1249259Sdim//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2249259Sdim//
3249259Sdim//                     The LLVM Compiler Infrastructure
4249259Sdim//
5249259Sdim// This file is distributed under the University of Illinois Open Source
6249259Sdim// License. See LICENSE.TXT for details.
7249259Sdim//
8249259Sdim//===----------------------------------------------------------------------===//
9249259Sdim//
10249259Sdim// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11249259Sdim// selection DAG.
12249259Sdim//
13249259Sdim//===----------------------------------------------------------------------===//
14249259Sdim
15249259Sdim#define DEBUG_TYPE "aarch64-isel"
16249259Sdim#include "AArch64.h"
17249259Sdim#include "AArch64ISelLowering.h"
18249259Sdim#include "AArch64MachineFunctionInfo.h"
19249259Sdim#include "AArch64TargetMachine.h"
20249259Sdim#include "AArch64TargetObjectFile.h"
21249259Sdim#include "Utils/AArch64BaseInfo.h"
22249259Sdim#include "llvm/CodeGen/Analysis.h"
23249259Sdim#include "llvm/CodeGen/CallingConvLower.h"
24249259Sdim#include "llvm/CodeGen/MachineFrameInfo.h"
25249259Sdim#include "llvm/CodeGen/MachineInstrBuilder.h"
26249259Sdim#include "llvm/CodeGen/MachineRegisterInfo.h"
27249259Sdim#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28249259Sdim#include "llvm/IR/CallingConv.h"
29249259Sdim
30249259Sdimusing namespace llvm;
31249259Sdim
32249259Sdimstatic TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33249259Sdim  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34266715Sdim  assert (Subtarget->isTargetELF() && "unknown subtarget type");
35266715Sdim  return new AArch64ElfTargetObjectFile();
36249259Sdim}
37249259Sdim
38249259SdimAArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
39263508Sdim  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
40249259Sdim
41263508Sdim  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
42263508Sdim
43249259Sdim  // SIMD compares set the entire lane's bits to 1
44249259Sdim  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
45249259Sdim
46249259Sdim  // Scalar register <-> type mapping
47249259Sdim  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
48249259Sdim  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
49249259Sdim
50263508Sdim  if (Subtarget->hasFPARMv8()) {
51263508Sdim    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
52263508Sdim    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
53263508Sdim    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
54263508Sdim    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
55263508Sdim  }
56263508Sdim
57263508Sdim  if (Subtarget->hasNEON()) {
58263508Sdim    // And the vectors
59263508Sdim    addRegisterClass(MVT::v1i8,  &AArch64::FPR8RegClass);
60263508Sdim    addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
61263508Sdim    addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
62263508Sdim    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
63263508Sdim    addRegisterClass(MVT::v1f32, &AArch64::FPR32RegClass);
64263508Sdim    addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
65263508Sdim    addRegisterClass(MVT::v8i8,  &AArch64::FPR64RegClass);
66263508Sdim    addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
67263508Sdim    addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
68263508Sdim    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
69263508Sdim    addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
70263508Sdim    addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
71263508Sdim    addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
72263508Sdim    addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
73263508Sdim    addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
74263508Sdim    addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
75263508Sdim    addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
76263508Sdim  }
77263508Sdim
78249259Sdim  computeRegisterProperties();
79249259Sdim
80249259Sdim  // We combine OR nodes for bitfield and NEON BSL operations.
81249259Sdim  setTargetDAGCombine(ISD::OR);
82249259Sdim
83249259Sdim  setTargetDAGCombine(ISD::AND);
84249259Sdim  setTargetDAGCombine(ISD::SRA);
85263508Sdim  setTargetDAGCombine(ISD::SRL);
86263508Sdim  setTargetDAGCombine(ISD::SHL);
87249259Sdim
88263508Sdim  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
89263508Sdim  setTargetDAGCombine(ISD::INTRINSIC_VOID);
90263508Sdim  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
91263508Sdim
92249259Sdim  // AArch64 does not have i1 loads, or much of anything for i1 really.
93249259Sdim  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
94249259Sdim  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
95249259Sdim  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
96249259Sdim
97249259Sdim  setStackPointerRegisterToSaveRestore(AArch64::XSP);
98249259Sdim  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
99249259Sdim  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100249259Sdim  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
101249259Sdim
102249259Sdim  // We'll lower globals to wrappers for selection.
103249259Sdim  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
104249259Sdim  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
105249259Sdim
106249259Sdim  // A64 instructions have the comparison predicate attached to the user of the
107249259Sdim  // result, but having a separate comparison is valuable for matching.
108249259Sdim  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
109249259Sdim  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
110249259Sdim  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
111249259Sdim  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
112249259Sdim
113249259Sdim  setOperationAction(ISD::SELECT, MVT::i32, Custom);
114249259Sdim  setOperationAction(ISD::SELECT, MVT::i64, Custom);
115249259Sdim  setOperationAction(ISD::SELECT, MVT::f32, Custom);
116249259Sdim  setOperationAction(ISD::SELECT, MVT::f64, Custom);
117249259Sdim
118249259Sdim  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
119249259Sdim  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
120249259Sdim  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
121249259Sdim  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
122249259Sdim
123249259Sdim  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
124249259Sdim
125249259Sdim  setOperationAction(ISD::SETCC, MVT::i32, Custom);
126249259Sdim  setOperationAction(ISD::SETCC, MVT::i64, Custom);
127249259Sdim  setOperationAction(ISD::SETCC, MVT::f32, Custom);
128249259Sdim  setOperationAction(ISD::SETCC, MVT::f64, Custom);
129249259Sdim
130249259Sdim  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
131249259Sdim  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
132249259Sdim  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133249259Sdim
134249259Sdim  setOperationAction(ISD::VASTART, MVT::Other, Custom);
135249259Sdim  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
136249259Sdim  setOperationAction(ISD::VAEND, MVT::Other, Expand);
137249259Sdim  setOperationAction(ISD::VAARG, MVT::Other, Expand);
138249259Sdim
139249259Sdim  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
140249259Sdim
141249259Sdim  setOperationAction(ISD::ROTL, MVT::i32, Expand);
142249259Sdim  setOperationAction(ISD::ROTL, MVT::i64, Expand);
143249259Sdim
144249259Sdim  setOperationAction(ISD::UREM, MVT::i32, Expand);
145249259Sdim  setOperationAction(ISD::UREM, MVT::i64, Expand);
146249259Sdim  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
147249259Sdim  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
148249259Sdim
149249259Sdim  setOperationAction(ISD::SREM, MVT::i32, Expand);
150249259Sdim  setOperationAction(ISD::SREM, MVT::i64, Expand);
151249259Sdim  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
152249259Sdim  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
153249259Sdim
154249259Sdim  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
155249259Sdim  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
156249259Sdim
157249259Sdim  // Legal floating-point operations.
158249259Sdim  setOperationAction(ISD::FABS, MVT::f32, Legal);
159249259Sdim  setOperationAction(ISD::FABS, MVT::f64, Legal);
160249259Sdim
161249259Sdim  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
162249259Sdim  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
163249259Sdim
164249259Sdim  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
165249259Sdim  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
166249259Sdim
167249259Sdim  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
168249259Sdim  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
169249259Sdim
170249259Sdim  setOperationAction(ISD::FNEG, MVT::f32, Legal);
171249259Sdim  setOperationAction(ISD::FNEG, MVT::f64, Legal);
172249259Sdim
173249259Sdim  setOperationAction(ISD::FRINT, MVT::f32, Legal);
174249259Sdim  setOperationAction(ISD::FRINT, MVT::f64, Legal);
175249259Sdim
176249259Sdim  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
177249259Sdim  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
178249259Sdim
179249259Sdim  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
180249259Sdim  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
181249259Sdim
182249259Sdim  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
183249259Sdim  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
184249259Sdim  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
185249259Sdim
186249259Sdim  // Illegal floating-point operations.
187249259Sdim  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
188249259Sdim  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
189249259Sdim
190249259Sdim  setOperationAction(ISD::FCOS, MVT::f32, Expand);
191249259Sdim  setOperationAction(ISD::FCOS, MVT::f64, Expand);
192249259Sdim
193249259Sdim  setOperationAction(ISD::FEXP, MVT::f32, Expand);
194249259Sdim  setOperationAction(ISD::FEXP, MVT::f64, Expand);
195249259Sdim
196249259Sdim  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
197249259Sdim  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
198249259Sdim
199249259Sdim  setOperationAction(ISD::FLOG, MVT::f32, Expand);
200249259Sdim  setOperationAction(ISD::FLOG, MVT::f64, Expand);
201249259Sdim
202249259Sdim  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
203249259Sdim  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
204249259Sdim
205249259Sdim  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
206249259Sdim  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
207249259Sdim
208249259Sdim  setOperationAction(ISD::FPOW, MVT::f32, Expand);
209249259Sdim  setOperationAction(ISD::FPOW, MVT::f64, Expand);
210249259Sdim
211249259Sdim  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
212249259Sdim  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
213249259Sdim
214249259Sdim  setOperationAction(ISD::FREM, MVT::f32, Expand);
215249259Sdim  setOperationAction(ISD::FREM, MVT::f64, Expand);
216249259Sdim
217249259Sdim  setOperationAction(ISD::FSIN, MVT::f32, Expand);
218249259Sdim  setOperationAction(ISD::FSIN, MVT::f64, Expand);
219249259Sdim
220249259Sdim  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
221249259Sdim  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
222249259Sdim
223249259Sdim  // Virtually no operation on f128 is legal, but LLVM can't expand them when
224249259Sdim  // there's a valid register class, so we need custom operations in most cases.
225249259Sdim  setOperationAction(ISD::FABS,       MVT::f128, Expand);
226249259Sdim  setOperationAction(ISD::FADD,       MVT::f128, Custom);
227249259Sdim  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
228249259Sdim  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
229249259Sdim  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
230249259Sdim  setOperationAction(ISD::FMA,        MVT::f128, Expand);
231249259Sdim  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
232249259Sdim  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
233249259Sdim  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
234249259Sdim  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
235249259Sdim  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
236249259Sdim  setOperationAction(ISD::FREM,       MVT::f128, Expand);
237249259Sdim  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
238249259Sdim  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
239249259Sdim  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
240249259Sdim  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
241249259Sdim  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
242249259Sdim  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
243249259Sdim  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
244249259Sdim  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
245249259Sdim  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
246249259Sdim  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
247249259Sdim  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
248249259Sdim
249249259Sdim  // Lowering for many of the conversions is actually specified by the non-f128
250249259Sdim  // type. The LowerXXX function will be trivial when f128 isn't involved.
251249259Sdim  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
252249259Sdim  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
253249259Sdim  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
254249259Sdim  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
255249259Sdim  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
256249259Sdim  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
257249259Sdim  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
258249259Sdim  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
259249259Sdim  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
260249259Sdim  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
261249259Sdim  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
262249259Sdim  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
263249259Sdim  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
264249259Sdim  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
265249259Sdim
266249259Sdim  // This prevents LLVM trying to compress double constants into a floating
267249259Sdim  // constant-pool entry and trying to load from there. It's of doubtful benefit
268249259Sdim  // for A64: we'd need LDR followed by FCVT, I believe.
269249259Sdim  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
270249259Sdim  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
271249259Sdim  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
272249259Sdim
273249259Sdim  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
274249259Sdim  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
275249259Sdim  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
276249259Sdim  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
277249259Sdim  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
278249259Sdim  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
279249259Sdim
280249259Sdim  setExceptionPointerRegister(AArch64::X0);
281249259Sdim  setExceptionSelectorRegister(AArch64::X1);
282263508Sdim
283263508Sdim  if (Subtarget->hasNEON()) {
284263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
285263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
286263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
287263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
288263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
289263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
290263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
291263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
292263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
293263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
294263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
295263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f32, Custom);
296263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
297263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
298263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
299263508Sdim    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
300263508Sdim
301263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
302263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
303263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
304263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
305263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
306263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
307263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
308263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
309263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
310263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
311263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
312263508Sdim    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
313263508Sdim
314263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
315263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
316263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
317263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
318263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
319263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
320263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
321263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
322263508Sdim    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
323263508Sdim
324263508Sdim    setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
325263508Sdim    setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
326263508Sdim    setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
327263508Sdim    setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
328263508Sdim    setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
329263508Sdim    setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
330263508Sdim    setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
331263508Sdim    setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
332263508Sdim    setOperationAction(ISD::SETCC, MVT::v1f32, Custom);
333263508Sdim    setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
334263508Sdim    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
335263508Sdim    setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
336263508Sdim    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
337263508Sdim
338263508Sdim    setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
339263508Sdim    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
340263508Sdim    setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
341263508Sdim    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
342263508Sdim
343263508Sdim    setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
344263508Sdim    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
345263508Sdim    setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
346263508Sdim    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
347263508Sdim
348263508Sdim    setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
349263508Sdim    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
350263508Sdim    setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
351263508Sdim    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
352263508Sdim
353263508Sdim    setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
354263508Sdim    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
355263508Sdim    setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
356263508Sdim    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
357263508Sdim
358263508Sdim    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
359263508Sdim    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
360263508Sdim    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
361263508Sdim    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
362263508Sdim
363263508Sdim    setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
364263508Sdim    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
365263508Sdim    setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
366263508Sdim    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
367263508Sdim  }
368249259Sdim}
369249259Sdim
370263508SdimEVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
371249259Sdim  // It's reasonably important that this value matches the "natural" legal
372249259Sdim  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
373249259Sdim  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
374249259Sdim  if (!VT.isVector()) return MVT::i32;
375249259Sdim  return VT.changeVectorElementTypeToInteger();
376249259Sdim}
377249259Sdim
378251662Sdimstatic void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
379251662Sdim                                  unsigned &LdrOpc,
380251662Sdim                                  unsigned &StrOpc) {
381263508Sdim  static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
382263508Sdim                                       AArch64::LDXR_word, AArch64::LDXR_dword};
383263508Sdim  static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
384263508Sdim                                     AArch64::LDAXR_word, AArch64::LDAXR_dword};
385263508Sdim  static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
386263508Sdim                                       AArch64::STXR_word, AArch64::STXR_dword};
387263508Sdim  static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
388263508Sdim                                     AArch64::STLXR_word, AArch64::STLXR_dword};
389251662Sdim
390263508Sdim  const unsigned *LoadOps, *StoreOps;
391251662Sdim  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
392251662Sdim    LoadOps = LoadAcqs;
393251662Sdim  else
394251662Sdim    LoadOps = LoadBares;
395251662Sdim
396251662Sdim  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
397251662Sdim    StoreOps = StoreRels;
398251662Sdim  else
399251662Sdim    StoreOps = StoreBares;
400251662Sdim
401251662Sdim  assert(isPowerOf2_32(Size) && Size <= 8 &&
402251662Sdim         "unsupported size for atomic binary op!");
403251662Sdim
404251662Sdim  LdrOpc = LoadOps[Log2_32(Size)];
405251662Sdim  StrOpc = StoreOps[Log2_32(Size)];
406249259Sdim}
407249259Sdim
408263508Sdim// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
409263508Sdim// have value type mapped, and they are both being defined as MVT::untyped.
410263508Sdim// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
411263508Sdim// would fail to figure out the register pressure correctly.
412263508Sdimstd::pair<const TargetRegisterClass*, uint8_t>
413263508SdimAArch64TargetLowering::findRepresentativeClass(MVT VT) const{
414263508Sdim  const TargetRegisterClass *RRC = 0;
415263508Sdim  uint8_t Cost = 1;
416263508Sdim  switch (VT.SimpleTy) {
417263508Sdim  default:
418263508Sdim    return TargetLowering::findRepresentativeClass(VT);
419263508Sdim  case MVT::v4i64:
420263508Sdim    RRC = &AArch64::QPairRegClass;
421263508Sdim    Cost = 2;
422263508Sdim    break;
423263508Sdim  case MVT::v8i64:
424263508Sdim    RRC = &AArch64::QQuadRegClass;
425263508Sdim    Cost = 4;
426263508Sdim    break;
427263508Sdim  }
428263508Sdim  return std::make_pair(RRC, Cost);
429263508Sdim}
430263508Sdim
431249259SdimMachineBasicBlock *
432249259SdimAArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
433249259Sdim                                        unsigned Size,
434249259Sdim                                        unsigned BinOpcode) const {
435249259Sdim  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
436249259Sdim  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
437249259Sdim
438249259Sdim  const BasicBlock *LLVM_BB = BB->getBasicBlock();
439249259Sdim  MachineFunction *MF = BB->getParent();
440249259Sdim  MachineFunction::iterator It = BB;
441249259Sdim  ++It;
442249259Sdim
443249259Sdim  unsigned dest = MI->getOperand(0).getReg();
444249259Sdim  unsigned ptr = MI->getOperand(1).getReg();
445249259Sdim  unsigned incr = MI->getOperand(2).getReg();
446251662Sdim  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
447249259Sdim  DebugLoc dl = MI->getDebugLoc();
448249259Sdim
449249259Sdim  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
450249259Sdim
451249259Sdim  unsigned ldrOpc, strOpc;
452251662Sdim  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
453249259Sdim
454249259Sdim  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
455249259Sdim  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
456249259Sdim  MF->insert(It, loopMBB);
457249259Sdim  MF->insert(It, exitMBB);
458249259Sdim
459249259Sdim  // Transfer the remainder of BB and its successor edges to exitMBB.
460249259Sdim  exitMBB->splice(exitMBB->begin(), BB,
461249259Sdim                  llvm::next(MachineBasicBlock::iterator(MI)),
462249259Sdim                  BB->end());
463249259Sdim  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
464249259Sdim
465249259Sdim  const TargetRegisterClass *TRC
466249259Sdim    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
467249259Sdim  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
468249259Sdim
469249259Sdim  //  thisMBB:
470249259Sdim  //   ...
471249259Sdim  //   fallthrough --> loopMBB
472249259Sdim  BB->addSuccessor(loopMBB);
473249259Sdim
474249259Sdim  //  loopMBB:
475249259Sdim  //   ldxr dest, ptr
476249259Sdim  //   <binop> scratch, dest, incr
477249259Sdim  //   stxr stxr_status, scratch, ptr
478249259Sdim  //   cbnz stxr_status, loopMBB
479249259Sdim  //   fallthrough --> exitMBB
480249259Sdim  BB = loopMBB;
481249259Sdim  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
482249259Sdim  if (BinOpcode) {
483249259Sdim    // All arithmetic operations we'll be creating are designed to take an extra
484249259Sdim    // shift or extend operand, which we can conveniently set to zero.
485249259Sdim
486249259Sdim    // Operand order needs to go the other way for NAND.
