1/*-
2 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/param.h>
31#include <sys/disk.h>
32#include <sys/disklabel.h>
33#include <sys/mount.h>
34#include <sys/stat.h>
35
36#include <ufs/ufs/ufsmount.h>
37#include <ufs/ufs/dinode.h>
38#include <ufs/ufs/dir.h>
39#include <ufs/ffs/fs.h>
40
41#include <assert.h>
42#include <err.h>
43#include <setjmp.h>
44#include <stdarg.h>
45#include <stdio.h>
46#include <stdlib.h>
47#include <stdint.h>
48#include <libufs.h>
49#include <string.h>
50#include <strings.h>
51#include <sysexits.h>
52#include <time.h>
53
54#include "fsck.h"
55
56#define	DOTDOT_OFFSET	DIRECTSIZ(1)
57#define	SUJ_HASHSIZE	2048
58#define	SUJ_HASHMASK	(SUJ_HASHSIZE - 1)
59#define	SUJ_HASH(x)	((x * 2654435761) & SUJ_HASHMASK)
60
61struct suj_seg {
62	TAILQ_ENTRY(suj_seg) ss_next;
63	struct jsegrec	ss_rec;
64	uint8_t		*ss_blk;
65};
66
67struct suj_rec {
68	TAILQ_ENTRY(suj_rec) sr_next;
69	union jrec	*sr_rec;
70};
71TAILQ_HEAD(srechd, suj_rec);
72
73struct suj_ino {
74	LIST_ENTRY(suj_ino)	si_next;
75	struct srechd		si_recs;
76	struct srechd		si_newrecs;
77	struct srechd		si_movs;
78	struct jtrncrec		*si_trunc;
79	ino_t			si_ino;
80	char			si_skipparent;
81	char			si_hasrecs;
82	char			si_blkadj;
83	char			si_linkadj;
84	int			si_mode;
85	nlink_t			si_nlinkadj;
86	nlink_t			si_nlink;
87	nlink_t			si_dotlinks;
88};
89LIST_HEAD(inohd, suj_ino);
90
91struct suj_blk {
92	LIST_ENTRY(suj_blk)	sb_next;
93	struct srechd		sb_recs;
94	ufs2_daddr_t		sb_blk;
95};
96LIST_HEAD(blkhd, suj_blk);
97
98struct data_blk {
99	LIST_ENTRY(data_blk)	db_next;
100	uint8_t			*db_buf;
101	ufs2_daddr_t		db_blk;
102	int			db_size;
103	int			db_dirty;
104};
105
106struct ino_blk {
107	LIST_ENTRY(ino_blk)	ib_next;
108	uint8_t			*ib_buf;
109	int			ib_dirty;
110	ufs2_daddr_t		ib_blk;
111};
112LIST_HEAD(iblkhd, ino_blk);
113
114struct suj_cg {
115	LIST_ENTRY(suj_cg)	sc_next;
116	struct blkhd		sc_blkhash[SUJ_HASHSIZE];
117	struct inohd		sc_inohash[SUJ_HASHSIZE];
118	struct iblkhd		sc_iblkhash[SUJ_HASHSIZE];
119	struct ino_blk		*sc_lastiblk;
120	struct suj_ino		*sc_lastino;
121	struct suj_blk		*sc_lastblk;
122	uint8_t			*sc_cgbuf;
123	struct cg		*sc_cgp;
124	int			sc_dirty;
125	int			sc_cgx;
126};
127
128static LIST_HEAD(cghd, suj_cg) cghash[SUJ_HASHSIZE];
129static LIST_HEAD(dblkhd, data_blk) dbhash[SUJ_HASHSIZE];
130static struct suj_cg *lastcg;
131static struct data_blk *lastblk;
132
133static TAILQ_HEAD(seghd, suj_seg) allsegs;
134static uint64_t oldseq;
135static struct uufsd *disk = NULL;
136static struct fs *fs = NULL;
137static ino_t sujino;
138
139/*
140 * Summary statistics.
141 */
142static uint64_t freefrags;
143static uint64_t freeblocks;
144static uint64_t freeinos;
145static uint64_t freedir;
146static uint64_t jbytes;
147static uint64_t jrecs;
148
149static jmp_buf	jmpbuf;
150
151typedef void (*ino_visitor)(ino_t, ufs_lbn_t, ufs2_daddr_t, int);
152static void err_suj(const char *, ...) __dead2;
153static void ino_trunc(ino_t, off_t);
154static void ino_decr(ino_t);
155static void ino_adjust(struct suj_ino *);
156static void ino_build(struct suj_ino *);
157static int blk_isfree(ufs2_daddr_t);
158static void initsuj(void);
159
160static void *
161errmalloc(size_t n)
162{
163	void *a;
164
165	a = Malloc(n);
166	if (a == NULL)
167		err(EX_OSERR, "malloc(%zu)", n);
168	return (a);
169}
170
171/*
172 * When hit a fatal error in journalling check, print out
173 * the error and then offer to fallback to normal fsck.
174 */
175static void
176err_suj(const char * restrict fmt, ...)
177{
178	va_list ap;
179
180	if (preen)
181		(void)fprintf(stdout, "%s: ", cdevname);
182
183	va_start(ap, fmt);
184	(void)vfprintf(stdout, fmt, ap);
185	va_end(ap);
186
187	longjmp(jmpbuf, -1);
188}
189
190/*
191 * Open the given provider, load superblock.
192 */
193static void
194opendisk(const char *devnam)
195{
196	if (disk != NULL)
197		return;
198	disk = Malloc(sizeof(*disk));
199	if (disk == NULL)
200		err(EX_OSERR, "malloc(%zu)", sizeof(*disk));
201	if (ufs_disk_fillout(disk, devnam) == -1) {
202		err(EX_OSERR, "ufs_disk_fillout(%s) failed: %s", devnam,
203		    disk->d_error);
204	}
205	fs = &disk->d_fs;
206	if (real_dev_bsize == 0 && ioctl(disk->d_fd, DIOCGSECTORSIZE,
207	    &real_dev_bsize) == -1)
208		real_dev_bsize = secsize;
209	if (debug)
210		printf("dev_bsize %u\n", real_dev_bsize);
211}
212
213/*
214 * Mark file system as clean, write the super-block back, close the disk.
215 */
216static void
217closedisk(const char *devnam)
218{
219	struct csum *cgsum;
220	int i;
221
222	/*
223	 * Recompute the fs summary info from correct cs summaries.
224	 */
225	bzero(&fs->fs_cstotal, sizeof(struct csum_total));
226	for (i = 0; i < fs->fs_ncg; i++) {
227		cgsum = &fs->fs_cs(fs, i);
228		fs->fs_cstotal.cs_nffree += cgsum->cs_nffree;
229		fs->fs_cstotal.cs_nbfree += cgsum->cs_nbfree;
230		fs->fs_cstotal.cs_nifree += cgsum->cs_nifree;
231		fs->fs_cstotal.cs_ndir += cgsum->cs_ndir;
232	}
233	fs->fs_pendinginodes = 0;
234	fs->fs_pendingblocks = 0;
235	fs->fs_clean = 1;
236	fs->fs_time = time(NULL);
237	fs->fs_mtime = time(NULL);
238	if (sbwrite(disk, 0) == -1)
239		err(EX_OSERR, "sbwrite(%s)", devnam);
240	if (ufs_disk_close(disk) == -1)
241		err(EX_OSERR, "ufs_disk_close(%s)", devnam);
242	free(disk);
243	disk = NULL;
244	fs = NULL;
245}
246
247/*
248 * Lookup a cg by number in the hash so we can keep track of which cgs
249 * need stats rebuilt.
250 */
251static struct suj_cg *
252cg_lookup(int cgx)
253{
254	struct cghd *hd;
255	struct suj_cg *sc;
256
257	if (cgx < 0 || cgx >= fs->fs_ncg)
258		err_suj("Bad cg number %d\n", cgx);
259	if (lastcg && lastcg->sc_cgx == cgx)
260		return (lastcg);
261	hd = &cghash[SUJ_HASH(cgx)];
262	LIST_FOREACH(sc, hd, sc_next)
263		if (sc->sc_cgx == cgx) {
264			lastcg = sc;
265			return (sc);
266		}
267	sc = errmalloc(sizeof(*sc));
268	bzero(sc, sizeof(*sc));
269	sc->sc_cgbuf = errmalloc(fs->fs_bsize);
270	sc->sc_cgp = (struct cg *)sc->sc_cgbuf;
271	sc->sc_cgx = cgx;
272	LIST_INSERT_HEAD(hd, sc, sc_next);
273	if (bread(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
274	    fs->fs_bsize) == -1)
275		err_suj("Unable to read cylinder group %d\n", sc->sc_cgx);
276
277	return (sc);
278}
279
280/*
281 * Lookup an inode number in the hash and allocate a suj_ino if it does
282 * not exist.
283 */
284static struct suj_ino *
285ino_lookup(ino_t ino, int creat)
286{
287	struct suj_ino *sino;
288	struct inohd *hd;
289	struct suj_cg *sc;
290
291	sc = cg_lookup(ino_to_cg(fs, ino));
292	if (sc->sc_lastino && sc->sc_lastino->si_ino == ino)
293		return (sc->sc_lastino);
294	hd = &sc->sc_inohash[SUJ_HASH(ino)];
295	LIST_FOREACH(sino, hd, si_next)
296		if (sino->si_ino == ino)
297			return (sino);
298	if (creat == 0)
299		return (NULL);
300	sino = errmalloc(sizeof(*sino));
301	bzero(sino, sizeof(*sino));
302	sino->si_ino = ino;
303	TAILQ_INIT(&sino->si_recs);
304	TAILQ_INIT(&sino->si_newrecs);
305	TAILQ_INIT(&sino->si_movs);
306	LIST_INSERT_HEAD(hd, sino, si_next);
307
308	return (sino);
309}
310
311/*
312 * Lookup a block number in the hash and allocate a suj_blk if it does
313 * not exist.
314 */
315static struct suj_blk *
316blk_lookup(ufs2_daddr_t blk, int creat)
317{
318	struct suj_blk *sblk;
319	struct suj_cg *sc;
320	struct blkhd *hd;
321
322	sc = cg_lookup(dtog(fs, blk));
323	if (sc->sc_lastblk && sc->sc_lastblk->sb_blk == blk)
324		return (sc->sc_lastblk);
325	hd = &sc->sc_blkhash[SUJ_HASH(fragstoblks(fs, blk))];
326	LIST_FOREACH(sblk, hd, sb_next)
327		if (sblk->sb_blk == blk)
328			return (sblk);
329	if (creat == 0)
330		return (NULL);
331	sblk = errmalloc(sizeof(*sblk));
332	bzero(sblk, sizeof(*sblk));
333	sblk->sb_blk = blk;
334	TAILQ_INIT(&sblk->sb_recs);
335	LIST_INSERT_HEAD(hd, sblk, sb_next);
336
337	return (sblk);
338}
339
340static struct data_blk *
341dblk_lookup(ufs2_daddr_t blk)
342{
343	struct data_blk *dblk;
344	struct dblkhd *hd;
345
346	hd = &dbhash[SUJ_HASH(fragstoblks(fs, blk))];
347	if (lastblk && lastblk->db_blk == blk)
348		return (lastblk);
349	LIST_FOREACH(dblk, hd, db_next)
350		if (dblk->db_blk == blk)
351			return (dblk);
352	/*
353	 * The inode block wasn't located, allocate a new one.
354	 */
355	dblk = errmalloc(sizeof(*dblk));
356	bzero(dblk, sizeof(*dblk));
357	LIST_INSERT_HEAD(hd, dblk, db_next);
358	dblk->db_blk = blk;
359	return (dblk);
360}
361
362static uint8_t *
363dblk_read(ufs2_daddr_t blk, int size)
364{
365	struct data_blk *dblk;
366
367	dblk = dblk_lookup(blk);
368	/*
369	 * I doubt size mismatches can happen in practice but it is trivial
370	 * to handle.
