cpufunc.h revision 35976
1/*-
2 * Copyright (c) 1993 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	$Id: cpufunc.h,v 1.77 1998/05/11 02:13:47 dyson Exp $
34 */
35
36/*
37 * Functions to provide access to special i386 instructions.
38 */
39
40#ifndef _MACHINE_CPUFUNC_H_
41#define	_MACHINE_CPUFUNC_H_
42
43#include <sys/cdefs.h>
44#include <sys/types.h>
45
46#include <machine/lock.h>
47
48#if defined(SWTCH_OPTIM_STATS)
49extern int tlb_flush_count;
50#endif
51
52#ifdef	__GNUC__
53
54static __inline void
55breakpoint(void)
56{
57	__asm __volatile("int $3");
58}
59
60static __inline void
61disable_intr(void)
62{
63	__asm __volatile("cli" : : : "memory");
64	MPINTR_LOCK();
65}
66
67static __inline void
68enable_intr(void)
69{
70	MPINTR_UNLOCK();
71	__asm __volatile("sti");
72}
73
74#define	HAVE_INLINE_FFS
75
76static __inline int
77ffs(int mask)
78{
79	int	result;
80	/*
81	 * bsfl turns out to be not all that slow on 486's.  It can beaten
82	 * using a binary search to reduce to 4 bits and then a table lookup,
83	 * but only if the code is inlined and in the cache, and the code
84	 * is quite large so inlining it probably busts the cache.
85	 *
86	 * Note that gcc-2's builtin ffs would be used if we didn't declare
87	 * this inline or turn off the builtin.  The builtin is faster but
88	 * broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6.
89	 */
90	__asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:"
91			 : "=r" (result) : "0" (mask));
92	return (result);
93}
94
95#define	HAVE_INLINE_FLS
96
97static __inline int
98fls(int mask)
99{
100	int	result;
101	__asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:"
102			 : "=r" (result) : "0" (mask));
103	return (result);
104}
105
106#if __GNUC__ < 2
107
108#define	inb(port)		inbv(port)
109#define	outb(port, data)	outbv(port, data)
110
111#else /* __GNUC >= 2 */
112
113/*
114 * The following complications are to get around gcc not having a
115 * constraint letter for the range 0..255.  We still put "d" in the
116 * constraint because "i" isn't a valid constraint when the port
117 * isn't constant.  This only matters for -O0 because otherwise
118 * the non-working version gets optimized away.
119 *
120 * Use an expression-statement instead of a conditional expression
121 * because gcc-2.6.0 would promote the operands of the conditional
122 * and produce poor code for "if ((inb(var) & const1) == const2)".
123 *
124 * The unnecessary test `(port) < 0x10000' is to generate a warning if
125 * the `port' has type u_short or smaller.  Such types are pessimal.
126 * This actually only works for signed types.  The range check is
127 * careful to avoid generating warnings.
128 */
129#define	inb(port) __extension__ ({					\
130	u_char	_data;							\
131	if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100	\
132	    && (port) < 0x10000)					\
133		_data = inbc(port);					\
134	else								\
135		_data = inbv(port);					\
136	_data; })
137
138#define	outb(port, data) (						\
139	__builtin_constant_p(port) && ((port) & 0xffff) < 0x100		\
140	&& (port) < 0x10000						\
141	? outbc(port, data) : outbv(port, data))
142
143static __inline u_char
144inbc(u_int port)
145{
146	u_char	data;
147
148	__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
149	return (data);
150}
151
152static __inline void
153outbc(u_int port, u_char data)
154{
155	__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
156}
157
158#endif /* __GNUC <= 2 */
159
160static __inline u_char
161inbv(u_int port)
162{
163	u_char	data;
164	/*
165	 * We use %%dx and not %1 here because i/o is done at %dx and not at
166	 * %edx, while gcc generates inferior code (movw instead of movl)
167	 * if we tell it to load (u_short) port.
168	 */
169	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
170	return (data);
171}
172
173static __inline u_long
174inl(u_int port)
175{
176	u_long	data;
177
178	__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
179	return (data);
180}
181
182static __inline void
183insb(u_int port, void *addr, size_t cnt)
184{
185	__asm __volatile("cld; rep; insb"
186			 : : "d" (port), "D" (addr), "c" (cnt)
187			 : "di", "cx", "memory");
188}
189
190static __inline void
191insw(u_int port, void *addr, size_t cnt)
192{
193	__asm __volatile("cld; rep; insw"
194			 : : "d" (port), "D" (addr), "c" (cnt)
195			 : "di", "cx", "memory");
196}
197
198static __inline void
199insl(u_int port, void *addr, size_t cnt)
200{
201	__asm __volatile("cld; rep; insl"
202			 : : "d" (port), "D" (addr), "c" (cnt)
203			 : "di", "cx", "memory");
204}
205
206static __inline void
207invd(void)
208{
209	__asm __volatile("invd");
210}
211
212#ifdef KERNEL
213#ifdef SMP
214
215/*
216 * When using APIC IPI's, the inlining cost is prohibitive since the call
217 * executes into the IPI transmission system.
218 */
219void	invlpg		__P((u_int addr));
220void	invltlb		__P((void));
221
222static __inline void
223cpu_invlpg(void *addr)
224{
225	__asm   __volatile("invlpg %0"::"m"(*(char *)addr):"memory");
226}
227
228#else  /* !SMP */
229
230static __inline void
231invlpg(u_int addr)
232{
233	__asm   __volatile("invlpg %0"::"m"(*(char *)addr):"memory");
234}
235
236
237static __inline void
238invltlb(void)
239{
240	u_long	temp;
241	/*
242	 * This should be implemented as load_cr3(rcr3()) when load_cr3()
243	 * is inlined.