487249259Sdim    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
488249259Sdim      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
489249259Sdim        .addReg(incr).addReg(dest).addImm(0);
490249259Sdim    else
491249259Sdim      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
492249259Sdim        .addReg(dest).addReg(incr).addImm(0);
493249259Sdim  }
494249259Sdim
495249259Sdim  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
496249259Sdim  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
497249259Sdim  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
498249259Sdim
499249259Sdim  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
500249259Sdim  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
501249259Sdim    .addReg(stxr_status).addMBB(loopMBB);
502249259Sdim
503249259Sdim  BB->addSuccessor(loopMBB);
504249259Sdim  BB->addSuccessor(exitMBB);
505249259Sdim
506249259Sdim  //  exitMBB:
507249259Sdim  //   ...
508249259Sdim  BB = exitMBB;
509249259Sdim
510249259Sdim  MI->eraseFromParent();   // The instruction is gone now.
511249259Sdim
512249259Sdim  return BB;
513249259Sdim}
514249259Sdim
515249259SdimMachineBasicBlock *
516249259SdimAArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
517249259Sdim                                              MachineBasicBlock *BB,
518249259Sdim                                              unsigned Size,
519249259Sdim                                              unsigned CmpOp,
520249259Sdim                                              A64CC::CondCodes Cond) const {
521249259Sdim  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
522249259Sdim
523249259Sdim  const BasicBlock *LLVM_BB = BB->getBasicBlock();
524249259Sdim  MachineFunction *MF = BB->getParent();
525249259Sdim  MachineFunction::iterator It = BB;
526249259Sdim  ++It;
527249259Sdim
528249259Sdim  unsigned dest = MI->getOperand(0).getReg();
529249259Sdim  unsigned ptr = MI->getOperand(1).getReg();
530249259Sdim  unsigned incr = MI->getOperand(2).getReg();
531251662Sdim  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
532251662Sdim
533249259Sdim  unsigned oldval = dest;
534249259Sdim  DebugLoc dl = MI->getDebugLoc();
535249259Sdim
536249259Sdim  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
537249259Sdim  const TargetRegisterClass *TRC, *TRCsp;
538249259Sdim  if (Size == 8) {
539249259Sdim    TRC = &AArch64::GPR64RegClass;
540249259Sdim    TRCsp = &AArch64::GPR64xspRegClass;
541249259Sdim  } else {
542249259Sdim    TRC = &AArch64::GPR32RegClass;
543249259Sdim    TRCsp = &AArch64::GPR32wspRegClass;
544249259Sdim  }
545249259Sdim
546249259Sdim  unsigned ldrOpc, strOpc;
547251662Sdim  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
548249259Sdim
549249259Sdim  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
550249259Sdim  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
551249259Sdim  MF->insert(It, loopMBB);
552249259Sdim  MF->insert(It, exitMBB);
553249259Sdim
554249259Sdim  // Transfer the remainder of BB and its successor edges to exitMBB.
555249259Sdim  exitMBB->splice(exitMBB->begin(), BB,
556249259Sdim                  llvm::next(MachineBasicBlock::iterator(MI)),
557249259Sdim                  BB->end());
558249259Sdim  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
559249259Sdim
560249259Sdim  unsigned scratch = MRI.createVirtualRegister(TRC);
561249259Sdim  MRI.constrainRegClass(scratch, TRCsp);
562249259Sdim
563249259Sdim  //  thisMBB:
564249259Sdim  //   ...
565249259Sdim  //   fallthrough --> loopMBB
566249259Sdim  BB->addSuccessor(loopMBB);
567249259Sdim
568249259Sdim  //  loopMBB:
569249259Sdim  //   ldxr dest, ptr
570249259Sdim  //   cmp incr, dest (, sign extend if necessary)
571249259Sdim  //   csel scratch, dest, incr, cond
572249259Sdim  //   stxr stxr_status, scratch, ptr
573249259Sdim  //   cbnz stxr_status, loopMBB
574249259Sdim  //   fallthrough --> exitMBB
575249259Sdim  BB = loopMBB;
576249259Sdim  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
577249259Sdim
578249259Sdim  // Build compare and cmov instructions.
579249259Sdim  MRI.constrainRegClass(incr, TRCsp);
580249259Sdim  BuildMI(BB, dl, TII->get(CmpOp))
581249259Sdim    .addReg(incr).addReg(oldval).addImm(0);
582249259Sdim
583249259Sdim  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
584249259Sdim          scratch)
585249259Sdim    .addReg(oldval).addReg(incr).addImm(Cond);
586249259Sdim
587249259Sdim  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
588249259Sdim  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
589249259Sdim
590249259Sdim  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
591249259Sdim    .addReg(scratch).addReg(ptr);
592249259Sdim  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
593249259Sdim    .addReg(stxr_status).addMBB(loopMBB);
594249259Sdim
595249259Sdim  BB->addSuccessor(loopMBB);
596249259Sdim  BB->addSuccessor(exitMBB);
597249259Sdim
598249259Sdim  //  exitMBB:
599249259Sdim  //   ...
600249259Sdim  BB = exitMBB;
601249259Sdim
602249259Sdim  MI->eraseFromParent();   // The instruction is gone now.
603249259Sdim
604249259Sdim  return BB;
605249259Sdim}
606249259Sdim
607249259SdimMachineBasicBlock *
608249259SdimAArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
609249259Sdim                                         MachineBasicBlock *BB,
610249259Sdim                                         unsigned Size) const {
611249259Sdim  unsigned dest    = MI->getOperand(0).getReg();
612249259Sdim  unsigned ptr     = MI->getOperand(1).getReg();
613249259Sdim  unsigned oldval  = MI->getOperand(2).getReg();
614249259Sdim  unsigned newval  = MI->getOperand(3).getReg();
615251662Sdim  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
616249259Sdim  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
617249259Sdim  DebugLoc dl = MI->getDebugLoc();
618249259Sdim
619249259Sdim  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
620249259Sdim  const TargetRegisterClass *TRCsp;
621249259Sdim  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
622249259Sdim
623249259Sdim  unsigned ldrOpc, strOpc;
624251662Sdim  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
625249259Sdim
626249259Sdim  MachineFunction *MF = BB->getParent();
627249259Sdim  const BasicBlock *LLVM_BB = BB->getBasicBlock();
628249259Sdim  MachineFunction::iterator It = BB;
629249259Sdim  ++It; // insert the new blocks after the current block
630249259Sdim
631249259Sdim  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
632249259Sdim  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
633249259Sdim  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
634249259Sdim  MF->insert(It, loop1MBB);
635249259Sdim  MF->insert(It, loop2MBB);
636249259Sdim  MF->insert(It, exitMBB);
637249259Sdim
638249259Sdim  // Transfer the remainder of BB and its successor edges to exitMBB.
639249259Sdim  exitMBB->splice(exitMBB->begin(), BB,
640249259Sdim                  llvm::next(MachineBasicBlock::iterator(MI)),
641249259Sdim                  BB->end());
642249259Sdim  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
643249259Sdim
644249259Sdim  //  thisMBB:
645249259Sdim  //   ...
646249259Sdim  //   fallthrough --> loop1MBB
647249259Sdim  BB->addSuccessor(loop1MBB);
648249259Sdim
649249259Sdim  // loop1MBB:
650249259Sdim  //   ldxr dest, [ptr]
651249259Sdim  //   cmp dest, oldval
652249259Sdim  //   b.ne exitMBB
653249259Sdim  BB = loop1MBB;
654249259Sdim  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
655249259Sdim
656249259Sdim  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
657249259Sdim  MRI.constrainRegClass(dest, TRCsp);
658249259Sdim  BuildMI(BB, dl, TII->get(CmpOp))
659249259Sdim    .addReg(dest).addReg(oldval).addImm(0);
660249259Sdim  BuildMI(BB, dl, TII->get(AArch64::Bcc))
661249259Sdim    .addImm(A64CC::NE).addMBB(exitMBB);
662249259Sdim  BB->addSuccessor(loop2MBB);
663249259Sdim  BB->addSuccessor(exitMBB);
664249259Sdim
665249259Sdim  // loop2MBB:
666249259Sdim  //   strex stxr_status, newval, [ptr]
667249259Sdim  //   cbnz stxr_status, loop1MBB
668249259Sdim  BB = loop2MBB;
669249259Sdim  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
670249259Sdim  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
671249259Sdim
672249259Sdim  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
673249259Sdim  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
674249259Sdim    .addReg(stxr_status).addMBB(loop1MBB);
675249259Sdim  BB->addSuccessor(loop1MBB);
676249259Sdim  BB->addSuccessor(exitMBB);
677249259Sdim
678249259Sdim  //  exitMBB:
679249259Sdim  //   ...
680249259Sdim  BB = exitMBB;
681249259Sdim
682249259Sdim  MI->eraseFromParent();   // The instruction is gone now.
683249259Sdim
684249259Sdim  return BB;
685249259Sdim}
686249259Sdim
687249259SdimMachineBasicBlock *
688249259SdimAArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
689249259Sdim                                    MachineBasicBlock *MBB) const {
690249259Sdim  // We materialise the F128CSEL pseudo-instruction using conditional branches
691249259Sdim  // and loads, giving an instruciton sequence like:
692249259Sdim  //     str q0, [sp]
693249259Sdim  //     b.ne IfTrue
694249259Sdim  //     b Finish
695249259Sdim  // IfTrue:
696249259Sdim  //     str q1, [sp]
697249259Sdim  // Finish:
698249259Sdim  //     ldr q0, [sp]
699249259Sdim  //
700249259Sdim  // Using virtual registers would probably not be beneficial since COPY
701249259Sdim  // instructions are expensive for f128 (there's no actual instruction to
702249259Sdim  // implement them).
703249259Sdim  //
704249259Sdim  // An alternative would be to do an integer-CSEL on some address. E.g.:
705249259Sdim  //     mov x0, sp
706249259Sdim  //     add x1, sp, #16
707249259Sdim  //     str q0, [x0]
708249259Sdim  //     str q1, [x1]
709249259Sdim  //     csel x0, x0, x1, ne
710249259Sdim  //     ldr q0, [x0]
711249259Sdim  //
712249259Sdim  // It's unclear which approach is actually optimal.
713249259Sdim  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
714249259Sdim  MachineFunction *MF = MBB->getParent();
715249259Sdim  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
716249259Sdim  DebugLoc DL = MI->getDebugLoc();
717249259Sdim  MachineFunction::iterator It = MBB;
718249259Sdim  ++It;
719249259Sdim
720249259Sdim  unsigned DestReg = MI->getOperand(0).getReg();
721249259Sdim  unsigned IfTrueReg = MI->getOperand(1).getReg();
722249259Sdim  unsigned IfFalseReg = MI->getOperand(2).getReg();
723249259Sdim  unsigned CondCode = MI->getOperand(3).getImm();
724249259Sdim  bool NZCVKilled = MI->getOperand(4).isKill();
725249259Sdim
726249259Sdim  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
727249259Sdim  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
728249259Sdim  MF->insert(It, TrueBB);
729249259Sdim  MF->insert(It, EndBB);
730249259Sdim
731249259Sdim  // Transfer rest of current basic-block to EndBB
732249259Sdim  EndBB->splice(EndBB->begin(), MBB,
733249259Sdim                llvm::next(MachineBasicBlock::iterator(MI)),
734249259Sdim                MBB->end());
735249259Sdim  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
736249259Sdim
737249259Sdim  // We need somewhere to store the f128 value needed.
738249259Sdim  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
739249259Sdim
740249259Sdim  //     [... start of incoming MBB ...]
741249259Sdim  //     str qIFFALSE, [sp]
742249259Sdim  //     b.cc IfTrue
743249259Sdim  //     b Done
744249259Sdim  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
745249259Sdim    .addReg(IfFalseReg)
746249259Sdim    .addFrameIndex(ScratchFI)
747249259Sdim    .addImm(0);
748249259Sdim  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
749249259Sdim    .addImm(CondCode)
750249259Sdim    .addMBB(TrueBB);
751249259Sdim  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
752249259Sdim    .addMBB(EndBB);
753249259Sdim  MBB->addSuccessor(TrueBB);
754249259Sdim  MBB->addSuccessor(EndBB);
755249259Sdim
756263508Sdim  if (!NZCVKilled) {
757263508Sdim    // NZCV is live-through TrueBB.
758263508Sdim    TrueBB->addLiveIn(AArch64::NZCV);
759263508Sdim    EndBB->addLiveIn(AArch64::NZCV);
760263508Sdim  }
761263508Sdim
762249259Sdim  // IfTrue:
763249259Sdim  //     str qIFTRUE, [sp]
764249259Sdim  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
765249259Sdim    .addReg(IfTrueReg)
766249259Sdim    .addFrameIndex(ScratchFI)
767249259Sdim    .addImm(0);
768249259Sdim
769249259Sdim  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
770249259Sdim  // blocks.
771249259Sdim  TrueBB->addSuccessor(EndBB);
772249259Sdim
773249259Sdim  // Done:
774249259Sdim  //     ldr qDEST, [sp]
775249259Sdim  //     [... rest of incoming MBB ...]
776249259Sdim  MachineInstr *StartOfEnd = EndBB->begin();
777249259Sdim  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
778249259Sdim    .addFrameIndex(ScratchFI)
779249259Sdim    .addImm(0);
780249259Sdim
781249259Sdim  MI->eraseFromParent();
782249259Sdim  return EndBB;
783249259Sdim}
784249259Sdim
785249259SdimMachineBasicBlock *
786249259SdimAArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
787249259Sdim                                                 MachineBasicBlock *MBB) const {
788249259Sdim  switch (MI->getOpcode()) {
789249259Sdim  default: llvm_unreachable("Unhandled instruction with custom inserter");
790249259Sdim  case AArch64::F128CSEL:
791249259Sdim    return EmitF128CSEL(MI, MBB);
792249259Sdim  case AArch64::ATOMIC_LOAD_ADD_I8:
793249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
794249259Sdim  case AArch64::ATOMIC_LOAD_ADD_I16:
795249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
796249259Sdim  case AArch64::ATOMIC_LOAD_ADD_I32:
797249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
798249259Sdim  case AArch64::ATOMIC_LOAD_ADD_I64:
799249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
800249259Sdim
801249259Sdim  case AArch64::ATOMIC_LOAD_SUB_I8:
802249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
803249259Sdim  case AArch64::ATOMIC_LOAD_SUB_I16:
804249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
805249259Sdim  case AArch64::ATOMIC_LOAD_SUB_I32:
806249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
807249259Sdim  case AArch64::ATOMIC_LOAD_SUB_I64:
808249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
809249259Sdim
810249259Sdim  case AArch64::ATOMIC_LOAD_AND_I8:
811249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
812249259Sdim  case AArch64::ATOMIC_LOAD_AND_I16:
813249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
814249259Sdim  case AArch64::ATOMIC_LOAD_AND_I32:
815249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
816249259Sdim  case AArch64::ATOMIC_LOAD_AND_I64:
817249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
818249259Sdim
819249259Sdim  case AArch64::ATOMIC_LOAD_OR_I8:
820249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
821249259Sdim  case AArch64::ATOMIC_LOAD_OR_I16:
822249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
823249259Sdim  case AArch64::ATOMIC_LOAD_OR_I32:
824249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
825249259Sdim  case AArch64::ATOMIC_LOAD_OR_I64:
826249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
827249259Sdim
828249259Sdim  case AArch64::ATOMIC_LOAD_XOR_I8:
829249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
830249259Sdim  case AArch64::ATOMIC_LOAD_XOR_I16:
831249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
832249259Sdim  case AArch64::ATOMIC_LOAD_XOR_I32:
833249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
834249259Sdim  case AArch64::ATOMIC_LOAD_XOR_I64:
835249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
836249259Sdim
837249259Sdim  case AArch64::ATOMIC_LOAD_NAND_I8:
838249259Sdim    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
839249259Sdim  case AArch64::ATOMIC_LOAD_NAND_I16:
840249259Sdim    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
841249259Sdim  case AArch64::ATOMIC_LOAD_NAND_I32:
842249259Sdim    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
843249259Sdim  case AArch64::ATOMIC_LOAD_NAND_I64:
844249259Sdim    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
845249259Sdim
846249259Sdim  case AArch64::ATOMIC_LOAD_MIN_I8:
847249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
848249259Sdim  case AArch64::ATOMIC_LOAD_MIN_I16:
849249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
850249259Sdim  case AArch64::ATOMIC_LOAD_MIN_I32:
851249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
852249259Sdim  case AArch64::ATOMIC_LOAD_MIN_I64:
853249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
854249259Sdim
855249259Sdim  case AArch64::ATOMIC_LOAD_MAX_I8:
856249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
857249259Sdim  case AArch64::ATOMIC_LOAD_MAX_I16:
858249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
859249259Sdim  case AArch64::ATOMIC_LOAD_MAX_I32:
860249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
861249259Sdim  case AArch64::ATOMIC_LOAD_MAX_I64:
862249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
863249259Sdim
864249259Sdim  case AArch64::ATOMIC_LOAD_UMIN_I8:
865249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
866249259Sdim  case AArch64::ATOMIC_LOAD_UMIN_I16:
867249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
868249259Sdim  case AArch64::ATOMIC_LOAD_UMIN_I32:
869249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
870249259Sdim  case AArch64::ATOMIC_LOAD_UMIN_I64:
871249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
872249259Sdim
873249259Sdim  case AArch64::ATOMIC_LOAD_UMAX_I8:
874249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
875249259Sdim  case AArch64::ATOMIC_LOAD_UMAX_I16:
876249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
877249259Sdim  case AArch64::ATOMIC_LOAD_UMAX_I32:
878249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
879249259Sdim  case AArch64::ATOMIC_LOAD_UMAX_I64:
880249259Sdim    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
881249259Sdim
882249259Sdim  case AArch64::ATOMIC_SWAP_I8:
883249259Sdim    return emitAtomicBinary(MI, MBB, 1, 0);
884249259Sdim  case AArch64::ATOMIC_SWAP_I16:
885249259Sdim    return emitAtomicBinary(MI, MBB, 2, 0);
886249259Sdim  case AArch64::ATOMIC_SWAP_I32:
887249259Sdim    return emitAtomicBinary(MI, MBB, 4, 0);
888249259Sdim  case AArch64::ATOMIC_SWAP_I64:
889249259Sdim    return emitAtomicBinary(MI, MBB, 8, 0);
890249259Sdim
891249259Sdim  case AArch64::ATOMIC_CMP_SWAP_I8:
892249259Sdim    return emitAtomicCmpSwap(MI, MBB, 1);
893249259Sdim  case AArch64::ATOMIC_CMP_SWAP_I16:
894249259Sdim    return emitAtomicCmpSwap(MI, MBB, 2);
895249259Sdim  case AArch64::ATOMIC_CMP_SWAP_I32:
896249259Sdim    return emitAtomicCmpSwap(MI, MBB, 4);
897249259Sdim  case AArch64::ATOMIC_CMP_SWAP_I64:
898249259Sdim    return emitAtomicCmpSwap(MI, MBB, 8);
899249259Sdim  }
900249259Sdim}
901249259Sdim
902249259Sdim
903249259Sdimconst char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
904249259Sdim  switch (Opcode) {
905249259Sdim  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
906249259Sdim  case AArch64ISD::Call:           return "AArch64ISD::Call";
907249259Sdim  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
908249259Sdim  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
909249259Sdim  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
910249259Sdim  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
911249259Sdim  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
912249259Sdim  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
913249259Sdim  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
914249259Sdim  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
915249259Sdim  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
916249259Sdim  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
917249259Sdim  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
918251662Sdim  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
919249259Sdim  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
920249259Sdim
921263508Sdim  case AArch64ISD::NEON_BSL:
922263508Sdim    return "AArch64ISD::NEON_BSL";
923263508Sdim  case AArch64ISD::NEON_MOVIMM:
924263508Sdim    return "AArch64ISD::NEON_MOVIMM";
925263508Sdim  case AArch64ISD::NEON_MVNIMM:
926263508Sdim    return "AArch64ISD::NEON_MVNIMM";
927263508Sdim  case AArch64ISD::NEON_FMOVIMM:
928263508Sdim    return "AArch64ISD::NEON_FMOVIMM";
929263508Sdim  case AArch64ISD::NEON_CMP:
930263508Sdim    return "AArch64ISD::NEON_CMP";
931263508Sdim  case AArch64ISD::NEON_CMPZ:
932263508Sdim    return "AArch64ISD::NEON_CMPZ";
933263508Sdim  case AArch64ISD::NEON_TST:
934263508Sdim    return "AArch64ISD::NEON_TST";
935263508Sdim  case AArch64ISD::NEON_QSHLs:
936263508Sdim    return "AArch64ISD::NEON_QSHLs";
937263508Sdim  case AArch64ISD::NEON_QSHLu:
938263508Sdim    return "AArch64ISD::NEON_QSHLu";
939263508Sdim  case AArch64ISD::NEON_VDUP:
940263508Sdim    return "AArch64ISD::NEON_VDUP";
941263508Sdim  case AArch64ISD::NEON_VDUPLANE:
942263508Sdim    return "AArch64ISD::NEON_VDUPLANE";
943263508Sdim  case AArch64ISD::NEON_REV16:
944263508Sdim    return "AArch64ISD::NEON_REV16";
945263508Sdim  case AArch64ISD::NEON_REV32:
946263508Sdim    return "AArch64ISD::NEON_REV32";
947263508Sdim  case AArch64ISD::NEON_REV64:
948263508Sdim    return "AArch64ISD::NEON_REV64";
949263508Sdim  case AArch64ISD::NEON_UZP1:
950263508Sdim    return "AArch64ISD::NEON_UZP1";
951263508Sdim  case AArch64ISD::NEON_UZP2:
952263508Sdim    return "AArch64ISD::NEON_UZP2";
953263508Sdim  case AArch64ISD::NEON_ZIP1:
954263508Sdim    return "AArch64ISD::NEON_ZIP1";
955263508Sdim  case AArch64ISD::NEON_ZIP2:
956263508Sdim    return "AArch64ISD::NEON_ZIP2";
957263508Sdim  case AArch64ISD::NEON_TRN1:
958263508Sdim    return "AArch64ISD::NEON_TRN1";
959263508Sdim  case AArch64ISD::NEON_TRN2:
960263508Sdim    return "AArch64ISD::NEON_TRN2";
961263508Sdim  case AArch64ISD::NEON_LD1_UPD:
962263508Sdim    return "AArch64ISD::NEON_LD1_UPD";
963263508Sdim  case AArch64ISD::NEON_LD2_UPD:
964263508Sdim    return "AArch64ISD::NEON_LD2_UPD";
965263508Sdim  case AArch64ISD::NEON_LD3_UPD:
966263508Sdim    return "AArch64ISD::NEON_LD3_UPD";
967263508Sdim  case AArch64ISD::NEON_LD4_UPD:
968263508Sdim    return "AArch64ISD::NEON_LD4_UPD";
969263508Sdim  case AArch64ISD::NEON_ST1_UPD:
970263508Sdim    return "AArch64ISD::NEON_ST1_UPD";
971263508Sdim  case AArch64ISD::NEON_ST2_UPD:
972263508Sdim    return "AArch64ISD::NEON_ST2_UPD";
973263508Sdim  case AArch64ISD::NEON_ST3_UPD:
974263508Sdim    return "AArch64ISD::NEON_ST3_UPD";
975263508Sdim  case AArch64ISD::NEON_ST4_UPD:
976263508Sdim    return "AArch64ISD::NEON_ST4_UPD";
977263508Sdim  case AArch64ISD::NEON_LD1x2_UPD:
978263508Sdim    return "AArch64ISD::NEON_LD1x2_UPD";
979263508Sdim  case AArch64ISD::NEON_LD1x3_UPD:
980263508Sdim    return "AArch64ISD::NEON_LD1x3_UPD";
981263508Sdim  case AArch64ISD::NEON_LD1x4_UPD:
982263508Sdim    return "AArch64ISD::NEON_LD1x4_UPD";
983263508Sdim  case AArch64ISD::NEON_ST1x2_UPD:
984263508Sdim    return "AArch64ISD::NEON_ST1x2_UPD";
985263508Sdim  case AArch64ISD::NEON_ST1x3_UPD:
986263508Sdim    return "AArch64ISD::NEON_ST1x3_UPD";
987263508Sdim  case AArch64ISD::NEON_ST1x4_UPD:
988263508Sdim    return "AArch64ISD::NEON_ST1x4_UPD";
989263508Sdim  case AArch64ISD::NEON_LD2DUP:
990263508Sdim    return "AArch64ISD::NEON_LD2DUP";
991263508Sdim  case AArch64ISD::NEON_LD3DUP:
992263508Sdim    return "AArch64ISD::NEON_LD3DUP";
993263508Sdim  case AArch64ISD::NEON_LD4DUP:
994263508Sdim    return "AArch64ISD::NEON_LD4DUP";
995263508Sdim  case AArch64ISD::NEON_LD2DUP_UPD:
996263508Sdim    return "AArch64ISD::NEON_LD2DUP_UPD";
997263508Sdim  case AArch64ISD::NEON_LD3DUP_UPD:
998263508Sdim    return "AArch64ISD::NEON_LD3DUP_UPD";
999263508Sdim  case AArch64ISD::NEON_LD4DUP_UPD:
1000263508Sdim    return "AArch64ISD::NEON_LD4DUP_UPD";
1001263508Sdim  case AArch64ISD::NEON_LD2LN_UPD:
1002263508Sdim    return "AArch64ISD::NEON_LD2LN_UPD";
1003263508Sdim  case AArch64ISD::NEON_LD3LN_UPD:
1004263508Sdim    return "AArch64ISD::NEON_LD3LN_UPD";
1005263508Sdim  case AArch64ISD::NEON_LD4LN_UPD:
1006263508Sdim    return "AArch64ISD::NEON_LD4LN_UPD";
1007263508Sdim  case AArch64ISD::NEON_ST2LN_UPD:
1008263508Sdim    return "AArch64ISD::NEON_ST2LN_UPD";
1009263508Sdim  case AArch64ISD::NEON_ST3LN_UPD:
1010263508Sdim    return "AArch64ISD::NEON_ST3LN_UPD";
1011263508Sdim  case AArch64ISD::NEON_ST4LN_UPD:
1012263508Sdim    return "AArch64ISD::NEON_ST4LN_UPD";
1013263508Sdim  case AArch64ISD::NEON_VEXTRACT:
1014263508Sdim    return "AArch64ISD::NEON_VEXTRACT";
1015263508Sdim  default:
1016263508Sdim    return NULL;
1017249259Sdim  }
1018249259Sdim}
1019249259Sdim
1020249259Sdimstatic const uint16_t AArch64FPRArgRegs[] = {
1021249259Sdim  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1022249259Sdim  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
1023249259Sdim};
1024249259Sdimstatic const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
1025249259Sdim
1026249259Sdimstatic const uint16_t AArch64ArgRegs[] = {
1027249259Sdim  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
1028249259Sdim  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
1029249259Sdim};
1030249259Sdimstatic const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
1031249259Sdim
1032249259Sdimstatic bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
1033249259Sdim                                 CCValAssign::LocInfo LocInfo,
1034249259Sdim                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
1035249259Sdim  // Mark all remaining general purpose registers as allocated. We don't
1036249259Sdim  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
1037249259Sdim  // i64 will go in registers (C.11).
1038249259Sdim  for (unsigned i = 0; i < NumArgRegs; ++i)
1039249259Sdim    State.AllocateReg(AArch64ArgRegs[i]);
1040249259Sdim
1041249259Sdim  return false;
1042249259Sdim}
1043249259Sdim
1044249259Sdim#include "AArch64GenCallingConv.inc"
1045249259Sdim
1046249259SdimCCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1047249259Sdim
1048249259Sdim  switch(CC) {
1049249259Sdim  default: llvm_unreachable("Unsupported calling convention");
1050249259Sdim  case CallingConv::Fast:
1051249259Sdim  case CallingConv::C:
1052249259Sdim    return CC_A64_APCS;
1053249259Sdim  }
1054249259Sdim}
1055249259Sdim
1056249259Sdimvoid
1057249259SdimAArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
1058263508Sdim                                           SDLoc DL, SDValue &Chain) const {
1059249259Sdim  MachineFunction &MF = DAG.getMachineFunction();
1060249259Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
1061249259Sdim  AArch64MachineFunctionInfo *FuncInfo
1062249259Sdim    = MF.getInfo<AArch64MachineFunctionInfo>();
1063249259Sdim
1064249259Sdim  SmallVector<SDValue, 8> MemOps;
1065249259Sdim
1066249259Sdim  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
1067249259Sdim                                                         NumArgRegs);
1068249259Sdim  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
1069249259Sdim                                                         NumFPRArgRegs);
1070249259Sdim
1071249259Sdim  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
1072249259Sdim  int GPRIdx = 0;
1073249259Sdim  if (GPRSaveSize != 0) {
1074249259Sdim    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1075249259Sdim
1076249259Sdim    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1077249259Sdim
1078249259Sdim    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
1079249259Sdim      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
1080249259Sdim      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1081249259Sdim      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1082249259Sdim                                   MachinePointerInfo::getStack(i * 8),
1083249259Sdim                                   false, false, 0);
1084249259Sdim      MemOps.push_back(Store);
1085249259Sdim      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1086249259Sdim                        DAG.getConstant(8, getPointerTy()));
1087249259Sdim    }
1088249259Sdim  }
1089249259Sdim
1090263508Sdim  if (getSubtarget()->hasFPARMv8()) {
1091249259Sdim  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1092249259Sdim  int FPRIdx = 0;
1093263508Sdim    // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
1094263508Sdim    // can omit a register save area if we know we'll never use registers of
1095263508Sdim    // that class.
1096263508Sdim    if (FPRSaveSize != 0) {
1097263508Sdim      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1098249259Sdim
1099263508Sdim      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1100249259Sdim
1101263508Sdim      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1102263508Sdim        unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
1103263508Sdim            &AArch64::FPR128RegClass);
1104263508Sdim        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1105263508Sdim        SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1106263508Sdim            MachinePointerInfo::getStack(i * 16),
1107263508Sdim            false, false, 0);
1108263508Sdim        MemOps.push_back(Store);
1109263508Sdim        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1110263508Sdim            DAG.getConstant(16, getPointerTy()));
1111263508Sdim      }
1112249259Sdim    }
1113263508Sdim    FuncInfo->setVariadicFPRIdx(FPRIdx);
1114263508Sdim    FuncInfo->setVariadicFPRSize(FPRSaveSize);
1115249259Sdim  }
1116249259Sdim
1117249259Sdim  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
1118249259Sdim
1119249259Sdim  FuncInfo->setVariadicStackIdx(StackIdx);
1120249259Sdim  FuncInfo->setVariadicGPRIdx(GPRIdx);
1121249259Sdim  FuncInfo->setVariadicGPRSize(GPRSaveSize);
1122249259Sdim
1123249259Sdim  if (!MemOps.empty()) {
1124249259Sdim    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
1125249259Sdim                        MemOps.size());
1126249259Sdim  }
1127249259Sdim}
1128249259Sdim
1129249259Sdim
1130249259SdimSDValue
1131249259SdimAArch64TargetLowering::LowerFormalArguments(SDValue Chain,
1132249259Sdim                                      CallingConv::ID CallConv, bool isVarArg,
1133249259Sdim                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1134263508Sdim                                      SDLoc dl, SelectionDAG &DAG,
1135249259Sdim                                      SmallVectorImpl<SDValue> &InVals) const {
1136249259Sdim  MachineFunction &MF = DAG.getMachineFunction();
1137249259Sdim  AArch64MachineFunctionInfo *FuncInfo
1138249259Sdim    = MF.getInfo<AArch64MachineFunctionInfo>();
1139249259Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
1140249259Sdim  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1141249259Sdim
1142249259Sdim  SmallVector<CCValAssign, 16> ArgLocs;
1143249259Sdim  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1144249259Sdim                 getTargetMachine(), ArgLocs, *DAG.getContext());
1145249259Sdim  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1146249259Sdim
1147249259Sdim  SmallVector<SDValue, 16> ArgValues;
1148249259Sdim
1149249259Sdim  SDValue ArgValue;
1150249259Sdim  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1151249259Sdim    CCValAssign &VA = ArgLocs[i];
1152249259Sdim    ISD::ArgFlagsTy Flags = Ins[i].Flags;
1153249259Sdim
1154249259Sdim    if (Flags.isByVal()) {
1155249259Sdim      // Byval is used for small structs and HFAs in the PCS, but the system
1156249259Sdim      // should work in a non-compliant manner for larger structs.
1157249259Sdim      EVT PtrTy = getPointerTy();
1158249259Sdim      int Size = Flags.getByValSize();
1159249259Sdim      unsigned NumRegs = (Size + 7) / 8;
1160249259Sdim
1161249259Sdim      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
1162249259Sdim                                                 VA.getLocMemOffset(),
1163249259Sdim                                                 false);
1164249259Sdim      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1165249259Sdim      InVals.push_back(FrameIdxN);
1166249259Sdim
1167249259Sdim      continue;
1168249259Sdim    } else if (VA.isRegLoc()) {
1169249259Sdim      MVT RegVT = VA.getLocVT();
1170249259Sdim      const TargetRegisterClass *RC = getRegClassFor(RegVT);
1171249259Sdim      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1172249259Sdim
1173249259Sdim      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1174249259Sdim    } else { // VA.isRegLoc()
1175249259Sdim      assert(VA.isMemLoc());
1176249259Sdim
1177249259Sdim      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
1178249259Sdim                                      VA.getLocMemOffset(), true);
1179249259Sdim
1180249259Sdim      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1181249259Sdim      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1182249259Sdim                             MachinePointerInfo::getFixedStack(FI),
1183249259Sdim                             false, false, false, 0);
1184249259Sdim
1185249259Sdim
1186249259Sdim    }
1187249259Sdim
1188249259Sdim    switch (VA.getLocInfo()) {
1189249259Sdim    default: llvm_unreachable("Unknown loc info!");
1190249259Sdim    case CCValAssign::Full: break;
1191249259Sdim    case CCValAssign::BCvt:
1192249259Sdim      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1193249259Sdim      break;
1194249259Sdim    case CCValAssign::SExt:
1195249259Sdim    case CCValAssign::ZExt:
1196249259Sdim    case CCValAssign::AExt: {
1197249259Sdim      unsigned DestSize = VA.getValVT().getSizeInBits();
1198249259Sdim      unsigned DestSubReg;
1199249259Sdim
1200249259Sdim      switch (DestSize) {
1201249259Sdim      case 8: DestSubReg = AArch64::sub_8; break;
1202249259Sdim      case 16: DestSubReg = AArch64::sub_16; break;
1203249259Sdim      case 32: DestSubReg = AArch64::sub_32; break;
1204249259Sdim      case 64: DestSubReg = AArch64::sub_64; break;
1205249259Sdim      default: llvm_unreachable("Unexpected argument promotion");
1206249259Sdim      }
1207249259Sdim
1208249259Sdim      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1209249259Sdim                                   VA.getValVT(), ArgValue,
1210249259Sdim                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
1211249259Sdim                         0);
1212249259Sdim      break;
1213249259Sdim    }
1214249259Sdim    }
1215249259Sdim
1216249259Sdim    InVals.push_back(ArgValue);
1217249259Sdim  }
1218249259Sdim
1219249259Sdim  if (isVarArg)
1220249259Sdim    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1221249259Sdim
1222249259Sdim  unsigned StackArgSize = CCInfo.getNextStackOffset();
1223249259Sdim  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1224249259Sdim    // This is a non-standard ABI so by fiat I say we're allowed to make full
1225249259Sdim    // use of the stack area to be popped, which must be aligned to 16 bytes in
1226249259Sdim    // any case:
1227249259Sdim    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1228249259Sdim
1229249259Sdim    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1230249259Sdim    // a multiple of 16.
1231249259Sdim    FuncInfo->setArgumentStackToRestore(StackArgSize);
1232249259Sdim
1233249259Sdim    // This realignment carries over to the available bytes below. Our own
1234249259Sdim    // callers will guarantee the space is free by giving an aligned value to
1235249259Sdim    // CALLSEQ_START.
1236249259Sdim  }
1237249259Sdim  // Even if we're not expected to free up the space, it's useful to know how
1238249259Sdim  // much is there while considering tail calls (because we can reuse it).
1239249259Sdim  FuncInfo->setBytesInStackArgArea(StackArgSize);
1240249259Sdim
1241249259Sdim  return Chain;
1242249259Sdim}
1243249259Sdim
1244249259SdimSDValue
1245249259SdimAArch64TargetLowering::LowerReturn(SDValue Chain,
1246249259Sdim                                   CallingConv::ID CallConv, bool isVarArg,
1247249259Sdim                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1248249259Sdim                                   const SmallVectorImpl<SDValue> &OutVals,
1249263508Sdim                                   SDLoc dl, SelectionDAG &DAG) const {
1250249259Sdim  // CCValAssign - represent the assignment of the return value to a location.
1251249259Sdim  SmallVector<CCValAssign, 16> RVLocs;
1252249259Sdim
1253249259Sdim  // CCState - Info about the registers and stack slots.
1254249259Sdim  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1255249259Sdim                 getTargetMachine(), RVLocs, *DAG.getContext());
1256249259Sdim
1257249259Sdim  // Analyze outgoing return values.
1258249259Sdim  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1259249259Sdim
1260249259Sdim  SDValue Flag;
1261249259Sdim  SmallVector<SDValue, 4> RetOps(1, Chain);
1262249259Sdim
1263249259Sdim  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1264249259Sdim    // PCS: "If the type, T, of the result of a function is such that
1265249259Sdim    // void func(T arg) would require that arg be passed as a value in a
1266249259Sdim    // register (or set of registers) according to the rules in 5.4, then the
1267249259Sdim    // result is returned in the same registers as would be used for such an
1268249259Sdim    // argument.