371	 */
372	if (size != dblk->db_size) {
373		if (dblk->db_buf)
374			free(dblk->db_buf);
375		dblk->db_buf = errmalloc(size);
376		dblk->db_size = size;
377		if (bread(disk, fsbtodb(fs, blk), dblk->db_buf, size) == -1)
378			err_suj("Failed to read data block %jd\n", blk);
379	}
380	return (dblk->db_buf);
381}
382
383static void
384dblk_dirty(ufs2_daddr_t blk)
385{
386	struct data_blk *dblk;
387
388	dblk = dblk_lookup(blk);
389	dblk->db_dirty = 1;
390}
391
392static void
393dblk_write(void)
394{
395	struct data_blk *dblk;
396	int i;
397
398	for (i = 0; i < SUJ_HASHSIZE; i++) {
399		LIST_FOREACH(dblk, &dbhash[i], db_next) {
400			if (dblk->db_dirty == 0 || dblk->db_size == 0)
401				continue;
402			if (bwrite(disk, fsbtodb(fs, dblk->db_blk),
403			    dblk->db_buf, dblk->db_size) == -1)
404				err_suj("Unable to write block %jd\n",
405				    dblk->db_blk);
406		}
407	}
408}
409
410static union dinode *
411ino_read(ino_t ino)
412{
413	struct ino_blk *iblk;
414	struct iblkhd *hd;
415	struct suj_cg *sc;
416	ufs2_daddr_t blk;
417	int off;
418
419	blk = ino_to_fsba(fs, ino);
420	sc = cg_lookup(ino_to_cg(fs, ino));
421	iblk = sc->sc_lastiblk;
422	if (iblk && iblk->ib_blk == blk)
423		goto found;
424	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
425	LIST_FOREACH(iblk, hd, ib_next)
426		if (iblk->ib_blk == blk)
427			goto found;
428	/*
429	 * The inode block wasn't located, allocate a new one.
430	 */
431	iblk = errmalloc(sizeof(*iblk));
432	bzero(iblk, sizeof(*iblk));
433	iblk->ib_buf = errmalloc(fs->fs_bsize);
434	iblk->ib_blk = blk;
435	LIST_INSERT_HEAD(hd, iblk, ib_next);
436	if (bread(disk, fsbtodb(fs, blk), iblk->ib_buf, fs->fs_bsize) == -1)
437		err_suj("Failed to read inode block %jd\n", blk);
438found:
439	sc->sc_lastiblk = iblk;
440	off = ino_to_fsbo(fs, ino);
441	if (fs->fs_magic == FS_UFS1_MAGIC)
442		return (union dinode *)&((struct ufs1_dinode *)iblk->ib_buf)[off];
443	else
444		return (union dinode *)&((struct ufs2_dinode *)iblk->ib_buf)[off];
445}
446
447static void
448ino_dirty(ino_t ino)
449{
450	struct ino_blk *iblk;
451	struct iblkhd *hd;
452	struct suj_cg *sc;
453	ufs2_daddr_t blk;
454
455	blk = ino_to_fsba(fs, ino);
456	sc = cg_lookup(ino_to_cg(fs, ino));
457	iblk = sc->sc_lastiblk;
458	if (iblk && iblk->ib_blk == blk) {
459		iblk->ib_dirty = 1;
460		return;
461	}
462	hd = &sc->sc_iblkhash[SUJ_HASH(fragstoblks(fs, blk))];
463	LIST_FOREACH(iblk, hd, ib_next) {
464		if (iblk->ib_blk == blk) {
465			iblk->ib_dirty = 1;
466			return;
467		}
468	}
469	ino_read(ino);
470	ino_dirty(ino);
471}
472
473static void
474iblk_write(struct ino_blk *iblk)
475{
476
477	if (iblk->ib_dirty == 0)
478		return;
479	if (bwrite(disk, fsbtodb(fs, iblk->ib_blk), iblk->ib_buf,
480	    fs->fs_bsize) == -1)
481		err_suj("Failed to write inode block %jd\n", iblk->ib_blk);
482}
483
484static int
485blk_overlaps(struct jblkrec *brec, ufs2_daddr_t start, int frags)
486{
487	ufs2_daddr_t bstart;
488	ufs2_daddr_t bend;
489	ufs2_daddr_t end;
490
491	end = start + frags;
492	bstart = brec->jb_blkno + brec->jb_oldfrags;
493	bend = bstart + brec->jb_frags;
494	if (start < bend && end > bstart)
495		return (1);
496	return (0);
497}
498
499static int
500blk_equals(struct jblkrec *brec, ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t start,
501    int frags)
502{
503
504	if (brec->jb_ino != ino || brec->jb_lbn != lbn)
505		return (0);
506	if (brec->jb_blkno + brec->jb_oldfrags != start)
507		return (0);
508	if (brec->jb_frags < frags)
509		return (0);
510	return (1);
511}
512
513static void
514blk_setmask(struct jblkrec *brec, int *mask)
515{
516	int i;
517
518	for (i = brec->jb_oldfrags; i < brec->jb_oldfrags + brec->jb_frags; i++)
519		*mask |= 1 << i;
520}
521
522/*
523 * Determine whether a given block has been reallocated to a new location.
524 * Returns a mask of overlapping bits if any frags have been reused or
525 * zero if the block has not been re-used and the contents can be trusted.
526 *
527 * This is used to ensure that an orphaned pointer due to truncate is safe
528 * to be freed.  The mask value can be used to free partial blocks.
529 */
530static int
531blk_freemask(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags)
532{
533	struct suj_blk *sblk;
534	struct suj_rec *srec;
535	struct jblkrec *brec;
536	int mask;
537	int off;
538
539	/*
540	 * To be certain we're not freeing a reallocated block we lookup
541	 * this block in the blk hash and see if there is an allocation
542	 * journal record that overlaps with any fragments in the block
543	 * we're concerned with.  If any fragments have ben reallocated
544	 * the block has already been freed and re-used for another purpose.
545	 */
546	mask = 0;
547	sblk = blk_lookup(blknum(fs, blk), 0);
548	if (sblk == NULL)
549		return (0);
550	off = blk - sblk->sb_blk;
551	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
552		brec = (struct jblkrec *)srec->sr_rec;
553		/*
554		 * If the block overlaps but does not match
555		 * exactly this record refers to the current
556		 * location.
557		 */
558		if (blk_overlaps(brec, blk, frags) == 0)
559			continue;
560		if (blk_equals(brec, ino, lbn, blk, frags) == 1)
561			mask = 0;
562		else
563			blk_setmask(brec, &mask);
564	}
565	if (debug)
566		printf("blk_freemask: blk %jd sblk %jd off %d mask 0x%X\n",
567		    blk, sblk->sb_blk, off, mask);
568	return (mask >> off);
569}
570
571/*
572 * Determine whether it is safe to follow an indirect.  It is not safe
573 * if any part of the indirect has been reallocated or the last journal
574 * entry was an allocation.  Just allocated indirects may not have valid
575 * pointers yet and all of their children will have their own records.
576 * It is also not safe to follow an indirect if the cg bitmap has been
577 * cleared as a new allocation may write to the block prior to the journal
578 * being written.
579 *
580 * Returns 1 if it's safe to follow the indirect and 0 otherwise.
581 */
582static int
583blk_isindir(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn)
584{
585	struct suj_blk *sblk;
586	struct jblkrec *brec;
587
588	sblk = blk_lookup(blk, 0);
589	if (sblk == NULL)
590		return (1);
591	if (TAILQ_EMPTY(&sblk->sb_recs))
592		return (1);
593	brec = (struct jblkrec *)TAILQ_LAST(&sblk->sb_recs, srechd)->sr_rec;
594	if (blk_equals(brec, ino, lbn, blk, fs->fs_frag))
595		if (brec->jb_op == JOP_FREEBLK)
596			return (!blk_isfree(blk));
597	return (0);
598}
599
600/*
601 * Clear an inode from the cg bitmap.  If the inode was already clear return
602 * 0 so the caller knows it does not have to check the inode contents.
603 */
604static int
605ino_free(ino_t ino, int mode)
606{
607	struct suj_cg *sc;
608	uint8_t *inosused;
609	struct cg *cgp;
610	int cg;
611
612	cg = ino_to_cg(fs, ino);
613	ino = ino % fs->fs_ipg;
614	sc = cg_lookup(cg);
615	cgp = sc->sc_cgp;
616	inosused = cg_inosused(cgp);
617	/*
618	 * The bitmap may never have made it to the disk so we have to
619	 * conditionally clear.  We can avoid writing the cg in this case.
620	 */
621	if (isclr(inosused, ino))
622		return (0);
623	freeinos++;
624	clrbit(inosused, ino);
625	if (ino < cgp->cg_irotor)
626		cgp->cg_irotor = ino;
627	cgp->cg_cs.cs_nifree++;
628	if ((mode & IFMT) == IFDIR) {
629		freedir++;
630		cgp->cg_cs.cs_ndir--;
631	}
632	sc->sc_dirty = 1;
633
634	return (1);
635}
636
637/*
638 * Free 'frags' frags starting at filesystem block 'bno' skipping any frags
639 * set in the mask.
640 */
641static void
642blk_free(ufs2_daddr_t bno, int mask, int frags)
643{
644	ufs1_daddr_t fragno, cgbno;
645	struct suj_cg *sc;
646	struct cg *cgp;
647	int i, cg;
648	uint8_t *blksfree;
649
650	if (debug)
651		printf("Freeing %d frags at blk %jd mask 0x%x\n",
652		    frags, bno, mask);
653	cg = dtog(fs, bno);
654	sc = cg_lookup(cg);
655	cgp = sc->sc_cgp;
656	cgbno = dtogd(fs, bno);
657	blksfree = cg_blksfree(cgp);
658
659	/*
660	 * If it's not allocated we only wrote the journal entry
661	 * and never the bitmaps.  Here we unconditionally clear and
662	 * resolve the cg summary later.
663	 */
664	if (frags == fs->fs_frag && mask == 0) {
665		fragno = fragstoblks(fs, cgbno);
666		ffs_setblock(fs, blksfree, fragno);
667		freeblocks++;
668	} else {
669		/*
670		 * deallocate the fragment
671		 */
672		for (i = 0; i < frags; i++)
673			if ((mask & (1 << i)) == 0 && isclr(blksfree, cgbno +i)) {
674				freefrags++;
675				setbit(blksfree, cgbno + i);
676			}
677	}
678	sc->sc_dirty = 1;
679}
680
681/*
682 * Returns 1 if the whole block starting at 'bno' is marked free and 0
683 * otherwise.
684 */
685static int
686blk_isfree(ufs2_daddr_t bno)
687{
688	struct suj_cg *sc;
689
690	sc = cg_lookup(dtog(fs, bno));
691	return ffs_isblock(fs, cg_blksfree(sc->sc_cgp), dtogd(fs, bno));
692}
693
694/*
695 * Fetch an indirect block to find the block at a given lbn.  The lbn
696 * may be negative to fetch a specific indirect block pointer or positive
697 * to fetch a specific block.
698 */
699static ufs2_daddr_t
700indir_blkatoff(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t cur, ufs_lbn_t lbn)
701{
702	ufs2_daddr_t *bap2;
703	ufs2_daddr_t *bap1;
704	ufs_lbn_t lbnadd;
705	ufs_lbn_t base;
706	int level;
707	int i;
708
709	if (blk == 0)
710		return (0);
711	level = lbn_level(cur);
712	if (level == -1)
713		err_suj("Invalid indir lbn %jd\n", lbn);
714	if (level == 0 && lbn < 0)
715		err_suj("Invalid lbn %jd\n", lbn);
716	bap2 = (void *)dblk_read(blk, fs->fs_bsize);
717	bap1 = (void *)bap2;
718	lbnadd = 1;
719	base = -(cur + level);
720	for (i = level; i > 0; i--)
721		lbnadd *= NINDIR(fs);
722	if (lbn > 0)
723		i = (lbn - base) / lbnadd;
724	else
725		i = (-lbn - base) / lbnadd;
726	if (i < 0 || i >= NINDIR(fs))
727		err_suj("Invalid indirect index %d produced by lbn %jd\n",
728		    i, lbn);
729	if (level == 0)
730		cur = base + (i * lbnadd);
731	else
732		cur = -(base + (i * lbnadd)) - (level - 1);
733	if (fs->fs_magic == FS_UFS1_MAGIC)
734		blk = bap1[i];
735	else
736		blk = bap2[i];
737	if (cur == lbn)
738		return (blk);
739	if (level == 0)
740		err_suj("Invalid lbn %jd at level 0\n", lbn);
741	return indir_blkatoff(blk, ino, cur, lbn);
742}
743
744/*
745 * Finds the disk block address at the specified lbn within the inode
746 * specified by ip.  This follows the whole tree and honors di_size and
747 * di_extsize so it is a true test of reachability.  The lbn may be
748 * negative if an extattr or indirect block is requested.
749 */
750static ufs2_daddr_t
751ino_blkatoff(union dinode *ip, ino_t ino, ufs_lbn_t lbn, int *frags)
752{
753	ufs_lbn_t tmpval;
754	ufs_lbn_t cur;
755	ufs_lbn_t next;
756	int i;
757
758	/*
759	 * Handle extattr blocks first.
