where to store the index of each allocated filter
5033 *	@hash: pointer to hash address filter bitmap
5034 *	@sleep_ok: call is allowed to sleep
5035 *
5036 *	Allocates an exact-match filter for each of the supplied addresses and
5037 *	sets it to the corresponding address.  If @idx is not %NULL it should
5038 *	have at least @naddr entries, each of which will be set to the index of
5039 *	the filter allocated for the corresponding MAC address.  If a filter
5040 *	could not be allocated for an address its index is set to 0xffff.
5041 *	If @hash is not %NULL addresses that fail to allocate an exact filter
5042 *	are hashed and update the hash filter bitmap pointed at by @hash.
5043 *
5044 *	Returns a negative error number or the number of filters allocated.
5045 */
5046int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5047		      unsigned int viid, bool free, unsigned int naddr,
5048		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5049{
5050	int offset, ret = 0;
5051	struct fw_vi_mac_cmd c;
5052	unsigned int nfilters = 0;
5053	unsigned int max_naddr = is_t4(adap) ?
5054				       NUM_MPS_CLS_SRAM_L_INSTANCES :
5055				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5056	unsigned int rem = naddr;
5057
5058	if (naddr > max_naddr)
5059		return -EINVAL;
5060
5061	for (offset = 0; offset < naddr ; /**/) {
5062		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
5063					 ? rem
5064					 : ARRAY_SIZE(c.u.exact));
5065		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5066						     u.exact[fw_naddr]), 16);
5067		struct fw_vi_mac_exact *p;
5068		int i;
5069
5070		memset(&c, 0, sizeof(c));
5071		c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
5072				     F_FW_CMD_REQUEST |
5073				     F_FW_CMD_WRITE |
5074				     V_FW_CMD_EXEC(free) |
5075				     V_FW_VI_MAC_CMD_VIID(viid));
5076		c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
5077					    V_FW_CMD_LEN16(len16));
5078
5079		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5080			p->valid_to_idx = htons(
5081				F_FW_VI_MAC_CMD_VALID |
5082				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
5083			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
5084		}
5085
5086		/*
5087		 * It's okay if we run out of space in our MAC address arena.
5088		 * Some of the addresses we submit may get stored so we need
5089		 * to run through the reply to see what the results were ...
5090		 */
5091		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5092		if (ret && ret != -FW_ENOMEM)
5093			break;
5094
5095		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5096			u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5097
5098			if (idx)
5099				idx[offset+i] = (index >=  max_naddr
5100						 ? 0xffff
5101						 : index);
5102			if (index < max_naddr)
5103				nfilters++;
5104			else if (hash)
5105				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
5106		}
5107
5108		free = false;
5109		offset += fw_naddr;
5110		rem -= fw_naddr;
5111	}
5112
5113	if (ret == 0 || ret == -FW_ENOMEM)
5114		ret = nfilters;
5115	return ret;
5116}
5117
5118/**
5119 *	t4_change_mac - modifies the exact-match filter for a MAC address
5120 *	@adap: the adapter
5121 *	@mbox: mailbox to use for the FW command
5122 *	@viid: the VI id
5123 *	@idx: index of existing filter for old value of MAC address, or -1
5124 *	@addr: the new MAC address value
5125 *	@persist: whether a new MAC allocation should be persistent
5126 *	@add_smt: if true also add the address to the HW SMT
5127 *
5128 *	Modifies an exact-match filter and sets it to the new MAC address if
5129 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
5130 *	latter case the address is added persistently if @persist is %true.
5131 *
5132 *	Note that in general it is not possible to modify the value of a given
5133 *	filter so the generic way to modify an address filter is to free the one
5134 *	being used by the old address value and allocate a new filter for the
5135 *	new address value.
5136 *
5137 *	Returns a negative error number or the index of the filter with the new
5138 *	MAC value.  Note that this index may differ from @idx.
