1/*-
2 * Copyright 2005 Colin Percival
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/endian.h>
31#include <sys/types.h>
32
33#include <string.h>
34
35#include "sha256.h"
36
37#if BYTE_ORDER == BIG_ENDIAN
38
39/* Copy a vector of big-endian uint32_t into a vector of bytes */
40#define be32enc_vect(dst, src, len)	\
41	memcpy((void *)dst, (const void *)src, (size_t)len)
42
43/* Copy a vector of bytes into a vector of big-endian uint32_t */
44#define be32dec_vect(dst, src, len)	\
45	memcpy((void *)dst, (const void *)src, (size_t)len)
46
47#else /* BYTE_ORDER != BIG_ENDIAN */
48
49/*
50 * Encode a length len/4 vector of (uint32_t) into a length len vector of
51 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
52 */
53static void
54be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
55{
56	size_t i;
57
58	for (i = 0; i < len / 4; i++)
59		be32enc(dst + i * 4, src[i]);
60}
61
62/*
63 * Decode a big-endian length len vector of (unsigned char) into a length
64 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
65 */
66static void
67be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
68{
69	size_t i;
70
71	for (i = 0; i < len / 4; i++)
72		dst[i] = be32dec(src + i * 4);
73}
74
75#endif /* BYTE_ORDER != BIG_ENDIAN */
76
77/* Elementary functions used by SHA256 */
78#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
79#define Maj(x, y, z)	((x & (y | z)) | (y & z))
80#define SHR(x, n)	(x >> n)
81#define ROTR(x, n)	((x >> n) | (x << (32 - n)))
82#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
83#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
84#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
85#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
86
87/* SHA256 round function */
88#define RND(a, b, c, d, e, f, g, h, k)			\
89	t0 = h + S1(e) + Ch(e, f, g) + k;		\
90	t1 = S0(a) + Maj(a, b, c);			\
91	d += t0;					\
92	h  = t0 + t1;
93
94/* Adjusted round function for rotating state */
95#define RNDr(S, W, i, k)			\
96	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
97	    S[(66 - i) % 8], S[(67 - i) % 8],	\
98	    S[(68 - i) % 8], S[(69 - i) % 8],	\
99	    S[(70 - i) % 8], S[(71 - i) % 8],	\
100	    W[i] + k)
101
102/*
103 * SHA256 block compression function.  The 256-bit state is transformed via
104 * the 512-bit input block to produce a new state.
105 */
106static void
107SHA256_Transform(uint32_t * state, const unsigned char block[64])
108{
109	uint32_t W[64];
110	uint32_t S[8];
111	uint32_t t0, t1;
112	int i;
113
114	/* 1. Prepare message schedule W. */
115	be32dec_vect(W, block, 64);
116	for (i = 16; i < 64; i++)
117		W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
118
119	/* 2. Initialize working variables. */
120	memcpy(S, state, 32);
121
122	/* 3. Mix. */
123	RNDr(S, W, 0, 0x428a2f98);
124	RNDr(S, W, 1, 0x71374491);
125	RNDr(S, W, 2, 0xb5c0fbcf);
126	RNDr(S, W, 3, 0xe9b5dba5);
127	RNDr(S, W, 4, 0x3956c25b);
128	RNDr(S, W, 5, 0x59f111f1);
129	RNDr(S, W, 6, 0x923f82a4);
130	RNDr(S, W, 7, 0xab1c5ed5);
131	RNDr(S, W, 8, 0xd807aa98);
132	RNDr(S, W, 9, 0x12835b01);
133	RNDr(S, W, 10, 0x243185be);
134	RNDr(S, W, 11, 0x550c7dc3);
135	RNDr(S, W, 12, 0x72be5d74);
136	RNDr(S, W, 13, 0x80deb1fe);
137	RNDr(S, W, 14, 0x9bdc06a7);
138	RNDr(S, W, 15, 0xc19bf174);
139	RNDr(S, W, 16, 0xe49b69c1);
140	RNDr(S, W, 17, 0xefbe4786);
141	RNDr(S, W, 18, 0x0fc19dc6);
142	RNDr(S, W, 19, 0x240ca1cc);
143	RNDr(S, W, 20, 0x2de92c6f);
144	RNDr(S, W, 21, 0x4a7484aa);
145	RNDr(S, W, 22, 0x5cb0a9dc);
146	RNDr(S, W, 23, 0x76f988da);
147	RNDr(S, W, 24, 0x983e5152);
148	RNDr(S, W, 25, 0xa831c66d);
149	RNDr(S, W, 26, 0xb00327c8);
150	RNDr(S, W, 27, 0xbf597fc7);
151	RNDr(S, W, 28, 0xc6e00bf3);
152	RNDr(S, W, 29, 0xd5a79147);
153	RNDr(S, W, 30, 0x06ca6351);
154	RNDr(S, W, 31, 0x14292967);
155	RNDr(S, W, 32, 0x27b70a85);
156	RNDr(S, W, 33, 0x2e1b2138);
157	RNDr(S, W, 34, 0x4d2c6dfc);
158	RNDr(S, W, 35, 0x53380d13);