760	 */
761	if (lbn < 0 && lbn >= -NXADDR) {
762		lbn = -1 - lbn;
763		if (lbn > lblkno(fs, ip->dp2.di_extsize - 1))
764			return (0);
765		*frags = numfrags(fs, sblksize(fs, ip->dp2.di_extsize, lbn));
766		return (ip->dp2.di_extb[lbn]);
767	}
768	/*
769	 * Now direct and indirect.
770	 */
771	if (DIP(ip, di_mode) == IFLNK &&
772	    DIP(ip, di_size) < fs->fs_maxsymlinklen)
773		return (0);
774	if (lbn >= 0 && lbn < NDADDR) {
775		*frags = numfrags(fs, sblksize(fs, DIP(ip, di_size), lbn));
776		return (DIP(ip, di_db[lbn]));
777	}
778	*frags = fs->fs_frag;
779
780	for (i = 0, tmpval = NINDIR(fs), cur = NDADDR; i < NIADDR; i++,
781	    tmpval *= NINDIR(fs), cur = next) {
782		next = cur + tmpval;
783		if (lbn == -cur - i)
784			return (DIP(ip, di_ib[i]));
785		/*
786		 * Determine whether the lbn in question is within this tree.
787		 */
788		if (lbn < 0 && -lbn >= next)
789			continue;
790		if (lbn > 0 && lbn >= next)
791			continue;
792		return indir_blkatoff(DIP(ip, di_ib[i]), ino, -cur - i, lbn);
793	}
794	err_suj("lbn %jd not in ino\n", lbn);
795	/* NOTREACHED */
796}
797
798/*
799 * Determine whether a block exists at a particular lbn in an inode.
800 * Returns 1 if found, 0 if not.  lbn may be negative for indirects
801 * or ext blocks.
802 */
803static int
804blk_isat(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int *frags)
805{
806	union dinode *ip;
807	ufs2_daddr_t nblk;
808
809	ip = ino_read(ino);
810
811	if (DIP(ip, di_nlink) == 0 || DIP(ip, di_mode) == 0)
812		return (0);
813	nblk = ino_blkatoff(ip, ino, lbn, frags);
814
815	return (nblk == blk);
816}
817
818/*
819 * Clear the directory entry at diroff that should point to child.  Minimal
820 * checking is done and it is assumed that this path was verified with isat.
821 */
822static void
823ino_clrat(ino_t parent, off_t diroff, ino_t child)
824{
825	union dinode *dip;
826	struct direct *dp;
827	ufs2_daddr_t blk;
828	uint8_t *block;
829	ufs_lbn_t lbn;
830	int blksize;
831	int frags;
832	int doff;
833
834	if (debug)
835		printf("Clearing inode %ju from parent %ju at offset %jd\n",
836		    (uintmax_t)child, (uintmax_t)parent, diroff);
837
838	lbn = lblkno(fs, diroff);
839	doff = blkoff(fs, diroff);
840	dip = ino_read(parent);
841	blk = ino_blkatoff(dip, parent, lbn, &frags);
842	blksize = sblksize(fs, DIP(dip, di_size), lbn);
843	block = dblk_read(blk, blksize);
844	dp = (struct direct *)&block[doff];
845	if (dp->d_ino != child)
846		errx(1, "Inode %ju does not exist in %ju at %jd",
847		    (uintmax_t)child, (uintmax_t)parent, diroff);
848	dp->d_ino = 0;
849	dblk_dirty(blk);
850	/*
851	 * The actual .. reference count will already have been removed
852	 * from the parent by the .. remref record.
853	 */
854}
855
856/*
857 * Determines whether a pointer to an inode exists within a directory
858 * at a specified offset.  Returns the mode of the found entry.
859 */
860static int
861ino_isat(ino_t parent, off_t diroff, ino_t child, int *mode, int *isdot)
862{
863	union dinode *dip;
864	struct direct *dp;
865	ufs2_daddr_t blk;
866	uint8_t *block;
867	ufs_lbn_t lbn;
868	int blksize;
869	int frags;
870	int dpoff;
871	int doff;
872
873	*isdot = 0;
874	dip = ino_read(parent);
875	*mode = DIP(dip, di_mode);
876	if ((*mode & IFMT) != IFDIR) {
877		if (debug) {
878			/*
879			 * This can happen if the parent inode
880			 * was reallocated.
881			 */
882			if (*mode != 0)
883				printf("Directory %ju has bad mode %o\n",
884				    (uintmax_t)parent, *mode);
885			else
886				printf("Directory %ju has zero mode\n",
887				    (uintmax_t)parent);
888		}
889		return (0);
890	}
891	lbn = lblkno(fs, diroff);
892	doff = blkoff(fs, diroff);
893	blksize = sblksize(fs, DIP(dip, di_size), lbn);
894	if (diroff + DIRECTSIZ(1) > DIP(dip, di_size) || doff >= blksize) {
895		if (debug)
896			printf("ino %ju absent from %ju due to offset %jd"
897			    " exceeding size %jd\n",
898			    (uintmax_t)child, (uintmax_t)parent, diroff,
899			    DIP(dip, di_size));
900		return (0);
901	}
902	blk = ino_blkatoff(dip, parent, lbn, &frags);
903	if (blk <= 0) {
904		if (debug)
905			printf("Sparse directory %ju", (uintmax_t)parent);
906		return (0);
907	}
908	block = dblk_read(blk, blksize);
909	/*
910	 * Walk through the records from the start of the block to be
911	 * certain we hit a valid record and not some junk in the middle
912	 * of a file name.  Stop when we reach or pass the expected offset.
913	 */
914	dpoff = (doff / DIRBLKSIZ) * DIRBLKSIZ;
915	do {
916		dp = (struct direct *)&block[dpoff];
917		if (dpoff == doff)
918			break;
919		if (dp->d_reclen == 0)
920			break;
921		dpoff += dp->d_reclen;
922	} while (dpoff <= doff);
923	if (dpoff > fs->fs_bsize)
924		err_suj("Corrupt directory block in dir ino %ju\n",
925		    (uintmax_t)parent);
926	/* Not found. */
927	if (dpoff != doff) {
928		if (debug)
929			printf("ino %ju not found in %ju, lbn %jd, dpoff %d\n",
930			    (uintmax_t)child, (uintmax_t)parent, lbn, dpoff);
931		return (0);
932	}
933	/*
934	 * We found the item in question.  Record the mode and whether it's
935	 * a . or .. link for the caller.
936	 */
937	if (dp->d_ino == child) {
938		if (child == parent)
939			*isdot = 1;
940		else if (dp->d_namlen == 2 &&
941		    dp->d_name[0] == '.' && dp->d_name[1] == '.')
942			*isdot = 1;
943		*mode = DTTOIF(dp->d_type);
944		return (1);
945	}
946	if (debug)
947		printf("ino %ju doesn't match dirent ino %ju in parent %ju\n",
948		    (uintmax_t)child, (uintmax_t)dp->d_ino, (uintmax_t)parent);
949	return (0);
950}
951
952#define	VISIT_INDIR	0x0001
953#define	VISIT_EXT	0x0002
954#define	VISIT_ROOT	0x0004	/* Operation came via root & valid pointers. */
955
956/*
957 * Read an indirect level which may or may not be linked into an inode.
958 */
959static void
960indir_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, uint64_t *frags,
961    ino_visitor visitor, int flags)
962{
963	ufs2_daddr_t *bap2;
964	ufs1_daddr_t *bap1;
965	ufs_lbn_t lbnadd;
966	ufs2_daddr_t nblk;
967	ufs_lbn_t nlbn;
968	int level;
969	int i;
970
971	/*
972	 * Don't visit indirect blocks with contents we can't trust.  This
973	 * should only happen when indir_visit() is called to complete a
974	 * truncate that never finished and not when a pointer is found via
975	 * an inode.
976	 */
977	if (blk == 0)
978		return;
979	level = lbn_level(lbn);
980	if (level == -1)
981		err_suj("Invalid level for lbn %jd\n", lbn);
982	if ((flags & VISIT_ROOT) == 0 && blk_isindir(blk, ino, lbn) == 0) {
983		if (debug)
984			printf("blk %jd ino %ju lbn %jd(%d) is not indir.\n",
985			    blk, (uintmax_t)ino, lbn, level);
986		goto out;
987	}
988	lbnadd = 1;
989	for (i = level; i > 0; i--)
990		lbnadd *= NINDIR(fs);
991	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
992	bap2 = (void *)bap1;
993	for (i = 0; i < NINDIR(fs); i++) {
994		if (fs->fs_magic == FS_UFS1_MAGIC)
995			nblk = *bap1++;
996		else
997			nblk = *bap2++;
998		if (nblk == 0)
999			continue;
1000		if (level == 0) {
1001			nlbn = -lbn + i * lbnadd;
1002			(*frags) += fs->fs_frag;
1003			visitor(ino, nlbn, nblk, fs->fs_frag);
1004		} else {
1005			nlbn = (lbn + 1) - (i * lbnadd);
1006			indir_visit(ino, nlbn, nblk, frags, visitor, flags);
1007		}
1008	}
1009out:
1010	if (flags & VISIT_INDIR) {
1011		(*frags) += fs->fs_frag;
1012		visitor(ino, lbn, blk, fs->fs_frag);
1013	}
1014}
1015
1016/*
1017 * Visit each block in an inode as specified by 'flags' and call a
1018 * callback function.  The callback may inspect or free blocks.  The
1019 * count of frags found according to the size in the file is returned.
1020 * This is not valid for sparse files but may be used to determine
1021 * the correct di_blocks for a file.
1022 */
1023static uint64_t
1024ino_visit(union dinode *ip, ino_t ino, ino_visitor visitor, int flags)
1025{
1026	ufs_lbn_t nextlbn;
1027	ufs_lbn_t tmpval;
1028	ufs_lbn_t lbn;
1029	uint64_t size;
1030	uint64_t fragcnt;
1031	int mode;
1032	int frags;
1033	int i;
1034
1035	size = DIP(ip, di_size);
1036	mode = DIP(ip, di_mode) & IFMT;
1037	fragcnt = 0;
1038	if ((flags & VISIT_EXT) &&
1039	    fs->fs_magic == FS_UFS2_MAGIC && ip->dp2.di_extsize) {
1040		for (i = 0; i < NXADDR; i++) {
1041			if (ip->dp2.di_extb[i] == 0)
1042				continue;
1043			frags = sblksize(fs, ip->dp2.di_extsize, i);
1044			frags = numfrags(fs, frags);
1045			fragcnt += frags;
1046			visitor(ino, -1 - i, ip->dp2.di_extb[i], frags);
1047		}
1048	}
1049	/* Skip datablocks for short links and devices. */
1050	if (mode == IFBLK || mode == IFCHR ||
1051	    (mode == IFLNK && size < fs->fs_maxsymlinklen))
1052		return (fragcnt);
1053	for (i = 0; i < NDADDR; i++) {
1054		if (DIP(ip, di_db[i]) == 0)
1055			continue;
1056		frags = sblksize(fs, size, i);
1057		frags = numfrags(fs, frags);
1058		fragcnt += frags;
1059		visitor(ino, i, DIP(ip, di_db[i]), frags);
1060	}
1061	/*
1062	 * We know the following indirects are real as we're following
1063	 * real pointers to them.
1064	 */
1065	flags |= VISIT_ROOT;
1066	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1067	    lbn = nextlbn) {
1068		nextlbn = lbn + tmpval;
1069		tmpval *= NINDIR(fs);
1070		if (DIP(ip, di_ib[i]) == 0)
1071			continue;
1072		indir_visit(ino, -lbn - i, DIP(ip, di_ib[i]), &fragcnt, visitor,
1073		    flags);
1074	}
1075	return (fragcnt);
1076}
1077
1078/*
1079 * Null visitor function used when we just want to count blocks and
1080 * record the lbn.
1081 */
1082ufs_lbn_t visitlbn;
1083static void
1084null_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1085{
1086	if (lbn > 0)
1087		visitlbn = lbn;
1088}
1089
1090/*
1091 * Recalculate di_blocks when we discover that a block allocation or
1092 * free was not successfully completed.  The kernel does not roll this back
1093 * because it would be too expensive to compute which indirects were
1094 * reachable at the time the inode was written.
1095 */
1096static void
1097ino_adjblks(struct suj_ino *sino)
1098{
1099	union dinode *ip;
1100	uint64_t blocks;
1101	uint64_t frags;
1102	off_t isize;
1103	off_t size;
1104	ino_t ino;
1105
1106	ino = sino->si_ino;
1107	ip = ino_read(ino);
1108	/* No need to adjust zero'd inodes. */
1109	if (DIP(ip, di_mode) == 0)
1110		return;
1111	/*
1112	 * Visit all blocks and count them as well as recording the last
1113	 * valid lbn in the file.  If the file size doesn't agree with the
1114	 * last lbn we need to truncate to fix it.  Otherwise just adjust
1115	 * the blocks count.