1269249259Sdim    //
1270249259Sdim    // Otherwise, the caller shall reserve a block of memory of sufficient
1271249259Sdim    // size and alignment to hold the result. The address of the memory block
1272249259Sdim    // shall be passed as an additional argument to the function in x8."
1273249259Sdim    //
1274249259Sdim    // This is implemented in two places. The register-return values are dealt
1275249259Sdim    // with here, more complex returns are passed as an sret parameter, which
1276249259Sdim    // means we don't have to worry about it during actual return.
1277249259Sdim    CCValAssign &VA = RVLocs[i];
1278249259Sdim    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1279249259Sdim
1280249259Sdim
1281249259Sdim    SDValue Arg = OutVals[i];
1282249259Sdim
1283249259Sdim    // There's no convenient note in the ABI about this as there is for normal
1284249259Sdim    // arguments, but it says return values are passed in the same registers as
1285249259Sdim    // an argument would be. I believe that includes the comments about
1286249259Sdim    // unspecified higher bits, putting the burden of widening on the *caller*
1287249259Sdim    // for return values.
1288249259Sdim    switch (VA.getLocInfo()) {
1289249259Sdim    default: llvm_unreachable("Unknown loc info");
1290249259Sdim    case CCValAssign::Full: break;
1291249259Sdim    case CCValAssign::SExt:
1292249259Sdim    case CCValAssign::ZExt:
1293249259Sdim    case CCValAssign::AExt:
1294249259Sdim      // Floating-point values should only be extended when they're going into
1295249259Sdim      // memory, which can't happen here so an integer extend is acceptable.
1296249259Sdim      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1297249259Sdim      break;
1298249259Sdim    case CCValAssign::BCvt:
1299249259Sdim      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1300249259Sdim      break;
1301249259Sdim    }
1302249259Sdim
1303249259Sdim    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1304249259Sdim    Flag = Chain.getValue(1);
1305249259Sdim    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1306249259Sdim  }
1307249259Sdim
1308249259Sdim  RetOps[0] = Chain;  // Update chain.
1309249259Sdim
1310249259Sdim  // Add the flag if we have it.
1311249259Sdim  if (Flag.getNode())
1312249259Sdim    RetOps.push_back(Flag);
1313249259Sdim
1314249259Sdim  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1315249259Sdim                     &RetOps[0], RetOps.size());
1316249259Sdim}
1317249259Sdim
1318249259SdimSDValue
1319249259SdimAArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1320249259Sdim                                 SmallVectorImpl<SDValue> &InVals) const {
1321249259Sdim  SelectionDAG &DAG                     = CLI.DAG;
1322263508Sdim  SDLoc &dl                             = CLI.DL;
1323263508Sdim  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1324263508Sdim  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1325263508Sdim  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1326249259Sdim  SDValue Chain                         = CLI.Chain;
1327249259Sdim  SDValue Callee                        = CLI.Callee;
1328249259Sdim  bool &IsTailCall                      = CLI.IsTailCall;
1329249259Sdim  CallingConv::ID CallConv              = CLI.CallConv;
1330249259Sdim  bool IsVarArg                         = CLI.IsVarArg;
1331249259Sdim
1332249259Sdim  MachineFunction &MF = DAG.getMachineFunction();
1333249259Sdim  AArch64MachineFunctionInfo *FuncInfo
1334249259Sdim    = MF.getInfo<AArch64MachineFunctionInfo>();
1335249259Sdim  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1336249259Sdim  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1337249259Sdim  bool IsSibCall = false;
1338249259Sdim
1339249259Sdim  if (IsTailCall) {
1340249259Sdim    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1341249259Sdim                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1342249259Sdim                                                   Outs, OutVals, Ins, DAG);
1343249259Sdim
1344249259Sdim    // A sibling call is one where we're under the usual C ABI and not planning
1345249259Sdim    // to change that but can still do a tail call:
1346249259Sdim    if (!TailCallOpt && IsTailCall)
1347249259Sdim      IsSibCall = true;
1348249259Sdim  }
1349249259Sdim
1350249259Sdim  SmallVector<CCValAssign, 16> ArgLocs;
1351249259Sdim  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1352249259Sdim                 getTargetMachine(), ArgLocs, *DAG.getContext());
1353249259Sdim  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1354249259Sdim
1355249259Sdim  // On AArch64 (and all other architectures I'm aware of) the most this has to
1356249259Sdim  // do is adjust the stack pointer.
1357249259Sdim  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1358249259Sdim  if (IsSibCall) {
1359249259Sdim    // Since we're not changing the ABI to make this a tail call, the memory
1360249259Sdim    // operands are already available in the caller's incoming argument space.
1361249259Sdim    NumBytes = 0;
1362249259Sdim  }
1363249259Sdim
1364249259Sdim  // FPDiff is the byte offset of the call's argument area from the callee's.
1365249259Sdim  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1366249259Sdim  // by this amount for a tail call. In a sibling call it must be 0 because the
1367249259Sdim  // caller will deallocate the entire stack and the callee still expects its
1368249259Sdim  // arguments to begin at SP+0. Completely unused for non-tail calls.
1369249259Sdim  int FPDiff = 0;
1370249259Sdim
1371249259Sdim  if (IsTailCall && !IsSibCall) {
1372249259Sdim    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1373249259Sdim
1374249259Sdim    // FPDiff will be negative if this tail call requires more space than we
1375249259Sdim    // would automatically have in our incoming argument space. Positive if we
1376249259Sdim    // can actually shrink the stack.
1377249259Sdim    FPDiff = NumReusableBytes - NumBytes;
1378249259Sdim
1379249259Sdim    // The stack pointer must be 16-byte aligned at all times it's used for a
1380249259Sdim    // memory operation, which in practice means at *all* times and in
1381249259Sdim    // particular across call boundaries. Therefore our own arguments started at
1382249259Sdim    // a 16-byte aligned SP and the delta applied for the tail call should
1383249259Sdim    // satisfy the same constraint.
1384249259Sdim    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1385249259Sdim  }
1386249259Sdim
1387249259Sdim  if (!IsSibCall)
1388263508Sdim    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1389263508Sdim                                 dl);
1390249259Sdim
1391249259Sdim  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1392249259Sdim                                        getPointerTy());
1393249259Sdim
1394249259Sdim  SmallVector<SDValue, 8> MemOpChains;
1395249259Sdim  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1396249259Sdim
1397249259Sdim  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1398249259Sdim    CCValAssign &VA = ArgLocs[i];
1399249259Sdim    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1400249259Sdim    SDValue Arg = OutVals[i];
1401249259Sdim
1402249259Sdim    // Callee does the actual widening, so all extensions just use an implicit
1403249259Sdim    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1404249259Sdim    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1405249259Sdim    // alternative works on integer types too.
1406249259Sdim    switch (VA.getLocInfo()) {
1407249259Sdim    default: llvm_unreachable("Unknown loc info!");
1408249259Sdim    case CCValAssign::Full: break;
1409249259Sdim    case CCValAssign::SExt:
1410249259Sdim    case CCValAssign::ZExt:
1411249259Sdim    case CCValAssign::AExt: {
1412249259Sdim      unsigned SrcSize = VA.getValVT().getSizeInBits();
1413249259Sdim      unsigned SrcSubReg;
1414249259Sdim
1415249259Sdim      switch (SrcSize) {
1416249259Sdim      case 8: SrcSubReg = AArch64::sub_8; break;
1417249259Sdim      case 16: SrcSubReg = AArch64::sub_16; break;
1418249259Sdim      case 32: SrcSubReg = AArch64::sub_32; break;
1419249259Sdim      case 64: SrcSubReg = AArch64::sub_64; break;
1420249259Sdim      default: llvm_unreachable("Unexpected argument promotion");
1421249259Sdim      }
1422249259Sdim
1423249259Sdim      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1424249259Sdim                                    VA.getLocVT(),
1425249259Sdim                                    DAG.getUNDEF(VA.getLocVT()),
1426249259Sdim                                    Arg,
1427249259Sdim                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1428249259Sdim                    0);
1429249259Sdim
1430249259Sdim      break;
1431249259Sdim    }
1432249259Sdim    case CCValAssign::BCvt:
1433249259Sdim      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1434249259Sdim      break;
1435249259Sdim    }
1436249259Sdim
1437249259Sdim    if (VA.isRegLoc()) {
1438249259Sdim      // A normal register (sub-) argument. For now we just note it down because
1439249259Sdim      // we want to copy things into registers as late as possible to avoid
1440249259Sdim      // register-pressure (and possibly worse).
1441249259Sdim      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1442249259Sdim      continue;
1443249259Sdim    }
1444249259Sdim
1445249259Sdim    assert(VA.isMemLoc() && "unexpected argument location");
1446249259Sdim
1447249259Sdim    SDValue DstAddr;
1448249259Sdim    MachinePointerInfo DstInfo;
1449249259Sdim    if (IsTailCall) {
1450249259Sdim      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1451249259Sdim                                          VA.getLocVT().getSizeInBits();
1452249259Sdim      OpSize = (OpSize + 7) / 8;
1453249259Sdim      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1454249259Sdim      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1455249259Sdim
1456249259Sdim      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1457249259Sdim      DstInfo = MachinePointerInfo::getFixedStack(FI);
1458249259Sdim
1459249259Sdim      // Make sure any stack arguments overlapping with where we're storing are
1460249259Sdim      // loaded before this eventual operation. Otherwise they'll be clobbered.
1461249259Sdim      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1462249259Sdim    } else {
1463249259Sdim      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1464249259Sdim
1465249259Sdim      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1466249259Sdim      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1467249259Sdim    }
1468249259Sdim
1469249259Sdim    if (Flags.isByVal()) {
1470249259Sdim      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1471249259Sdim      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1472249259Sdim                                  Flags.getByValAlign(),
1473249259Sdim                                  /*isVolatile = */ false,
1474249259Sdim                                  /*alwaysInline = */ false,
1475249259Sdim                                  DstInfo, MachinePointerInfo(0));
1476249259Sdim      MemOpChains.push_back(Cpy);
1477249259Sdim    } else {
1478249259Sdim      // Normal stack argument, put it where it's needed.
1479249259Sdim      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1480249259Sdim                                   false, false, 0);
1481249259Sdim      MemOpChains.push_back(Store);
1482249259Sdim    }
1483249259Sdim  }
1484249259Sdim
1485249259Sdim  // The loads and stores generated above shouldn't clash with each
1486249259Sdim  // other. Combining them with this TokenFactor notes that fact for the rest of
1487249259Sdim  // the backend.
1488249259Sdim  if (!MemOpChains.empty())
1489249259Sdim    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1490249259Sdim                        &MemOpChains[0], MemOpChains.size());
1491249259Sdim
1492249259Sdim  // Most of the rest of the instructions need to be glued together; we don't
1493249259Sdim  // want assignments to actual registers used by a call to be rearranged by a
1494249259Sdim  // well-meaning scheduler.
1495249259Sdim  SDValue InFlag;
1496249259Sdim
1497249259Sdim  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1498249259Sdim    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1499249259Sdim                             RegsToPass[i].second, InFlag);
1500249259Sdim    InFlag = Chain.getValue(1);
1501249259Sdim  }
1502249259Sdim
1503249259Sdim  // The linker is responsible for inserting veneers when necessary to put a
1504249259Sdim  // function call destination in range, so we don't need to bother with a
1505249259Sdim  // wrapper here.
1506249259Sdim  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1507249259Sdim    const GlobalValue *GV = G->getGlobal();
1508249259Sdim    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1509249259Sdim  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1510249259Sdim    const char *Sym = S->getSymbol();
1511249259Sdim    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1512249259Sdim  }
1513249259Sdim
1514249259Sdim  // We don't usually want to end the call-sequence here because we would tidy
1515249259Sdim  // the frame up *after* the call, however in the ABI-changing tail-call case
1516249259Sdim  // we've carefully laid out the parameters so that when sp is reset they'll be
1517249259Sdim  // in the correct location.
1518249259Sdim  if (IsTailCall && !IsSibCall) {
1519249259Sdim    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1520263508Sdim                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1521249259Sdim    InFlag = Chain.getValue(1);
1522249259Sdim  }
1523249259Sdim
1524249259Sdim  // We produce the following DAG scheme for the actual call instruction:
1525249259Sdim  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1526249259Sdim  //
1527249259Sdim  // Most arguments aren't going to be used and just keep the values live as
1528249259Sdim  // far as LLVM is concerned. It's expected to be selected as simply "bl
1529249259Sdim  // callee" (for a direct, non-tail call).
1530249259Sdim  std::vector<SDValue> Ops;
1531249259Sdim  Ops.push_back(Chain);
1532249259Sdim  Ops.push_back(Callee);
1533249259Sdim
1534249259Sdim  if (IsTailCall) {
1535249259Sdim    // Each tail call may have to adjust the stack by a different amount, so
1536249259Sdim    // this information must travel along with the operation for eventual
1537249259Sdim    // consumption by emitEpilogue.
1538249259Sdim    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1539249259Sdim  }
1540249259Sdim
1541249259Sdim  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1542249259Sdim    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1543249259Sdim                                  RegsToPass[i].second.getValueType()));
1544249259Sdim
1545249259Sdim
1546249259Sdim  // Add a register mask operand representing the call-preserved registers. This
1547249259Sdim  // is used later in codegen to constrain register-allocation.
1548249259Sdim  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1549249259Sdim  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1550249259Sdim  assert(Mask && "Missing call preserved mask for calling convention");
1551249259Sdim  Ops.push_back(DAG.getRegisterMask(Mask));
1552249259Sdim
1553249259Sdim  // If we needed glue, put it in as the last argument.
1554249259Sdim  if (InFlag.getNode())
1555249259Sdim    Ops.push_back(InFlag);
1556249259Sdim
1557249259Sdim  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1558249259Sdim
1559249259Sdim  if (IsTailCall) {
1560249259Sdim    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1561249259Sdim  }
1562249259Sdim
1563249259Sdim  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1564249259Sdim  InFlag = Chain.getValue(1);
1565249259Sdim
1566249259Sdim  // Now we can reclaim the stack, just as well do it before working out where
1567249259Sdim  // our return value is.
1568249259Sdim  if (!IsSibCall) {
1569249259Sdim    uint64_t CalleePopBytes
1570249259Sdim      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1571249259Sdim
1572249259Sdim    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1573249259Sdim                               DAG.getIntPtrConstant(CalleePopBytes, true),
1574263508Sdim                               InFlag, dl);
1575249259Sdim    InFlag = Chain.getValue(1);
1576249259Sdim  }
1577249259Sdim
1578249259Sdim  return LowerCallResult(Chain, InFlag, CallConv,
1579249259Sdim                         IsVarArg, Ins, dl, DAG, InVals);
1580249259Sdim}
1581249259Sdim
1582249259SdimSDValue
1583249259SdimAArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1584249259Sdim                                      CallingConv::ID CallConv, bool IsVarArg,
1585249259Sdim                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1586263508Sdim                                      SDLoc dl, SelectionDAG &DAG,
1587249259Sdim                                      SmallVectorImpl<SDValue> &InVals) const {
1588249259Sdim  // Assign locations to each value returned by this call.
1589249259Sdim  SmallVector<CCValAssign, 16> RVLocs;
1590249259Sdim  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1591249259Sdim                 getTargetMachine(), RVLocs, *DAG.getContext());
1592249259Sdim  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1593249259Sdim
1594249259Sdim  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1595249259Sdim    CCValAssign VA = RVLocs[i];
1596249259Sdim
1597249259Sdim    // Return values that are too big to fit into registers should use an sret
1598249259Sdim    // pointer, so this can be a lot simpler than the main argument code.
1599249259Sdim    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1600249259Sdim
1601249259Sdim    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1602249259Sdim                                     InFlag);
1603249259Sdim    Chain = Val.getValue(1);
1604249259Sdim    InFlag = Val.getValue(2);
1605249259Sdim
1606249259Sdim    switch (VA.getLocInfo()) {
1607249259Sdim    default: llvm_unreachable("Unknown loc info!");
1608249259Sdim    case CCValAssign::Full: break;
1609249259Sdim    case CCValAssign::BCvt:
1610249259Sdim      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1611249259Sdim      break;
1612249259Sdim    case CCValAssign::ZExt:
1613249259Sdim    case CCValAssign::SExt:
1614249259Sdim    case CCValAssign::AExt:
1615249259Sdim      // Floating-point arguments only get extended/truncated if they're going
1616249259Sdim      // in memory, so using the integer operation is acceptable here.
1617249259Sdim      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1618249259Sdim      break;
1619249259Sdim    }
1620249259Sdim
1621249259Sdim    InVals.push_back(Val);
1622249259Sdim  }
1623249259Sdim
1624249259Sdim  return Chain;
1625249259Sdim}
1626249259Sdim
1627249259Sdimbool
1628249259SdimAArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1629249259Sdim                                    CallingConv::ID CalleeCC,
1630249259Sdim                                    bool IsVarArg,
1631249259Sdim                                    bool IsCalleeStructRet,
1632249259Sdim                                    bool IsCallerStructRet,
1633249259Sdim                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1634249259Sdim                                    const SmallVectorImpl<SDValue> &OutVals,
1635249259Sdim                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1636249259Sdim                                    SelectionDAG& DAG) const {
1637249259Sdim
1638249259Sdim  // For CallingConv::C this function knows whether the ABI needs
1639249259Sdim  // changing. That's not true for other conventions so they will have to opt in
1640249259Sdim  // manually.
1641249259Sdim  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1642249259Sdim    return false;
1643249259Sdim
1644249259Sdim  const MachineFunction &MF = DAG.getMachineFunction();
1645249259Sdim  const Function *CallerF = MF.getFunction();
1646249259Sdim  CallingConv::ID CallerCC = CallerF->getCallingConv();
1647249259Sdim  bool CCMatch = CallerCC == CalleeCC;
1648249259Sdim
1649249259Sdim  // Byval parameters hand the function a pointer directly into the stack area
1650249259Sdim  // we want to reuse during a tail call. Working around this *is* possible (see
1651249259Sdim  // X86) but less efficient and uglier in LowerCall.
1652249259Sdim  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1653249259Sdim         e = CallerF->arg_end(); i != e; ++i)
1654249259Sdim    if (i->hasByValAttr())
1655249259Sdim      return false;
1656249259Sdim
1657249259Sdim  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1658249259Sdim    if (IsTailCallConvention(CalleeCC) && CCMatch)
1659249259Sdim      return true;
1660249259Sdim    return false;
1661249259Sdim  }
1662249259Sdim
1663249259Sdim  // Now we search for cases where we can use a tail call without changing the
1664249259Sdim  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1665249259Sdim  // concept.
1666249259Sdim
1667249259Sdim  // I want anyone implementing a new calling convention to think long and hard
1668249259Sdim  // about this assert.