5139 */
5140int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5141		  int idx, const u8 *addr, bool persist, bool add_smt)
5142{
5143	int ret, mode;
5144	struct fw_vi_mac_cmd c;
5145	struct fw_vi_mac_exact *p = c.u.exact;
5146	unsigned int max_mac_addr = is_t4(adap) ?
5147				    NUM_MPS_CLS_SRAM_L_INSTANCES :
5148				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5149
5150	if (idx < 0)                             /* new allocation */
5151		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5152	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5153
5154	memset(&c, 0, sizeof(c));
5155	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5156			     F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
5157	c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
5158	p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
5159				V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
5160				V_FW_VI_MAC_CMD_IDX(idx));
5161	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5162
5163	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5164	if (ret == 0) {
5165		ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5166		if (ret >= max_mac_addr)
5167			ret = -ENOMEM;
5168	}
5169	return ret;
5170}
5171
5172/**
5173 *	t4_set_addr_hash - program the MAC inexact-match hash filter
5174 *	@adap: the adapter
5175 *	@mbox: mailbox to use for the FW command
5176 *	@viid: the VI id
5177 *	@ucast: whether the hash filter should also match unicast addresses
5178 *	@vec: the value to be written to the hash filter
5179 *	@sleep_ok: call is allowed to sleep
5180 *
5181 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5182 */
5183int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5184		     bool ucast, u64 vec, bool sleep_ok)
5185{
5186	struct fw_vi_mac_cmd c;
5187
5188	memset(&c, 0, sizeof(c));
5189	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5190			     F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
5191	c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
5192				    V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
5193				    V_FW_CMD_LEN16(1));
5194	c.u.hash.hashvec = cpu_to_be64(vec);
5195	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5196}
5197
5198/**
5199 *	t4_enable_vi - enable/disable a virtual interface
5200 *	@adap: the adapter
5201 *	@mbox: mailbox to use for the FW command
5202 *	@viid: the VI id
5203 *	@rx_en: 1=enable Rx, 0=disable Rx
5204 *	@tx_en: 1=enable Tx, 0=disable Tx
5205 *
5206 *	Enables/disables a virtual interface.
5207 */
5208int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5209		 bool rx_en, bool tx_en)
5210{
5211	struct fw_vi_enable_cmd c;
5212
5213	memset(&c, 0, sizeof(c));
5214	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5215			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5216	c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
5217			       V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
5218	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5219}
5220
5221/**
5222 *	t4_identify_port - identify a VI's port by blinking its LED
5223 *	@adap: the adapter
5224 *	@mbox: mailbox to use for the FW command
5225 *	@viid: the VI id
5226 *	@nblinks: how many times to blink LED at 2.5 Hz
5227 *
5228 *	Identifies a VI's port by blinking its LED.
5229 */
5230int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5231		     unsigned int nblinks)
5232{
5233	struct fw_vi_enable_cmd c;
5234
5235	memset(&c, 0, sizeof(c));
5236	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5237			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5238	c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
5239	c.blinkdur = htons(nblinks);
5240	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5241}
5242
5243/**
5244 *	t4_iq_start_stop - enable/disable an ingress queue and its FLs
5245 *	@adap: the adapter
5246 *	@mbox: mailbox to use for the FW command
5247 *	@start: %true to enable the queues, %false to disable them
5248 *	@pf: the PF owning the queues
5249 *	@vf: the VF owning the queues
5250 *	@iqid: ingress queue id
5251 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5252 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5253 *
5254 *	Starts or stops an ingress queue and its associated FLs, if any.
5255 */
5256int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
5257		     unsigned int pf, unsigned int vf, unsigned int iqid,
5258		     unsigned int fl0id, unsigned int fl1id)
5259{
5260	struct fw_iq_cmd c;
5261
5262	memset(&c, 0, sizeof(c));
5263	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5264			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5265			    V_FW_IQ_CMD_VFN(vf));
5266	c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
5267				 V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
5268	c.iqid = htons(iqid);
5269	c.fl0id = htons(fl0id);
5270	c.fl1id = htons(fl1id);
5271	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5272}
5273
5274/**
5275 *	t4_iq_free - free an ingress queue and its FLs
5276 *	@adap: the adapter
5277 *	@mbox: mailbox to use for the FW command
5278 *	@pf: the PF owning the queues
5279 *	@vf: the VF owning the queues
5280 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
5281 *	@iqid: ingress queue id
5282 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5283 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5284 *
5285 *	Frees an ingress queue and its associated FLs, if any.