1116	 */
1117	visitlbn = 0;
1118	frags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1119	blocks = fsbtodb(fs, frags);
1120	/*
1121	 * We assume the size and direct block list is kept coherent by
1122	 * softdep.  For files that have extended into indirects we truncate
1123	 * to the size in the inode or the maximum size permitted by
1124	 * populated indirects.
1125	 */
1126	if (visitlbn >= NDADDR) {
1127		isize = DIP(ip, di_size);
1128		size = lblktosize(fs, visitlbn + 1);
1129		if (isize > size)
1130			isize = size;
1131		/* Always truncate to free any unpopulated indirects. */
1132		ino_trunc(sino->si_ino, isize);
1133		return;
1134	}
1135	if (blocks == DIP(ip, di_blocks))
1136		return;
1137	if (debug)
1138		printf("ino %ju adjusting block count from %jd to %jd\n",
1139		    (uintmax_t)ino, DIP(ip, di_blocks), blocks);
1140	DIP_SET(ip, di_blocks, blocks);
1141	ino_dirty(ino);
1142}
1143
1144static void
1145blk_free_visit(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1146{
1147
1148	blk_free(blk, blk_freemask(blk, ino, lbn, frags), frags);
1149}
1150
1151/*
1152 * Free a block or tree of blocks that was previously rooted in ino at
1153 * the given lbn.  If the lbn is an indirect all children are freed
1154 * recursively.
1155 */
1156static void
1157blk_free_lbn(ufs2_daddr_t blk, ino_t ino, ufs_lbn_t lbn, int frags, int follow)
1158{
1159	uint64_t resid;
1160	int mask;
1161
1162	mask = blk_freemask(blk, ino, lbn, frags);
1163	resid = 0;
1164	if (lbn <= -NDADDR && follow && mask == 0)
1165		indir_visit(ino, lbn, blk, &resid, blk_free_visit, VISIT_INDIR);
1166	else
1167		blk_free(blk, mask, frags);
1168}
1169
1170static void
1171ino_setskip(struct suj_ino *sino, ino_t parent)
1172{
1173	int isdot;
1174	int mode;
1175
1176	if (ino_isat(sino->si_ino, DOTDOT_OFFSET, parent, &mode, &isdot))
1177		sino->si_skipparent = 1;
1178}
1179
1180static void
1181ino_remref(ino_t parent, ino_t child, uint64_t diroff, int isdotdot)
1182{
1183	struct suj_ino *sino;
1184	struct suj_rec *srec;
1185	struct jrefrec *rrec;
1186
1187	/*
1188	 * Lookup this inode to see if we have a record for it.
1189	 */
1190	sino = ino_lookup(child, 0);
1191	/*
1192	 * Tell any child directories we've already removed their
1193	 * parent link cnt.  Don't try to adjust our link down again.
1194	 */
1195	if (sino != NULL && isdotdot == 0)
1196		ino_setskip(sino, parent);
1197	/*
1198	 * No valid record for this inode.  Just drop the on-disk
1199	 * link by one.
1200	 */
1201	if (sino == NULL || sino->si_hasrecs == 0) {
1202		ino_decr(child);
1203		return;
1204	}
1205	/*
1206	 * Use ino_adjust() if ino_check() has already processed this
1207	 * child.  If we lose the last non-dot reference to a
1208	 * directory it will be discarded.
1209	 */
1210	if (sino->si_linkadj) {
1211		sino->si_nlink--;
1212		if (isdotdot)
1213			sino->si_dotlinks--;
1214		ino_adjust(sino);
1215		return;
1216	}
1217	/*
1218	 * If we haven't yet processed this inode we need to make
1219	 * sure we will successfully discover the lost path.  If not
1220	 * use nlinkadj to remember.
1221	 */
1222	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1223		rrec = (struct jrefrec *)srec->sr_rec;
1224		if (rrec->jr_parent == parent &&
1225		    rrec->jr_diroff == diroff)
1226			return;
1227	}
1228	sino->si_nlinkadj++;
1229}
1230
1231/*
1232 * Free the children of a directory when the directory is discarded.
1233 */
1234static void
1235ino_free_children(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
1236{
1237	struct suj_ino *sino;
1238	struct direct *dp;
1239	off_t diroff;
1240	uint8_t *block;
1241	int skipparent;
1242	int isdotdot;
1243	int dpoff;
1244	int size;
1245
1246	sino = ino_lookup(ino, 0);
1247	if (sino)
1248		skipparent = sino->si_skipparent;
1249	else
1250		skipparent = 0;
1251	size = lfragtosize(fs, frags);
1252	block = dblk_read(blk, size);
1253	dp = (struct direct *)&block[0];
1254	for (dpoff = 0; dpoff < size && dp->d_reclen; dpoff += dp->d_reclen) {
1255		dp = (struct direct *)&block[dpoff];
1256		if (dp->d_ino == 0 || dp->d_ino == WINO)
1257			continue;
1258		if (dp->d_namlen == 1 && dp->d_name[0] == '.')
1259			continue;
1260		isdotdot = dp->d_namlen == 2 && dp->d_name[0] == '.' &&
1261		    dp->d_name[1] == '.';
1262		if (isdotdot && skipparent == 1)
1263			continue;
1264		if (debug)
1265			printf("Directory %ju removing ino %ju name %s\n",
1266			    (uintmax_t)ino, (uintmax_t)dp->d_ino, dp->d_name);
1267		diroff = lblktosize(fs, lbn) + dpoff;
1268		ino_remref(ino, dp->d_ino, diroff, isdotdot);
1269	}
1270}
1271
1272/*
1273 * Reclaim an inode, freeing all blocks and decrementing all children's
1274 * link counts.  Free the inode back to the cg.
1275 */
1276static void
1277ino_reclaim(union dinode *ip, ino_t ino, int mode)
1278{
1279	uint32_t gen;
1280
1281	if (ino == ROOTINO)
1282		err_suj("Attempting to free ROOTINO\n");
1283	if (debug)
1284		printf("Truncating and freeing ino %ju, nlink %d, mode %o\n",
1285		    (uintmax_t)ino, DIP(ip, di_nlink), DIP(ip, di_mode));
1286
1287	/* We are freeing an inode or directory. */
1288	if ((DIP(ip, di_mode) & IFMT) == IFDIR)
1289		ino_visit(ip, ino, ino_free_children, 0);
1290	DIP_SET(ip, di_nlink, 0);
1291	ino_visit(ip, ino, blk_free_visit, VISIT_EXT | VISIT_INDIR);
1292	/* Here we have to clear the inode and release any blocks it holds. */
1293	gen = DIP(ip, di_gen);
1294	if (fs->fs_magic == FS_UFS1_MAGIC)
1295		bzero(ip, sizeof(struct ufs1_dinode));
1296	else
1297		bzero(ip, sizeof(struct ufs2_dinode));
1298	DIP_SET(ip, di_gen, gen);
1299	ino_dirty(ino);
1300	ino_free(ino, mode);
1301	return;
1302}
1303
1304/*
1305 * Adjust an inode's link count down by one when a directory goes away.
1306 */
1307static void
1308ino_decr(ino_t ino)
1309{
1310	union dinode *ip;
1311	int reqlink;
1312	int nlink;
1313	int mode;
1314
1315	ip = ino_read(ino);
1316	nlink = DIP(ip, di_nlink);
1317	mode = DIP(ip, di_mode);
1318	if (nlink < 1)
1319		err_suj("Inode %d link count %d invalid\n", ino, nlink);
1320	if (mode == 0)
1321		err_suj("Inode %d has a link of %d with 0 mode\n", ino, nlink);
1322	nlink--;
1323	if ((mode & IFMT) == IFDIR)
1324		reqlink = 2;
1325	else
1326		reqlink = 1;
1327	if (nlink < reqlink) {
1328		if (debug)
1329			printf("ino %ju not enough links to live %d < %d\n",
1330			    (uintmax_t)ino, nlink, reqlink);
1331		ino_reclaim(ip, ino, mode);
1332		return;
1333	}
1334	DIP_SET(ip, di_nlink, nlink);
1335	ino_dirty(ino);
1336}
1337
1338/*
1339 * Adjust the inode link count to 'nlink'.  If the count reaches zero
1340 * free it.
1341 */
1342static void
1343ino_adjust(struct suj_ino *sino)
1344{
1345	struct jrefrec *rrec;
1346	struct suj_rec *srec;
1347	struct suj_ino *stmp;
1348	union dinode *ip;
1349	nlink_t nlink;
1350	int recmode;
1351	int reqlink;
1352	int isdot;
1353	int mode;
1354	ino_t ino;
1355
1356	nlink = sino->si_nlink;
1357	ino = sino->si_ino;
1358	mode = sino->si_mode & IFMT;
1359	/*
1360	 * If it's a directory with no dot links, it was truncated before
1361	 * the name was cleared.  We need to clear the dirent that
1362	 * points at it.
1363	 */
1364	if (mode == IFDIR && nlink == 1 && sino->si_dotlinks == 0) {
1365		sino->si_nlink = nlink = 0;
1366		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1367			rrec = (struct jrefrec *)srec->sr_rec;
1368			if (ino_isat(rrec->jr_parent, rrec->jr_diroff, ino,
1369			    &recmode, &isdot) == 0)
1370				continue;
1371			ino_clrat(rrec->jr_parent, rrec->jr_diroff, ino);
1372			break;
1373		}
1374		if (srec == NULL)
1375			errx(1, "Directory %ju name not found", (uintmax_t)ino);
1376	}
1377	/*
1378	 * If it's a directory with no real names pointing to it go ahead
1379	 * and truncate it.  This will free any children.
1380	 */
1381	if (mode == IFDIR && nlink - sino->si_dotlinks == 0) {
1382		sino->si_nlink = nlink = 0;
1383		/*
1384		 * Mark any .. links so they know not to free this inode
1385		 * when they are removed.
1386		 */
1387		TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1388			rrec = (struct jrefrec *)srec->sr_rec;
1389			if (rrec->jr_diroff == DOTDOT_OFFSET) {
1390				stmp = ino_lookup(rrec->jr_parent, 0);
1391				if (stmp)
1392					ino_setskip(stmp, ino);
1393			}
1394		}
1395	}
1396	ip = ino_read(ino);
1397	mode = DIP(ip, di_mode) & IFMT;
1398	if (nlink > LINK_MAX)
1399		err_suj("ino %ju nlink manipulation error, new %d, old %d\n",
1400		    (uintmax_t)ino, nlink, DIP(ip, di_nlink));
1401	if (debug)
1402		printf("Adjusting ino %ju, nlink %d, old link %d lastmode %o\n",
1403		    (uintmax_t)ino, nlink, DIP(ip, di_nlink), sino->si_mode);
1404	if (mode == 0) {
1405		if (debug)
1406			printf("ino %ju, zero inode freeing bitmap\n",
1407			    (uintmax_t)ino);
1408		ino_free(ino, sino->si_mode);
1409		return;
1410	}
1411	/* XXX Should be an assert? */
1412	if (mode != sino->si_mode && debug)
1413		printf("ino %ju, mode %o != %o\n",
1414		    (uintmax_t)ino, mode, sino->si_mode);
1415	if ((mode & IFMT) == IFDIR)
1416		reqlink = 2;
1417	else
1418		reqlink = 1;
1419	/* If the inode doesn't have enough links to live, free it. */
1420	if (nlink < reqlink) {
1421		if (debug)
1422			printf("ino %ju not enough links to live %d < %d\n",
1423			    (uintmax_t)ino, nlink, reqlink);
1424		ino_reclaim(ip, ino, mode);
1425		return;
1426	}
1427	/* If required write the updated link count. */
1428	if (DIP(ip, di_nlink) == nlink) {
1429		if (debug)
1430			printf("ino %ju, link matches, skipping.\n",
1431			    (uintmax_t)ino);
1432		return;
1433	}
1434	DIP_SET(ip, di_nlink, nlink);
1435	ino_dirty(ino);
1436}
1437
1438/*
1439 * Truncate some or all blocks in an indirect, freeing any that are required
1440 * and zeroing the indirect.
