1//===-- PPCRegisterInfo.td - The PowerPC Register File -----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11//===----------------------------------------------------------------------===//
12
13let Namespace = "PPC" in {
14def sub_lt : SubRegIndex<1>;
15def sub_gt : SubRegIndex<1, 1>;
16def sub_eq : SubRegIndex<1, 2>;
17def sub_un : SubRegIndex<1, 3>;
18def sub_32 : SubRegIndex<32>;
19}
20
21
22class PPCReg<string n> : Register<n> {
23  let Namespace = "PPC";
24}
25
26// We identify all our registers with a 5-bit ID, for consistency's sake.
27
28// GPR - One of the 32 32-bit general-purpose registers
29class GPR<bits<5> num, string n> : PPCReg<n> {
30  let HWEncoding{4-0} = num;
31}
32
33// GP8 - One of the 32 64-bit general-purpose registers
34class GP8<GPR SubReg, string n> : PPCReg<n> {
35  let HWEncoding = SubReg.HWEncoding;
36  let SubRegs = [SubReg];
37  let SubRegIndices = [sub_32];
38}
39
40// SPR - One of the 32-bit special-purpose registers
41class SPR<bits<10> num, string n> : PPCReg<n> {
42  let HWEncoding{9-0} = num;
43}
44
45// FPR - One of the 32 64-bit floating-point registers
46class FPR<bits<5> num, string n> : PPCReg<n> {
47  let HWEncoding{4-0} = num;
48}
49
50// VR - One of the 32 128-bit vector registers
51class VR<bits<5> num, string n> : PPCReg<n> {
52  let HWEncoding{4-0} = num;
53}
54
55// CR - One of the 8 4-bit condition registers
56class CR<bits<3> num, string n, list<Register> subregs> : PPCReg<n> {
57  let HWEncoding{2-0} = num;
58  let SubRegs = subregs;
59}
60
61// CRBIT - One of the 32 1-bit condition register fields
62class CRBIT<bits<5> num, string n> : PPCReg<n> {
63  let HWEncoding{4-0} = num;
64}
65
66// General-purpose registers
67foreach Index = 0-31 in {
68  def R#Index : GPR<Index, "r"#Index>, DwarfRegNum<[-2, Index]>;
69}
70
71// 64-bit General-purpose registers
72foreach Index = 0-31 in {
73  def X#Index : GP8<!cast<GPR>("R"#Index), "r"#Index>,
74                    DwarfRegNum<[Index, -2]>;
75}
76
77// Floating-point registers
78foreach Index = 0-31 in {
79  def F#Index : FPR<Index, "f"#Index>,
80                DwarfRegNum<[!add(Index, 32), !add(Index, 32)]>;
81}
82
83// Vector registers
84foreach Index = 0-31 in {
85  def V#Index : VR<Index, "v"#Index>,
86                DwarfRegNum<[!add(Index, 77), !add(Index, 77)]>;
87}
88
89// The reprsentation of r0 when treated as the constant 0.
90def ZERO  : GPR<0, "0">;
91def ZERO8 : GP8<ZERO, "0">;
92
93// Representations of the frame pointer used by ISD::FRAMEADDR.
94def FP   : GPR<0 /* arbitrary */, "**FRAME POINTER**">;
95def FP8  : GP8<FP, "**FRAME POINTER**">;
96
97// Representations of the base pointer used by setjmp.