5286 */
5287int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5288	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5289	       unsigned int fl0id, unsigned int fl1id)
5290{
5291	struct fw_iq_cmd c;
5292
5293	memset(&c, 0, sizeof(c));
5294	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5295			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5296			    V_FW_IQ_CMD_VFN(vf));
5297	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
5298	c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
5299	c.iqid = htons(iqid);
5300	c.fl0id = htons(fl0id);
5301	c.fl1id = htons(fl1id);
5302	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5303}
5304
5305/**
5306 *	t4_eth_eq_free - free an Ethernet egress queue
5307 *	@adap: the adapter
5308 *	@mbox: mailbox to use for the FW command
5309 *	@pf: the PF owning the queue
5310 *	@vf: the VF owning the queue
5311 *	@eqid: egress queue id
5312 *
5313 *	Frees an Ethernet egress queue.
5314 */
5315int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5316		   unsigned int vf, unsigned int eqid)
5317{
5318	struct fw_eq_eth_cmd c;
5319
5320	memset(&c, 0, sizeof(c));
5321	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
5322			    F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
5323			    V_FW_EQ_ETH_CMD_VFN(vf));
5324	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
5325	c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
5326	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5327}
5328
5329/**
5330 *	t4_ctrl_eq_free - free a control egress queue
5331 *	@adap: the adapter
5332 *	@mbox: mailbox to use for the FW command
5333 *	@pf: the PF owning the queue
5334 *	@vf: the VF owning the queue
5335 *	@eqid: egress queue id
5336 *
5337 *	Frees a control egress queue.
5338 */
5339int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5340		    unsigned int vf, unsigned int eqid)
5341{
5342	struct fw_eq_ctrl_cmd c;
5343
5344	memset(&c, 0, sizeof(c));
5345	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
5346			    F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
5347			    V_FW_EQ_CTRL_CMD_VFN(vf));
5348	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
5349	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
5350	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5351}
5352
5353/**
5354 *	t4_ofld_eq_free - free an offload egress queue
5355 *	@adap: the adapter
5356 *	@mbox: mailbox to use for the FW command
5357 *	@pf: the PF owning the queue
5358 *	@vf: the VF owning the queue
5359 *	@eqid: egress queue id
5360 *
5361 *	Frees a control egress queue.
5362 */
5363int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5364		    unsigned int vf, unsigned int eqid)
5365{
5366	struct fw_eq_ofld_cmd c;
5367
5368	memset(&c, 0, sizeof(c));
5369	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
5370			    F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
5371			    V_FW_EQ_OFLD_CMD_VFN(vf));
5372	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
5373	c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
5374	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5375}
5376
5377/**
5378 *	t4_handle_fw_rpl - process a FW reply message
5379 *	@adap: the adapter
5380 *	@rpl: start of the FW message
5381 *
5382 *	Processes a FW message, such as link state change messages.
