1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15include "R600InstrFormats.td"
16
17class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
18    InstR600 <outs, ins, asm, pattern, NullALU> {
19
20  let Namespace = "AMDGPU";
21}
22
23def MEMxi : Operand<iPTR> {
24  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
25  let PrintMethod = "printMemOperand";
26}
27
28def MEMrr : Operand<iPTR> {
29  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
30}
31
32// Operands for non-registers
33
34class InstFlag<string PM = "printOperand", int Default = 0>
35    : OperandWithDefaultOps <i32, (ops (i32 Default))> {
36  let PrintMethod = PM;
37}
38
39// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
40def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
41  let PrintMethod = "printSel";
42}
43def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> {
44  let PrintMethod = "printBankSwizzle";
45}
46
47def LITERAL : InstFlag<"printLiteral">;
48
49def WRITE : InstFlag <"printWrite", 1>;
50def OMOD : InstFlag <"printOMOD">;
51def REL : InstFlag <"printRel">;
52def CLAMP : InstFlag <"printClamp">;
53def NEG : InstFlag <"printNeg">;
54def ABS : InstFlag <"printAbs">;
55def UEM : InstFlag <"printUpdateExecMask">;
56def UP : InstFlag <"printUpdatePred">;
57
58// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
59// Once we start using the packetizer in this backend we should have this
60// default to 0.
61def LAST : InstFlag<"printLast", 1>;
62def RSel : Operand<i32> {
63  let PrintMethod = "printRSel";
64}
65def CT: Operand<i32> {
66  let PrintMethod = "printCT";
67}
68
69def FRAMEri : Operand<iPTR> {
70  let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
71}
72
73def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
74def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
75def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
76def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
77def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
78
79
80def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
81                                     (ops PRED_SEL_OFF)>;
82
83
84let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
85
86// Class for instructions with only one source register.
87// If you add new ins to this instruction, make sure they are listed before
88// $literal, because the backend currently assumes that the last operand is
89// a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
90// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
91// and R600InstrInfo::getOperandIdx().
92class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
93                InstrItinClass itin = AnyALU> :
94    InstR600 <(outs R600_Reg32:$dst),
95              (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
96                   R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
97                   LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
98                   BANK_SWIZZLE:$bank_swizzle),
99              !strconcat("  ", opName,
100                   "$clamp $last $dst$write$dst_rel$omod, "
101                   "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
102                   "$pred_sel $bank_swizzle"),
103              pattern,
104              itin>,
105    R600ALU_Word0,
106    R600ALU_Word1_OP2 <inst> {
107
108  let src1 = 0;
109  let src1_rel = 0;
110  let src1_neg = 0;
111  let src1_abs = 0;
112  let update_exec_mask = 0;
113  let update_pred = 0;
114  let HasNativeOperands = 1;
115  let Op1 = 1;
116  let ALUInst = 1;
117  let DisableEncoding = "$literal";
118  let UseNamedOperandTable = 1;
119
120  let Inst{31-0}  = Word0;
121  let Inst{63-32} = Word1;
122}
123
124class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
125                    InstrItinClass itin = AnyALU> :
126    R600_1OP <inst, opName,
127              [(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
128>;
129
130// If you add or change the operands for R600_2OP instructions, you must
131// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
132// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
133class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
134                InstrItinClass itin = AnyALU> :
135  InstR600 <(outs R600_Reg32:$dst),
136          (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
137               OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
138               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
139               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
140               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
141               BANK_SWIZZLE:$bank_swizzle),
142          !strconcat("  ", opName,
143                "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
144                "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
145                "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
146                "$pred_sel $bank_swizzle"),
147          pattern,
148          itin>,
149    R600ALU_Word0,
150    R600ALU_Word1_OP2 <inst> {
151
152  let HasNativeOperands = 1;
153  let Op2 = 1;
154  let ALUInst = 1;
155  let DisableEncoding = "$literal";
156  let UseNamedOperandTable = 1;
157
158  let Inst{31-0}  = Word0;
159  let Inst{63-32} = Word1;
160}
161
162class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
163                       InstrItinClass itim = AnyALU> :
164    R600_2OP <inst, opName,
165              [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
166                                           R600_Reg32:$src1))]
167>;
168
169// If you add our change the operands for R600_3OP instructions, you must
170// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
171// R600InstrInfo::buildDefaultInstruction(), and
172// R600InstrInfo::getOperandIdx().
173class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
174                InstrItinClass itin = AnyALU> :
175  InstR600 <(outs R600_Reg32:$dst),
176          (ins REL:$dst_rel, CLAMP:$clamp,
177               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
178               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
179               R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
180               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
181               BANK_SWIZZLE:$bank_swizzle),
182          !strconcat("  ", opName, "$clamp $last $dst$dst_rel, "
183                             "$src0_neg$src0$src0_rel, "
184                             "$src1_neg$src1$src1_rel, "
185                             "$src2_neg$src2$src2_rel, "
186                             "$pred_sel"
187                             "$bank_swizzle"),
188          pattern,
189          itin>,
190    R600ALU_Word0,
191    R600ALU_Word1_OP3<inst>{
192
193  let HasNativeOperands = 1;
194  let DisableEncoding = "$literal";
195  let Op3 = 1;
196  let UseNamedOperandTable = 1;
197  let ALUInst = 1;
198
199  let Inst{31-0}  = Word0;
200  let Inst{63-32} = Word1;
201}
202
203class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
204                      InstrItinClass itin = VecALU> :
205  InstR600 <(outs R600_Reg32:$dst),
206          ins,
207          asm,
208          pattern,
209          itin>;
210
211
212
213} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
214
215def TEX_SHADOW : PatLeaf<
216  (imm),
217  [{uint32_t TType = (uint32_t)N->getZExtValue();
218    return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
219  }]
220>;
221
222def TEX_RECT : PatLeaf<
223  (imm),
224  [{uint32_t TType = (uint32_t)N->getZExtValue();
225    return TType == 5;
226  }]
227>;
228
229def TEX_ARRAY : PatLeaf<
230  (imm),
231  [{uint32_t TType = (uint32_t)N->getZExtValue();
232    return TType == 9 || TType == 10 || TType == 16;
233  }]
234>;
235
236def TEX_SHADOW_ARRAY : PatLeaf<
237  (imm),
238  [{uint32_t TType = (uint32_t)N->getZExtValue();
239    return TType == 11 || TType == 12 || TType == 17;
240  }]
241>;
242
243def TEX_MSAA : PatLeaf<
244  (imm),
245  [{uint32_t TType = (uint32_t)N->getZExtValue();
246    return TType == 14;
247  }]
248>;
249
250def TEX_ARRAY_MSAA : PatLeaf<
251  (imm),
252  [{uint32_t TType = (uint32_t)N->getZExtValue();
253    return TType == 15;
254  }]
255>;
256
257class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask,
258                 dag outs, dag ins, string asm, list<dag> pattern> :
259    InstR600ISA <outs, ins, asm, pattern>,
260    CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF  {
261
262  let rat_id = ratid;
263  let rat_inst = ratinst;
264  let rim         = 0;
265  // XXX: Have a separate instruction for non-indexed writes.
266  let type        = 1;
267  let rw_rel      = 0;
268  let elem_size   = 0;
269
270  let array_size  = 0;
271  let comp_mask   = mask;
272  let burst_count = 0;
273  let vpm         = 0;
274  let cf_inst = cfinst;
275  let mark        = 0;
276  let barrier     = 1;
277
278  let Inst{31-0} = Word0;
279  let Inst{63-32} = Word1;
280  let IsExport = 1;
281
282}
283
284class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
285    : InstR600ISA <outs, (ins MEMxi:$src_gpr), name, pattern>,
286      VTX_WORD1_GPR {
287
288  // Static fields
289  let DST_REL = 0;
290  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
291  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
292  // however, based on my testing if USE_CONST_FIELDS is set, then all
293  // these fields need to be set to 0.