1441 */
1442static void
1443indir_trunc(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, ufs_lbn_t lastlbn)
1444{
1445	ufs2_daddr_t *bap2;
1446	ufs1_daddr_t *bap1;
1447	ufs_lbn_t lbnadd;
1448	ufs2_daddr_t nblk;
1449	ufs_lbn_t next;
1450	ufs_lbn_t nlbn;
1451	int dirty;
1452	int level;
1453	int i;
1454
1455	if (blk == 0)
1456		return;
1457	dirty = 0;
1458	level = lbn_level(lbn);
1459	if (level == -1)
1460		err_suj("Invalid level for lbn %jd\n", lbn);
1461	lbnadd = 1;
1462	for (i = level; i > 0; i--)
1463		lbnadd *= NINDIR(fs);
1464	bap1 = (void *)dblk_read(blk, fs->fs_bsize);
1465	bap2 = (void *)bap1;
1466	for (i = 0; i < NINDIR(fs); i++) {
1467		if (fs->fs_magic == FS_UFS1_MAGIC)
1468			nblk = *bap1++;
1469		else
1470			nblk = *bap2++;
1471		if (nblk == 0)
1472			continue;
1473		if (level != 0) {
1474			nlbn = (lbn + 1) - (i * lbnadd);
1475			/*
1476			 * Calculate the lbn of the next indirect to
1477			 * determine if any of this indirect must be
1478			 * reclaimed.
1479			 */
1480			next = -(lbn + level) + ((i+1) * lbnadd);
1481			if (next <= lastlbn)
1482				continue;
1483			indir_trunc(ino, nlbn, nblk, lastlbn);
1484			/* If all of this indirect was reclaimed, free it. */
1485			nlbn = next - lbnadd;
1486			if (nlbn < lastlbn)
1487				continue;
1488		} else {
1489			nlbn = -lbn + i * lbnadd;
1490			if (nlbn < lastlbn)
1491				continue;
1492		}
1493		dirty = 1;
1494		blk_free(nblk, 0, fs->fs_frag);
1495		if (fs->fs_magic == FS_UFS1_MAGIC)
1496			*(bap1 - 1) = 0;
1497		else
1498			*(bap2 - 1) = 0;
1499	}
1500	if (dirty)
1501		dblk_dirty(blk);
1502}
1503
1504/*
1505 * Truncate an inode to the minimum of the given size or the last populated
1506 * block after any over size have been discarded.  The kernel would allocate
1507 * the last block in the file but fsck does not and neither do we.  This
1508 * code never extends files, only shrinks them.
1509 */
1510static void
1511ino_trunc(ino_t ino, off_t size)
1512{
1513	union dinode *ip;
1514	ufs2_daddr_t bn;
1515	uint64_t totalfrags;
1516	ufs_lbn_t nextlbn;
1517	ufs_lbn_t lastlbn;
1518	ufs_lbn_t tmpval;
1519	ufs_lbn_t lbn;
1520	ufs_lbn_t i;
1521	int frags;
1522	off_t cursize;
1523	off_t off;
1524	int mode;
1525
1526	ip = ino_read(ino);
1527	mode = DIP(ip, di_mode) & IFMT;
1528	cursize = DIP(ip, di_size);
1529	if (debug)
1530		printf("Truncating ino %ju, mode %o to size %jd from size %jd\n",
1531		    (uintmax_t)ino, mode, size, cursize);
1532
1533	/* Skip datablocks for short links and devices. */
1534	if (mode == 0 || mode == IFBLK || mode == IFCHR ||
1535	    (mode == IFLNK && cursize < fs->fs_maxsymlinklen))
1536		return;
1537	/* Don't extend. */
1538	if (size > cursize)
1539		size = cursize;
1540	lastlbn = lblkno(fs, blkroundup(fs, size));
1541	for (i = lastlbn; i < NDADDR; i++) {
1542		if (DIP(ip, di_db[i]) == 0)
1543			continue;
1544		frags = sblksize(fs, cursize, i);
1545		frags = numfrags(fs, frags);
1546		blk_free(DIP(ip, di_db[i]), 0, frags);
1547		DIP_SET(ip, di_db[i], 0);
1548	}
1549	/*
1550	 * Follow indirect blocks, freeing anything required.
1551	 */
1552	for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; i++,
1553	    lbn = nextlbn) {
1554		nextlbn = lbn + tmpval;
1555		tmpval *= NINDIR(fs);
1556		/* If we're not freeing any in this indirect range skip it. */
1557		if (lastlbn >= nextlbn)
1558			continue;
1559		if (DIP(ip, di_ib[i]) == 0)
1560			continue;
1561		indir_trunc(ino, -lbn - i, DIP(ip, di_ib[i]), lastlbn);
1562		/* If we freed everything in this indirect free the indir. */
1563		if (lastlbn > lbn)
1564			continue;
1565		blk_free(DIP(ip, di_ib[i]), 0, frags);
1566		DIP_SET(ip, di_ib[i], 0);
1567	}
1568	ino_dirty(ino);
1569	/*
1570	 * Now that we've freed any whole blocks that exceed the desired
1571	 * truncation size, figure out how many blocks remain and what the
1572	 * last populated lbn is.  We will set the size to this last lbn
1573	 * rather than worrying about allocating the final lbn as the kernel
1574	 * would've done.  This is consistent with normal fsck behavior.
1575	 */
1576	visitlbn = 0;
1577	totalfrags = ino_visit(ip, ino, null_visit, VISIT_INDIR | VISIT_EXT);
1578	if (size > lblktosize(fs, visitlbn + 1))
1579		size = lblktosize(fs, visitlbn + 1);
1580	/*
1581	 * If we're truncating direct blocks we have to adjust frags
1582	 * accordingly.
1583	 */
1584	if (visitlbn < NDADDR && totalfrags) {
1585		long oldspace, newspace;
1586
1587		bn = DIP(ip, di_db[visitlbn]);
1588		if (bn == 0)
1589			err_suj("Bad blk at ino %ju lbn %jd\n",
1590			    (uintmax_t)ino, visitlbn);
1591		oldspace = sblksize(fs, cursize, visitlbn);
1592		newspace = sblksize(fs, size, visitlbn);
1593		if (oldspace != newspace) {
1594			bn += numfrags(fs, newspace);
1595			frags = numfrags(fs, oldspace - newspace);
1596			blk_free(bn, 0, frags);
1597			totalfrags -= frags;
1598		}
1599	}
1600	DIP_SET(ip, di_blocks, fsbtodb(fs, totalfrags));
1601	DIP_SET(ip, di_size, size);
1602	/*
1603	 * If we've truncated into the middle of a block or frag we have
1604	 * to zero it here.  Otherwise the file could extend into
1605	 * uninitialized space later.
1606	 */
1607	off = blkoff(fs, size);
1608	if (off && DIP(ip, di_mode) != IFDIR) {
1609		uint8_t *buf;
1610		long clrsize;
1611
1612		bn = ino_blkatoff(ip, ino, visitlbn, &frags);
1613		if (bn == 0)
1614			err_suj("Block missing from ino %ju at lbn %jd\n",
1615			    (uintmax_t)ino, visitlbn);
1616		clrsize = frags * fs->fs_fsize;
1617		buf = dblk_read(bn, clrsize);
1618		clrsize -= off;
1619		buf += off;
1620		bzero(buf, clrsize);
1621		dblk_dirty(bn);
1622	}
1623	return;
1624}
1625
1626/*
1627 * Process records available for one inode and determine whether the
1628 * link count is correct or needs adjusting.
1629 */
1630static void
1631ino_check(struct suj_ino *sino)
1632{
1633	struct suj_rec *srec;
1634	struct jrefrec *rrec;
1635	nlink_t dotlinks;
1636	int newlinks;
1637	int removes;
1638	int nlink;
1639	ino_t ino;
1640	int isdot;
1641	int isat;
1642	int mode;
1643
1644	if (sino->si_hasrecs == 0)
1645		return;
1646	ino = sino->si_ino;
1647	rrec = (struct jrefrec *)TAILQ_FIRST(&sino->si_recs)->sr_rec;
1648	nlink = rrec->jr_nlink;
1649	newlinks = 0;
1650	dotlinks = 0;
1651	removes = sino->si_nlinkadj;
1652	TAILQ_FOREACH(srec, &sino->si_recs, sr_next) {
1653		rrec = (struct jrefrec *)srec->sr_rec;
1654		isat = ino_isat(rrec->jr_parent, rrec->jr_diroff,
1655		    rrec->jr_ino, &mode, &isdot);
1656		if (isat && (mode & IFMT) != (rrec->jr_mode & IFMT))
1657			err_suj("Inode mode/directory type mismatch %o != %o\n",
1658			    mode, rrec->jr_mode);
1659		if (debug)
1660			printf("jrefrec: op %d ino %ju, nlink %d, parent %d, "
1661			    "diroff %jd, mode %o, isat %d, isdot %d\n",
1662			    rrec->jr_op, (uintmax_t)rrec->jr_ino,
1663			    rrec->jr_nlink, rrec->jr_parent, rrec->jr_diroff,
1664			    rrec->jr_mode, isat, isdot);
1665		mode = rrec->jr_mode & IFMT;
1666		if (rrec->jr_op == JOP_REMREF)
1667			removes++;
1668		newlinks += isat;
1669		if (isdot)
1670			dotlinks += isat;
1671	}
1672	/*
1673	 * The number of links that remain are the starting link count
1674	 * subtracted by the total number of removes with the total
1675	 * links discovered back in.  An incomplete remove thus
1676	 * makes no change to the link count but an add increases
1677	 * by one.
1678	 */
1679	if (debug)
1680		printf("ino %ju nlink %d newlinks %d removes %d dotlinks %d\n",
1681		    (uintmax_t)ino, nlink, newlinks, removes, dotlinks);
1682	nlink += newlinks;
1683	nlink -= removes;
1684	sino->si_linkadj = 1;
1685	sino->si_nlink = nlink;
1686	sino->si_dotlinks = dotlinks;
1687	sino->si_mode = mode;
1688	ino_adjust(sino);
1689}
1690
1691/*
1692 * Process records available for one block and determine whether it is
1693 * still allocated and whether the owning inode needs to be updated or
1694 * a free completed.
1695 */
1696static void
1697blk_check(struct suj_blk *sblk)
1698{
1699	struct suj_rec *srec;
1700	struct jblkrec *brec;
1701	struct suj_ino *sino;
1702	ufs2_daddr_t blk;
1703	int mask;
1704	int frags;
1705	int isat;
1706
1707	/*
1708	 * Each suj_blk actually contains records for any fragments in that
1709	 * block.  As a result we must evaluate each record individually.
1710	 */
1711	sino = NULL;
1712	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
1713		brec = (struct jblkrec *)srec->sr_rec;
1714		frags = brec->jb_frags;
1715		blk = brec->jb_blkno + brec->jb_oldfrags;
1716		isat = blk_isat(brec->jb_ino, brec->jb_lbn, blk, &frags);
1717		if (sino == NULL || sino->si_ino != brec->jb_ino) {
1718			sino = ino_lookup(brec->jb_ino, 1);
1719			sino->si_blkadj = 1;
1720		}
1721		if (debug)
1722			printf("op %d blk %jd ino %ju lbn %jd frags %d isat %d (%d)\n",
1723			    brec->jb_op, blk, (uintmax_t)brec->jb_ino,
1724			    brec->jb_lbn, brec->jb_frags, isat, frags);
1725		/*
1726		 * If we found the block at this address we still have to
1727		 * determine if we need to free the tail end that was
1728		 * added by adding contiguous fragments from the same block.
1729		 */
1730		if (isat == 1) {
1731			if (frags == brec->jb_frags)
1732				continue;
1733			mask = blk_freemask(blk, brec->jb_ino, brec->jb_lbn,
1734			    brec->jb_frags);
1735			mask >>= frags;
1736			blk += frags;
1737			frags = brec->jb_frags - frags;
1738			blk_free(blk, mask, frags);
1739			continue;
1740		}
1741		/*
1742	 	 * The block wasn't found, attempt to free it.  It won't be
1743		 * freed if it was actually reallocated.  If this was an
1744		 * allocation we don't want to follow indirects as they
1745		 * may not be written yet.  Any children of the indirect will
1746		 * have their own records.  If it's a free we need to
1747		 * recursively free children.
1748		 */
1749		blk_free_lbn(blk, brec->jb_ino, brec->jb_lbn, brec->jb_frags,
1750		    brec->jb_op == JOP_FREEBLK);
1751	}
1752}
1753
1754/*
1755 * Walk the list of inode records for this cg and resolve moved and duplicate
1756 * inode references now that we have a complete picture.
1757 */
1758static void
1759cg_build(struct suj_cg *sc)
1760{
1761	struct suj_ino *sino;
1762	int i;
1763
1764	for (i = 0; i < SUJ_HASHSIZE; i++)
1765		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1766			ino_build(sino);
1767}
1768
1769/*
1770 * Handle inodes requiring truncation.  This must be done prior to
1771 * looking up any inodes in directories.