98def BP   : GPR<0 /* arbitrary */, "**BASE POINTER**">;
99def BP8  : GP8<BP, "**BASE POINTER**">;
100
101// Condition register bits
102def CR0LT : CRBIT< 0, "0">;
103def CR0GT : CRBIT< 1, "1">;
104def CR0EQ : CRBIT< 2, "2">;
105def CR0UN : CRBIT< 3, "3">;
106def CR1LT : CRBIT< 4, "4">;
107def CR1GT : CRBIT< 5, "5">;
108def CR1EQ : CRBIT< 6, "6">;
109def CR1UN : CRBIT< 7, "7">;
110def CR2LT : CRBIT< 8, "8">;
111def CR2GT : CRBIT< 9, "9">;
112def CR2EQ : CRBIT<10, "10">;
113def CR2UN : CRBIT<11, "11">;
114def CR3LT : CRBIT<12, "12">;
115def CR3GT : CRBIT<13, "13">;
116def CR3EQ : CRBIT<14, "14">;
117def CR3UN : CRBIT<15, "15">;
118def CR4LT : CRBIT<16, "16">;
119def CR4GT : CRBIT<17, "17">;
120def CR4EQ : CRBIT<18, "18">;
121def CR4UN : CRBIT<19, "19">;
122def CR5LT : CRBIT<20, "20">;
123def CR5GT : CRBIT<21, "21">;
124def CR5EQ : CRBIT<22, "22">;
125def CR5UN : CRBIT<23, "23">;
126def CR6LT : CRBIT<24, "24">;
127def CR6GT : CRBIT<25, "25">;
128def CR6EQ : CRBIT<26, "26">;
129def CR6UN : CRBIT<27, "27">;
130def CR7LT : CRBIT<28, "28">;
131def CR7GT : CRBIT<29, "29">;
132def CR7EQ : CRBIT<30, "30">;
133def CR7UN : CRBIT<31, "31">;
134
135// Condition registers
136let SubRegIndices = [sub_lt, sub_gt, sub_eq, sub_un] in {
137def CR0 : CR<0, "cr0", [CR0LT, CR0GT, CR0EQ, CR0UN]>, DwarfRegNum<[68, 68]>;
138def CR1 : CR<1, "cr1", [CR1LT, CR1GT, CR1EQ, CR1UN]>, DwarfRegNum<[69, 69]>;
139def CR2 : CR<2, "cr2", [CR2LT, CR2GT, CR2EQ, CR2UN]>, DwarfRegNum<[70, 70]>;
140def CR3 : CR<3, "cr3", [CR3LT, CR3GT, CR3EQ, CR3UN]>, DwarfRegNum<[71, 71]>;
141def CR4 : CR<4, "cr4", [CR4LT, CR4GT, CR4EQ, CR4UN]>, DwarfRegNum<[72, 72]>;
142def CR5 : CR<5, "cr5", [CR5LT, CR5GT, CR5EQ, CR5UN]>, DwarfRegNum<[73, 73]>;
143def CR6 : CR<6, "cr6", [CR6LT, CR6GT, CR6EQ, CR6UN]>, DwarfRegNum<[74, 74]>;
144def CR7 : CR<7, "cr7", [CR7LT, CR7GT, CR7EQ, CR7UN]>, DwarfRegNum<[75, 75]>;
145}
146
147// The full condition-code register. This is not modeled fully, but defined
148// here primarily, for compatibility with gcc, to allow the inline asm "cc"
149// clobber specification to work.
150def CC : PPCReg<"cc">, DwarfRegAlias<CR0> {
151  let Aliases = [CR0, CR1, CR2, CR3, CR4, CR5, CR6, CR7];
152}
153
154// Link register
155def LR  : SPR<8, "lr">, DwarfRegNum<[-2, 65]>;
156//let Aliases = [LR] in
157def LR8 : SPR<8, "lr">, DwarfRegNum<[65, -2]>;
158
159// Count register
160def CTR  : SPR<9, "ctr">, DwarfRegNum<[-2, 66]>;
161def CTR8 : SPR<9, "ctr">, DwarfRegNum<[66, -2]>;
162
163// VRsave register
164def VRSAVE: SPR<256, "vrsave">, DwarfRegNum<[109]>;
165
166// Carry bit.  In the architecture this is really bit 0 of the XER register
167// (which really is SPR register 1);  this is the only bit interesting to a
168// compiler.
169def CARRY: SPR<1, "ca">;
170
171// FP rounding mode:  bits 30 and 31 of the FP status and control register
172// This is not allocated as a normal register; it appears only in
173// Uses and Defs.  The ABI says it needs to be preserved by a function,
174// but this is not achieved by saving and restoring it as with
175// most registers, it has to be done in code; to make this work all the
176// return and call instructions are described as Uses of RM, so instructions
177// that do nothing but change RM will not get deleted.