294  let USE_CONST_FIELDS = 0;
295  let NUM_FORMAT_ALL = 1;
296  let FORMAT_COMP_ALL = 0;
297  let SRF_MODE_ALL = 0;
298
299  let Inst{63-32} = Word1;
300  // LLVM can only encode 64-bit instructions, so these fields are manually
301  // encoded in R600CodeEmitter
302  //
303  // bits<16> OFFSET;
304  // bits<2>  ENDIAN_SWAP = 0;
305  // bits<1>  CONST_BUF_NO_STRIDE = 0;
306  // bits<1>  MEGA_FETCH = 0;
307  // bits<1>  ALT_CONST = 0;
308  // bits<2>  BUFFER_INDEX_MODE = 0;
309
310  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
311  // is done in R600CodeEmitter
312  //
313  // Inst{79-64} = OFFSET;
314  // Inst{81-80} = ENDIAN_SWAP;
315  // Inst{82}    = CONST_BUF_NO_STRIDE;
316  // Inst{83}    = MEGA_FETCH;
317  // Inst{84}    = ALT_CONST;
318  // Inst{86-85} = BUFFER_INDEX_MODE;
319  // Inst{95-86} = 0; Reserved
320
321  // VTX_WORD3 (Padding)
322  //
323  // Inst{127-96} = 0;
324
325  let VTXInst = 1;
326}
327
328class LoadParamFrag <PatFrag load_type> : PatFrag <
329  (ops node:$ptr), (load_type node:$ptr),
330  [{ return isConstantLoad(dyn_cast<LoadSDNode>(N), 0); }]
331>;
332
333def load_param : LoadParamFrag<load>;
334def load_param_exti8 : LoadParamFrag<az_extloadi8>;
335def load_param_exti16 : LoadParamFrag<az_extloadi16>;
336
337def isR600 : Predicate<"Subtarget.getGeneration() <= AMDGPUSubtarget::R700">;
338def isR700 : Predicate<"Subtarget.getGeneration() == AMDGPUSubtarget::R700">;
339def isEG : Predicate<
340  "Subtarget.getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
341  "Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS && "
342  "!Subtarget.hasCaymanISA()">;
343
344def isCayman : Predicate<"Subtarget.hasCaymanISA()">;
345def isEGorCayman : Predicate<"Subtarget.getGeneration() == "
346                             "AMDGPUSubtarget::EVERGREEN"
347                            "|| Subtarget.getGeneration() =="
348                            "AMDGPUSubtarget::NORTHERN_ISLANDS">;
349
350def isR600toCayman : Predicate<
351                     "Subtarget.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS">;
352
353//===----------------------------------------------------------------------===//
354// R600 SDNodes
355//===----------------------------------------------------------------------===//
356
357def INTERP_PAIR_XY :  AMDGPUShaderInst <
358  (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
359  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
360  "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
361  []>;
362
363def INTERP_PAIR_ZW :  AMDGPUShaderInst <
364  (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
365  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
366  "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
367  []>;
368
369def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
370  SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
371  [SDNPVariadic]
372>;
373
374def DOT4 : SDNode<"AMDGPUISD::DOT4",
375  SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>,
376      SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>,
377      SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>,
378  []
379>;
380
381def COS_HW : SDNode<"AMDGPUISD::COS_HW",
382  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
383>;
384
385def SIN_HW : SDNode<"AMDGPUISD::SIN_HW",
386  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
387>;
388
389def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>;
390
391def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>;
392
393multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> {
394def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR,
395          (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw),
396          (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz),
397          (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z),
398          (i32 imm:$DST_SEL_W),
399          (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID),
400          (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z),
401          (i32 imm:$COORD_TYPE_W)),
402          (inst R600_Reg128:$SRC_GPR,
403          imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw,
404          imm:$offsetx, imm:$offsety, imm:$offsetz,
405          imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z,
406          imm:$DST_SEL_W,
407          imm:$RESOURCE_ID, imm:$SAMPLER_ID,
408          imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z,
409          imm:$COORD_TYPE_W)>;
410}
411
412//===----------------------------------------------------------------------===//
413// Interpolation Instructions
414//===----------------------------------------------------------------------===//
415
416def INTERP_VEC_LOAD :  AMDGPUShaderInst <
417  (outs R600_Reg128:$dst),
418  (ins i32imm:$src0),
419  "INTERP_LOAD $src0 : $dst",
420  [(set R600_Reg128:$dst, (int_R600_interp_const imm:$src0))]>;
421
422def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
423  let bank_swizzle = 5;
424}
425
426def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
427  let bank_swizzle = 5;
428}
429
430def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
431
432//===----------------------------------------------------------------------===//
433// Export Instructions
434//===----------------------------------------------------------------------===//
435
436def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
437
438def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
439  [SDNPHasChain, SDNPSideEffect]>;
440
441class ExportWord0 {
442  field bits<32> Word0;
443
444  bits<13> arraybase;
445  bits<2> type;
446  bits<7> gpr;
447  bits<2> elem_size;
448
449  let Word0{12-0} = arraybase;
450  let Word0{14-13} = type;
451  let Word0{21-15} = gpr;
452  let Word0{22} = 0; // RW_REL
453  let Word0{29-23} = 0; // INDEX_GPR
454  let Word0{31-30} = elem_size;
455}
456
457class ExportSwzWord1 {
458  field bits<32> Word1;
459
460  bits<3> sw_x;
461  bits<3> sw_y;
462  bits<3> sw_z;
463  bits<3> sw_w;
464  bits<1> eop;
465  bits<8> inst;
466
467  let Word1{2-0} = sw_x;
468  let Word1{5-3} = sw_y;
469  let Word1{8-6} = sw_z;
470  let Word1{11-9} = sw_w;
471}
472
473class ExportBufWord1 {
474  field bits<32> Word1;
475
476  bits<12> arraySize;
477  bits<4> compMask;
478  bits<1> eop;
479  bits<8> inst;
480
481  let Word1{11-0} = arraySize;
482  let Word1{15-12} = compMask;
483}
484
485multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
486  def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
487    (ExportInst
488        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
489        0, 61, 0, 7, 7, 7, cf_inst, 0)
490  >;
491
492  def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
493    (ExportInst
494        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
495        0, 61, 7, 0, 7, 7, cf_inst, 0)
496  >;
497
498  def : Pat<(int_R600_store_dummy (i32 imm:$type)),
499    (ExportInst
500        (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
501  >;
502
503  def : Pat<(int_R600_store_dummy 1),
504    (ExportInst
505        (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
506  >;
507
508  def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
509    (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
510        (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
511        imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
512  >;
513
514}
515
516multiclass SteamOutputExportPattern<Instruction ExportInst,
517    bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
518// Stream0
519  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
520      (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
521      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
522      4095, imm:$mask, buf0inst, 0)>;
523// Stream1
524  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
525      (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
526      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
527      4095, imm:$mask, buf1inst, 0)>;
528// Stream2
529  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
530      (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
531      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
532      4095, imm:$mask, buf2inst, 0)>;
533// Stream3
534  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
535      (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
536      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
537      4095, imm:$mask, buf3inst, 0)>;
538}
539
540// Export Instructions should not be duplicated by TailDuplication pass
541// (which assumes that duplicable instruction are affected by exec mask)
542let usesCustomInserter = 1, isNotDuplicable = 1 in {
543
544class ExportSwzInst : InstR600ISA<(
545    outs),
546    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
547    RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst,
548    i32imm:$eop),
549    !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"),
550    []>, ExportWord0, ExportSwzWord1 {
551  let elem_size = 3;
552  let Inst{31-0} = Word0;
553  let Inst{63-32} = Word1;
554  let IsExport = 1;
555}
556
557} // End usesCustomInserter = 1
558
559class ExportBufInst : InstR600ISA<(
560    outs),
561    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
562    i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
563    !strconcat("EXPORT", " $gpr"),
564    []>, ExportWord0, ExportBufWord1 {
565  let elem_size = 0;
566  let Inst{31-0} = Word0;
567  let Inst{63-32} = Word1;
568  let IsExport = 1;
569}
570
571//===----------------------------------------------------------------------===//
572// Control Flow Instructions
573//===----------------------------------------------------------------------===//
574
575
576def KCACHE : InstFlag<"printKCache">;
577
578class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
579(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1,
580KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1,
581i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1,
582i32imm:$COUNT, i32imm:$Enabled),
583!strconcat(OpName, " $COUNT, @$ADDR, "
584"KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"),
585[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
586  field bits<64> Inst;
587
588  let CF_INST = inst;
589  let ALT_CONST = 0;
590  let WHOLE_QUAD_MODE = 0;
591  let BARRIER = 1;
592  let UseNamedOperandTable = 1;
593
594  let Inst{31-0} = Word0;
595  let Inst{63-32} = Word1;
596}
597
598class CF_WORD0_R600 {
599  field bits<32> Word0;
600
601  bits<32> ADDR;
602
603  let Word0 = ADDR;
604}
605
606class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
607ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 {
608  field bits<64> Inst;
609  bits<4> CNT;
610
611  let CF_INST = inst;
612  let BARRIER = 1;
613  let CF_CONST = 0;
614  let VALID_PIXEL_MODE = 0;
615  let COND = 0;
616  let COUNT = CNT{2-0};
617  let CALL_COUNT = 0;
618  let COUNT_3 = CNT{3};
619  let END_OF_PROGRAM = 0;
620  let WHOLE_QUAD_MODE = 0;
621
622  let Inst{31-0} = Word0;
623  let Inst{63-32} = Word1;
624}
625
626class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
627ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG {
628  field bits<64> Inst;
629
630  let CF_INST = inst;
631  let BARRIER = 1;
632  let JUMPTABLE_SEL = 0;
633  let CF_CONST = 0;
634  let VALID_PIXEL_MODE = 0;
635  let COND = 0;
636  let END_OF_PROGRAM = 0;
637
638  let Inst{31-0} = Word0;
639  let Inst{63-32} = Word1;
640}
641
642def CF_ALU : ALU_CLAUSE<8, "ALU">;
643def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
644def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">;
645
646def FETCH_CLAUSE : AMDGPUInst <(outs),
647(ins i32imm:$addr), "Fetch clause starting at $addr:", [] > {
648  field bits<8> Inst;
649  bits<8> num;
650  let Inst = num;
651}
652
653def ALU_CLAUSE : AMDGPUInst <(outs),
654(ins i32imm:$addr), "ALU clause starting at $addr:", [] > {
655  field bits<8> Inst;
656  bits<8> num;
657  let Inst = num;
658}
659
660def LITERALS : AMDGPUInst <(outs),
661(ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > {
662  field bits<64> Inst;
663  bits<32> literal1;
664  bits<32> literal2;
665
666  let Inst{31-0} = literal1;
667  let Inst{63-32} = literal2;
668}
669
670def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > {
671  field bits<64> Inst;
672}
673
674let Predicates = [isR600toCayman] in {
675
676//===----------------------------------------------------------------------===//
677// Common Instructions R600, R700, Evergreen, Cayman
678//===----------------------------------------------------------------------===//
679
680def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
681// Non-IEEE MUL: 0 * anything = 0
682def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
683def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
684def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
685def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
686
687// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
688// so some of the instruction names don't match the asm string.
689// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
690def SETE : R600_2OP <
691  0x08, "SETE",
692  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))]
693>;
694
695def SGT : R600_2OP <
696  0x09, "SETGT",
697  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))]
698>;
699
700def SGE : R600_2OP <
701  0xA, "SETGE",
702  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))]
703>;
704
705def SNE : R600_2OP <
706  0xB, "SETNE",
707  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE))]
708>;
709
710def SETE_DX10 : R600_2OP <
711  0xC, "SETE_DX10",
712  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))]
713>;
714
715def SETGT_DX10 : R600_2OP <
716  0xD, "SETGT_DX10",
717  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))]
718>;
719
720def SETGE_DX10 : R600_2OP <
721  0xE, "SETGE_DX10",
722  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
723>;
724
725def SETNE_DX10 : R600_2OP <
726  0xF, "SETNE_DX10",
727  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE))]
728>;
729
730def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
731def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
732def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
733def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
734def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
735
736def MOV : R600_1OP <0x19, "MOV", []>;
737
738let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
739
740class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
741  (outs R600_Reg32:$dst),
742  (ins immType:$imm),
743  "",
744  []
745>;
746
747} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
748
749def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
750def : Pat <
751  (imm:$val),
752  (MOV_IMM_I32 imm:$val)
753>;
754
755def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
756def : Pat <
757  (fpimm:$val),
758  (MOV_IMM_F32  fpimm:$val)
759>;
760
761def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
762def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
763def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
764def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
765
766let hasSideEffects = 1 in {
767
768def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
769
770} // end hasSideEffects
771
772def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
773def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
774def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
775def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
776def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
777def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
778def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
779def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
780def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
781def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
782
783def SETE_INT : R600_2OP <
784  0x3A, "SETE_INT",
785  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))]
786>;
787
788def SETGT_INT : R600_2OP <
789  0x3B, "SETGT_INT",
790  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))]
791>;
792
793def SETGE_INT : R600_2OP <
794  0x3C, "SETGE_INT",
795  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))]
796>;
797
798def SETNE_INT : R600_2OP <
799  0x3D, "SETNE_INT",
800  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))]
801>;
802
803def SETGT_UINT : R600_2OP <
804  0x3E, "SETGT_UINT",
805  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))]
806>;
807
808def SETGE_UINT : R600_2OP <
809  0x3F, "SETGE_UINT",
810  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))]
811>;
812
813def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
814def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
815def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
816def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
817
818def CNDE_INT : R600_3OP <
819  0x1C, "CNDE_INT",
820  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))]
821>;
822
823def CNDGE_INT : R600_3OP <
824  0x1E, "CNDGE_INT",
825  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGE))]
826>;
827
828def CNDGT_INT : R600_3OP <
829  0x1D, "CNDGT_INT",
830  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_SGT))]
831>;
832
833//===----------------------------------------------------------------------===//
834// Texture instructions
835//===----------------------------------------------------------------------===//
836
837let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
838
839class R600_TEX <bits<11> inst, string opName> :
840  InstR600 <(outs R600_Reg128:$DST_GPR),
841          (ins R600_Reg128:$SRC_GPR,
842          RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw,
843          i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz,
844          RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W,
845          i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
846          CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z,
847          CT:$COORD_TYPE_W),
848          !strconcat(opName,
849          " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, "
850          "$SRC_GPR.$srcx$srcy$srcz$srcw "
851          "RID:$RESOURCE_ID SID:$SAMPLER_ID "
852          "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"),
853          [],
854          NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
855  let Inst{31-0} = Word0;
856  let Inst{63-32} = Word1;
857
858  let TEX_INST = inst{4-0};
859  let SRC_REL = 0;
860  let DST_REL = 0;
861  let LOD_BIAS = 0;
862
863  let INST_MOD = 0;
864  let FETCH_WHOLE_QUAD = 0;
865  let ALT_CONST = 0;
866  let SAMPLER_INDEX_MODE = 0;
867  let RESOURCE_INDEX_MODE = 0;
868
869  let TEXInst = 1;
870}
871
872} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
873
874
875
876def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">;
877def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">;
878def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">;
879def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">;
880def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">;
881def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">;
882def TEX_LD : R600_TEX <0x03, "TEX_LD">;
883def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> {
884  let INST_MOD = 1;
885}
886def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">;
887def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">;
888def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">;
889def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">;
890def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">;
891def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">;
892def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">;
893
894defm : TexPattern<0, TEX_SAMPLE>;
895defm : TexPattern<1, TEX_SAMPLE_C>;
896defm : TexPattern<2, TEX_SAMPLE_L>;
897defm : TexPattern<3, TEX_SAMPLE_C_L>;
898defm : TexPattern<4, TEX_SAMPLE_LB>;
899defm : TexPattern<5, TEX_SAMPLE_C_LB>;
900defm : TexPattern<6, TEX_LD, v4i32>;
901defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>;
902defm : TexPattern<8, TEX_GET_GRADIENTS_H>;
903defm : TexPattern<9, TEX_GET_GRADIENTS_V>;
904defm : TexPattern<10, TEX_LDPTR, v4i32>;
905
906//===----------------------------------------------------------------------===//
907// Helper classes for common instructions
908//===----------------------------------------------------------------------===//
909
910class MUL_LIT_Common <bits<5> inst> : R600_3OP <
911  inst, "MUL_LIT",
912  []
913>;
914
915class MULADD_Common <bits<5> inst> : R600_3OP <
916  inst, "MULADD",
917  []
918>;
919
920class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
921  inst, "MULADD_IEEE",
922  [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
923>;
924
925class CNDE_Common <bits<5> inst> : R600_3OP <
926  inst, "CNDE",
927  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
928>;
929
930class CNDGT_Common <bits<5> inst> : R600_3OP <
931  inst, "CNDGT",
932  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))]
933> {
934  let Itinerary = VecALU;
935}
936
937class CNDGE_Common <bits<5> inst> : R600_3OP <
938  inst, "CNDGE",
939  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))]
940> {
941  let Itinerary = VecALU;
942}
943
944
945let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
946class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins
947// Slot X
948   UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X,
949   OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X,
950   R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X,
951   R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X,
952   R600_Pred:$pred_sel_X,
953// Slot Y
954   UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y,
955   OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y,
956   R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y,
957   R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y,
958   R600_Pred:$pred_sel_Y,
959// Slot Z
960   UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z,
961   OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z,
962   R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z,
963   R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z,
964   R600_Pred:$pred_sel_Z,
965// Slot W
966   UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W,
967   OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W,
968   R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W,
969   R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W,
970   R600_Pred:$pred_sel_W,
971   LITERAL:$literal0, LITERAL:$literal1),
972  "",
973  pattern,
974  AnyALU> {
975
976  let UseNamedOperandTable = 1;
977
978}
979}
980
981def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4
982  R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X,
983  R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y,
984  R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z,
985  R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>;
986
987
988class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>;
989
990
991let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
992multiclass CUBE_Common <bits<11> inst> {
993
994  def _pseudo : InstR600 <
995    (outs R600_Reg128:$dst),
996    (ins R600_Reg128:$src0),
997    "CUBE $dst $src0",
998    [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))],
999    VecALU
1000  > {
1001    let isPseudo = 1;
1002    let UseNamedOperandTable = 1;
1003  }
1004
1005  def _real : R600_2OP <inst, "CUBE", []>;
1006}
1007} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
1008
1009class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1010  inst, "EXP_IEEE", fexp2
1011> {
1012  let Itinerary = TransALU;
1013}
1014
1015class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
1016  inst, "FLT_TO_INT", fp_to_sint
1017> {
1018  let Itinerary = TransALU;
1019}
1020
1021class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1022  inst, "INT_TO_FLT", sint_to_fp
1023> {
1024  let Itinerary = TransALU;
1025}
1026
1027class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1028  inst, "FLT_TO_UINT", fp_to_uint
1029> {
1030  let Itinerary = TransALU;
1031}
1032
1033class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1034  inst, "UINT_TO_FLT", uint_to_fp
1035> {
1036  let Itinerary = TransALU;
1037}