1669249259Sdim  assert((!IsVarArg || CalleeCC == CallingConv::C)
1670249259Sdim         && "Unexpected variadic calling convention");
1671249259Sdim
1672249259Sdim  if (IsVarArg && !Outs.empty()) {
1673249259Sdim    // At least two cases here: if caller is fastcc then we can't have any
1674249259Sdim    // memory arguments (we'd be expected to clean up the stack afterwards). If
1675249259Sdim    // caller is C then we could potentially use its argument area.
1676249259Sdim
1677249259Sdim    // FIXME: for now we take the most conservative of these in both cases:
1678249259Sdim    // disallow all variadic memory operands.
1679249259Sdim    SmallVector<CCValAssign, 16> ArgLocs;
1680249259Sdim    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1681249259Sdim                   getTargetMachine(), ArgLocs, *DAG.getContext());
1682249259Sdim
1683249259Sdim    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1684249259Sdim    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1685249259Sdim      if (!ArgLocs[i].isRegLoc())
1686249259Sdim        return false;
1687249259Sdim  }
1688249259Sdim
1689249259Sdim  // If the calling conventions do not match, then we'd better make sure the
1690249259Sdim  // results are returned in the same way as what the caller expects.
1691249259Sdim  if (!CCMatch) {
1692249259Sdim    SmallVector<CCValAssign, 16> RVLocs1;
1693249259Sdim    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1694249259Sdim                    getTargetMachine(), RVLocs1, *DAG.getContext());
1695249259Sdim    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1696249259Sdim
1697249259Sdim    SmallVector<CCValAssign, 16> RVLocs2;
1698249259Sdim    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1699249259Sdim                    getTargetMachine(), RVLocs2, *DAG.getContext());
1700249259Sdim    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1701249259Sdim
1702249259Sdim    if (RVLocs1.size() != RVLocs2.size())
1703249259Sdim      return false;
1704249259Sdim    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1705249259Sdim      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1706249259Sdim        return false;
1707249259Sdim      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1708249259Sdim        return false;
1709249259Sdim      if (RVLocs1[i].isRegLoc()) {
1710249259Sdim        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1711249259Sdim          return false;
1712249259Sdim      } else {
1713249259Sdim        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1714249259Sdim          return false;
1715249259Sdim      }
1716249259Sdim    }
1717249259Sdim  }
1718249259Sdim
1719249259Sdim  // Nothing more to check if the callee is taking no arguments
1720249259Sdim  if (Outs.empty())
1721249259Sdim    return true;
1722249259Sdim
1723249259Sdim  SmallVector<CCValAssign, 16> ArgLocs;
1724249259Sdim  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1725249259Sdim                 getTargetMachine(), ArgLocs, *DAG.getContext());
1726249259Sdim
1727249259Sdim  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1728249259Sdim
1729249259Sdim  const AArch64MachineFunctionInfo *FuncInfo
1730249259Sdim    = MF.getInfo<AArch64MachineFunctionInfo>();
1731249259Sdim
1732249259Sdim  // If the stack arguments for this call would fit into our own save area then
1733249259Sdim  // the call can be made tail.
1734249259Sdim  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1735249259Sdim}
1736249259Sdim
1737249259Sdimbool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1738249259Sdim                                                   bool TailCallOpt) const {
1739249259Sdim  return CallCC == CallingConv::Fast && TailCallOpt;
1740249259Sdim}
1741249259Sdim
1742249259Sdimbool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1743249259Sdim  return CallCC == CallingConv::Fast;
1744249259Sdim}
1745249259Sdim
1746249259SdimSDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1747249259Sdim                                                   SelectionDAG &DAG,
1748249259Sdim                                                   MachineFrameInfo *MFI,
1749249259Sdim                                                   int ClobberedFI) const {
1750249259Sdim  SmallVector<SDValue, 8> ArgChains;
1751249259Sdim  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1752249259Sdim  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1753249259Sdim
1754249259Sdim  // Include the original chain at the beginning of the list. When this is
1755249259Sdim  // used by target LowerCall hooks, this helps legalize find the
1756249259Sdim  // CALLSEQ_BEGIN node.
1757249259Sdim  ArgChains.push_back(Chain);
1758249259Sdim
1759249259Sdim  // Add a chain value for each stack argument corresponding
1760249259Sdim  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1761249259Sdim         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1762249259Sdim    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1763249259Sdim      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1764249259Sdim        if (FI->getIndex() < 0) {
1765249259Sdim          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1766249259Sdim          int64_t InLastByte = InFirstByte;
1767249259Sdim          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1768249259Sdim
1769249259Sdim          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1770249259Sdim              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1771249259Sdim            ArgChains.push_back(SDValue(L, 1));
1772249259Sdim        }
1773249259Sdim
1774249259Sdim   // Build a tokenfactor for all the chains.
1775263508Sdim   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1776249259Sdim                      &ArgChains[0], ArgChains.size());
1777249259Sdim}
1778249259Sdim
1779249259Sdimstatic A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1780249259Sdim  switch (CC) {
1781249259Sdim  case ISD::SETEQ:  return A64CC::EQ;
1782249259Sdim  case ISD::SETGT:  return A64CC::GT;
1783249259Sdim  case ISD::SETGE:  return A64CC::GE;
1784249259Sdim  case ISD::SETLT:  return A64CC::LT;
1785249259Sdim  case ISD::SETLE:  return A64CC::LE;
1786249259Sdim  case ISD::SETNE:  return A64CC::NE;
1787249259Sdim  case ISD::SETUGT: return A64CC::HI;
1788249259Sdim  case ISD::SETUGE: return A64CC::HS;
1789249259Sdim  case ISD::SETULT: return A64CC::LO;
1790249259Sdim  case ISD::SETULE: return A64CC::LS;
1791249259Sdim  default: llvm_unreachable("Unexpected condition code");
1792249259Sdim  }
1793249259Sdim}
1794249259Sdim
1795249259Sdimbool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1796249259Sdim  // icmp is implemented using adds/subs immediate, which take an unsigned
1797249259Sdim  // 12-bit immediate, optionally shifted left by 12 bits.
1798249259Sdim
1799249259Sdim  // Symmetric by using adds/subs
1800249259Sdim  if (Val < 0)
1801249259Sdim    Val = -Val;
1802249259Sdim
1803249259Sdim  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1804249259Sdim}
1805249259Sdim
1806249259SdimSDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1807249259Sdim                                        ISD::CondCode CC, SDValue &A64cc,
1808263508Sdim                                        SelectionDAG &DAG, SDLoc &dl) const {
1809249259Sdim  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1810249259Sdim    int64_t C = 0;
1811249259Sdim    EVT VT = RHSC->getValueType(0);
1812249259Sdim    bool knownInvalid = false;
1813249259Sdim
1814249259Sdim    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1815249259Sdim    // we can at least get it right.
1816249259Sdim    if (isSignedIntSetCC(CC)) {
1817249259Sdim      C = RHSC->getSExtValue();
1818249259Sdim    } else if (RHSC->getZExtValue() > INT64_MAX) {
1819249259Sdim      // A 64-bit constant not representable by a signed 64-bit integer is far
1820249259Sdim      // too big to fit into a SUBS immediate anyway.
1821249259Sdim      knownInvalid = true;
1822249259Sdim    } else {
1823249259Sdim      C = RHSC->getZExtValue();
1824249259Sdim    }
1825249259Sdim
1826249259Sdim    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1827249259Sdim      // Constant does not fit, try adjusting it by one?
1828249259Sdim      switch (CC) {
1829249259Sdim      default: break;
1830249259Sdim      case ISD::SETLT:
1831249259Sdim      case ISD::SETGE:
1832249259Sdim        if (isLegalICmpImmediate(C-1)) {
1833249259Sdim          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1834249259Sdim          RHS = DAG.getConstant(C-1, VT);
1835249259Sdim        }
1836249259Sdim        break;
1837249259Sdim      case ISD::SETULT:
1838249259Sdim      case ISD::SETUGE:
1839249259Sdim        if (isLegalICmpImmediate(C-1)) {
1840249259Sdim          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1841249259Sdim          RHS = DAG.getConstant(C-1, VT);
1842249259Sdim        }
1843249259Sdim        break;
1844249259Sdim      case ISD::SETLE:
1845249259Sdim      case ISD::SETGT:
1846249259Sdim        if (isLegalICmpImmediate(C+1)) {
1847249259Sdim          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1848249259Sdim          RHS = DAG.getConstant(C+1, VT);
1849249259Sdim        }
1850249259Sdim        break;
1851249259Sdim      case ISD::SETULE:
1852249259Sdim      case ISD::SETUGT:
1853249259Sdim        if (isLegalICmpImmediate(C+1)) {
1854249259Sdim          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1855249259Sdim          RHS = DAG.getConstant(C+1, VT);
1856249259Sdim        }
1857249259Sdim        break;
1858249259Sdim      }
1859249259Sdim    }
1860249259Sdim  }
1861249259Sdim
1862249259Sdim  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1863249259Sdim  A64cc = DAG.getConstant(CondCode, MVT::i32);
1864249259Sdim  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1865249259Sdim                     DAG.getCondCode(CC));
1866249259Sdim}
1867249259Sdim
1868249259Sdimstatic A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1869249259Sdim                                    A64CC::CondCodes &Alternative) {
1870249259Sdim  A64CC::CondCodes CondCode = A64CC::Invalid;
1871249259Sdim  Alternative = A64CC::Invalid;
1872249259Sdim
1873249259Sdim  switch (CC) {
1874249259Sdim  default: llvm_unreachable("Unknown FP condition!");
1875249259Sdim  case ISD::SETEQ:
1876249259Sdim  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1877249259Sdim  case ISD::SETGT:
1878249259Sdim  case ISD::SETOGT: CondCode = A64CC::GT; break;
1879249259Sdim  case ISD::SETGE:
1880249259Sdim  case ISD::SETOGE: CondCode = A64CC::GE; break;
1881249259Sdim  case ISD::SETOLT: CondCode = A64CC::MI; break;
1882249259Sdim  case ISD::SETOLE: CondCode = A64CC::LS; break;
1883249259Sdim  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1884249259Sdim  case ISD::SETO:   CondCode = A64CC::VC; break;
1885249259Sdim  case ISD::SETUO:  CondCode = A64CC::VS; break;
1886249259Sdim  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1887249259Sdim  case ISD::SETUGT: CondCode = A64CC::HI; break;
1888249259Sdim  case ISD::SETUGE: CondCode = A64CC::PL; break;
1889249259Sdim  case ISD::SETLT:
1890249259Sdim  case ISD::SETULT: CondCode = A64CC::LT; break;
1891249259Sdim  case ISD::SETLE:
1892249259Sdim  case ISD::SETULE: CondCode = A64CC::LE; break;
1893249259Sdim  case ISD::SETNE:
1894249259Sdim  case ISD::SETUNE: CondCode = A64CC::NE; break;
1895249259Sdim  }
1896249259Sdim  return CondCode;
1897249259Sdim}
1898249259Sdim
1899249259SdimSDValue
1900249259SdimAArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1901263508Sdim  SDLoc DL(Op);
1902249259Sdim  EVT PtrVT = getPointerTy();
1903249259Sdim  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1904249259Sdim
1905251662Sdim  switch(getTargetMachine().getCodeModel()) {
1906251662Sdim  case CodeModel::Small:
1907251662Sdim    // The most efficient code is PC-relative anyway for the small memory model,
1908251662Sdim    // so we don't need to worry about relocation model.
1909251662Sdim    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1910251662Sdim                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1911251662Sdim                                                 AArch64II::MO_NO_FLAG),
1912251662Sdim                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1913251662Sdim                                                 AArch64II::MO_LO12),
1914251662Sdim                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1915251662Sdim  case CodeModel::Large:
1916251662Sdim    return DAG.getNode(
1917251662Sdim      AArch64ISD::WrapperLarge, DL, PtrVT,
1918251662Sdim      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1919251662Sdim      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1920251662Sdim      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1921251662Sdim      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1922251662Sdim  default:
1923251662Sdim    llvm_unreachable("Only small and large code models supported now");
1924251662Sdim  }
1925249259Sdim}
1926249259Sdim
1927249259Sdim
1928249259Sdim// (BRCOND chain, val, dest)
1929249259SdimSDValue
1930249259SdimAArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1931263508Sdim  SDLoc dl(Op);
1932249259Sdim  SDValue Chain = Op.getOperand(0);
1933249259Sdim  SDValue TheBit = Op.getOperand(1);
1934249259Sdim  SDValue DestBB = Op.getOperand(2);
1935249259Sdim
1936249259Sdim  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1937249259Sdim  // that as the consumer we are responsible for ignoring rubbish in higher
1938249259Sdim  // bits.
1939249259Sdim  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1940249259Sdim                       DAG.getConstant(1, MVT::i32));
1941249259Sdim
1942249259Sdim  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1943249259Sdim                               DAG.getConstant(0, TheBit.getValueType()),
1944249259Sdim                               DAG.getCondCode(ISD::SETNE));
1945249259Sdim
1946249259Sdim  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1947249259Sdim                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1948249259Sdim                     DestBB);
1949249259Sdim}
1950249259Sdim
1951249259Sdim// (BR_CC chain, condcode, lhs, rhs, dest)
1952249259SdimSDValue
1953249259SdimAArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1954263508Sdim  SDLoc dl(Op);
1955249259Sdim  SDValue Chain = Op.getOperand(0);
1956249259Sdim  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1957249259Sdim  SDValue LHS = Op.getOperand(2);
1958249259Sdim  SDValue RHS = Op.getOperand(3);
1959249259Sdim  SDValue DestBB = Op.getOperand(4);
1960249259Sdim
1961249259Sdim  if (LHS.getValueType() == MVT::f128) {
1962249259Sdim    // f128 comparisons are lowered to runtime calls by a routine which sets
1963249259Sdim    // LHS, RHS and CC appropriately for the rest of this function to continue.
1964249259Sdim    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1965249259Sdim
1966249259Sdim    // If softenSetCCOperands returned a scalar, we need to compare the result
1967249259Sdim    // against zero to select between true and false values.
1968249259Sdim    if (RHS.getNode() == 0) {
1969249259Sdim      RHS = DAG.getConstant(0, LHS.getValueType());
1970249259Sdim      CC = ISD::SETNE;
1971249259Sdim    }
1972249259Sdim  }
1973249259Sdim
1974249259Sdim  if (LHS.getValueType().isInteger()) {
1975249259Sdim    SDValue A64cc;
1976249259Sdim
1977249259Sdim    // Integers are handled in a separate function because the combinations of
1978249259Sdim    // immediates and tests can get hairy and we may want to fiddle things.
1979249259Sdim    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1980249259Sdim
1981249259Sdim    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1982249259Sdim                       Chain, CmpOp, A64cc, DestBB);
1983249259Sdim  }
1984249259Sdim
1985249259Sdim  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1986249259Sdim  // conditional branch, hence FPCCToA64CC can set a second test, where either
1987249259Sdim  // passing is sufficient.
1988249259Sdim  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1989249259Sdim  CondCode = FPCCToA64CC(CC, Alternative);
1990249259Sdim  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1991249259Sdim  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1992249259Sdim                              DAG.getCondCode(CC));
1993249259Sdim  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1994249259Sdim                                 Chain, SetCC, A64cc, DestBB);
1995249259Sdim
1996249259Sdim  if (Alternative != A64CC::Invalid) {
1997249259Sdim    A64cc = DAG.getConstant(Alternative, MVT::i32);
1998249259Sdim    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1999249259Sdim                           A64BR_CC, SetCC, A64cc, DestBB);
2000249259Sdim
2001249259Sdim  }
2002249259Sdim
2003249259Sdim  return A64BR_CC;
2004249259Sdim}
2005249259Sdim
2006249259SdimSDValue
2007249259SdimAArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
2008249259Sdim                                       RTLIB::Libcall Call) const {
2009249259Sdim  ArgListTy Args;
2010249259Sdim  ArgListEntry Entry;
2011249259Sdim  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
2012249259Sdim    EVT ArgVT = Op.getOperand(i).getValueType();
2013249259Sdim    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2014249259Sdim    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
2015249259Sdim    Entry.isSExt = false;
2016249259Sdim    Entry.isZExt = false;
2017249259Sdim    Args.push_back(Entry);
2018249259Sdim  }
2019249259Sdim  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
2020249259Sdim
2021249259Sdim  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2022249259Sdim
2023249259Sdim  // By default, the input chain to this libcall is the entry node of the
2024249259Sdim  // function. If the libcall is going to be emitted as a tail call then
2025249259Sdim  // isUsedByReturnOnly will change it to the right chain if the return
2026249259Sdim  // node which is being folded has a non-entry input chain.
2027249259Sdim  SDValue InChain = DAG.getEntryNode();
2028249259Sdim
2029249259Sdim  // isTailCall may be true since the callee does not reference caller stack
2030249259Sdim  // frame. Check if it's in the right position.
2031249259Sdim  SDValue TCChain = InChain;
2032249259Sdim  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
2033249259Sdim  if (isTailCall)
2034249259Sdim    InChain = TCChain;
2035249259Sdim
2036249259Sdim  TargetLowering::
2037249259Sdim  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
2038249259Sdim                    0, getLibcallCallingConv(Call), isTailCall,
2039249259Sdim                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2040263508Sdim                    Callee, Args, DAG, SDLoc(Op));
2041249259Sdim  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2042249259Sdim
2043249259Sdim  if (!CallInfo.second.getNode())
2044249259Sdim    // It's a tailcall, return the chain (which is the DAG root).
2045249259Sdim    return DAG.getRoot();
2046249259Sdim
2047249259Sdim  return CallInfo.first;
2048249259Sdim}
2049249259Sdim
2050249259SdimSDValue
2051249259SdimAArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
2052249259Sdim  if (Op.getOperand(0).getValueType() != MVT::f128) {
2053249259Sdim    // It's legal except when f128 is involved
2054249259Sdim    return Op;
2055249259Sdim  }
2056249259Sdim
2057249259Sdim  RTLIB::Libcall LC;
2058249259Sdim  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2059249259Sdim
2060249259Sdim  SDValue SrcVal = Op.getOperand(0);
2061249259Sdim  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
2062263508Sdim                     /*isSigned*/ false, SDLoc(Op)).first;
2063249259Sdim}
2064249259Sdim
2065249259SdimSDValue
2066249259SdimAArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
2067249259Sdim  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2068249259Sdim
2069249259Sdim  RTLIB::Libcall LC;
2070249259Sdim  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2071249259Sdim
2072249259Sdim  return LowerF128ToCall(Op, DAG, LC);
2073249259Sdim}
2074249259Sdim
2075249259SdimSDValue
2076249259SdimAArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2077249259Sdim                                      bool IsSigned) const {
2078249259Sdim  if (Op.getOperand(0).getValueType() != MVT::f128) {
2079249259Sdim    // It's legal except when f128 is involved
2080249259Sdim    return Op;
2081249259Sdim  }
2082249259Sdim
2083249259Sdim  RTLIB::Libcall LC;
2084249259Sdim  if (IsSigned)
2085249259Sdim    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2086249259Sdim  else
2087249259Sdim    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2088249259Sdim
2089249259Sdim  return LowerF128ToCall(Op, DAG, LC);
2090249259Sdim}
2091249259Sdim
2092263508SdimSDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2093263508Sdim  MachineFunction &MF = DAG.getMachineFunction();
2094263508Sdim  MachineFrameInfo *MFI = MF.getFrameInfo();
2095263508Sdim  MFI->setReturnAddressIsTaken(true);
2096263508Sdim
2097263508Sdim  EVT VT = Op.getValueType();
2098263508Sdim  SDLoc dl(Op);
2099263508Sdim  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2100263508Sdim  if (Depth) {
2101263508Sdim    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2102263508Sdim    SDValue Offset = DAG.getConstant(8, MVT::i64);
2103263508Sdim    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2104263508Sdim                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2105263508Sdim                       MachinePointerInfo(), false, false, false, 0);
2106263508Sdim  }
2107263508Sdim
2108263508Sdim  // Return X30, which contains the return address. Mark it an implicit live-in.