1772 */
1773static void
1774cg_trunc(struct suj_cg *sc)
1775{
1776	struct suj_ino *sino;
1777	int i;
1778
1779	for (i = 0; i < SUJ_HASHSIZE; i++) {
1780		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1781			if (sino->si_trunc) {
1782				ino_trunc(sino->si_ino,
1783				    sino->si_trunc->jt_size);
1784				sino->si_blkadj = 0;
1785				sino->si_trunc = NULL;
1786			}
1787			if (sino->si_blkadj)
1788				ino_adjblks(sino);
1789		}
1790	}
1791}
1792
1793static void
1794cg_adj_blk(struct suj_cg *sc)
1795{
1796	struct suj_ino *sino;
1797	int i;
1798
1799	for (i = 0; i < SUJ_HASHSIZE; i++) {
1800		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next) {
1801			if (sino->si_blkadj)
1802				ino_adjblks(sino);
1803		}
1804	}
1805}
1806
1807/*
1808 * Free any partially allocated blocks and then resolve inode block
1809 * counts.
1810 */
1811static void
1812cg_check_blk(struct suj_cg *sc)
1813{
1814	struct suj_blk *sblk;
1815	int i;
1816
1817
1818	for (i = 0; i < SUJ_HASHSIZE; i++)
1819		LIST_FOREACH(sblk, &sc->sc_blkhash[i], sb_next)
1820			blk_check(sblk);
1821}
1822
1823/*
1824 * Walk the list of inode records for this cg, recovering any
1825 * changes which were not complete at the time of crash.
1826 */
1827static void
1828cg_check_ino(struct suj_cg *sc)
1829{
1830	struct suj_ino *sino;
1831	int i;
1832
1833	for (i = 0; i < SUJ_HASHSIZE; i++)
1834		LIST_FOREACH(sino, &sc->sc_inohash[i], si_next)
1835			ino_check(sino);
1836}
1837
1838/*
1839 * Write a potentially dirty cg.  Recalculate the summary information and
1840 * update the superblock summary.
1841 */
1842static void
1843cg_write(struct suj_cg *sc)
1844{
1845	ufs1_daddr_t fragno, cgbno, maxbno;
1846	u_int8_t *blksfree;
1847	struct cg *cgp;
1848	int blk;
1849	int i;
1850
1851	if (sc->sc_dirty == 0)
1852		return;
1853	/*
1854	 * Fix the frag and cluster summary.
1855	 */
1856	cgp = sc->sc_cgp;
1857	cgp->cg_cs.cs_nbfree = 0;
1858	cgp->cg_cs.cs_nffree = 0;
1859	bzero(&cgp->cg_frsum, sizeof(cgp->cg_frsum));
1860	maxbno = fragstoblks(fs, fs->fs_fpg);
1861	if (fs->fs_contigsumsize > 0) {
1862		for (i = 1; i <= fs->fs_contigsumsize; i++)
1863			cg_clustersum(cgp)[i] = 0;
1864		bzero(cg_clustersfree(cgp), howmany(maxbno, CHAR_BIT));
1865	}
1866	blksfree = cg_blksfree(cgp);
1867	for (cgbno = 0; cgbno < maxbno; cgbno++) {
1868		if (ffs_isfreeblock(fs, blksfree, cgbno))
1869			continue;
1870		if (ffs_isblock(fs, blksfree, cgbno)) {
1871			ffs_clusteracct(fs, cgp, cgbno, 1);
1872			cgp->cg_cs.cs_nbfree++;
1873			continue;
1874		}
1875		fragno = blkstofrags(fs, cgbno);
1876		blk = blkmap(fs, blksfree, fragno);
1877		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1878		for (i = 0; i < fs->fs_frag; i++)
1879			if (isset(blksfree, fragno + i))
1880				cgp->cg_cs.cs_nffree++;
1881	}
1882	/*
1883	 * Update the superblock cg summary from our now correct values
1884	 * before writing the block.
1885	 */
1886	fs->fs_cs(fs, sc->sc_cgx) = cgp->cg_cs;
1887	if (bwrite(disk, fsbtodb(fs, cgtod(fs, sc->sc_cgx)), sc->sc_cgbuf,
1888	    fs->fs_bsize) == -1)
1889		err_suj("Unable to write cylinder group %d\n", sc->sc_cgx);
1890}
1891
1892/*
1893 * Write out any modified inodes.
1894 */
1895static void
1896cg_write_inos(struct suj_cg *sc)
1897{
1898	struct ino_blk *iblk;
1899	int i;
1900
1901	for (i = 0; i < SUJ_HASHSIZE; i++)
1902		LIST_FOREACH(iblk, &sc->sc_iblkhash[i], ib_next)
1903			if (iblk->ib_dirty)
1904				iblk_write(iblk);
1905}
1906
1907static void
1908cg_apply(void (*apply)(struct suj_cg *))
1909{
1910	struct suj_cg *scg;
1911	int i;
1912
1913	for (i = 0; i < SUJ_HASHSIZE; i++)
1914		LIST_FOREACH(scg, &cghash[i], sc_next)
1915			apply(scg);
1916}
1917
1918/*
1919 * Process the unlinked but referenced file list.  Freeing all inodes.
1920 */
1921static void
1922ino_unlinked(void)
1923{
1924	union dinode *ip;
1925	uint16_t mode;
1926	ino_t inon;
1927	ino_t ino;
1928
1929	ino = fs->fs_sujfree;
1930	fs->fs_sujfree = 0;
1931	while (ino != 0) {
1932		ip = ino_read(ino);
1933		mode = DIP(ip, di_mode) & IFMT;
1934		inon = DIP(ip, di_freelink);
1935		DIP_SET(ip, di_freelink, 0);
1936		/*
1937		 * XXX Should this be an errx?
1938		 */
1939		if (DIP(ip, di_nlink) == 0) {
1940			if (debug)
1941				printf("Freeing unlinked ino %ju mode %o\n",
1942				    (uintmax_t)ino, mode);
1943			ino_reclaim(ip, ino, mode);
1944		} else if (debug)
1945			printf("Skipping ino %ju mode %o with link %d\n",
1946			    (uintmax_t)ino, mode, DIP(ip, di_nlink));
1947		ino = inon;
1948	}
1949}
1950
1951/*
1952 * Append a new record to the list of records requiring processing.
1953 */
1954static void
1955ino_append(union jrec *rec)
1956{
1957	struct jrefrec *refrec;
1958	struct jmvrec *mvrec;
1959	struct suj_ino *sino;
1960	struct suj_rec *srec;
1961
1962	mvrec = &rec->rec_jmvrec;
1963	refrec = &rec->rec_jrefrec;
1964	if (debug && mvrec->jm_op == JOP_MVREF)
1965		printf("ino move: ino %d, parent %d, diroff %jd, oldoff %jd\n",
1966		    mvrec->jm_ino, mvrec->jm_parent, mvrec->jm_newoff,
1967		    mvrec->jm_oldoff);
1968	else if (debug &&
1969	    (refrec->jr_op == JOP_ADDREF || refrec->jr_op == JOP_REMREF))
1970		printf("ino ref: op %d, ino %d, nlink %d, "
1971		    "parent %d, diroff %jd\n",
1972		    refrec->jr_op, refrec->jr_ino, refrec->jr_nlink,
1973		    refrec->jr_parent, refrec->jr_diroff);
1974	sino = ino_lookup(((struct jrefrec *)rec)->jr_ino, 1);
1975	sino->si_hasrecs = 1;
1976	srec = errmalloc(sizeof(*srec));
1977	srec->sr_rec = rec;
1978	TAILQ_INSERT_TAIL(&sino->si_newrecs, srec, sr_next);
1979}
1980
1981/*
1982 * Add a reference adjustment to the sino list and eliminate dups.  The
1983 * primary loop in ino_build_ref() checks for dups but new ones may be
1984 * created as a result of offset adjustments.
1985 */
1986static void
1987ino_add_ref(struct suj_ino *sino, struct suj_rec *srec)
1988{
1989	struct jrefrec *refrec;
1990	struct suj_rec *srn;
1991	struct jrefrec *rrn;
1992
1993	refrec = (struct jrefrec *)srec->sr_rec;
1994	/*
1995	 * We walk backwards so that the oldest link count is preserved.  If
1996	 * an add record conflicts with a remove keep the remove.  Redundant
1997	 * removes are eliminated in ino_build_ref.  Otherwise we keep the
1998	 * oldest record at a given location.
1999	 */
2000	for (srn = TAILQ_LAST(&sino->si_recs, srechd); srn;
2001	    srn = TAILQ_PREV(srn, srechd, sr_next)) {
2002		rrn = (struct jrefrec *)srn->sr_rec;
2003		if (rrn->jr_parent != refrec->jr_parent ||
2004		    rrn->jr_diroff != refrec->jr_diroff)
2005			continue;
2006		if (rrn->jr_op == JOP_REMREF || refrec->jr_op == JOP_ADDREF) {
2007			rrn->jr_mode = refrec->jr_mode;
2008			return;
2009		}
2010		/*
2011		 * Adding a remove.
2012		 *
2013		 * Replace the record in place with the old nlink in case
2014		 * we replace the head of the list.  Abandon srec as a dup.
2015		 */
2016		refrec->jr_nlink = rrn->jr_nlink;
2017		srn->sr_rec = srec->sr_rec;
2018		return;
2019	}
2020	TAILQ_INSERT_TAIL(&sino->si_recs, srec, sr_next);
2021}
2022
2023/*
2024 * Create a duplicate of a reference at a previous location.
2025 */
2026static void
2027ino_dup_ref(struct suj_ino *sino, struct jrefrec *refrec, off_t diroff)
2028{
2029	struct jrefrec *rrn;
2030	struct suj_rec *srn;
2031
2032	rrn = errmalloc(sizeof(*refrec));
2033	*rrn = *refrec;
2034	rrn->jr_op = JOP_ADDREF;
2035	rrn->jr_diroff = diroff;
2036	srn = errmalloc(sizeof(*srn));
2037	srn->sr_rec = (union jrec *)rrn;
2038	ino_add_ref(sino, srn);
2039}
2040
2041/*
2042 * Add a reference to the list at all known locations.  We follow the offset
2043 * changes for a single instance and create duplicate add refs at each so
2044 * that we can tolerate any version of the directory block.  Eliminate
2045 * removes which collide with adds that are seen in the journal.  They should
2046 * not adjust the link count down.
2047 */
2048static void
2049ino_build_ref(struct suj_ino *sino, struct suj_rec *srec)
2050{
2051	struct jrefrec *refrec;
2052	struct jmvrec *mvrec;
2053	struct suj_rec *srp;
2054	struct suj_rec *srn;
2055	struct jrefrec *rrn;
2056	off_t diroff;
2057
2058	refrec = (struct jrefrec *)srec->sr_rec;
2059	/*
2060	 * Search for a mvrec that matches this offset.  Whether it's an add
2061	 * or a remove we can delete the mvref after creating a dup record in
2062	 * the old location.
2063	 */
2064	if (!TAILQ_EMPTY(&sino->si_movs)) {
2065		diroff = refrec->jr_diroff;
2066		for (srn = TAILQ_LAST(&sino->si_movs, srechd); srn; srn = srp) {
2067			srp = TAILQ_PREV(srn, srechd, sr_next);
2068			mvrec = (struct jmvrec *)srn->sr_rec;
2069			if (mvrec->jm_parent != refrec->jr_parent ||
2070			    mvrec->jm_newoff != diroff)
2071				continue;
2072			diroff = mvrec->jm_oldoff;
2073			TAILQ_REMOVE(&sino->si_movs, srn, sr_next);
2074			free(srn);
2075			ino_dup_ref(sino, refrec, diroff);
2076		}
2077	}
2078	/*
2079	 * If a remove wasn't eliminated by an earlier add just append it to
2080	 * the list.
2081	 */
2082	if (refrec->jr_op == JOP_REMREF) {
2083		ino_add_ref(sino, srec);
2084		return;
2085	}
2086	/*
2087	 * Walk the list of records waiting to be added to the list.  We
2088	 * must check for moves that apply to our current offset and remove
2089	 * them from the list.  Remove any duplicates to eliminate removes
2090	 * with corresponding adds.
2091	 */
2092	TAILQ_FOREACH_SAFE(srn, &sino->si_newrecs, sr_next, srp) {
2093		switch (srn->sr_rec->rec_jrefrec.jr_op) {
2094		case JOP_ADDREF:
2095			/*
2096			 * This should actually be an error we should
2097			 * have a remove for every add journaled.
2098			 */
2099			rrn = (struct jrefrec *)srn->sr_rec;
2100			if (rrn->jr_parent != refrec->jr_parent ||
2101			    rrn->jr_diroff != refrec->jr_diroff)
2102				break;
2103			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2104			break;
2105		case JOP_REMREF:
2106			/*
2107			 * Once we remove the current iteration of the
2108			 * record at this address we're done.