1038
1039class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
1040  inst, "LOG_CLAMPED", []
1041>;
1042
1043class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1044  inst, "LOG_IEEE", flog2
1045> {
1046  let Itinerary = TransALU;
1047}
1048
1049class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
1050class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
1051class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
1052class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
1053  inst, "MULHI_INT", mulhs
1054> {
1055  let Itinerary = TransALU;
1056}
1057class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
1058  inst, "MULHI", mulhu
1059> {
1060  let Itinerary = TransALU;
1061}
1062class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
1063  inst, "MULLO_INT", mul
1064> {
1065  let Itinerary = TransALU;
1066}
1067class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> {
1068  let Itinerary = TransALU;
1069}
1070
1071class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
1072  inst, "RECIP_CLAMPED", []
1073> {
1074  let Itinerary = TransALU;
1075}
1076
1077class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
1078  inst, "RECIP_IEEE", [(set f32:$dst, (fdiv FP_ONE, f32:$src0))]
1079> {
1080  let Itinerary = TransALU;
1081}
1082
1083class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1084  inst, "RECIP_UINT", AMDGPUurecip
1085> {
1086  let Itinerary = TransALU;
1087}
1088
1089class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
1090  inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
1091> {
1092  let Itinerary = TransALU;
1093}
1094
1095class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
1096  inst, "RECIPSQRT_IEEE", []
1097> {
1098  let Itinerary = TransALU;
1099}
1100
1101class SIN_Common <bits<11> inst> : R600_1OP <
1102  inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{
1103  let Trig = 1;
1104  let Itinerary = TransALU;
1105}
1106
1107class COS_Common <bits<11> inst> : R600_1OP <
1108  inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> {
1109  let Trig = 1;
1110  let Itinerary = TransALU;
1111}
1112
1113def CLAMP_R600 :  CLAMP <R600_Reg32>;
1114def FABS_R600 : FABS<R600_Reg32>;
1115def FNEG_R600 : FNEG<R600_Reg32>;
1116
1117//===----------------------------------------------------------------------===//
1118// Helper patterns for complex intrinsics
1119//===----------------------------------------------------------------------===//
1120
1121multiclass DIV_Common <InstR600 recip_ieee> {
1122def : Pat<
1123  (int_AMDGPU_div f32:$src0, f32:$src1),
1124  (MUL_IEEE $src0, (recip_ieee $src1))
1125>;
1126
1127def : Pat<
1128  (fdiv f32:$src0, f32:$src1),
1129  (MUL_IEEE $src0, (recip_ieee $src1))
1130>;
1131}
1132
1133class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee>
1134  : Pat <
1135  (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w),
1136  (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x))
1137>;
1138
1139// FROUND pattern
1140class FROUNDPat<Instruction CNDGE> : Pat <
1141  (AMDGPUround f32:$x),
1142  (CNDGE (ADD (FNEG_R600 (f32 HALF)), (FRACT $x)), (CEIL $x), (FLOOR $x))
1143>;
1144
1145
1146//===----------------------------------------------------------------------===//
1147// R600 / R700 Instructions
1148//===----------------------------------------------------------------------===//
1149
1150let Predicates = [isR600] in {
1151
1152  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
1153  def MULADD_r600 : MULADD_Common<0x10>;
1154  def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
1155  def CNDE_r600 : CNDE_Common<0x18>;
1156  def CNDGT_r600 : CNDGT_Common<0x19>;
1157  def CNDGE_r600 : CNDGE_Common<0x1A>;
1158  def DOT4_r600 : DOT4_Common<0x50>;
1159  defm CUBE_r600 : CUBE_Common<0x52>;
1160  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1161  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1162  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1163  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1164  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1165  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1166  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1167  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1168  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1169  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1170  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1171  def SIN_r600 : SIN_Common<0x6E>;
1172  def COS_r600 : COS_Common<0x6F>;
1173  def ASHR_r600 : ASHR_Common<0x70>;
1174  def LSHR_r600 : LSHR_Common<0x71>;
1175  def LSHL_r600 : LSHL_Common<0x72>;
1176  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1177  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1178  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1179  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1180  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1181
1182  defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1183  def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>;
1184  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
1185
1186  def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
1187  def : FROUNDPat <CNDGE_r600>;
1188
1189  def R600_ExportSwz : ExportSwzInst {
1190    let Word1{20-17} = 0; // BURST_COUNT
1191    let Word1{21} = eop;
1192    let Word1{22} = 0; // VALID_PIXEL_MODE
1193    let Word1{30-23} = inst;
1194    let Word1{31} = 1; // BARRIER
1195  }
1196  defm : ExportPattern<R600_ExportSwz, 39>;
1197
1198  def R600_ExportBuf : ExportBufInst {
1199    let Word1{20-17} = 0; // BURST_COUNT
1200    let Word1{21} = eop;
1201    let Word1{22} = 0; // VALID_PIXEL_MODE
1202    let Word1{30-23} = inst;
1203    let Word1{31} = 1; // BARRIER
1204  }
1205  defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1206
1207  def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT),
1208  "TEX $CNT @$ADDR"> {
1209    let POP_COUNT = 0;
1210  }
1211  def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT),
1212  "VTX $CNT @$ADDR"> {
1213    let POP_COUNT = 0;
1214  }
1215  def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR),
1216  "LOOP_START_DX10 @$ADDR"> {
1217    let POP_COUNT = 0;
1218    let CNT = 0;
1219  }
1220  def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
1221    let POP_COUNT = 0;
1222    let CNT = 0;
1223  }
1224  def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR),
1225  "LOOP_BREAK @$ADDR"> {
1226    let POP_COUNT = 0;
1227    let CNT = 0;
1228  }
1229  def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR),
1230  "CONTINUE @$ADDR"> {
1231    let POP_COUNT = 0;
1232    let CNT = 0;
1233  }
1234  def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1235  "JUMP @$ADDR POP:$POP_COUNT"> {
1236    let CNT = 0;
1237  }
1238  def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1239  "ELSE @$ADDR POP:$POP_COUNT"> {
1240    let CNT = 0;
1241  }
1242  def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> {
1243    let ADDR = 0;
1244    let CNT = 0;
1245    let POP_COUNT = 0;
1246  }
1247  def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1248  "POP @$ADDR POP:$POP_COUNT"> {
1249    let CNT = 0;
1250  }
1251  def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> {
1252    let CNT = 0;
1253    let POP_COUNT = 0;
1254    let ADDR = 0;
1255    let END_OF_PROGRAM = 1;
1256  }
1257
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// R700 Only instructions
1262//===----------------------------------------------------------------------===//
1263
1264let Predicates = [isR700] in {
1265  def SIN_r700 : SIN_Common<0x6E>;
1266  def COS_r700 : COS_Common<0x6F>;
1267}
1268
1269//===----------------------------------------------------------------------===//
1270// Evergreen / Cayman store instructions
1271//===----------------------------------------------------------------------===//
1272
1273let Predicates = [isEGorCayman] in {
1274
1275class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
1276                           string name, list<dag> pattern>
1277    : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
1278                 "MEM_RAT_CACHELESS "#name, pattern>;
1279
1280class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, dag ins, string name,
1281                  list<dag> pattern>
1282    : EG_CF_RAT <0x56, rat_inst, rat_id, 0xf /* mask */, (outs), ins,
1283                 "MEM_RAT "#name, pattern>;
1284
1285def RAT_MSKOR : CF_MEM_RAT <0x11, 0,
1286  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
1287  "MSKOR $rw_gpr.XW, $index_gpr",
1288  [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
1289> {
1290  let eop = 0;
1291}
1292
1293} // End Predicates = [isEGorCayman]
1294
1295
1296//===----------------------------------------------------------------------===//
1297// Evergreen Only instructions
1298//===----------------------------------------------------------------------===//
1299
1300let Predicates = [isEG] in {
1301
1302def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
1303defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1304
1305def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
1306def MULHI_INT_eg : MULHI_INT_Common<0x90>;
1307def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
1308def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
1309def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
1310def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
1311def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
1312def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
1313def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
1314def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
1315def SIN_eg : SIN_Common<0x8D>;
1316def COS_eg : COS_Common<0x8E>;
1317
1318def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
1319def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>;
1320
1321//===----------------------------------------------------------------------===//
1322// Memory read/write instructions
1323//===----------------------------------------------------------------------===//
1324
1325let usesCustomInserter = 1 in {
1326
1327// 32-bit store
1328def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
1329  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1330  "STORE_RAW $rw_gpr, $index_gpr, $eop",
1331  [(global_store i32:$rw_gpr, i32:$index_gpr)]
1332>;
1333
1334// 64-bit store
1335def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
1336  (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1337  "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
1338  [(global_store v2i32:$rw_gpr, i32:$index_gpr)]
1339>;
1340
1341//128-bit store
1342def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
1343  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1344  "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
1345  [(global_store v4i32:$rw_gpr, i32:$index_gpr)]
1346>;
1347
1348} // End usesCustomInserter = 1
1349
1350class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1351    : VTX_WORD0_eg, VTX_READ<name, buffer_id, outs, pattern> {
1352
1353  // Static fields
1354  let VC_INST = 0;
1355  let FETCH_TYPE = 2;
1356  let FETCH_WHOLE_QUAD = 0;
1357  let BUFFER_ID = buffer_id;
1358  let SRC_REL = 0;
1359  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1360  // to store vertex addresses in any channel, not just X.