2109263508Sdim  unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
2110263508Sdim  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
2111263508Sdim}
2112263508Sdim
2113263508Sdim
2114263508SdimSDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
2115263508Sdim                                              const {
2116263508Sdim  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2117263508Sdim  MFI->setFrameAddressIsTaken(true);
2118263508Sdim
2119263508Sdim  EVT VT = Op.getValueType();
2120263508Sdim  SDLoc dl(Op);
2121263508Sdim  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2122263508Sdim  unsigned FrameReg = AArch64::X29;
2123263508Sdim  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2124263508Sdim  while (Depth--)
2125263508Sdim    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2126263508Sdim                            MachinePointerInfo(),
2127263508Sdim                            false, false, false, 0);
2128263508Sdim  return FrameAddr;
2129263508Sdim}
2130263508Sdim
2131249259SdimSDValue
2132251662SdimAArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
2133251662Sdim                                                  SelectionDAG &DAG) const {
2134251662Sdim  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
2135251662Sdim  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
2136249259Sdim
2137251662Sdim  EVT PtrVT = getPointerTy();
2138263508Sdim  SDLoc dl(Op);
2139251662Sdim  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2140251662Sdim  const GlobalValue *GV = GN->getGlobal();
2141251662Sdim
2142251662Sdim  SDValue GlobalAddr = DAG.getNode(
2143251662Sdim      AArch64ISD::WrapperLarge, dl, PtrVT,
2144251662Sdim      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
2145251662Sdim      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
2146251662Sdim      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
2147251662Sdim      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
2148251662Sdim
2149251662Sdim  if (GN->getOffset() != 0)
2150251662Sdim    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2151251662Sdim                       DAG.getConstant(GN->getOffset(), PtrVT));
2152251662Sdim
2153251662Sdim  return GlobalAddr;
2154251662Sdim}
2155251662Sdim
2156251662SdimSDValue
2157251662SdimAArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
2158251662Sdim                                                  SelectionDAG &DAG) const {
2159249259Sdim  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
2160249259Sdim
2161249259Sdim  EVT PtrVT = getPointerTy();
2162263508Sdim  SDLoc dl(Op);
2163249259Sdim  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2164249259Sdim  const GlobalValue *GV = GN->getGlobal();
2165249259Sdim  unsigned Alignment = GV->getAlignment();
2166249259Sdim  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2167249259Sdim  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
2168249259Sdim    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
2169249259Sdim    // to zero when they remain undefined. In PIC mode the GOT can take care of
2170249259Sdim    // this, but in absolute mode we use a constant pool load.
2171249259Sdim    SDValue PoolAddr;
2172249259Sdim    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2173249259Sdim                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2174249259Sdim                                                     AArch64II::MO_NO_FLAG),
2175249259Sdim                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2176249259Sdim                                                     AArch64II::MO_LO12),
2177249259Sdim                           DAG.getConstant(8, MVT::i32));
2178249259Sdim    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
2179249259Sdim                                     MachinePointerInfo::getConstantPool(),
2180249259Sdim                                     /*isVolatile=*/ false,
2181249259Sdim                                     /*isNonTemporal=*/ true,
2182249259Sdim                                     /*isInvariant=*/ true, 8);
2183249259Sdim    if (GN->getOffset() != 0)
2184249259Sdim      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2185249259Sdim                         DAG.getConstant(GN->getOffset(), PtrVT));
2186249259Sdim
2187249259Sdim    return GlobalAddr;
2188249259Sdim  }
2189249259Sdim
2190249259Sdim  if (Alignment == 0) {
2191249259Sdim    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
2192249259Sdim    if (GVPtrTy->getElementType()->isSized()) {
2193249259Sdim      Alignment
2194249259Sdim        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
2195249259Sdim    } else {
2196249259Sdim      // Be conservative if we can't guess, not that it really matters:
2197249259Sdim      // functions and labels aren't valid for loads, and the methods used to
2198249259Sdim      // actually calculate an address work with any alignment.
2199249259Sdim      Alignment = 1;
2200249259Sdim    }
2201249259Sdim  }
2202249259Sdim
2203249259Sdim  unsigned char HiFixup, LoFixup;
2204263508Sdim  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
2205249259Sdim
2206249259Sdim  if (UseGOT) {
2207249259Sdim    HiFixup = AArch64II::MO_GOT;
2208249259Sdim    LoFixup = AArch64II::MO_GOT_LO12;
2209249259Sdim    Alignment = 8;
2210249259Sdim  } else {
2211249259Sdim    HiFixup = AArch64II::MO_NO_FLAG;
2212249259Sdim    LoFixup = AArch64II::MO_LO12;
2213249259Sdim  }
2214249259Sdim
2215249259Sdim  // AArch64's small model demands the following sequence:
2216249259Sdim  // ADRP x0, somewhere
2217249259Sdim  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
2218249259Sdim  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2219249259Sdim                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2220249259Sdim                                                             HiFixup),
2221249259Sdim                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2222249259Sdim                                                             LoFixup),
2223249259Sdim                                  DAG.getConstant(Alignment, MVT::i32));
2224249259Sdim
2225249259Sdim  if (UseGOT) {
2226249259Sdim    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2227249259Sdim                            GlobalRef);
2228249259Sdim  }
2229249259Sdim
2230249259Sdim  if (GN->getOffset() != 0)
2231249259Sdim    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2232249259Sdim                       DAG.getConstant(GN->getOffset(), PtrVT));
2233249259Sdim
2234249259Sdim  return GlobalRef;
2235249259Sdim}
2236249259Sdim
2237251662SdimSDValue
2238251662SdimAArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2239251662Sdim                                             SelectionDAG &DAG) const {
2240251662Sdim  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2241251662Sdim  // we make those distinctions here.
2242251662Sdim
2243251662Sdim  switch (getTargetMachine().getCodeModel()) {
2244251662Sdim  case CodeModel::Small:
2245251662Sdim    return LowerGlobalAddressELFSmall(Op, DAG);
2246251662Sdim  case CodeModel::Large:
2247251662Sdim    return LowerGlobalAddressELFLarge(Op, DAG);
2248251662Sdim  default:
2249251662Sdim    llvm_unreachable("Only small and large code models supported now");
2250251662Sdim  }
2251251662Sdim}
2252251662Sdim
2253249259SdimSDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2254249259Sdim                                                SDValue DescAddr,
2255263508Sdim                                                SDLoc DL,
2256249259Sdim                                                SelectionDAG &DAG) const {
2257249259Sdim  EVT PtrVT = getPointerTy();
2258249259Sdim
2259249259Sdim  // The function we need to call is simply the first entry in the GOT for this
2260249259Sdim  // descriptor, load it in preparation.
2261249259Sdim  SDValue Func, Chain;
2262249259Sdim  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2263249259Sdim                     DescAddr);
2264249259Sdim
2265249259Sdim  // The function takes only one argument: the address of the descriptor itself
2266249259Sdim  // in X0.
2267249259Sdim  SDValue Glue;
2268249259Sdim  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2269249259Sdim  Glue = Chain.getValue(1);
2270249259Sdim
2271249259Sdim  // Finally, there's a special calling-convention which means that the lookup
2272249259Sdim  // must preserve all registers (except X0, obviously).
2273249259Sdim  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2274249259Sdim  const AArch64RegisterInfo *A64RI
2275249259Sdim    = static_cast<const AArch64RegisterInfo *>(TRI);
2276249259Sdim  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2277249259Sdim
2278249259Sdim  // We're now ready to populate the argument list, as with a normal call:
2279249259Sdim  std::vector<SDValue> Ops;
2280249259Sdim  Ops.push_back(Chain);
2281249259Sdim  Ops.push_back(Func);
2282249259Sdim  Ops.push_back(SymAddr);
2283249259Sdim  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2284249259Sdim  Ops.push_back(DAG.getRegisterMask(Mask));
2285249259Sdim  Ops.push_back(Glue);
2286249259Sdim
2287249259Sdim  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2288249259Sdim  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2289249259Sdim                      Ops.size());
2290249259Sdim  Glue = Chain.getValue(1);
2291249259Sdim
2292249259Sdim  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2293249259Sdim  // back to the generic handling code.
2294249259Sdim  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2295249259Sdim}
2296249259Sdim
2297249259SdimSDValue
2298249259SdimAArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2299249259Sdim                                             SelectionDAG &DAG) const {
2300263508Sdim  assert(getSubtarget()->isTargetELF() &&
2301249259Sdim         "TLS not implemented for non-ELF targets");
2302251662Sdim  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2303251662Sdim         && "TLS only supported in small memory model");
2304249259Sdim  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2305249259Sdim
2306249259Sdim  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2307249259Sdim
2308249259Sdim  SDValue TPOff;
2309249259Sdim  EVT PtrVT = getPointerTy();
2310263508Sdim  SDLoc DL(Op);
2311249259Sdim  const GlobalValue *GV = GA->getGlobal();
2312249259Sdim
2313249259Sdim  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2314249259Sdim
2315249259Sdim  if (Model == TLSModel::InitialExec) {
2316249259Sdim    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2317249259Sdim                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2318249259Sdim                                                   AArch64II::MO_GOTTPREL),
2319249259Sdim                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2320249259Sdim                                                   AArch64II::MO_GOTTPREL_LO12),
2321249259Sdim                        DAG.getConstant(8, MVT::i32));
2322249259Sdim    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2323249259Sdim                        TPOff);
2324249259Sdim  } else if (Model == TLSModel::LocalExec) {
2325249259Sdim    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2326249259Sdim                                               AArch64II::MO_TPREL_G1);
2327249259Sdim    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2328249259Sdim                                               AArch64II::MO_TPREL_G0_NC);
2329249259Sdim
2330249259Sdim    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2331263508Sdim                                       DAG.getTargetConstant(1, MVT::i32)), 0);
2332249259Sdim    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2333249259Sdim                                       TPOff, LoVar,
2334249259Sdim                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2335249259Sdim  } else if (Model == TLSModel::GeneralDynamic) {
2336249259Sdim    // Accesses used in this sequence go via the TLS descriptor which lives in
2337249259Sdim    // the GOT. Prepare an address we can use to handle this.
2338249259Sdim    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2339249259Sdim                                                AArch64II::MO_TLSDESC);
2340249259Sdim    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2341249259Sdim                                                AArch64II::MO_TLSDESC_LO12);
2342249259Sdim    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2343249259Sdim                                   HiDesc, LoDesc,
2344249259Sdim                                   DAG.getConstant(8, MVT::i32));
2345249259Sdim    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2346249259Sdim
2347249259Sdim    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2348249259Sdim  } else if (Model == TLSModel::LocalDynamic) {
2349249259Sdim    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2350249259Sdim    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2351249259Sdim    // the beginning of the module's TLS region, followed by a DTPREL offset
2352249259Sdim    // calculation.
2353249259Sdim
2354249259Sdim    // These accesses will need deduplicating if there's more than one.
2355249259Sdim    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2356249259Sdim      .getInfo<AArch64MachineFunctionInfo>();
2357249259Sdim    MFI->incNumLocalDynamicTLSAccesses();
2358249259Sdim
2359249259Sdim
2360249259Sdim    // Get the location of _TLS_MODULE_BASE_:
2361249259Sdim    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2362249259Sdim                                                AArch64II::MO_TLSDESC);
2363249259Sdim    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2364249259Sdim                                                AArch64II::MO_TLSDESC_LO12);
2365249259Sdim    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2366249259Sdim                                   HiDesc, LoDesc,
2367249259Sdim                                   DAG.getConstant(8, MVT::i32));
2368249259Sdim    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2369249259Sdim
2370249259Sdim    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2371249259Sdim
2372249259Sdim    // Get the variable's offset from _TLS_MODULE_BASE_
2373249259Sdim    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2374249259Sdim                                               AArch64II::MO_DTPREL_G1);
2375249259Sdim    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2376249259Sdim                                               AArch64II::MO_DTPREL_G0_NC);
2377249259Sdim
2378249259Sdim    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2379249259Sdim                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2380249259Sdim    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2381249259Sdim                                       TPOff, LoVar,
2382249259Sdim                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2383249259Sdim  } else
2384249259Sdim      llvm_unreachable("Unsupported TLS access model");
2385249259Sdim
2386249259Sdim
2387249259Sdim  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2388249259Sdim}
2389249259Sdim
2390249259SdimSDValue
2391249259SdimAArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2392249259Sdim                                      bool IsSigned) const {
2393249259Sdim  if (Op.getValueType() != MVT::f128) {
2394249259Sdim    // Legal for everything except f128.
2395249259Sdim    return Op;
2396249259Sdim  }
2397249259Sdim
2398249259Sdim  RTLIB::Libcall LC;
2399249259Sdim  if (IsSigned)
2400249259Sdim    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2401249259Sdim  else
2402249259Sdim    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2403249259Sdim
2404249259Sdim  return LowerF128ToCall(Op, DAG, LC);
2405249259Sdim}
2406249259Sdim
2407249259Sdim
2408249259SdimSDValue
2409249259SdimAArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2410249259Sdim  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2411263508Sdim  SDLoc dl(JT);
2412251662Sdim  EVT PtrVT = getPointerTy();
2413249259Sdim
2414249259Sdim  // When compiling PIC, jump tables get put in the code section so a static
2415249259Sdim  // relocation-style is acceptable for both cases.
2416251662Sdim  switch (getTargetMachine().getCodeModel()) {
2417251662Sdim  case CodeModel::Small:
2418251662Sdim    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2419251662Sdim                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2420251662Sdim                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2421251662Sdim                                              AArch64II::MO_LO12),
2422251662Sdim                       DAG.getConstant(1, MVT::i32));
2423251662Sdim  case CodeModel::Large:
2424251662Sdim    return DAG.getNode(
2425251662Sdim      AArch64ISD::WrapperLarge, dl, PtrVT,
2426251662Sdim      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2427251662Sdim      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2428251662Sdim      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2429251662Sdim      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2430251662Sdim  default:
2431251662Sdim    llvm_unreachable("Only small and large code models supported now");
2432251662Sdim  }
2433249259Sdim}
2434249259Sdim
2435249259Sdim// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2436249259SdimSDValue
2437249259SdimAArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2438263508Sdim  SDLoc dl(Op);
2439249259Sdim  SDValue LHS = Op.getOperand(0);
2440249259Sdim  SDValue RHS = Op.getOperand(1);
2441249259Sdim  SDValue IfTrue = Op.getOperand(2);
2442249259Sdim  SDValue IfFalse = Op.getOperand(3);
2443249259Sdim  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2444249259Sdim
2445249259Sdim  if (LHS.getValueType() == MVT::f128) {
2446249259Sdim    // f128 comparisons are lowered to libcalls, but slot in nicely here
2447249259Sdim    // afterwards.
2448249259Sdim    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2449249259Sdim
2450249259Sdim    // If softenSetCCOperands returned a scalar, we need to compare the result
2451249259Sdim    // against zero to select between true and false values.
2452249259Sdim    if (RHS.getNode() == 0) {
2453249259Sdim      RHS = DAG.getConstant(0, LHS.getValueType());
2454249259Sdim      CC = ISD::SETNE;
2455249259Sdim    }
2456249259Sdim  }
2457249259Sdim
2458249259Sdim  if (LHS.getValueType().isInteger()) {
2459249259Sdim    SDValue A64cc;
2460249259Sdim
2461249259Sdim    // Integers are handled in a separate function because the combinations of
2462249259Sdim    // immediates and tests can get hairy and we may want to fiddle things.
2463249259Sdim    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2464249259Sdim
2465249259Sdim    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2466249259Sdim                       CmpOp, IfTrue, IfFalse, A64cc);
2467249259Sdim  }
2468249259Sdim
2469249259Sdim  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2470249259Sdim  // conditional branch, hence FPCCToA64CC can set a second test, where either
2471249259Sdim  // passing is sufficient.
2472249259Sdim  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2473249259Sdim  CondCode = FPCCToA64CC(CC, Alternative);
2474249259Sdim  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2475249259Sdim  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2476249259Sdim                              DAG.getCondCode(CC));
2477249259Sdim  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2478249259Sdim                                     Op.getValueType(),
2479249259Sdim                                     SetCC, IfTrue, IfFalse, A64cc);
2480249259Sdim
2481249259Sdim  if (Alternative != A64CC::Invalid) {
2482249259Sdim    A64cc = DAG.getConstant(Alternative, MVT::i32);
2483249259Sdim    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2484249259Sdim                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2485249259Sdim
2486249259Sdim  }
2487249259Sdim
2488249259Sdim  return A64SELECT_CC;
2489249259Sdim}
2490249259Sdim
2491249259Sdim// (SELECT testbit, iftrue, iffalse)
2492249259SdimSDValue
2493249259SdimAArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2494263508Sdim  SDLoc dl(Op);
2495249259Sdim  SDValue TheBit = Op.getOperand(0);
2496249259Sdim  SDValue IfTrue = Op.getOperand(1);
2497249259Sdim  SDValue IfFalse = Op.getOperand(2);
2498249259Sdim
2499249259Sdim  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2500249259Sdim  // that as the consumer we are responsible for ignoring rubbish in higher
2501249259Sdim  // bits.
2502249259Sdim  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2503249259Sdim                       DAG.getConstant(1, MVT::i32));
2504249259Sdim  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2505249259Sdim                               DAG.getConstant(0, TheBit.getValueType()),
2506249259Sdim                               DAG.getCondCode(ISD::SETNE));
2507249259Sdim
2508249259Sdim  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2509249259Sdim                     A64CMP, IfTrue, IfFalse,
2510249259Sdim                     DAG.getConstant(A64CC::NE, MVT::i32));
2511249259Sdim}
2512249259Sdim
2513263508Sdimstatic SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2514263508Sdim  SDLoc DL(Op);
2515263508Sdim  SDValue LHS = Op.getOperand(0);
2516263508Sdim  SDValue RHS = Op.getOperand(1);
2517263508Sdim  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2518263508Sdim  EVT VT = Op.getValueType();
2519263508Sdim  bool Invert = false;
2520263508Sdim  SDValue Op0, Op1;
2521263508Sdim  unsigned Opcode;
2522263508Sdim
2523263508Sdim  if (LHS.getValueType().isInteger()) {
2524263508Sdim
2525263508Sdim    // Attempt to use Vector Integer Compare Mask Test instruction.