5383 */
5384int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5385{
5386	u8 opcode = *(const u8 *)rpl;
5387	const struct fw_port_cmd *p = (const void *)rpl;
5388	unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
5389
5390	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
5391		/* link/module state change message */
5392		int speed = 0, fc = 0, i;
5393		int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
5394		struct port_info *pi = NULL;
5395		struct link_config *lc;
5396		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
5397		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
5398		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
5399
5400		if (stat & F_FW_PORT_CMD_RXPAUSE)
5401			fc |= PAUSE_RX;
5402		if (stat & F_FW_PORT_CMD_TXPAUSE)
5403			fc |= PAUSE_TX;
5404		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
5405			speed = SPEED_100;
5406		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
5407			speed = SPEED_1000;
5408		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
5409			speed = SPEED_10000;
5410		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
5411			speed = SPEED_40000;
5412
5413		for_each_port(adap, i) {
5414			pi = adap2pinfo(adap, i);
5415			if (pi->tx_chan == chan)
5416				break;
5417		}
5418		lc = &pi->link_cfg;
5419
5420		if (link_ok != lc->link_ok || speed != lc->speed ||
5421		    fc != lc->fc) {                    /* something changed */
5422			int reason;
5423
5424			if (!link_ok && lc->link_ok)
5425				reason = G_FW_PORT_CMD_LINKDNRC(stat);
5426			else
5427				reason = -1;
5428
5429			lc->link_ok = link_ok;
5430			lc->speed = speed;
5431			lc->fc = fc;
5432			lc->supported = ntohs(p->u.info.pcap);
5433			t4_os_link_changed(adap, i, link_ok, reason);
5434		}
5435		if (mod != pi->mod_type) {
5436			pi->mod_type = mod;
5437			t4_os_portmod_changed(adap, i);
5438		}
5439	} else {
5440		CH_WARN_RATELIMIT(adap,
5441		    "Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
5442		return -EINVAL;
5443	}
5444	return 0;
5445}
5446
5447/**
5448 *	get_pci_mode - determine a card's PCI mode
5449 *	@adapter: the adapter
5450 *	@p: where to store the PCI settings
5451 *
5452 *	Determines a card's PCI mode and associated parameters, such as speed
5453 *	and width.
5454 */
5455static void __devinit get_pci_mode(struct adapter *adapter,
5456				   struct pci_params *p)
5457{
5458	u16 val;
5459	u32 pcie_cap;
5460
5461	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5462	if (pcie_cap) {
5463		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
5464		p->speed = val & PCI_EXP_LNKSTA_CLS;
5465		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5466	}
5467}
5468
5469/**
5470 *	init_link_config - initialize a link's SW state
5471 *	@lc: structure holding the link state
5472 *	@caps: link capabilities
5473 *
5474 *	Initializes the SW state maintained for each link, including the link's
5475 *	capabilities and default speed/flow-control/autonegotiation settings.
5476 */
5477static void __devinit init_link_config(struct link_config *lc,
5478				       unsigned int caps)
5479{
5480	lc->supported = caps;
5481	lc->requested_speed = 0;
5482	lc->speed = 0;
5483	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5484	if (lc->supported & FW_PORT_CAP_ANEG) {
5485		lc->advertising = lc->supported & ADVERT_MASK;
5486		lc->autoneg = AUTONEG_ENABLE;
5487		lc->requested_fc |= PAUSE_AUTONEG;
5488	} else {
5489		lc->advertising = 0;
5490		lc->autoneg = AUTONEG_DISABLE;
5491	}
5492}
5493
5494static int __devinit get_flash_params(struct adapter *adapter)
5495{
5496	int ret;
5497	u32 info = 0;
5498
5499	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
5500	if (!ret)
5501		ret = sf1_read(adapter, 3, 0, 1, &info);
5502	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
5503	if (ret < 0)
5504		return ret;
5505
5506	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5507		return -EINVAL;
5508	info >>= 16;                           /* log2 of size */
5509	if (info >= 0x14 && info < 0x18)
5510		adapter->params.sf_nsec = 1 << (info - 16);
5511	else if (info == 0x18)
5512		adapter->params.sf_nsec = 64;
5513	else
5514		return -EINVAL;
5515	adapter->params.sf_size = 1 << info;
5516	return 0;
5517}
5518
5519static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
5520						  u8 range)
5521{
5522	u16 val;
5523	u32 pcie_cap;
5524
5525	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5526	if (pcie_cap) {
5527		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
5528		val &= 0xfff0;
5529		val |= range ;
5530		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
5531	}
5532}
5533
5534/**
5535 *	t4_prep_adapter - prepare SW and HW for operation
5536 *	@adapter: the adapter
5537 *	@reset: if true perform a HW reset
5538 *
5539 *	Initialize adapter SW state for the various HW modules, set initial
5540 *	values for some adapter tunables, take PHYs out of reset, and
5541 *	initialize the MDIO interface.