1361  let SRC_SEL_X = 0;
1362
1363  let Inst{31-0} = Word0;
1364}
1365
1366class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1367    : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
1368                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1369
1370  let MEGA_FETCH_COUNT = 1;
1371  let DST_SEL_X = 0;
1372  let DST_SEL_Y = 7;   // Masked
1373  let DST_SEL_Z = 7;   // Masked
1374  let DST_SEL_W = 7;   // Masked
1375  let DATA_FORMAT = 1; // FMT_8
1376}
1377
1378class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
1379    : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
1380                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1381  let MEGA_FETCH_COUNT = 2;
1382  let DST_SEL_X = 0;
1383  let DST_SEL_Y = 7;   // Masked
1384  let DST_SEL_Z = 7;   // Masked
1385  let DST_SEL_W = 7;   // Masked
1386  let DATA_FORMAT = 5; // FMT_16
1387
1388}
1389
1390class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1391    : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
1392                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1393
1394  let MEGA_FETCH_COUNT = 4;
1395  let DST_SEL_X        = 0;
1396  let DST_SEL_Y        = 7;   // Masked
1397  let DST_SEL_Z        = 7;   // Masked
1398  let DST_SEL_W        = 7;   // Masked
1399  let DATA_FORMAT      = 0xD; // COLOR_32
1400
1401  // This is not really necessary, but there were some GPU hangs that appeared
1402  // to be caused by ALU instructions in the next instruction group that wrote
1403  // to the $src_gpr registers of the VTX_READ.
1404  // e.g.
1405  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1406  // %T2_X<def> = MOV %ZERO
1407  //Adding this constraint prevents this from happening.
1408  let Constraints = "$src_gpr.ptr = $dst_gpr";
1409}
1410
1411class VTX_READ_64_eg <bits<8> buffer_id, list<dag> pattern>
1412    : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr", buffer_id,
1413                   (outs R600_Reg64:$dst_gpr), pattern> {
1414
1415  let MEGA_FETCH_COUNT = 8;
1416  let DST_SEL_X        = 0;
1417  let DST_SEL_Y        = 1;
1418  let DST_SEL_Z        = 7;
1419  let DST_SEL_W        = 7;
1420  let DATA_FORMAT      = 0x1D; // COLOR_32_32
1421}
1422
1423class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1424    : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
1425                   (outs R600_Reg128:$dst_gpr), pattern> {
1426
1427  let MEGA_FETCH_COUNT = 16;
1428  let DST_SEL_X        =  0;
1429  let DST_SEL_Y        =  1;
1430  let DST_SEL_Z        =  2;
1431  let DST_SEL_W        =  3;
1432  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1433
1434  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1435  // that holds its buffer address to avoid potential hangs.  We can't use
1436  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
1437  // registers are different sizes.
1438}
1439
1440//===----------------------------------------------------------------------===//
1441// VTX Read from parameter memory space
1442//===----------------------------------------------------------------------===//
1443
1444def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
1445  [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
1446>;
1447
1448def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
1449  [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
1450>;
1451
1452def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
1453  [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1454>;
1455
1456def VTX_READ_PARAM_64_eg : VTX_READ_64_eg <0,
1457  [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1458>;
1459
1460def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
1461  [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1462>;
1463
1464//===----------------------------------------------------------------------===//
1465// VTX Read from global memory space
1466//===----------------------------------------------------------------------===//
1467
1468// 8-bit reads
1469def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
1470  [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
1471>;
1472
1473def VTX_READ_GLOBAL_16_eg : VTX_READ_16_eg <1,
1474  [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
1475>;
1476
1477// 32-bit reads
1478def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
1479  [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1480>;
1481
1482// 64-bit reads
1483def VTX_READ_GLOBAL_64_eg : VTX_READ_64_eg <1,
1484  [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1485>;
1486
1487// 128-bit reads
1488def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1489  [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1490>;
1491
1492} // End Predicates = [isEG]
1493
1494//===----------------------------------------------------------------------===//
1495// Evergreen / Cayman Instructions
1496//===----------------------------------------------------------------------===//
1497
1498let Predicates = [isEGorCayman] in {
1499
1500  // BFE_UINT - bit_extract, an optimization for mask and shift
1501  // Src0 = Input
1502  // Src1 = Offset
1503  // Src2 = Width
1504  //
1505  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
1506  //
1507  // Example Usage:
1508  // (Offset, Width)
1509  //
1510  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
1511  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
1512  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
1513  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
1514  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
1515    [(set i32:$dst, (int_AMDIL_bit_extract_u32 i32:$src0, i32:$src1,
1516                                               i32:$src2))],
1517    VecALU
1518  >;
1519// XXX: This pattern is broken, disabling for now.  See comment in
1520// AMDGPUInstructions.td for more info.
1521//  def : BFEPattern <BFE_UINT_eg>;
1522
1523  def BFI_INT_eg : R600_3OP <0x06, "BFI_INT", [], VecALU>;
1524  defm : BFIPatterns <BFI_INT_eg>;
1525
1526  def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
1527    [(set i32:$dst, (add (mul U24:$src0, U24:$src1), i32:$src2))], VecALU
1528  >;
1529  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
1530  def : ROTRPattern <BIT_ALIGN_INT_eg>;
1531
1532  def MULADD_eg : MULADD_Common<0x14>;
1533  def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
1534  def ASHR_eg : ASHR_Common<0x15>;
1535  def LSHR_eg : LSHR_Common<0x16>;
1536  def LSHL_eg : LSHL_Common<0x17>;
1537  def CNDE_eg : CNDE_Common<0x19>;
1538  def CNDGT_eg : CNDGT_Common<0x1A>;
1539  def CNDGE_eg : CNDGE_Common<0x1B>;
1540  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
1541  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
1542  def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
1543    [(set i32:$dst, (mul U24:$src0, U24:$src1))], VecALU
1544  >;
1545  def DOT4_eg : DOT4_Common<0xBE>;
1546  defm CUBE_eg : CUBE_Common<0xC0>;
1547
1548let hasSideEffects = 1 in {
1549  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>;
1550}
1551
1552  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1553
1554  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1555    let Pattern = [];
1556    let Itinerary = AnyALU;
1557  }
1558
1559  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1560
1561  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1562    let Pattern = [];
1563  }
1564
1565  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1566
1567def GROUP_BARRIER : InstR600 <
1568    (outs), (ins), "  GROUP_BARRIER", [(int_AMDGPU_barrier_local)], AnyALU>,
1569    R600ALU_Word0,
1570    R600ALU_Word1_OP2 <0x54> {
1571
1572  let dst = 0;
1573  let dst_rel = 0;
1574  let src0 = 0;
1575  let src0_rel = 0;
1576  let src0_neg = 0;
1577  let src0_abs = 0;
1578  let src1 = 0;
1579  let src1_rel = 0;
1580  let src1_neg = 0;
1581  let src1_abs = 0;
1582  let write = 0;
1583  let omod = 0;
1584  let clamp = 0;
1585  let last = 1;
1586  let bank_swizzle = 0;
1587  let pred_sel = 0;
1588  let update_exec_mask = 0;
1589  let update_pred = 0;
1590
1591  let Inst{31-0}  = Word0;
1592  let Inst{63-32} = Word1;
1593
1594  let ALUInst = 1;
1595}
1596
1597//===----------------------------------------------------------------------===//
1598// LDS Instructions
1599//===----------------------------------------------------------------------===//
1600class R600_LDS  <bits<6> op, dag outs, dag ins, string asm,
1601                 list<dag> pattern = []> :
1602
1603    InstR600 <outs, ins, asm, pattern, XALU>,
1604    R600_ALU_LDS_Word0,
1605    R600LDS_Word1 {
1606
1607  bits<6>  offset = 0;
1608  let lds_op = op;
1609
1610  let Word1{27} = offset{0};
1611  let Word1{12} = offset{1};
1612  let Word1{28} = offset{2};
1613  let Word1{31} = offset{3};
1614  let Word0{12} = offset{4};
1615  let Word0{25} = offset{5};
1616
1617
1618  let Inst{31-0}  = Word0;
1619  let Inst{63-32} = Word1;
1620
1621  let ALUInst = 1;
1622  let HasNativeOperands = 1;
1623  let UseNamedOperandTable = 1;
1624}
1625
1626class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
1627  lds_op,
1628  (outs R600_Reg32:$dst),
1629  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1630       LAST:$last, R600_Pred:$pred_sel,
1631       BANK_SWIZZLE:$bank_swizzle),
1632  "  "#name#" $last OQAP, $src0$src0_rel $pred_sel",
1633  pattern
1634  > {
1635
1636  let src1 = 0;
1637  let src1_rel = 0;
1638  let src2 = 0;
1639  let src2_rel = 0;
1640
1641  let usesCustomInserter = 1;
1642  let LDS_1A = 1;
1643  let DisableEncoding = "$dst";
1644}
1645
1646class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
1647                     string dst =""> :
1648    R600_LDS <
1649  lds_op, outs,
1650  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1651       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
1652       LAST:$last, R600_Pred:$pred_sel,
1653       BANK_SWIZZLE:$bank_swizzle),
1654  "  "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
1655  pattern
1656  > {
1657
1658  field string BaseOp;
1659
1660  let src2 = 0;
1661  let src2_rel = 0;
1662  let LDS_1A1D = 1;
1663}
1664
1665class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
1666    R600_LDS_1A1D <lds_op, (outs), name, pattern> {
1667  let BaseOp = name;
1668}
1669
1670class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
1671    R600_LDS_1A1D <lds_op,  (outs R600_Reg32:$dst), name##"_RET", pattern, "OQAP, "> {
1672
1673  let BaseOp = name;
1674  let usesCustomInserter = 1;
1675  let DisableEncoding = "$dst";
1676}
1677
1678class R600_LDS_1A2D <bits<6> lds_op, string name, list<dag> pattern> :
1679    R600_LDS <
1680  lds_op,
1681  (outs),
1682  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1683       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
1684       R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
1685       LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
1686  "  "#name# "$last $src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
1687  pattern> {
1688  let LDS_1A2D = 1;
1689}
1690
1691def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
1692def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
1693def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
1694  [(local_store (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
1695>;
1696def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
1697  [(truncstorei8_local i32:$src1, i32:$src0)]
1698>;
1699def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
1700  [(truncstorei16_local i32:$src1, i32:$src0)]
1701>;
1702def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
1703  [(set i32:$dst, (atomic_load_add_local i32:$src0, i32:$src1))]
1704>;
1705def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
1706  [(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
1707>;
1708def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
1709  [(set (i32 R600_Reg32:$dst), (local_load R600_Reg32:$src0))]
1710>;
1711def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
1712  [(set i32:$dst, (sextloadi8_local i32:$src0))]
1713>;
1714def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
1715  [(set i32:$dst, (az_extloadi8_local i32:$src0))]
1716>;
1717def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
1718  [(set i32:$dst, (sextloadi16_local i32:$src0))]
1719>;
1720def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
1721  [(set i32:$dst, (az_extloadi16_local i32:$src0))]
1722>;
1723
1724  // TRUNC is used for the FLT_TO_INT instructions to work around a
1725  // perceived problem where the rounding modes are applied differently
1726  // depending on the instruction and the slot they are in.