2526263508Sdim    // TST = icmp ne (and (op0, op1), zero).
2527263508Sdim    if (CC == ISD::SETNE) {
2528263508Sdim      if (((LHS.getOpcode() == ISD::AND) &&
2529263508Sdim           ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2530263508Sdim          ((RHS.getOpcode() == ISD::AND) &&
2531263508Sdim           ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2532263508Sdim
2533263508Sdim        SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2534263508Sdim        SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2535263508Sdim        SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2536263508Sdim        return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2537263508Sdim      }
2538263508Sdim    }
2539263508Sdim
2540263508Sdim    // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2541263508Sdim    // Note: Compare against Zero does not support unsigned predicates.
2542263508Sdim    if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2543263508Sdim         ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2544263508Sdim        !isUnsignedIntSetCC(CC)) {
2545263508Sdim
2546263508Sdim      // If LHS is the zero value, swap operands and CondCode.
2547263508Sdim      if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2548263508Sdim        CC = getSetCCSwappedOperands(CC);
2549263508Sdim        Op0 = RHS;
2550263508Sdim      } else
2551263508Sdim        Op0 = LHS;
2552263508Sdim
2553263508Sdim      // Ensure valid CondCode for Compare Mask against Zero instruction:
2554263508Sdim      // EQ, GE, GT, LE, LT.
2555263508Sdim      if (ISD::SETNE == CC) {
2556263508Sdim        Invert = true;
2557263508Sdim        CC = ISD::SETEQ;
2558263508Sdim      }
2559263508Sdim
2560263508Sdim      // Using constant type to differentiate integer and FP compares with zero.
2561263508Sdim      Op1 = DAG.getConstant(0, MVT::i32);
2562263508Sdim      Opcode = AArch64ISD::NEON_CMPZ;
2563263508Sdim
2564263508Sdim    } else {
2565263508Sdim      // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2566263508Sdim      // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2567263508Sdim      bool Swap = false;
2568263508Sdim      switch (CC) {
2569263508Sdim      default:
2570263508Sdim        llvm_unreachable("Illegal integer comparison.");
2571263508Sdim      case ISD::SETEQ:
2572263508Sdim      case ISD::SETGT:
2573263508Sdim      case ISD::SETGE:
2574263508Sdim      case ISD::SETUGT:
2575263508Sdim      case ISD::SETUGE:
2576263508Sdim        break;
2577263508Sdim      case ISD::SETNE:
2578263508Sdim        Invert = true;
2579263508Sdim        CC = ISD::SETEQ;
2580263508Sdim        break;
2581263508Sdim      case ISD::SETULT:
2582263508Sdim      case ISD::SETULE:
2583263508Sdim      case ISD::SETLT:
2584263508Sdim      case ISD::SETLE:
2585263508Sdim        Swap = true;
2586263508Sdim        CC = getSetCCSwappedOperands(CC);
2587263508Sdim      }
2588263508Sdim
2589263508Sdim      if (Swap)
2590263508Sdim        std::swap(LHS, RHS);
2591263508Sdim
2592263508Sdim      Opcode = AArch64ISD::NEON_CMP;
2593263508Sdim      Op0 = LHS;
2594263508Sdim      Op1 = RHS;
2595263508Sdim    }
2596263508Sdim
2597263508Sdim    // Generate Compare Mask instr or Compare Mask against Zero instr.
2598263508Sdim    SDValue NeonCmp =
2599263508Sdim        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2600263508Sdim
2601263508Sdim    if (Invert)
2602263508Sdim      NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2603263508Sdim
2604263508Sdim    return NeonCmp;
2605263508Sdim  }
2606263508Sdim
2607263508Sdim  // Now handle Floating Point cases.
2608263508Sdim  // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2609263508Sdim  if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2610263508Sdim      ISD::isBuildVectorAllZeros(LHS.getNode())) {
2611263508Sdim
2612263508Sdim    // If LHS is the zero value, swap operands and CondCode.
2613263508Sdim    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2614263508Sdim      CC = getSetCCSwappedOperands(CC);
2615263508Sdim      Op0 = RHS;
2616263508Sdim    } else
2617263508Sdim      Op0 = LHS;
2618263508Sdim
2619263508Sdim    // Using constant type to differentiate integer and FP compares with zero.
2620263508Sdim    Op1 = DAG.getConstantFP(0, MVT::f32);
2621263508Sdim    Opcode = AArch64ISD::NEON_CMPZ;
2622263508Sdim  } else {
2623263508Sdim    // Attempt to use Vector Floating Point Compare Mask instruction.
2624263508Sdim    Op0 = LHS;
2625263508Sdim    Op1 = RHS;
2626263508Sdim    Opcode = AArch64ISD::NEON_CMP;
2627263508Sdim  }
2628263508Sdim
2629263508Sdim  SDValue NeonCmpAlt;
2630263508Sdim  // Some register compares have to be implemented with swapped CC and operands,
2631263508Sdim  // e.g.: OLT implemented as OGT with swapped operands.
2632263508Sdim  bool SwapIfRegArgs = false;
2633263508Sdim
2634263508Sdim  // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2635263508Sdim  // EQ, GE, GT, LE, LT.
2636263508Sdim  // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2637263508Sdim  switch (CC) {
2638263508Sdim  default:
2639263508Sdim    llvm_unreachable("Illegal FP comparison");
2640263508Sdim  case ISD::SETUNE:
2641263508Sdim  case ISD::SETNE:
2642263508Sdim    Invert = true; // Fallthrough
2643263508Sdim  case ISD::SETOEQ:
2644263508Sdim  case ISD::SETEQ:
2645263508Sdim    CC = ISD::SETEQ;
2646263508Sdim    break;
2647263508Sdim  case ISD::SETOLT:
2648263508Sdim  case ISD::SETLT:
2649263508Sdim    CC = ISD::SETLT;
2650263508Sdim    SwapIfRegArgs = true;
2651263508Sdim    break;
2652263508Sdim  case ISD::SETOGT:
2653263508Sdim  case ISD::SETGT:
2654263508Sdim    CC = ISD::SETGT;
2655263508Sdim    break;
2656263508Sdim  case ISD::SETOLE:
2657263508Sdim  case ISD::SETLE:
2658263508Sdim    CC = ISD::SETLE;
2659263508Sdim    SwapIfRegArgs = true;
2660263508Sdim    break;
2661263508Sdim  case ISD::SETOGE:
2662263508Sdim  case ISD::SETGE:
2663263508Sdim    CC = ISD::SETGE;
2664263508Sdim    break;
2665263508Sdim  case ISD::SETUGE:
2666263508Sdim    Invert = true;
2667263508Sdim    CC = ISD::SETLT;
2668263508Sdim    SwapIfRegArgs = true;
2669263508Sdim    break;
2670263508Sdim  case ISD::SETULE:
2671263508Sdim    Invert = true;
2672263508Sdim    CC = ISD::SETGT;
2673263508Sdim    break;
2674263508Sdim  case ISD::SETUGT:
2675263508Sdim    Invert = true;
2676263508Sdim    CC = ISD::SETLE;
2677263508Sdim    SwapIfRegArgs = true;
2678263508Sdim    break;
2679263508Sdim  case ISD::SETULT:
2680263508Sdim    Invert = true;
2681263508Sdim    CC = ISD::SETGE;
2682263508Sdim    break;
2683263508Sdim  case ISD::SETUEQ:
2684263508Sdim    Invert = true; // Fallthrough
2685263508Sdim  case ISD::SETONE:
2686263508Sdim    // Expand this to (OGT |OLT).
2687263508Sdim    NeonCmpAlt =
2688263508Sdim        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2689263508Sdim    CC = ISD::SETLT;
2690263508Sdim    SwapIfRegArgs = true;
2691263508Sdim    break;
2692263508Sdim  case ISD::SETUO:
2693263508Sdim    Invert = true; // Fallthrough
2694263508Sdim  case ISD::SETO:
2695263508Sdim    // Expand this to (OGE | OLT).
2696263508Sdim    NeonCmpAlt =
2697263508Sdim        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2698263508Sdim    CC = ISD::SETLT;
2699263508Sdim    SwapIfRegArgs = true;
2700263508Sdim    break;
2701263508Sdim  }
2702263508Sdim
2703263508Sdim  if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2704263508Sdim    CC = getSetCCSwappedOperands(CC);
2705263508Sdim    std::swap(Op0, Op1);
2706263508Sdim  }
2707263508Sdim
2708263508Sdim  // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2709263508Sdim  SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2710263508Sdim
2711263508Sdim  if (NeonCmpAlt.getNode())
2712263508Sdim    NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2713263508Sdim
2714263508Sdim  if (Invert)
2715263508Sdim    NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2716263508Sdim
2717263508Sdim  return NeonCmp;
2718263508Sdim}
2719263508Sdim
2720249259Sdim// (SETCC lhs, rhs, condcode)
2721249259SdimSDValue
2722249259SdimAArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2723263508Sdim  SDLoc dl(Op);
2724249259Sdim  SDValue LHS = Op.getOperand(0);
2725249259Sdim  SDValue RHS = Op.getOperand(1);
2726249259Sdim  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2727249259Sdim  EVT VT = Op.getValueType();
2728249259Sdim
2729263508Sdim  if (VT.isVector())
2730263508Sdim    return LowerVectorSETCC(Op, DAG);
2731263508Sdim
2732249259Sdim  if (LHS.getValueType() == MVT::f128) {
2733249259Sdim    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2734249259Sdim    // for the rest of the function (some i32 or i64 values).
2735249259Sdim    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2736249259Sdim
2737249259Sdim    // If softenSetCCOperands returned a scalar, use it.
2738249259Sdim    if (RHS.getNode() == 0) {
2739249259Sdim      assert(LHS.getValueType() == Op.getValueType() &&
2740249259Sdim             "Unexpected setcc expansion!");
2741249259Sdim      return LHS;
2742249259Sdim    }
2743249259Sdim  }
2744249259Sdim
2745249259Sdim  if (LHS.getValueType().isInteger()) {
2746249259Sdim    SDValue A64cc;
2747249259Sdim
2748249259Sdim    // Integers are handled in a separate function because the combinations of
2749249259Sdim    // immediates and tests can get hairy and we may want to fiddle things.
2750249259Sdim    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2751249259Sdim
2752249259Sdim    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2753249259Sdim                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2754249259Sdim                       A64cc);
2755249259Sdim  }
2756249259Sdim
2757249259Sdim  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2758249259Sdim  // conditional branch, hence FPCCToA64CC can set a second test, where either
2759249259Sdim  // passing is sufficient.
2760249259Sdim  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2761249259Sdim  CondCode = FPCCToA64CC(CC, Alternative);
2762249259Sdim  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2763249259Sdim  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2764249259Sdim                              DAG.getCondCode(CC));
2765249259Sdim  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2766249259Sdim                                     CmpOp, DAG.getConstant(1, VT),
2767249259Sdim                                     DAG.getConstant(0, VT), A64cc);
2768249259Sdim
2769249259Sdim  if (Alternative != A64CC::Invalid) {
2770249259Sdim    A64cc = DAG.getConstant(Alternative, MVT::i32);
2771249259Sdim    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2772249259Sdim                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2773249259Sdim  }
2774249259Sdim
2775249259Sdim  return A64SELECT_CC;
2776249259Sdim}
2777249259Sdim
2778249259SdimSDValue
2779249259SdimAArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2780249259Sdim  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2781266715Sdim  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2782249259Sdim
2783249259Sdim  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2784249259Sdim  // rather than just 8.
2785263508Sdim  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2786249259Sdim                       Op.getOperand(1), Op.getOperand(2),
2787249259Sdim                       DAG.getConstant(32, MVT::i32), 8, false, false,
2788249259Sdim                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2789249259Sdim}
2790249259Sdim
2791249259SdimSDValue
2792249259SdimAArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2793249259Sdim  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2794249259Sdim  // Standard, section B.3.
2795249259Sdim  MachineFunction &MF = DAG.getMachineFunction();
2796249259Sdim  AArch64MachineFunctionInfo *FuncInfo
2797249259Sdim    = MF.getInfo<AArch64MachineFunctionInfo>();
2798263508Sdim  SDLoc DL(Op);
2799249259Sdim
2800249259Sdim  SDValue Chain = Op.getOperand(0);
2801249259Sdim  SDValue VAList = Op.getOperand(1);
2802249259Sdim  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2803249259Sdim  SmallVector<SDValue, 4> MemOps;
2804249259Sdim
2805249259Sdim  // void *__stack at offset 0
2806249259Sdim  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2807249259Sdim                                    getPointerTy());
2808249259Sdim  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2809249259Sdim                                MachinePointerInfo(SV), false, false, 0));
2810249259Sdim
2811249259Sdim  // void *__gr_top at offset 8
2812249259Sdim  int GPRSize = FuncInfo->getVariadicGPRSize();
2813249259Sdim  if (GPRSize > 0) {
2814249259Sdim    SDValue GRTop, GRTopAddr;
2815249259Sdim
2816249259Sdim    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2817249259Sdim                            DAG.getConstant(8, getPointerTy()));
2818249259Sdim
2819249259Sdim    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2820249259Sdim    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2821249259Sdim                        DAG.getConstant(GPRSize, getPointerTy()));
2822249259Sdim
2823249259Sdim    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2824249259Sdim                                  MachinePointerInfo(SV, 8),
2825249259Sdim                                  false, false, 0));
2826249259Sdim  }
2827249259Sdim
2828249259Sdim  // void *__vr_top at offset 16
2829249259Sdim  int FPRSize = FuncInfo->getVariadicFPRSize();
2830249259Sdim  if (FPRSize > 0) {
2831249259Sdim    SDValue VRTop, VRTopAddr;
2832249259Sdim    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2833249259Sdim                            DAG.getConstant(16, getPointerTy()));
2834249259Sdim
2835249259Sdim    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2836249259Sdim    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2837249259Sdim                        DAG.getConstant(FPRSize, getPointerTy()));
2838249259Sdim
2839249259Sdim    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2840249259Sdim                                  MachinePointerInfo(SV, 16),
2841249259Sdim                                  false, false, 0));
2842249259Sdim  }
2843249259Sdim
2844249259Sdim  // int __gr_offs at offset 24
2845249259Sdim  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2846249259Sdim                                   DAG.getConstant(24, getPointerTy()));
2847249259Sdim  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2848249259Sdim                                GROffsAddr, MachinePointerInfo(SV, 24),
2849249259Sdim                                false, false, 0));
2850249259Sdim
2851249259Sdim  // int __vr_offs at offset 28
2852249259Sdim  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2853249259Sdim                                   DAG.getConstant(28, getPointerTy()));
2854249259Sdim  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2855249259Sdim                                VROffsAddr, MachinePointerInfo(SV, 28),
2856249259Sdim                                false, false, 0));
2857249259Sdim
2858249259Sdim  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2859249259Sdim                     MemOps.size());
2860249259Sdim}
2861249259Sdim
2862249259SdimSDValue
2863249259SdimAArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2864249259Sdim  switch (Op.getOpcode()) {
2865249259Sdim  default: llvm_unreachable("Don't know how to custom lower this!");
2866249259Sdim  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2867249259Sdim  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2868249259Sdim  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2869249259Sdim  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2870249259Sdim  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2871249259Sdim  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2872249259Sdim  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2873249259Sdim  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2874249259Sdim  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2875249259Sdim  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2876263508Sdim  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
2877263508Sdim  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2878249259Sdim
2879249259Sdim  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2880249259Sdim  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2881249259Sdim  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2882249259Sdim  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2883249259Sdim  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2884249259Sdim  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2885249259Sdim  case ISD::SELECT: return LowerSELECT(Op, DAG);
2886249259Sdim  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2887249259Sdim  case ISD::SETCC: return LowerSETCC(Op, DAG);
2888249259Sdim  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2889249259Sdim  case ISD::VASTART: return LowerVASTART(Op, DAG);
2890263508Sdim  case ISD::BUILD_VECTOR:
2891263508Sdim    return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
2892263508Sdim  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2893249259Sdim  }
2894249259Sdim
2895249259Sdim  return SDValue();
2896249259Sdim}
2897249259Sdim
2898263508Sdim/// Check if the specified splat value corresponds to a valid vector constant
2899263508Sdim/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI).  If
2900263508Sdim/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2901263508Sdim/// values.
2902263508Sdimstatic bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2903263508Sdim                              unsigned SplatBitSize, SelectionDAG &DAG,
2904263508Sdim                              bool is128Bits, NeonModImmType type, EVT &VT,
2905263508Sdim                              unsigned &Imm, unsigned &OpCmode) {
2906263508Sdim  switch (SplatBitSize) {
2907263508Sdim  default:
2908263508Sdim    llvm_unreachable("unexpected size for isNeonModifiedImm");
2909263508Sdim  case 8: {
2910263508Sdim    if (type != Neon_Mov_Imm)
2911263508Sdim      return false;
2912263508Sdim    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2913263508Sdim    // Neon movi per byte: Op=0, Cmode=1110.
2914263508Sdim    OpCmode = 0xe;
2915263508Sdim    Imm = SplatBits;
2916263508Sdim    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2917263508Sdim    break;
2918263508Sdim  }
2919263508Sdim  case 16: {
2920263508Sdim    // Neon move inst per halfword
2921263508Sdim    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2922263508Sdim    if ((SplatBits & ~0xff) == 0) {
2923263508Sdim      // Value = 0x00nn is 0x00nn LSL 0
2924263508Sdim      // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2925263508Sdim      // bic:  Op=1, Cmode=1001;  orr:  Op=0, Cmode=1001
2926263508Sdim      // Op=x, Cmode=100y
2927263508Sdim      Imm = SplatBits;
2928263508Sdim      OpCmode = 0x8;
2929263508Sdim      break;
2930263508Sdim    }
2931263508Sdim    if ((SplatBits & ~0xff00) == 0) {
2932263508Sdim      // Value = 0xnn00 is 0x00nn LSL 8
2933263508Sdim      // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2934263508Sdim      // bic:  Op=1, Cmode=1011;  orr:  Op=0, Cmode=1011
2935263508Sdim      // Op=x, Cmode=101x
2936263508Sdim      Imm = SplatBits >> 8;
2937263508Sdim      OpCmode = 0xa;
2938263508Sdim      break;
2939263508Sdim    }
2940263508Sdim    // can't handle any other
2941263508Sdim    return false;
2942263508Sdim  }
2943263508Sdim
2944263508Sdim  case 32: {
2945263508Sdim    // First the LSL variants (MSL is unusable by some interested instructions).