2109			 */
2110			rrn = (struct jrefrec *)srn->sr_rec;
2111			if (rrn->jr_parent != refrec->jr_parent ||
2112			    rrn->jr_diroff != refrec->jr_diroff)
2113				break;
2114			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2115			ino_add_ref(sino, srec);
2116			return;
2117		case JOP_MVREF:
2118			/*
2119			 * Update our diroff based on any moves that match
2120			 * and remove the move.
2121			 */
2122			mvrec = (struct jmvrec *)srn->sr_rec;
2123			if (mvrec->jm_parent != refrec->jr_parent ||
2124			    mvrec->jm_oldoff != refrec->jr_diroff)
2125				break;
2126			ino_dup_ref(sino, refrec, mvrec->jm_oldoff);
2127			refrec->jr_diroff = mvrec->jm_newoff;
2128			TAILQ_REMOVE(&sino->si_newrecs, srn, sr_next);
2129			break;
2130		default:
2131			err_suj("ino_build_ref: Unknown op %d\n",
2132			    srn->sr_rec->rec_jrefrec.jr_op);
2133		}
2134	}
2135	ino_add_ref(sino, srec);
2136}
2137
2138/*
2139 * Walk the list of new records and add them in-order resolving any
2140 * dups and adjusted offsets.
2141 */
2142static void
2143ino_build(struct suj_ino *sino)
2144{
2145	struct suj_rec *srec;
2146
2147	while ((srec = TAILQ_FIRST(&sino->si_newrecs)) != NULL) {
2148		TAILQ_REMOVE(&sino->si_newrecs, srec, sr_next);
2149		switch (srec->sr_rec->rec_jrefrec.jr_op) {
2150		case JOP_ADDREF:
2151		case JOP_REMREF:
2152			ino_build_ref(sino, srec);
2153			break;
2154		case JOP_MVREF:
2155			/*
2156			 * Add this mvrec to the queue of pending mvs.
2157			 */
2158			TAILQ_INSERT_TAIL(&sino->si_movs, srec, sr_next);
2159			break;
2160		default:
2161			err_suj("ino_build: Unknown op %d\n",
2162			    srec->sr_rec->rec_jrefrec.jr_op);
2163		}
2164	}
2165	if (TAILQ_EMPTY(&sino->si_recs))
2166		sino->si_hasrecs = 0;
2167}
2168
2169/*
2170 * Modify journal records so they refer to the base block number
2171 * and a start and end frag range.  This is to facilitate the discovery
2172 * of overlapping fragment allocations.
2173 */
2174static void
2175blk_build(struct jblkrec *blkrec)
2176{
2177	struct suj_rec *srec;
2178	struct suj_blk *sblk;
2179	struct jblkrec *blkrn;
2180	ufs2_daddr_t blk;
2181	int frag;
2182
2183	if (debug)
2184		printf("blk_build: op %d blkno %jd frags %d oldfrags %d "
2185		    "ino %d lbn %jd\n",
2186		    blkrec->jb_op, blkrec->jb_blkno, blkrec->jb_frags,
2187		    blkrec->jb_oldfrags, blkrec->jb_ino, blkrec->jb_lbn);
2188
2189	blk = blknum(fs, blkrec->jb_blkno);
2190	frag = fragnum(fs, blkrec->jb_blkno);
2191	sblk = blk_lookup(blk, 1);
2192	/*
2193	 * Rewrite the record using oldfrags to indicate the offset into
2194	 * the block.  Leave jb_frags as the actual allocated count.
2195	 */
2196	blkrec->jb_blkno -= frag;
2197	blkrec->jb_oldfrags = frag;
2198	if (blkrec->jb_oldfrags + blkrec->jb_frags > fs->fs_frag)
2199		err_suj("Invalid fragment count %d oldfrags %d\n",
2200		    blkrec->jb_frags, frag);
2201	/*
2202	 * Detect dups.  If we detect a dup we always discard the oldest
2203	 * record as it is superseded by the new record.  This speeds up
2204	 * later stages but also eliminates free records which are used
2205	 * to indicate that the contents of indirects can be trusted.
2206	 */
2207	TAILQ_FOREACH(srec, &sblk->sb_recs, sr_next) {
2208		blkrn = (struct jblkrec *)srec->sr_rec;
2209		if (blkrn->jb_ino != blkrec->jb_ino ||
2210		    blkrn->jb_lbn != blkrec->jb_lbn ||
2211		    blkrn->jb_blkno != blkrec->jb_blkno ||
2212		    blkrn->jb_frags != blkrec->jb_frags ||
2213		    blkrn->jb_oldfrags != blkrec->jb_oldfrags)
2214			continue;
2215		if (debug)
2216			printf("Removed dup.\n");
2217		/* Discard the free which is a dup with an alloc. */
2218		if (blkrec->jb_op == JOP_FREEBLK)
2219			return;
2220		TAILQ_REMOVE(&sblk->sb_recs, srec, sr_next);
2221		free(srec);
2222		break;
2223	}
2224	srec = errmalloc(sizeof(*srec));
2225	srec->sr_rec = (union jrec *)blkrec;
2226	TAILQ_INSERT_TAIL(&sblk->sb_recs, srec, sr_next);
2227}
2228
2229static void
2230ino_build_trunc(struct jtrncrec *rec)
2231{
2232	struct suj_ino *sino;
2233
2234	if (debug)
2235		printf("ino_build_trunc: op %d ino %d, size %jd\n",
2236		    rec->jt_op, rec->jt_ino, rec->jt_size);
2237	sino = ino_lookup(rec->jt_ino, 1);
2238	if (rec->jt_op == JOP_SYNC) {
2239		sino->si_trunc = NULL;
2240		return;
2241	}
2242	if (sino->si_trunc == NULL || sino->si_trunc->jt_size > rec->jt_size)
2243		sino->si_trunc = rec;
2244}
2245
2246/*
2247 * Build up tables of the operations we need to recover.
2248 */
2249static void
2250suj_build(void)
2251{
2252	struct suj_seg *seg;
2253	union jrec *rec;
2254	int off;
2255	int i;
2256
2257	TAILQ_FOREACH(seg, &allsegs, ss_next) {
2258		if (debug)
2259			printf("seg %jd has %d records, oldseq %jd.\n",
2260			    seg->ss_rec.jsr_seq, seg->ss_rec.jsr_cnt,
2261			    seg->ss_rec.jsr_oldest);
2262		off = 0;
2263		rec = (union jrec *)seg->ss_blk;
2264		for (i = 0; i < seg->ss_rec.jsr_cnt; off += JREC_SIZE, rec++) {
2265			/* skip the segrec. */
2266			if ((off % real_dev_bsize) == 0)
2267				continue;
2268			switch (rec->rec_jrefrec.jr_op) {
2269			case JOP_ADDREF:
2270			case JOP_REMREF:
2271			case JOP_MVREF:
2272				ino_append(rec);
2273				break;
2274			case JOP_NEWBLK:
2275			case JOP_FREEBLK:
2276				blk_build((struct jblkrec *)rec);
2277				break;
2278			case JOP_TRUNC:
2279			case JOP_SYNC:
2280				ino_build_trunc((struct jtrncrec *)rec);
2281				break;
2282			default:
2283				err_suj("Unknown journal operation %d (%d)\n",
2284				    rec->rec_jrefrec.jr_op, off);
2285			}
2286			i++;
2287		}
2288	}
2289}
2290
2291/*
2292 * Prune the journal segments to those we care about based on the
2293 * oldest sequence in the newest segment.  Order the segment list
2294 * based on sequence number.
2295 */
2296static void
2297suj_prune(void)
2298{
2299	struct suj_seg *seg;
2300	struct suj_seg *segn;
2301	uint64_t newseq;
2302	int discard;
2303
2304	if (debug)
2305		printf("Pruning up to %jd\n", oldseq);
2306	/* First free the expired segments. */
2307	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2308		if (seg->ss_rec.jsr_seq >= oldseq)
2309			continue;
2310		TAILQ_REMOVE(&allsegs, seg, ss_next);
2311		free(seg->ss_blk);
2312		free(seg);
2313	}
2314	/* Next ensure that segments are ordered properly. */
2315	seg = TAILQ_FIRST(&allsegs);
2316	if (seg == NULL) {
2317		if (debug)
2318			printf("Empty journal\n");
2319		return;
2320	}
2321	newseq = seg->ss_rec.jsr_seq;
2322	for (;;) {
2323		seg = TAILQ_LAST(&allsegs, seghd);
2324		if (seg->ss_rec.jsr_seq >= newseq)
2325			break;
2326		TAILQ_REMOVE(&allsegs, seg, ss_next);
2327		TAILQ_INSERT_HEAD(&allsegs, seg, ss_next);
2328		newseq = seg->ss_rec.jsr_seq;
2329
2330	}
2331	if (newseq != oldseq) {
2332		TAILQ_FOREACH(seg, &allsegs, ss_next) {
2333			printf("%jd, ", seg->ss_rec.jsr_seq);
2334		}
2335		printf("\n");
2336		err_suj("Journal file sequence mismatch %jd != %jd\n",
2337		    newseq, oldseq);
2338	}
2339	/*
2340	 * The kernel may asynchronously write segments which can create
2341	 * gaps in the sequence space.  Throw away any segments after the
2342	 * gap as the kernel guarantees only those that are contiguously
2343	 * reachable are marked as completed.
2344	 */
2345	discard = 0;
2346	TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2347		if (!discard && newseq++ == seg->ss_rec.jsr_seq) {
2348			jrecs += seg->ss_rec.jsr_cnt;
2349			jbytes += seg->ss_rec.jsr_blocks * real_dev_bsize;
2350			continue;
2351		}
2352		discard = 1;
2353		if (debug)
2354			printf("Journal order mismatch %jd != %jd pruning\n",
2355			    newseq-1, seg->ss_rec.jsr_seq);
2356		TAILQ_REMOVE(&allsegs, seg, ss_next);
2357		free(seg->ss_blk);
2358		free(seg);
2359	}
2360	if (debug)
2361		printf("Processing journal segments from %jd to %jd\n",
2362		    oldseq, newseq-1);
2363}
2364
2365/*
2366 * Verify the journal inode before attempting to read records.
2367 */
2368static int
2369suj_verifyino(union dinode *ip)
2370{
2371
2372	if (DIP(ip, di_nlink) != 1) {
2373		printf("Invalid link count %d for journal inode %ju\n",
2374		    DIP(ip, di_nlink), (uintmax_t)sujino);
2375		return (-1);
2376	}
2377
2378	if ((DIP(ip, di_flags) & (SF_IMMUTABLE | SF_NOUNLINK)) !=
2379	    (SF_IMMUTABLE | SF_NOUNLINK)) {
2380		printf("Invalid flags 0x%X for journal inode %ju\n",
2381		    DIP(ip, di_flags), (uintmax_t)sujino);
2382		return (-1);
2383	}
2384
2385	if (DIP(ip, di_mode) != (IFREG | IREAD)) {
2386		printf("Invalid mode %o for journal inode %ju\n",
2387		    DIP(ip, di_mode), (uintmax_t)sujino);
2388		return (-1);
2389	}
2390
2391	if (DIP(ip, di_size) < SUJ_MIN) {
2392		printf("Invalid size %jd for journal inode %ju\n",
2393		    DIP(ip, di_size), (uintmax_t)sujino);
2394		return (-1);
2395	}
2396
2397	if (DIP(ip, di_modrev) != fs->fs_mtime) {
2398		printf("Journal timestamp does not match fs mount time\n");
2399		return (-1);
2400	}
2401
2402	return (0);
2403}
2404
2405struct jblocks {
2406	struct jextent *jb_extent;	/* Extent array. */
2407	int		jb_avail;	/* Available extents. */
2408	int		jb_used;	/* Last used extent. */
2409	int		jb_head;	/* Allocator head. */
2410	int		jb_off;		/* Allocator extent offset. */
2411};
2412struct jextent {
2413	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2414	int		je_blocks;	/* Disk block count. */
2415};
2416
2417static struct jblocks *suj_jblocks;
2418
2419static struct jblocks *
2420jblocks_create(void)
2421{
2422	struct jblocks *jblocks;
2423	int size;
2424
2425	jblocks = errmalloc(sizeof(*jblocks));
2426	jblocks->jb_avail = 10;
2427	jblocks->jb_used = 0;
2428	jblocks->jb_head = 0;
2429	jblocks->jb_off = 0;
2430	size = sizeof(struct jextent) * jblocks->jb_avail;
2431	jblocks->jb_extent = errmalloc(size);
2432	bzero(jblocks->jb_extent, size);
2433
2434	return (jblocks);
2435}
2436
2437/*
2438 * Return the next available disk block and the amount of contiguous
2439 * free space it contains.