5542 */
5543int __devinit t4_prep_adapter(struct adapter *adapter)
5544{
5545	int ret;
5546	uint16_t device_id;
5547	uint32_t pl_rev;
5548
5549	get_pci_mode(adapter, &adapter->params.pci);
5550
5551	pl_rev = t4_read_reg(adapter, A_PL_REV);
5552	adapter->params.chipid = G_CHIPID(pl_rev);
5553	adapter->params.rev = G_REV(pl_rev);
5554	if (adapter->params.chipid == 0) {
5555		/* T4 did not have chipid in PL_REV (T5 onwards do) */
5556		adapter->params.chipid = CHELSIO_T4;
5557
5558		/* T4A1 chip is not supported */
5559		if (adapter->params.rev == 1) {
5560			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
5561			return -EINVAL;
5562		}
5563	}
5564	adapter->params.pci.vpd_cap_addr =
5565	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5566
5567	ret = get_flash_params(adapter);
5568	if (ret < 0)
5569		return ret;
5570
5571	ret = get_vpd_params(adapter, &adapter->params.vpd);
5572	if (ret < 0)
5573		return ret;
5574
5575	/* Cards with real ASICs have the chipid in the PCIe device id */
5576	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
5577	if (device_id >> 12 == adapter->params.chipid)
5578		adapter->params.cim_la_size = CIMLA_SIZE;
5579	else {
5580		/* FPGA */
5581		adapter->params.fpga = 1;
5582		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
5583	}
5584
5585	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5586
5587	/*
5588	 * Default port and clock for debugging in case we can't reach FW.
5589	 */
5590	adapter->params.nports = 1;
5591	adapter->params.portvec = 1;
5592	adapter->params.vpd.cclk = 50000;
5593
5594	/* Set pci completion timeout value to 4 seconds. */
5595	set_pcie_completion_timeout(adapter, 0xd);
5596	return 0;
5597}
5598
5599/**
5600 *	t4_init_tp_params - initialize adap->params.tp
5601 *	@adap: the adapter
5602 *
5603 *	Initialize various fields of the adapter's TP Parameters structure.
5604 */
5605int __devinit t4_init_tp_params(struct adapter *adap)
5606{
5607	int chan;
5608	u32 v;
5609
5610	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5611	adap->params.tp.tre = G_TIMERRESOLUTION(v);
5612	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5613
5614	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5615	for (chan = 0; chan < NCHAN; chan++)
5616		adap->params.tp.tx_modq[chan] = chan;
5617
5618	/*
5619	 * Cache the adapter's Compressed Filter Mode and global Incress
5620	 * Configuration.
5621	 */
5622        t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5623                         &adap->params.tp.vlan_pri_map, 1,
5624                         A_TP_VLAN_PRI_MAP);
5625	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5626			 &adap->params.tp.ingress_config, 1,
5627			 A_TP_INGRESS_CONFIG);
5628
5629	/*
5630	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5631	 * shift positions of several elements of the Compressed Filter Tuple
5632	 * for this adapter which we need frequently ...
5633	 */
5634	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5635	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5636	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5637	adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
5638
5639	/*
5640	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
5641	 * represents the presense of an Outer VLAN instead of a VNIC ID.