1727  // See:
1728  // https://bugs.freedesktop.org/show_bug.cgi?id=50232
1729  // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
1730  //
1731  // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
1732  // which do not need to be truncated since the fp values are 0.0f or 1.0f.
1733  // We should look into handling these cases separately.
1734  def : Pat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
1735
1736  def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
1737
1738  // SHA-256 Patterns
1739  def : SHA256MaPattern <BFI_INT_eg, XOR_INT>;
1740
1741  def : FROUNDPat <CNDGE_eg>;
1742
1743  def EG_ExportSwz : ExportSwzInst {
1744    let Word1{19-16} = 0; // BURST_COUNT
1745    let Word1{20} = 0; // VALID_PIXEL_MODE
1746    let Word1{21} = eop;
1747    let Word1{29-22} = inst;
1748    let Word1{30} = 0; // MARK
1749    let Word1{31} = 1; // BARRIER
1750  }
1751  defm : ExportPattern<EG_ExportSwz, 83>;
1752
1753  def EG_ExportBuf : ExportBufInst {
1754    let Word1{19-16} = 0; // BURST_COUNT
1755    let Word1{20} = 0; // VALID_PIXEL_MODE
1756    let Word1{21} = eop;
1757    let Word1{29-22} = inst;
1758    let Word1{30} = 0; // MARK
1759    let Word1{31} = 1; // BARRIER
1760  }
1761  defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
1762
1763  def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
1764  "TEX $COUNT @$ADDR"> {
1765    let POP_COUNT = 0;
1766  }
1767  def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
1768  "VTX $COUNT @$ADDR"> {
1769    let POP_COUNT = 0;
1770  }
1771  def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
1772  "LOOP_START_DX10 @$ADDR"> {
1773    let POP_COUNT = 0;
1774    let COUNT = 0;
1775  }
1776  def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
1777    let POP_COUNT = 0;
1778    let COUNT = 0;
1779  }
1780  def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
1781  "LOOP_BREAK @$ADDR"> {
1782    let POP_COUNT = 0;
1783    let COUNT = 0;
1784  }
1785  def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
1786  "CONTINUE @$ADDR"> {
1787    let POP_COUNT = 0;
1788    let COUNT = 0;
1789  }
1790  def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1791  "JUMP @$ADDR POP:$POP_COUNT"> {
1792    let COUNT = 0;
1793  }
1794  def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1795  "ELSE @$ADDR POP:$POP_COUNT"> {
1796    let COUNT = 0;
1797  }
1798  def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
1799    let ADDR = 0;
1800    let COUNT = 0;
1801    let POP_COUNT = 0;
1802  }
1803  def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1804  "POP @$ADDR POP:$POP_COUNT"> {
1805    let COUNT = 0;
1806  }
1807  def CF_END_EG :  CF_CLAUSE_EG<0, (ins), "CF_END"> {
1808    let COUNT = 0;
1809    let POP_COUNT = 0;
1810    let ADDR = 0;
1811    let END_OF_PROGRAM = 1;
1812  }
1813
1814} // End Predicates = [isEGorCayman]
1815
1816//===----------------------------------------------------------------------===//
1817// Regist loads and stores - for indirect addressing
1818//===----------------------------------------------------------------------===//
1819
1820defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
1821
1822//===----------------------------------------------------------------------===//
1823// Cayman Instructions
1824//===----------------------------------------------------------------------===//
1825
1826let Predicates = [isCayman] in {
1827
1828def MULADD_INT24_cm : R600_3OP <0x08, "MULADD_INT24",
1829  [(set i32:$dst, (add (mul I24:$src0, I24:$src1), i32:$src2))], VecALU
1830>;
1831def MUL_INT24_cm : R600_2OP <0x5B, "MUL_INT24",
1832  [(set i32:$dst, (mul I24:$src0, I24:$src1))], VecALU
1833>;
1834
1835let isVector = 1 in {
1836
1837def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1838
1839def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1840def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1841def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1842def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1843def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
1844def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
1845def LOG_IEEE_cm : LOG_IEEE_Common<0x83>;
1846def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
1847def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
1848def SIN_cm : SIN_Common<0x8D>;
1849def COS_cm : COS_Common<0x8E>;
1850} // End isVector = 1
1851
1852def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL>;
1853
1854defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
1855
1856// RECIP_UINT emulation for Cayman
1857// The multiplication scales from [0,1] to the unsigned integer range
1858def : Pat <
1859  (AMDGPUurecip i32:$src0),
1860  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg $src0)),
1861                            (MOV_IMM_I32 CONST.FP_UINT_MAX_PLUS_1)))
1862>;
1863
1864  def CF_END_CM : CF_CLAUSE_EG<32, (ins), "CF_END"> {
1865    let ADDR = 0;
1866    let POP_COUNT = 0;
1867    let COUNT = 0;
1868  }
1869
1870def : Pat<(fsqrt f32:$src), (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm $src))>;
1871
1872class RAT_STORE_DWORD <RegisterClass rc, ValueType vt, bits<4> mask> :
1873  CF_MEM_RAT_CACHELESS <0x14, 0, mask,
1874                        (ins rc:$rw_gpr, R600_TReg32_X:$index_gpr),
1875                        "STORE_DWORD $rw_gpr, $index_gpr",
1876                        [(global_store vt:$rw_gpr, i32:$index_gpr)]> {
1877  let eop = 0; // This bit is not used on Cayman.
1878}
1879
1880def RAT_STORE_DWORD32 : RAT_STORE_DWORD <R600_TReg32_X, i32, 0x1>;
1881def RAT_STORE_DWORD64 : RAT_STORE_DWORD <R600_Reg64, v2i32, 0x3>;
1882def RAT_STORE_DWORD128 : RAT_STORE_DWORD <R600_Reg128, v4i32, 0xf>;
1883
1884class VTX_READ_cm <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1885    : VTX_WORD0_cm, VTX_READ<name, buffer_id, outs, pattern> {
1886
1887  // Static fields
1888  let VC_INST = 0;
1889  let FETCH_TYPE = 2;
1890  let FETCH_WHOLE_QUAD = 0;
1891  let BUFFER_ID = buffer_id;
1892  let SRC_REL = 0;
1893  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1894  // to store vertex addresses in any channel, not just X.