159	RNDr(S, W, 36, 0x650a7354);
160	RNDr(S, W, 37, 0x766a0abb);
161	RNDr(S, W, 38, 0x81c2c92e);
162	RNDr(S, W, 39, 0x92722c85);
163	RNDr(S, W, 40, 0xa2bfe8a1);
164	RNDr(S, W, 41, 0xa81a664b);
165	RNDr(S, W, 42, 0xc24b8b70);
166	RNDr(S, W, 43, 0xc76c51a3);
167	RNDr(S, W, 44, 0xd192e819);
168	RNDr(S, W, 45, 0xd6990624);
169	RNDr(S, W, 46, 0xf40e3585);
170	RNDr(S, W, 47, 0x106aa070);
171	RNDr(S, W, 48, 0x19a4c116);
172	RNDr(S, W, 49, 0x1e376c08);
173	RNDr(S, W, 50, 0x2748774c);
174	RNDr(S, W, 51, 0x34b0bcb5);
175	RNDr(S, W, 52, 0x391c0cb3);
176	RNDr(S, W, 53, 0x4ed8aa4a);
177	RNDr(S, W, 54, 0x5b9cca4f);
178	RNDr(S, W, 55, 0x682e6ff3);
179	RNDr(S, W, 56, 0x748f82ee);
180	RNDr(S, W, 57, 0x78a5636f);
181	RNDr(S, W, 58, 0x84c87814);
182	RNDr(S, W, 59, 0x8cc70208);
183	RNDr(S, W, 60, 0x90befffa);
184	RNDr(S, W, 61, 0xa4506ceb);
185	RNDr(S, W, 62, 0xbef9a3f7);
186	RNDr(S, W, 63, 0xc67178f2);
187
188	/* 4. Mix local working variables into global state */
189	for (i = 0; i < 8; i++)
190		state[i] += S[i];
191}
192
193static unsigned char PAD[64] = {
194	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
195	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
196	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
197	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
198};
199
200/* Add padding and terminating bit-count. */
201static void
202SHA256_Pad(SHA256_CTX * ctx)
203{
204	unsigned char len[8];
205	uint32_t r, plen;
206
207	/*
208	 * Convert length to a vector of bytes -- we do this now rather
209	 * than later because the length will change after we pad.
210	 */
211	be32enc_vect(len, ctx->count, 8);
212
213	/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
214	r = (ctx->count[1] >> 3) & 0x3f;
215	plen = (r < 56) ? (56 - r) : (120 - r);
216	SHA256_Update(ctx, PAD, (size_t)plen);
217
218	/* Add the terminating bit-count */
219	SHA256_Update(ctx, len, 8);
220}
221
222/* SHA-256 initialization.  Begins a SHA-256 operation. */
223void
224SHA256_Init(SHA256_CTX * ctx)
225{
226
227	/* Zero bits processed so far */
228	ctx->count[0] = ctx->count[1] = 0;
229
230	/* Magic initialization constants */
231	ctx->state[0] = 0x6A09E667;
232	ctx->state[1] = 0xBB67AE85;
233	ctx->state[2] = 0x3C6EF372;
234	ctx->state[3] = 0xA54FF53A;
235	ctx->state[4] = 0x510E527F;
236	ctx->state[5] = 0x9B05688C;
237	ctx->state[6] = 0x1F83D9AB;
238	ctx->state[7] = 0x5BE0CD19;
239}
240
241/* Add bytes into the hash */
242void
243SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
244{
245	uint32_t bitlen[2];
246	uint32_t r;
247	const unsigned char *src = in;
248
249	/* Number of bytes left in the buffer from previous updates */
250	r = (ctx->count[1] >> 3) & 0x3f;
251
252	/* Convert the length into a number of bits */
253	bitlen[1] = ((uint32_t)len) << 3;
254	bitlen[0] = (uint32_t)(len >> 29);
255
256	/* Update number of bits */
257	if ((ctx->count[1] += bitlen[1]) < bitlen[1])
258		ctx->count[0]++;
259	ctx->count[0] += bitlen[0];
260
261	/* Handle the case where we don't need to perform any transforms */
262	if (len < 64 - r) {
263		memcpy(&ctx->buf[r], src, len);
264		return;
265	}
266
267	/* Finish the current block */
268	memcpy(&ctx->buf[r], src, 64 - r);
269	SHA256_Transform(ctx->state, ctx->buf);
270	src += 64 - r;
271	len -= 64 - r;
272
273	/* Perform complete blocks */
274	while (len >= 64) {
275		SHA256_Transform(ctx->state, src);
276		src += 64;
277		len -= 64;
278	}
279
280	/* Copy left over data into buffer */
281	memcpy(ctx->buf, src, len);
282}
283
284/*
285 * SHA-256 finalization.  Pads the input data, exports the hash value,
286 * and clears the context state.
287 */
288void
289SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
290{
291
292	/* Add padding */
293	SHA256_Pad(ctx);
294
295	/* Write the hash */
296	be32enc_vect(digest, ctx->state, 32);
297
298	/* Clear the context state */
299	memset((void *)ctx, 0, sizeof(*ctx));
300}
301