5642	 */
5643	if ((adap->params.tp.ingress_config & F_VNIC) == 0)
5644		adap->params.tp.vnic_shift = -1;
5645
5646	return 0;
5647}
5648
5649/**
5650 *	t4_filter_field_shift - calculate filter field shift
5651 *	@adap: the adapter
5652 *	@filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5653 *
5654 *	Return the shift position of a filter field within the Compressed
5655 *	Filter Tuple.  The filter field is specified via its selection bit
5656 *	within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5657 */
5658int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
5659{
5660	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5661	unsigned int sel;
5662	int field_shift;
5663
5664	if ((filter_mode & filter_sel) == 0)
5665		return -1;
5666
5667	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5668	    switch (filter_mode & sel) {
5669		case F_FCOE:          field_shift += W_FT_FCOE;          break;
5670		case F_PORT:          field_shift += W_FT_PORT;          break;
5671		case F_VNIC_ID:       field_shift += W_FT_VNIC_ID;       break;
5672		case F_VLAN:          field_shift += W_FT_VLAN;          break;
5673		case F_TOS:           field_shift += W_FT_TOS;           break;
5674		case F_PROTOCOL:      field_shift += W_FT_PROTOCOL;      break;
5675		case F_ETHERTYPE:     field_shift += W_FT_ETHERTYPE;     break;
5676		case F_MACMATCH:      field_shift += W_FT_MACMATCH;      break;
5677		case F_MPSHITTYPE:    field_shift += W_FT_MPSHITTYPE;    break;
5678		case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break;
5679	    }
5680	}
5681	return field_shift;
5682}
5683
5684int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
5685{
5686	u8 addr[6];
5687	int ret, i, j;
5688	struct fw_port_cmd c;
5689	u16 rss_size;
5690	adapter_t *adap = p->adapter;
5691
5692	memset(&c, 0, sizeof(c));
5693
5694	for (i = 0, j = -1; i <= p->port_id; i++) {
5695		do {
5696			j++;
5697		} while ((adap->params.portvec & (1 << j)) == 0);
5698	}
5699
5700	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
5701			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5702			       V_FW_PORT_CMD_PORTID(j));
5703	c.action_to_len16 = htonl(
5704		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
5705		FW_LEN16(c));
5706	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5707	if (ret)
5708		return ret;
5709
5710	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5711	if (ret < 0)
5712		return ret;
5713
5714	p->viid = ret;
5715	p->tx_chan = j;
5716	p->rx_chan_map = get_mps_bg_map(adap, j);
5717	p->lport = j;
5718	p->rss_size = rss_size;
5719	t4_os_set_hw_addr(adap, p->port_id, addr);
5720
5721	ret = ntohl(c.u.info.lstatus_to_modtype);
5722	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
5723		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
5724	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
5725	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
5726
5727	init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5728
5729	return 0;
5730}
5731
5732int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
5733    		    int sleep_ok)
5734{
5735	struct fw_sched_cmd cmd;
5736
5737	memset(&cmd, 0, sizeof(cmd));
5738	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5739				      F_FW_CMD_REQUEST |
5740				      F_FW_CMD_WRITE);
5741	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5742
5743	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
5744	cmd.u.config.type = type;
5745	cmd.u.config.minmaxen = minmaxen;
5746
5747	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5748			       NULL, sleep_ok);
5749}
5750
5751int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
5752		    int rateunit, int ratemode, int channel, int cl,
5753		    int minrate, int maxrate, int weight, int pktsize,
5754		    int sleep_ok)
5755{
5756	struct fw_sched_cmd cmd;
5757
5758	memset(&cmd, 0, sizeof(cmd));
5759	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5760				      F_FW_CMD_REQUEST |
5761				      F_FW_CMD_WRITE);
5762	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5763
5764	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
5765	cmd.u.params.type = type;
5766	cmd.u.params.level = level;
5767	cmd.u.params.mode = mode;
5768	cmd.u.params.ch = channel;
5769	cmd.u.params.cl = cl;
5770	cmd.u.params.unit = rateunit;
5771	cmd.u.params.rate = ratemode;
5772	cmd.u.params.min = cpu_to_be32(minrate);
5773	cmd.u.params.max = cpu_to_be32(maxrate);
5774	cmd.u.params.weight = cpu_to_be16(weight);
5775	cmd.u.params.pktsize = cpu_to_be16(pktsize);
5776
5777	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5778			       NULL, sleep_ok);
5779}
5780