1895  let SRC_SEL_X = 0;
1896  let SRC_SEL_Y = 0;
1897  let STRUCTURED_READ = 0;
1898  let LDS_REQ = 0;
1899  let COALESCED_READ = 0;
1900
1901  let Inst{31-0} = Word0;
1902}
1903
1904class VTX_READ_8_cm <bits<8> buffer_id, list<dag> pattern>
1905    : VTX_READ_cm <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
1906                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1907
1908  let DST_SEL_X = 0;
1909  let DST_SEL_Y = 7;   // Masked
1910  let DST_SEL_Z = 7;   // Masked
1911  let DST_SEL_W = 7;   // Masked
1912  let DATA_FORMAT = 1; // FMT_8
1913}
1914
1915class VTX_READ_16_cm <bits<8> buffer_id, list<dag> pattern>
1916    : VTX_READ_cm <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
1917                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1918  let DST_SEL_X = 0;
1919  let DST_SEL_Y = 7;   // Masked
1920  let DST_SEL_Z = 7;   // Masked
1921  let DST_SEL_W = 7;   // Masked
1922  let DATA_FORMAT = 5; // FMT_16
1923
1924}
1925
1926class VTX_READ_32_cm <bits<8> buffer_id, list<dag> pattern>
1927    : VTX_READ_cm <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
1928                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1929
1930  let DST_SEL_X        = 0;
1931  let DST_SEL_Y        = 7;   // Masked
1932  let DST_SEL_Z        = 7;   // Masked
1933  let DST_SEL_W        = 7;   // Masked
1934  let DATA_FORMAT      = 0xD; // COLOR_32
1935
1936  // This is not really necessary, but there were some GPU hangs that appeared
1937  // to be caused by ALU instructions in the next instruction group that wrote
1938  // to the $src_gpr registers of the VTX_READ.
1939  // e.g.
1940  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1941  // %T2_X<def> = MOV %ZERO
1942  //Adding this constraint prevents this from happening.
1943  let Constraints = "$src_gpr.ptr = $dst_gpr";
1944}
1945
1946class VTX_READ_64_cm <bits<8> buffer_id, list<dag> pattern>
1947    : VTX_READ_cm <"VTX_READ_64 $dst_gpr, $src_gpr", buffer_id,
1948                   (outs R600_Reg64:$dst_gpr), pattern> {
1949
1950  let DST_SEL_X        = 0;
1951  let DST_SEL_Y        = 1;
1952  let DST_SEL_Z        = 7;
1953  let DST_SEL_W        = 7;
1954  let DATA_FORMAT      = 0x1D; // COLOR_32_32
1955}
1956
1957class VTX_READ_128_cm <bits<8> buffer_id, list<dag> pattern>
1958    : VTX_READ_cm <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
1959                   (outs R600_Reg128:$dst_gpr), pattern> {
1960
1961  let DST_SEL_X        =  0;
1962  let DST_SEL_Y        =  1;
1963  let DST_SEL_Z        =  2;
1964  let DST_SEL_W        =  3;
1965  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1966
1967  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1968  // that holds its buffer address to avoid potential hangs.  We can't use
1969  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
1970  // registers are different sizes.
1971}
1972
1973//===----------------------------------------------------------------------===//
1974// VTX Read from parameter memory space
1975//===----------------------------------------------------------------------===//
1976def VTX_READ_PARAM_8_cm : VTX_READ_8_cm <0,
1977  [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
1978>;
1979
1980def VTX_READ_PARAM_16_cm : VTX_READ_16_cm <0,
1981  [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
1982>;
1983
1984def VTX_READ_PARAM_32_cm : VTX_READ_32_cm <0,
1985  [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1986>;
1987
1988def VTX_READ_PARAM_64_cm : VTX_READ_64_cm <0,
1989  [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1990>;
1991
1992def VTX_READ_PARAM_128_cm : VTX_READ_128_cm <0,
1993  [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1994>;
1995
1996//===----------------------------------------------------------------------===//
1997// VTX Read from global memory space
1998//===----------------------------------------------------------------------===//
1999
2000// 8-bit reads
2001def VTX_READ_GLOBAL_8_cm : VTX_READ_8_cm <1,
2002  [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
2003>;
2004
2005def VTX_READ_GLOBAL_16_cm : VTX_READ_16_cm <1,
2006  [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
2007>;
2008
2009// 32-bit reads
2010def VTX_READ_GLOBAL_32_cm : VTX_READ_32_cm <1,
2011  [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
2012>;
2013
2014// 64-bit reads
2015def VTX_READ_GLOBAL_64_cm : VTX_READ_64_cm <1,
2016  [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
2017>;
2018
2019// 128-bit reads
2020def VTX_READ_GLOBAL_128_cm : VTX_READ_128_cm <1,
2021  [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
2022>;
2023
2024} // End isCayman
2025
2026//===----------------------------------------------------------------------===//
2027// Branch Instructions
2028//===----------------------------------------------------------------------===//
2029
2030
2031def IF_PREDICATE_SET  : ILFormat<(outs), (ins GPRI32:$src),
2032  "IF_PREDICATE_SET $src", []>;
2033
2034//===----------------------------------------------------------------------===//
2035// Pseudo instructions
2036//===----------------------------------------------------------------------===//
2037
2038let isPseudo = 1 in {
2039
2040def PRED_X : InstR600 <
2041  (outs R600_Predicate_Bit:$dst),
2042  (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
2043  "", [], NullALU> {
2044  let FlagOperandIdx = 3;
2045}
2046
2047let isTerminator = 1, isBranch = 1 in {
2048def JUMP_COND : InstR600 <
2049          (outs),
2050          (ins brtarget:$target, R600_Predicate_Bit:$p),
2051          "JUMP $target ($p)",
2052          [], AnyALU
2053  >;
2054
2055def JUMP : InstR600 <
2056          (outs),
2057          (ins brtarget:$target),
2058          "JUMP $target",
2059          [], AnyALU
2060  >
2061{
2062  let isPredicable = 1;
2063  let isBarrier = 1;
2064}
2065
2066}  // End isTerminator = 1, isBranch = 1
2067
2068let usesCustomInserter = 1 in {
2069
2070let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
2071
2072def MASK_WRITE : AMDGPUShaderInst <
2073    (outs),
2074    (ins R600_Reg32:$src),
2075    "MASK_WRITE $src",
2076    []
2077>;
2078
2079} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
2080
2081
2082def TXD: InstR600 <
2083  (outs R600_Reg128:$dst),
2084  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
2085       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
2086  "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
2087  [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
2088                     imm:$resourceId, imm:$samplerId, imm:$textureTarget))],
2089  NullALU > {
2090  let TEXInst = 1;
2091}
2092
2093def TXD_SHADOW: InstR600 <
2094  (outs R600_Reg128:$dst),
2095  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
2096       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
2097  "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
2098  [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
2099        imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))],
2100   NullALU
2101> {
2102  let TEXInst = 1;
2103}
2104} // End isPseudo = 1
2105} // End usesCustomInserter = 1
2106
2107//===---------------------------------------------------------------------===//
2108// Return instruction
2109//===---------------------------------------------------------------------===//
2110let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
2111    usesCustomInserter = 1 in {
2112  def RETURN          : ILFormat<(outs), (ins variable_ops),
2113      "RETURN", [(IL_retflag)]>;
2114}
2115
2116
2117//===----------------------------------------------------------------------===//
2118// Constant Buffer Addressing Support
2119//===----------------------------------------------------------------------===//
2120
2121let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
2122def CONST_COPY : Instruction {
2123  let OutOperandList = (outs R600_Reg32:$dst);
2124  let InOperandList = (ins i32imm:$src);
2125  let Pattern =
2126      [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
2127  let AsmString = "CONST_COPY";
2128  let neverHasSideEffects = 1;
2129  let isAsCheapAsAMove = 1;
2130  let Itinerary = NullALU;
2131}
2132} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
2133
2134def TEX_VTX_CONSTBUF :
2135  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
2136      [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
2137  VTX_WORD1_GPR, VTX_WORD0_eg {
2138
2139  let VC_INST = 0;
2140  let FETCH_TYPE = 2;
2141  let FETCH_WHOLE_QUAD = 0;
2142  let SRC_REL = 0;
2143  let SRC_SEL_X = 0;
2144  let DST_REL = 0;