2440 */
2441static ufs2_daddr_t
2442jblocks_next(struct jblocks *jblocks, int bytes, int *actual)
2443{
2444	struct jextent *jext;
2445	ufs2_daddr_t daddr;
2446	int freecnt;
2447	int blocks;
2448
2449	blocks = bytes / disk->d_bsize;
2450	jext = &jblocks->jb_extent[jblocks->jb_head];
2451	freecnt = jext->je_blocks - jblocks->jb_off;
2452	if (freecnt == 0) {
2453		jblocks->jb_off = 0;
2454		if (++jblocks->jb_head > jblocks->jb_used)
2455			return (0);
2456		jext = &jblocks->jb_extent[jblocks->jb_head];
2457		freecnt = jext->je_blocks;
2458	}
2459	if (freecnt > blocks)
2460		freecnt = blocks;
2461	*actual = freecnt * disk->d_bsize;
2462	daddr = jext->je_daddr + jblocks->jb_off;
2463
2464	return (daddr);
2465}
2466
2467/*
2468 * Advance the allocation head by a specified number of bytes, consuming
2469 * one journal segment.
2470 */
2471static void
2472jblocks_advance(struct jblocks *jblocks, int bytes)
2473{
2474
2475	jblocks->jb_off += bytes / disk->d_bsize;
2476}
2477
2478static void
2479jblocks_destroy(struct jblocks *jblocks)
2480{
2481
2482	free(jblocks->jb_extent);
2483	free(jblocks);
2484}
2485
2486static void
2487jblocks_add(struct jblocks *jblocks, ufs2_daddr_t daddr, int blocks)
2488{
2489	struct jextent *jext;
2490	int size;
2491
2492	jext = &jblocks->jb_extent[jblocks->jb_used];
2493	/* Adding the first block. */
2494	if (jext->je_daddr == 0) {
2495		jext->je_daddr = daddr;
2496		jext->je_blocks = blocks;
2497		return;
2498	}
2499	/* Extending the last extent. */
2500	if (jext->je_daddr + jext->je_blocks == daddr) {
2501		jext->je_blocks += blocks;
2502		return;
2503	}
2504	/* Adding a new extent. */
2505	if (++jblocks->jb_used == jblocks->jb_avail) {
2506		jblocks->jb_avail *= 2;
2507		size = sizeof(struct jextent) * jblocks->jb_avail;
2508		jext = errmalloc(size);
2509		bzero(jext, size);
2510		bcopy(jblocks->jb_extent, jext,
2511		    sizeof(struct jextent) * jblocks->jb_used);
2512		free(jblocks->jb_extent);
2513		jblocks->jb_extent = jext;
2514	}
2515	jext = &jblocks->jb_extent[jblocks->jb_used];
2516	jext->je_daddr = daddr;
2517	jext->je_blocks = blocks;
2518
2519	return;
2520}
2521
2522/*
2523 * Add a file block from the journal to the extent map.  We can't read
2524 * each file block individually because the kernel treats it as a circular
2525 * buffer and segments may span mutliple contiguous blocks.
2526 */
2527static void
2528suj_add_block(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2529{
2530
2531	jblocks_add(suj_jblocks, fsbtodb(fs, blk), fsbtodb(fs, frags));
2532}
2533
2534static void
2535suj_read(void)
2536{
2537	uint8_t block[1 * 1024 * 1024];
2538	struct suj_seg *seg;
2539	struct jsegrec *recn;
2540	struct jsegrec *rec;
2541	ufs2_daddr_t blk;
2542	int readsize;
2543	int blocks;
2544	int recsize;
2545	int size;
2546	int i;
2547
2548	/*
2549	 * Read records until we exhaust the journal space.  If we find
2550	 * an invalid record we start searching for a valid segment header
2551	 * at the next block.  This is because we don't have a head/tail
2552	 * pointer and must recover the information indirectly.  At the gap
2553	 * between the head and tail we won't necessarily have a valid
2554	 * segment.
2555	 */
2556restart:
2557	for (;;) {
2558		size = sizeof(block);
2559		blk = jblocks_next(suj_jblocks, size, &readsize);
2560		if (blk == 0)
2561			return;
2562		size = readsize;
2563		/*
2564		 * Read 1MB at a time and scan for records within this block.
2565		 */
2566		if (bread(disk, blk, &block, size) == -1) {
2567			err_suj("Error reading journal block %jd\n",
2568			    (intmax_t)blk);
2569		}
2570		for (rec = (void *)block; size; size -= recsize,
2571		    rec = (struct jsegrec *)((uintptr_t)rec + recsize)) {
2572			recsize = real_dev_bsize;
2573			if (rec->jsr_time != fs->fs_mtime) {
2574				if (debug)
2575					printf("Rec time %jd != fs mtime %jd\n",
2576					    rec->jsr_time, fs->fs_mtime);
2577				jblocks_advance(suj_jblocks, recsize);
2578				continue;
2579			}
2580			if (rec->jsr_cnt == 0) {
2581				if (debug)
2582					printf("Found illegal count %d\n",
2583					    rec->jsr_cnt);
2584				jblocks_advance(suj_jblocks, recsize);
2585				continue;
2586			}
2587			blocks = rec->jsr_blocks;
2588			recsize = blocks * real_dev_bsize;
2589			if (recsize > size) {
2590				/*
2591				 * We may just have run out of buffer, restart
2592				 * the loop to re-read from this spot.
2593				 */
2594				if (size < fs->fs_bsize &&
2595				    size != readsize &&
2596				    recsize <= fs->fs_bsize)
2597					goto restart;
2598				if (debug)
2599					printf("Found invalid segsize %d > %d\n",
2600					    recsize, size);
2601				recsize = real_dev_bsize;
2602				jblocks_advance(suj_jblocks, recsize);
2603				continue;
2604			}
2605			/*
2606			 * Verify that all blocks in the segment are present.
2607			 */
2608			for (i = 1; i < blocks; i++) {
2609				recn = (void *)((uintptr_t)rec) + i *
2610				    real_dev_bsize;
2611				if (recn->jsr_seq == rec->jsr_seq &&
2612				    recn->jsr_time == rec->jsr_time)
2613					continue;
2614				if (debug)
2615					printf("Incomplete record %jd (%d)\n",
2616					    rec->jsr_seq, i);
2617				recsize = i * real_dev_bsize;
2618				jblocks_advance(suj_jblocks, recsize);
2619				goto restart;
2620			}
2621			seg = errmalloc(sizeof(*seg));
2622			seg->ss_blk = errmalloc(recsize);
2623			seg->ss_rec = *rec;
2624			bcopy((void *)rec, seg->ss_blk, recsize);
2625			if (rec->jsr_oldest > oldseq)
2626				oldseq = rec->jsr_oldest;
2627			TAILQ_INSERT_TAIL(&allsegs, seg, ss_next);
2628			jblocks_advance(suj_jblocks, recsize);
2629		}
2630	}
2631}
2632
2633/*
2634 * Search a directory block for the SUJ_FILE.
2635 */
2636static void
2637suj_find(ino_t ino, ufs_lbn_t lbn, ufs2_daddr_t blk, int frags)
2638{
2639	char block[MAXBSIZE];
2640	struct direct *dp;
2641	int bytes;
2642	int off;
2643
2644	if (sujino)
2645		return;
2646	bytes = lfragtosize(fs, frags);
2647	if (bread(disk, fsbtodb(fs, blk), block, bytes) <= 0)
2648		err_suj("Failed to read ROOTINO directory block %jd\n", blk);
2649	for (off = 0; off < bytes; off += dp->d_reclen) {
2650		dp = (struct direct *)&block[off];
2651		if (dp->d_reclen == 0)
2652			break;
2653		if (dp->d_ino == 0)
2654			continue;
2655		if (dp->d_namlen != strlen(SUJ_FILE))
2656			continue;
2657		if (bcmp(dp->d_name, SUJ_FILE, dp->d_namlen) != 0)
2658			continue;
2659		sujino = dp->d_ino;
2660		return;
2661	}
2662}
2663
2664/*
2665 * Orchestrate the verification of a filesystem via the softupdates journal.
2666 */
2667int
2668suj_check(const char *filesys)
2669{
2670	union dinode *jip;
2671	union dinode *ip;
2672	uint64_t blocks;
2673	int retval;
2674	struct suj_seg *seg;
2675	struct suj_seg *segn;
2676
2677	initsuj();
2678	opendisk(filesys);
2679
2680	/*
2681	 * Set an exit point when SUJ check failed
2682	 */
2683	retval = setjmp(jmpbuf);
2684	if (retval != 0) {
2685		pwarn("UNEXPECTED SU+J INCONSISTENCY\n");
2686		TAILQ_FOREACH_SAFE(seg, &allsegs, ss_next, segn) {
2687			TAILQ_REMOVE(&allsegs, seg, ss_next);
2688				free(seg->ss_blk);
2689				free(seg);
2690		}
2691		if (reply("FALLBACK TO FULL FSCK") == 0) {
2692			ckfini(0);
2693			exit(EEXIT);
2694		} else
2695			return (-1);
2696	}
2697
2698	/*
2699	 * Find the journal inode.
2700	 */
2701	ip = ino_read(ROOTINO);
2702	sujino = 0;
2703	ino_visit(ip, ROOTINO, suj_find, 0);
2704	if (sujino == 0) {
2705		printf("Journal inode removed.  Use tunefs to re-create.\n");
2706		sblock.fs_flags &= ~FS_SUJ;
2707		sblock.fs_sujfree = 0;
2708		return (-1);
2709	}
2710	/*
2711	 * Fetch the journal inode and verify it.
2712	 */
2713	jip = ino_read(sujino);
2714	printf("** SU+J Recovering %s\n", filesys);
2715	if (suj_verifyino(jip) != 0)
2716		return (-1);
2717	/*
2718	 * Build a list of journal blocks in jblocks before parsing the
2719	 * available journal blocks in with suj_read().
2720	 */
2721	printf("** Reading %jd byte journal from inode %ju.\n",
2722	    DIP(jip, di_size), (uintmax_t)sujino);
2723	suj_jblocks = jblocks_create();
2724	blocks = ino_visit(jip, sujino, suj_add_block, 0);
2725	if (blocks != numfrags(fs, DIP(jip, di_size))) {
2726		printf("Sparse journal inode %ju.\n", (uintmax_t)sujino);
2727		return (-1);
2728	}
2729	suj_read();
2730	jblocks_destroy(suj_jblocks);
2731	suj_jblocks = NULL;
2732	if (preen || reply("RECOVER")) {
2733		printf("** Building recovery table.\n");
2734		suj_prune();
2735		suj_build();
2736		cg_apply(cg_build);
2737		printf("** Resolving unreferenced inode list.\n");
2738		ino_unlinked();
2739		printf("** Processing journal entries.\n");
2740		cg_apply(cg_trunc);
2741		cg_apply(cg_check_blk);
2742		cg_apply(cg_adj_blk);
2743		cg_apply(cg_check_ino);
2744	}
2745	if (preen == 0 && (jrecs > 0 || jbytes > 0) && reply("WRITE CHANGES") == 0)
2746		return (0);
2747	/*
2748	 * To remain idempotent with partial truncations the free bitmaps
2749	 * must be written followed by indirect blocks and lastly inode
2750	 * blocks.  This preserves access to the modified pointers until
2751	 * they are freed.
2752	 */
2753	cg_apply(cg_write);
2754	dblk_write();
2755	cg_apply(cg_write_inos);
2756	/* Write back superblock. */
2757	closedisk(filesys);
2758	if (jrecs > 0 || jbytes > 0) {
2759		printf("** %jd journal records in %jd bytes for %.2f%% utilization\n",
2760		    jrecs, jbytes, ((float)jrecs / (float)(jbytes / JREC_SIZE)) * 100);
2761		printf("** Freed %jd inodes (%jd dirs) %jd blocks, and %jd frags.\n",
2762		    freeinos, freedir, freeblocks, freefrags);
2763	}
2764
2765	return (0);
2766}
2767
2768static void
2769initsuj(void)
2770{
2771	int i;
2772
2773	for (i = 0; i < SUJ_HASHSIZE; i++) {
2774		LIST_INIT(&cghash[i]);
2775		LIST_INIT(&dbhash[i]);
2776	}
2777	lastcg = NULL;
2778	lastblk = NULL;
2779	TAILQ_INIT(&allsegs);
2780	oldseq = 0;
2781	disk = NULL;
2782	fs = NULL;
2783	sujino = 0;
2784	freefrags = 0;
2785	freeblocks = 0;
2786	freeinos = 0;
2787	freedir = 0;
2788	jbytes = 0;
2789	jrecs = 0;
2790	suj_jblocks = NULL;
2791}
2792