178// Also, in the architecture it is not really a SPR; 512 is arbitrary.
179def RM: SPR<512, "**ROUNDING MODE**">;
180
181/// Register classes
182// Allocate volatiles first
183// then nonvolatiles in reverse order since stmw/lmw save from rN to r31
184def GPRC : RegisterClass<"PPC", [i32], 32, (add (sequence "R%u", 2, 12),
185                                                (sequence "R%u", 30, 13),
186                                                R31, R0, R1, FP, BP)>;
187
188def G8RC : RegisterClass<"PPC", [i64], 64, (add (sequence "X%u", 2, 12),
189                                                (sequence "X%u", 30, 14),
190                                                X31, X13, X0, X1, FP8, BP8)>;
191
192// For some instructions r0 is special (representing the value 0 instead of
193// the value in the r0 register), and we use these register subclasses to
194// prevent r0 from being allocated for use by those instructions.
195def GPRC_NOR0 : RegisterClass<"PPC", [i32], 32, (add (sub GPRC, R0), ZERO)>;
196def G8RC_NOX0 : RegisterClass<"PPC", [i64], 64, (add (sub G8RC, X0), ZERO8)>;
197
198// Allocate volatiles first, then non-volatiles in reverse order. With the SVR4
199// ABI the size of the Floating-point register save area is determined by the
200// allocated non-volatile register with the lowest register number, as FP
201// register N is spilled to offset 8 * (32 - N) below the back chain word of the
202// previous stack frame. By allocating non-volatiles in reverse order we make
203// sure that the Floating-point register save area is always as small as
204// possible because there aren't any unused spill slots.
205def F8RC : RegisterClass<"PPC", [f64], 64, (add (sequence "F%u", 0, 13),
206                                                (sequence "F%u", 31, 14))>;
207def F4RC : RegisterClass<"PPC", [f32], 32, (add F8RC)>;
208
209def VRRC : RegisterClass<"PPC", [v16i8,v8i16,v4i32,v4f32], 128,
210                         (add V2, V3, V4, V5, V0, V1, V6, V7, V8, V9, V10, V11,
211                             V12, V13, V14, V15, V16, V17, V18, V19, V31, V30,
212                             V29, V28, V27, V26, V25, V24, V23, V22, V21, V20)>;
213
214def CRBITRC : RegisterClass<"PPC", [i32], 32,
215  (add CR0LT, CR0GT, CR0EQ, CR0UN,
216       CR1LT, CR1GT, CR1EQ, CR1UN,
217       CR2LT, CR2GT, CR2EQ, CR2UN,
218       CR3LT, CR3GT, CR3EQ, CR3UN,
219       CR4LT, CR4GT, CR4EQ, CR4UN,
220       CR5LT, CR5GT, CR5EQ, CR5UN,
221       CR6LT, CR6GT, CR6EQ, CR6UN,
222       CR7LT, CR7GT, CR7EQ, CR7UN)>
223{
224  let CopyCost = -1;
225}
226
227def CRRC : RegisterClass<"PPC", [i32], 32, (add CR0, CR1, CR5, CR6,
228                                                CR7, CR2, CR3, CR4)>;
229
230// The CTR registers are not allocatable because they're used by the
231// decrement-and-branch instructions, and thus need to stay live across
232// multiple basic blocks.
233def CTRRC : RegisterClass<"PPC", [i32], 32, (add CTR)> {
234  let isAllocatable = 0;
235}
236def CTRRC8 : RegisterClass<"PPC", [i64], 64, (add CTR8)> {
237  let isAllocatable = 0;
238}
239
240def VRSAVERC : RegisterClass<"PPC", [i32], 32, (add VRSAVE)>;
241def CARRYRC : RegisterClass<"PPC", [i32], 32, (add CARRY)> {
242  let CopyCost = -1;
243}
244
245def CCRC : RegisterClass<"PPC", [i32], 32, (add CC)> {
246  let isAllocatable = 0;
247}
248
249