2145  let USE_CONST_FIELDS = 0;
2146  let NUM_FORMAT_ALL = 2;
2147  let FORMAT_COMP_ALL = 1;
2148  let SRF_MODE_ALL = 1;
2149  let MEGA_FETCH_COUNT = 16;
2150  let DST_SEL_X        = 0;
2151  let DST_SEL_Y        = 1;
2152  let DST_SEL_Z        = 2;
2153  let DST_SEL_W        = 3;
2154  let DATA_FORMAT      = 35;
2155
2156  let Inst{31-0} = Word0;
2157  let Inst{63-32} = Word1;
2158
2159// LLVM can only encode 64-bit instructions, so these fields are manually
2160// encoded in R600CodeEmitter
2161//
2162// bits<16> OFFSET;
2163// bits<2>  ENDIAN_SWAP = 0;
2164// bits<1>  CONST_BUF_NO_STRIDE = 0;
2165// bits<1>  MEGA_FETCH = 0;
2166// bits<1>  ALT_CONST = 0;
2167// bits<2>  BUFFER_INDEX_MODE = 0;
2168
2169
2170
2171// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
2172// is done in R600CodeEmitter
2173//
2174// Inst{79-64} = OFFSET;
2175// Inst{81-80} = ENDIAN_SWAP;
2176// Inst{82}    = CONST_BUF_NO_STRIDE;
2177// Inst{83}    = MEGA_FETCH;
2178// Inst{84}    = ALT_CONST;
2179// Inst{86-85} = BUFFER_INDEX_MODE;
2180// Inst{95-86} = 0; Reserved
2181
2182// VTX_WORD3 (Padding)
2183//
2184// Inst{127-96} = 0;
2185  let VTXInst = 1;
2186}
2187
2188def TEX_VTX_TEXBUF:
2189  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
2190      [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
2191VTX_WORD1_GPR, VTX_WORD0_eg {
2192
2193let VC_INST = 0;
2194let FETCH_TYPE = 2;
2195let FETCH_WHOLE_QUAD = 0;
2196let SRC_REL = 0;
2197let SRC_SEL_X = 0;
2198let DST_REL = 0;
2199let USE_CONST_FIELDS = 1;
2200let NUM_FORMAT_ALL = 0;
2201let FORMAT_COMP_ALL = 0;
2202let SRF_MODE_ALL = 1;
2203let MEGA_FETCH_COUNT = 16;
2204let DST_SEL_X        = 0;
2205let DST_SEL_Y        = 1;
2206let DST_SEL_Z        = 2;
2207let DST_SEL_W        = 3;
2208let DATA_FORMAT      = 0;
2209
2210let Inst{31-0} = Word0;
2211let Inst{63-32} = Word1;
2212
2213// LLVM can only encode 64-bit instructions, so these fields are manually
2214// encoded in R600CodeEmitter
2215//
2216// bits<16> OFFSET;
2217// bits<2>  ENDIAN_SWAP = 0;
2218// bits<1>  CONST_BUF_NO_STRIDE = 0;
2219// bits<1>  MEGA_FETCH = 0;
2220// bits<1>  ALT_CONST = 0;
2221// bits<2>  BUFFER_INDEX_MODE = 0;
2222
2223
2224
2225// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
2226// is done in R600CodeEmitter
2227//
2228// Inst{79-64} = OFFSET;
2229// Inst{81-80} = ENDIAN_SWAP;
2230// Inst{82}    = CONST_BUF_NO_STRIDE;
2231// Inst{83}    = MEGA_FETCH;
2232// Inst{84}    = ALT_CONST;
2233// Inst{86-85} = BUFFER_INDEX_MODE;
2234// Inst{95-86} = 0; Reserved
2235
2236// VTX_WORD3 (Padding)
2237//
2238// Inst{127-96} = 0;
2239  let VTXInst = 1;
2240}
2241
2242
2243
2244//===--------------------------------------------------------------------===//
2245// Instructions support
2246//===--------------------------------------------------------------------===//
2247//===---------------------------------------------------------------------===//
2248// Custom Inserter for Branches and returns, this eventually will be a
2249// seperate pass
2250//===---------------------------------------------------------------------===//
2251let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
2252  def BRANCH : ILFormat<(outs), (ins brtarget:$target),
2253      "; Pseudo unconditional branch instruction",
2254      [(br bb:$target)]>;
2255  defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>;
2256}
2257
2258//===---------------------------------------------------------------------===//
2259// Flow and Program control Instructions
2260//===---------------------------------------------------------------------===//
2261let isTerminator=1 in {
2262  def SWITCH      : ILFormat< (outs), (ins GPRI32:$src),
2263  !strconcat("SWITCH", " $src"), []>;
2264  def CASE        : ILFormat< (outs), (ins GPRI32:$src),
2265      !strconcat("CASE", " $src"), []>;
2266  def BREAK       : ILFormat< (outs), (ins),
2267      "BREAK", []>;
2268  def CONTINUE    : ILFormat< (outs), (ins),
2269      "CONTINUE", []>;
2270  def DEFAULT     : ILFormat< (outs), (ins),
2271      "DEFAULT", []>;
2272  def ELSE        : ILFormat< (outs), (ins),
2273      "ELSE", []>;
2274  def ENDSWITCH   : ILFormat< (outs), (ins),
2275      "ENDSWITCH", []>;
2276  def ENDMAIN     : ILFormat< (outs), (ins),
2277      "ENDMAIN", []>;
2278  def END         : ILFormat< (outs), (ins),
2279      "END", []>;
2280  def ENDFUNC     : ILFormat< (outs), (ins),
2281      "ENDFUNC", []>;
2282  def ENDIF       : ILFormat< (outs), (ins),
2283      "ENDIF", []>;
2284  def WHILELOOP   : ILFormat< (outs), (ins),
2285      "WHILE", []>;
2286  def ENDLOOP     : ILFormat< (outs), (ins),
2287      "ENDLOOP", []>;
2288  def FUNC        : ILFormat< (outs), (ins),
2289      "FUNC", []>;
2290  def RETDYN      : ILFormat< (outs), (ins),
2291      "RET_DYN", []>;
2292  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2293  defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
2294  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2295  defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
2296  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2297  defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
2298  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2299  defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
2300  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2301  defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
2302  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2303  defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
2304  defm IFC         : BranchInstr2<"IFC">;
2305  defm BREAKC      : BranchInstr2<"BREAKC">;
2306  defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
2307}
2308
2309//===----------------------------------------------------------------------===//
2310// ISel Patterns
2311//===----------------------------------------------------------------------===//
2312
2313// CND*_INT Pattterns for f32 True / False values
2314
2315class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
2316  (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc),
2317  (cnd $src0, $src1, $src2)
2318>;
2319
2320def : CND_INT_f32 <CNDE_INT,  SETEQ>;
2321def : CND_INT_f32 <CNDGT_INT, SETGT>;
2322def : CND_INT_f32 <CNDGE_INT, SETGE>;
2323
2324//CNDGE_INT extra pattern
2325def : Pat <
2326  (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_SGT),
2327  (CNDGE_INT $src0, $src1, $src2)
2328>;
2329
2330// KIL Patterns
2331def KILP : Pat <
2332  (int_AMDGPU_kilp),
2333  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
2334>;
2335
2336def KIL : Pat <
2337  (int_AMDGPU_kill f32:$src0),
2338  (MASK_WRITE (KILLGT (f32 ZERO), $src0))
2339>;
2340
2341def : Extract_Element <f32, v4f32, 0, sub0>;
2342def : Extract_Element <f32, v4f32, 1, sub1>;
2343def : Extract_Element <f32, v4f32, 2, sub2>;
2344def : Extract_Element <f32, v4f32, 3, sub3>;
2345
2346def : Insert_Element <f32, v4f32, 0, sub0>;
2347def : Insert_Element <f32, v4f32, 1, sub1>;
2348def : Insert_Element <f32, v4f32, 2, sub2>;
2349def : Insert_Element <f32, v4f32, 3, sub3>;
2350
2351def : Extract_Element <i32, v4i32, 0, sub0>;
2352def : Extract_Element <i32, v4i32, 1, sub1>;
2353def : Extract_Element <i32, v4i32, 2, sub2>;
2354def : Extract_Element <i32, v4i32, 3, sub3>;
2355
2356def : Insert_Element <i32, v4i32, 0, sub0>;
2357def : Insert_Element <i32, v4i32, 1, sub1>;
2358def : Insert_Element <i32, v4i32, 2, sub2>;
2359def : Insert_Element <i32, v4i32, 3, sub3>;
2360
2361def : Vector4_Build <v4f32, f32>;
2362def : Vector4_Build <v4i32, i32>;
2363
2364def : Extract_Element <f32, v2f32, 0, sub0>;
2365def : Extract_Element <f32, v2f32, 1, sub1>;
2366
2367def : Insert_Element <f32, v2f32, 0, sub0>;
2368def : Insert_Element <f32, v2f32, 1, sub1>;
2369
2370def : Extract_Element <i32, v2i32, 0, sub0>;
2371def : Extract_Element <i32, v2i32, 1, sub1>;
2372
2373def : Insert_Element <i32, v2i32, 0, sub0>;
2374def : Insert_Element <i32, v2i32, 1, sub1>;
2375
2376// bitconvert patterns
2377
2378def : BitConvert <i32, f32, R600_Reg32>;
2379def : BitConvert <f32, i32, R600_Reg32>;
2380def : BitConvert <v2f32, v2i32, R600_Reg64>;
2381def : BitConvert <v2i32, v2f32, R600_Reg64>;
2382def : BitConvert <v4f32, v4i32, R600_Reg128>;
2383def : BitConvert <v4i32, v4f32, R600_Reg128>;
2384
2385// DWORDADDR pattern
2386def : DwordAddrPat  <i32, R600_Reg32>;
2387
2388} // End isR600toCayman Predicate
2389
2390def getLDSNoRetOp : InstrMapping {
2391  let FilterClass = "R600_LDS_1A1D";
2392  let RowFields = ["BaseOp"];
2393  let ColFields = ["DisableEncoding"];
2394  let KeyCol = ["$dst"];
2395  let ValueCols = [[""""]];
2396}
2397