244	 */
245	__asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp)
246			 : : "memory");
247#if defined(SWTCH_OPTIM_STATS)
248	++tlb_flush_count;
249#endif
250}
251
252#endif	/* SMP */
253#endif  /* KERNEL */
254
255static __inline u_short
256inw(u_int port)
257{
258	u_short	data;
259
260	__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
261	return (data);
262}
263
264static __inline u_int
265loadandclear(u_int *addr)
266{
267	u_int	result;
268
269	__asm __volatile("xorl %0,%0; xchgl %1,%0"
270			 : "=&r" (result) : "m" (*addr));
271	return (result);
272}
273
274static __inline void
275outbv(u_int port, u_char data)
276{
277	u_char	al;
278	/*
279	 * Use an unnecessary assignment to help gcc's register allocator.
280	 * This make a large difference for gcc-1.40 and a tiny difference
281	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
282	 * best results.  gcc-2.6.0 can't handle this.
283	 */
284	al = data;
285	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
286}
287
288static __inline void
289outl(u_int port, u_long data)
290{
291	/*
292	 * outl() and outw() aren't used much so we haven't looked at
293	 * possible micro-optimizations such as the unnecessary
294	 * assignment for them.
295	 */
296	__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
297}
298
299static __inline void
300outsb(u_int port, const void *addr, size_t cnt)
301{
302	__asm __volatile("cld; rep; outsb"
303			 : : "d" (port), "S" (addr), "c" (cnt)
304			 : "si", "cx");
305}
306
307static __inline void
308outsw(u_int port, const void *addr, size_t cnt)
309{
310	__asm __volatile("cld; rep; outsw"
311			 : : "d" (port), "S" (addr), "c" (cnt)
312			 : "si", "cx");
313}
314
315static __inline void
316outsl(u_int port, const void *addr, size_t cnt)
317{
318	__asm __volatile("cld; rep; outsl"
319			 : : "d" (port), "S" (addr), "c" (cnt)
320			 : "si", "cx");
321}
322
323static __inline void
324outw(u_int port, u_short data)
325{
326	__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
327}
328
329static __inline u_long
330rcr2(void)
331{
332	u_long	data;
333
334	__asm __volatile("movl %%cr2,%0" : "=r" (data));
335	return (data);
336}
337
338static __inline u_long
339read_eflags(void)
340{
341	u_long	ef;
342
343	__asm __volatile("pushfl; popl %0" : "=r" (ef));
344	return (ef);
345}
346
347static __inline quad_t
348rdmsr(u_int msr)
349{
350	quad_t rv;
351
352	__asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr));
353	return (rv);
354}
355
356static __inline quad_t
357rdpmc(u_int pmc)
358{
359	quad_t rv;
360
361	__asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc));
362	return (rv);
363}
364
365static __inline quad_t
366rdtsc(void)
367{
368	quad_t rv;
369
370	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
371	return (rv);
372}
373
374static __inline void
375setbits(volatile unsigned *addr, u_int bits)
376{
377	__asm __volatile(
378#ifdef SMP
379			 "lock; "
380#endif
381			 "orl %1,%0" : "=m" (*addr) : "ir" (bits));
382}
383
384static __inline void
385wbinvd(void)
386{
387	__asm __volatile("wbinvd");
388}
389
390static __inline void
391write_eflags(u_long ef)
392{
393	__asm __volatile("pushl %0; popfl" : : "r" (ef));
394}
395
396static __inline void
397wrmsr(u_int msr, quad_t newval)
398{
399	__asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr));
400}
401
402#else /* !__GNUC__ */
403
404int	breakpoint	__P((void));
405void	disable_intr	__P((void));
406void	enable_intr	__P((void));
407u_char	inb		__P((u_int port));
408u_long	inl		__P((u_int port));
409void	insb		__P((u_int port, void *addr, size_t cnt));
410void	insl		__P((u_int port, void *addr, size_t cnt));
411void	insw		__P((u_int port, void *addr, size_t cnt));
412void	invd		__P((void));
413void	invlpg		__P((u_int addr));
414void	invltlb		__P((void));
415u_short	inw		__P((u_int port));
416u_int	loadandclear	__P((u_int *addr));
417void	outb		__P((u_int port, u_char data));
418void	outl		__P((u_int port, u_long data));
419void	outsb		__P((u_int port, void *addr, size_t cnt));
420void	outsl		__P((u_int port, void *addr, size_t cnt));
421void	outsw		__P((u_int port, void *addr, size_t cnt));
422void	outw		__P((u_int port, u_short data));
423u_long	rcr2		__P((void));
424quad_t	rdmsr		__P((u_int msr));
425quad_t	rdpmc		__P((u_int pmc));
426quad_t	rdtsc		__P((void));
427u_long	read_eflags	__P((void));
428void	setbits		__P((volatile unsigned *addr, u_int bits));
429void	wbinvd		__P((void));
430void	write_eflags	__P((u_long ef));
431void	wrmsr		__P((u_int msr, quad_t newval));
432
433#endif	/* __GNUC__ */
434
435void	load_cr0	__P((u_long cr0));
436void	load_cr3	__P((u_long cr3));
437void	load_cr4	__P((u_long cr4));
438void	ltr		__P((u_short sel));
439u_int	rcr0		__P((void));
440u_long	rcr3		__P((void));
441u_long	rcr4		__P((void));
442void	i686_pagezero	__P((void *addr));
443
444#endif /* !_MACHINE_CPUFUNC_H_ */
445