2946263508Sdim
2947263508Sdim    // Neon move instr per word, shift zeros
2948263508Sdim    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2949263508Sdim    if ((SplatBits & ~0xff) == 0) {
2950263508Sdim      // Value = 0x000000nn is 0x000000nn LSL 0
2951263508Sdim      // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2952263508Sdim      // bic:  Op=1, Cmode= 0001; orr:  Op=0, Cmode= 0001
2953263508Sdim      // Op=x, Cmode=000x
2954263508Sdim      Imm = SplatBits;
2955263508Sdim      OpCmode = 0;
2956263508Sdim      break;
2957263508Sdim    }
2958263508Sdim    if ((SplatBits & ~0xff00) == 0) {
2959263508Sdim      // Value = 0x0000nn00 is 0x000000nn LSL 8
2960263508Sdim      // movi: Op=0, Cmode= 0010;  mvni: Op=1, Cmode= 0010
2961263508Sdim      // bic:  Op=1, Cmode= 0011;  orr : Op=0, Cmode= 0011
2962263508Sdim      // Op=x, Cmode=001x
2963263508Sdim      Imm = SplatBits >> 8;
2964263508Sdim      OpCmode = 0x2;
2965263508Sdim      break;
2966263508Sdim    }
2967263508Sdim    if ((SplatBits & ~0xff0000) == 0) {
2968263508Sdim      // Value = 0x00nn0000 is 0x000000nn LSL 16
2969263508Sdim      // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2970263508Sdim      // bic:  Op=1, Cmode= 0101; orr:  Op=0, Cmode= 0101
2971263508Sdim      // Op=x, Cmode=010x
2972263508Sdim      Imm = SplatBits >> 16;
2973263508Sdim      OpCmode = 0x4;
2974263508Sdim      break;
2975263508Sdim    }
2976263508Sdim    if ((SplatBits & ~0xff000000) == 0) {
2977263508Sdim      // Value = 0xnn000000 is 0x000000nn LSL 24
2978263508Sdim      // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2979263508Sdim      // bic:  Op=1, Cmode= 0111; orr:  Op=0, Cmode= 0111
2980263508Sdim      // Op=x, Cmode=011x
2981263508Sdim      Imm = SplatBits >> 24;
2982263508Sdim      OpCmode = 0x6;
2983263508Sdim      break;
2984263508Sdim    }
2985263508Sdim
2986263508Sdim    // Now the MSL immediates.
2987263508Sdim
2988263508Sdim    // Neon move instr per word, shift ones
2989263508Sdim    if ((SplatBits & ~0xffff) == 0 &&
2990263508Sdim        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2991263508Sdim      // Value = 0x0000nnff is 0x000000nn MSL 8
2992263508Sdim      // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2993263508Sdim      // Op=x, Cmode=1100
2994263508Sdim      Imm = SplatBits >> 8;
2995263508Sdim      OpCmode = 0xc;
2996263508Sdim      break;
2997263508Sdim    }
2998263508Sdim    if ((SplatBits & ~0xffffff) == 0 &&
2999263508Sdim        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3000263508Sdim      // Value = 0x00nnffff is 0x000000nn MSL 16
3001263508Sdim      // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
3002263508Sdim      // Op=x, Cmode=1101
3003263508Sdim      Imm = SplatBits >> 16;
3004263508Sdim      OpCmode = 0xd;
3005263508Sdim      break;
3006263508Sdim    }
3007263508Sdim    // can't handle any other
3008263508Sdim    return false;
3009263508Sdim  }
3010263508Sdim
3011263508Sdim  case 64: {
3012263508Sdim    if (type != Neon_Mov_Imm)
3013263508Sdim      return false;
3014263508Sdim    // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
3015263508Sdim    // movi Op=1, Cmode=1110.
3016263508Sdim    OpCmode = 0x1e;
3017263508Sdim    uint64_t BitMask = 0xff;
3018263508Sdim    uint64_t Val = 0;
3019263508Sdim    unsigned ImmMask = 1;
3020263508Sdim    Imm = 0;
3021263508Sdim    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3022263508Sdim      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3023263508Sdim        Val |= BitMask;
3024263508Sdim        Imm |= ImmMask;
3025263508Sdim      } else if ((SplatBits & BitMask) != 0) {
3026263508Sdim        return false;
3027263508Sdim      }
3028263508Sdim      BitMask <<= 8;
3029263508Sdim      ImmMask <<= 1;
3030263508Sdim    }
3031263508Sdim    SplatBits = Val;
3032263508Sdim    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3033263508Sdim    break;
3034263508Sdim  }
3035263508Sdim  }
3036263508Sdim
3037263508Sdim  return true;
3038263508Sdim}
3039263508Sdim
3040249259Sdimstatic SDValue PerformANDCombine(SDNode *N,
3041249259Sdim                                 TargetLowering::DAGCombinerInfo &DCI) {
3042249259Sdim
3043249259Sdim  SelectionDAG &DAG = DCI.DAG;
3044263508Sdim  SDLoc DL(N);
3045249259Sdim  EVT VT = N->getValueType(0);
3046249259Sdim
3047249259Sdim  // We're looking for an SRA/SHL pair which form an SBFX.
3048249259Sdim
3049249259Sdim  if (VT != MVT::i32 && VT != MVT::i64)
3050249259Sdim    return SDValue();
3051249259Sdim
3052249259Sdim  if (!isa<ConstantSDNode>(N->getOperand(1)))
3053249259Sdim    return SDValue();
3054249259Sdim
3055249259Sdim  uint64_t TruncMask = N->getConstantOperandVal(1);
3056249259Sdim  if (!isMask_64(TruncMask))
3057249259Sdim    return SDValue();
3058249259Sdim
3059249259Sdim  uint64_t Width = CountPopulation_64(TruncMask);
3060249259Sdim  SDValue Shift = N->getOperand(0);
3061249259Sdim
3062249259Sdim  if (Shift.getOpcode() != ISD::SRL)
3063249259Sdim    return SDValue();
3064249259Sdim
3065249259Sdim  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3066249259Sdim    return SDValue();
3067249259Sdim  uint64_t LSB = Shift->getConstantOperandVal(1);
3068249259Sdim
3069249259Sdim  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3070249259Sdim    return SDValue();
3071249259Sdim
3072249259Sdim  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
3073249259Sdim                     DAG.getConstant(LSB, MVT::i64),
3074249259Sdim                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3075249259Sdim}
3076249259Sdim
3077249259Sdim/// For a true bitfield insert, the bits getting into that contiguous mask
3078249259Sdim/// should come from the low part of an existing value: they must be formed from
3079249259Sdim/// a compatible SHL operation (unless they're already low). This function
3080249259Sdim/// checks that condition and returns the least-significant bit that's
3081249259Sdim/// intended. If the operation not a field preparation, -1 is returned.
3082263508Sdimstatic int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
3083249259Sdim                            SDValue &MaskedVal, uint64_t Mask) {
3084249259Sdim  if (!isShiftedMask_64(Mask))
3085249259Sdim    return -1;
3086249259Sdim
3087249259Sdim  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
3088249259Sdim  // instruction. BFI will do a left-shift by LSB before applying the mask we've
3089249259Sdim  // spotted, so in general we should pre-emptively "undo" that by making sure
3090249259Sdim  // the incoming bits have had a right-shift applied to them.
3091249259Sdim  //
3092249259Sdim  // This right shift, however, will combine with existing left/right shifts. In
3093249259Sdim  // the simplest case of a completely straight bitfield operation, it will be
3094249259Sdim  // expected to completely cancel out with an existing SHL. More complicated
3095249259Sdim  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
3096249259Sdim  // the BFI.
3097249259Sdim
3098263508Sdim  uint64_t LSB = countTrailingZeros(Mask);
3099249259Sdim  int64_t ShiftRightRequired = LSB;
3100249259Sdim  if (MaskedVal.getOpcode() == ISD::SHL &&
3101249259Sdim      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3102249259Sdim    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
3103249259Sdim    MaskedVal = MaskedVal.getOperand(0);
3104249259Sdim  } else if (MaskedVal.getOpcode() == ISD::SRL &&
3105249259Sdim             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3106249259Sdim    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
3107249259Sdim    MaskedVal = MaskedVal.getOperand(0);
3108249259Sdim  }
3109249259Sdim
3110249259Sdim  if (ShiftRightRequired > 0)
3111249259Sdim    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
3112249259Sdim                            DAG.getConstant(ShiftRightRequired, MVT::i64));
3113249259Sdim  else if (ShiftRightRequired < 0) {
3114249259Sdim    // We could actually end up with a residual left shift, for example with
3115249259Sdim    // "struc.bitfield = val << 1".
3116249259Sdim    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
3117249259Sdim                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
3118249259Sdim  }
3119249259Sdim
3120249259Sdim  return LSB;
3121249259Sdim}
3122249259Sdim
3123249259Sdim/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
3124249259Sdim/// a mask and an extension. Returns true if a BFI was found and provides
3125249259Sdim/// information on its surroundings.
3126249259Sdimstatic bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
3127249259Sdim                          bool &Extended) {
3128249259Sdim  Extended = false;
3129249259Sdim  if (N.getOpcode() == ISD::ZERO_EXTEND) {
3130249259Sdim    Extended = true;
3131249259Sdim    N = N.getOperand(0);
3132249259Sdim  }
3133249259Sdim
3134249259Sdim  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
3135249259Sdim    Mask = N->getConstantOperandVal(1);
3136249259Sdim    N = N.getOperand(0);
3137249259Sdim  } else {
3138249259Sdim    // Mask is the whole width.
3139249259Sdim    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
3140249259Sdim  }
3141249259Sdim
3142249259Sdim  if (N.getOpcode() == AArch64ISD::BFI) {
3143249259Sdim    BFI = N;
3144249259Sdim    return true;
3145249259Sdim  }
3146249259Sdim
3147249259Sdim  return false;
3148249259Sdim}
3149249259Sdim
3150249259Sdim/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
3151249259Sdim/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
3152249259Sdim/// can often be further combined with a larger mask. Ultimately, we want mask
3153249259Sdim/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
3154249259Sdimstatic SDValue tryCombineToBFI(SDNode *N,
3155249259Sdim                               TargetLowering::DAGCombinerInfo &DCI,
3156249259Sdim                               const AArch64Subtarget *Subtarget) {
3157249259Sdim  SelectionDAG &DAG = DCI.DAG;
3158263508Sdim  SDLoc DL(N);
3159249259Sdim  EVT VT = N->getValueType(0);
3160249259Sdim
3161249259Sdim  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3162249259Sdim
3163249259Sdim  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
3164249259Sdim  // abandon the effort.
3165249259Sdim  SDValue LHS = N->getOperand(0);
3166249259Sdim  if (LHS.getOpcode() != ISD::AND)
3167249259Sdim    return SDValue();
3168249259Sdim
3169249259Sdim  uint64_t LHSMask;
3170249259Sdim  if (isa<ConstantSDNode>(LHS.getOperand(1)))
3171249259Sdim    LHSMask = LHS->getConstantOperandVal(1);
3172249259Sdim  else
3173249259Sdim    return SDValue();
3174249259Sdim
3175249259Sdim  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
3176249259Sdim  // is or abandon the effort.
3177249259Sdim  SDValue RHS = N->getOperand(1);
3178249259Sdim  if (RHS.getOpcode() != ISD::AND)
3179249259Sdim    return SDValue();
3180249259Sdim
3181249259Sdim  uint64_t RHSMask;
3182249259Sdim  if (isa<ConstantSDNode>(RHS.getOperand(1)))
3183249259Sdim    RHSMask = RHS->getConstantOperandVal(1);
3184249259Sdim  else
3185249259Sdim    return SDValue();
3186249259Sdim
3187249259Sdim  // Can't do anything if the masks are incompatible.
3188249259Sdim  if (LHSMask & RHSMask)
3189249259Sdim    return SDValue();
3190249259Sdim
3191249259Sdim  // Now we need one of the masks to be a contiguous field. Without loss of
3192249259Sdim  // generality that should be the RHS one.
3193249259Sdim  SDValue Bitfield = LHS.getOperand(0);
3194249259Sdim  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
3195249259Sdim    // We know that LHS is a candidate new value, and RHS isn't already a better
3196249259Sdim    // one.
3197249259Sdim    std::swap(LHS, RHS);
3198249259Sdim    std::swap(LHSMask, RHSMask);
3199249259Sdim  }
3200249259Sdim
3201249259Sdim  // We've done our best to put the right operands in the right places, all we
3202249259Sdim  // can do now is check whether a BFI exists.
3203249259Sdim  Bitfield = RHS.getOperand(0);
3204249259Sdim  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
3205249259Sdim  if (LSB == -1)
3206249259Sdim    return SDValue();
3207249259Sdim
3208249259Sdim  uint32_t Width = CountPopulation_64(RHSMask);
3209249259Sdim  assert(Width && "Expected non-zero bitfield width");
3210249259Sdim
3211249259Sdim  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3212249259Sdim                            LHS.getOperand(0), Bitfield,
3213249259Sdim                            DAG.getConstant(LSB, MVT::i64),
3214249259Sdim                            DAG.getConstant(Width, MVT::i64));
3215249259Sdim
3216249259Sdim  // Mask is trivial
3217249259Sdim  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3218249259Sdim    return BFI;
3219249259Sdim
3220249259Sdim  return DAG.getNode(ISD::AND, DL, VT, BFI,
3221249259Sdim                     DAG.getConstant(LHSMask | RHSMask, VT));
3222249259Sdim}
3223249259Sdim
3224249259Sdim/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
3225249259Sdim/// original input. This is surprisingly common because SROA splits things up
3226249259Sdim/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3227249259Sdim/// on the low (say) byte of a word. This is then orred into the rest of the
3228249259Sdim/// word afterwards.
3229249259Sdim///
3230249259Sdim/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3231249259Sdim///
3232249259Sdim/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3233249259Sdim/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3234249259Sdim/// involved.
3235249259Sdimstatic SDValue tryCombineToLargerBFI(SDNode *N,
3236249259Sdim                                     TargetLowering::DAGCombinerInfo &DCI,
3237249259Sdim                                     const AArch64Subtarget *Subtarget) {
3238249259Sdim  SelectionDAG &DAG = DCI.DAG;
3239263508Sdim  SDLoc DL(N);
3240249259Sdim  EVT VT = N->getValueType(0);
3241249259Sdim
3242249259Sdim  // First job is to hunt for a MaskedBFI on either the left or right. Swap
3243249259Sdim  // operands if it's actually on the right.
3244249259Sdim  SDValue BFI;
3245249259Sdim  SDValue PossExtraMask;
3246249259Sdim  uint64_t ExistingMask = 0;
3247249259Sdim  bool Extended = false;
3248249259Sdim  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3249249259Sdim    PossExtraMask = N->getOperand(1);
3250249259Sdim  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3251249259Sdim    PossExtraMask = N->getOperand(0);
3252249259Sdim  else
3253249259Sdim    return SDValue();
3254249259Sdim
3255249259Sdim  // We can only combine a BFI with another compatible mask.
3256249259Sdim  if (PossExtraMask.getOpcode() != ISD::AND ||
3257249259Sdim      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3258249259Sdim    return SDValue();
3259249259Sdim
3260249259Sdim  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3261249259Sdim
3262249259Sdim  // Masks must be compatible.
3263249259Sdim  if (ExtraMask & ExistingMask)
3264249259Sdim    return SDValue();
3265249259Sdim
3266249259Sdim  SDValue OldBFIVal = BFI.getOperand(0);
3267249259Sdim  SDValue NewBFIVal = BFI.getOperand(1);
3268249259Sdim  if (Extended) {
3269249259Sdim    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3270249259Sdim    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3271249259Sdim    // need to be made compatible.
3272249259Sdim    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3273249259Sdim           && "Invalid types for BFI");
3274249259Sdim    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3275249259Sdim    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3276249259Sdim  }
3277249259Sdim
3278249259Sdim  // We need the MaskedBFI to be combined with a mask of the *same* value.
3279249259Sdim  if (PossExtraMask.getOperand(0) != OldBFIVal)
3280249259Sdim    return SDValue();
3281249259Sdim
3282249259Sdim  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3283249259Sdim                    OldBFIVal, NewBFIVal,
3284249259Sdim                    BFI.getOperand(2), BFI.getOperand(3));
3285249259Sdim
3286249259Sdim  // If the masking is trivial, we don't need to create it.
3287249259Sdim  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3288249259Sdim    return BFI;
3289249259Sdim
3290249259Sdim  return DAG.getNode(ISD::AND, DL, VT, BFI,
3291249259Sdim                     DAG.getConstant(ExtraMask | ExistingMask, VT));
3292249259Sdim}
3293249259Sdim
3294249259Sdim/// An EXTR instruction is made up of two shifts, ORed together. This helper
3295249259Sdim/// searches for and classifies those shifts.
3296249259Sdimstatic bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3297249259Sdim                         bool &FromHi) {
3298249259Sdim  if (N.getOpcode() == ISD::SHL)
3299249259Sdim    FromHi = false;
3300249259Sdim  else if (N.getOpcode() == ISD::SRL)
3301249259Sdim    FromHi = true;
3302249259Sdim  else
3303249259Sdim    return false;
3304249259Sdim
3305249259Sdim  if (!isa<ConstantSDNode>(N.getOperand(1)))
3306249259Sdim    return false;
3307249259Sdim
3308249259Sdim  ShiftAmount = N->getConstantOperandVal(1);
3309249259Sdim  Src = N->getOperand(0);
3310249259Sdim  return true;
3311249259Sdim}
3312249259Sdim
3313249259Sdim/// EXTR instruction extracts a contiguous chunk of bits from two existing
3314249259Sdim/// registers viewed as a high/low pair. This function looks for the pattern:
3315249259Sdim/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3316249259Sdim/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3317249259Sdim/// independent.
3318249259Sdimstatic SDValue tryCombineToEXTR(SDNode *N,
3319249259Sdim                                TargetLowering::DAGCombinerInfo &DCI) {
3320249259Sdim  SelectionDAG &DAG = DCI.DAG;
3321263508Sdim  SDLoc DL(N);
3322249259Sdim  EVT VT = N->getValueType(0);
3323249259Sdim
3324249259Sdim  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3325249259Sdim
3326249259Sdim  if (VT != MVT::i32 && VT != MVT::i64)
3327249259Sdim    return SDValue();
3328249259Sdim
3329249259Sdim  SDValue LHS;
3330249259Sdim  uint32_t ShiftLHS = 0;
3331249259Sdim  bool LHSFromHi = 0;
3332249259Sdim  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3333249259Sdim    return SDValue();
3334249259Sdim
3335249259Sdim  SDValue RHS;
3336249259Sdim  uint32_t ShiftRHS = 0;
3337249259Sdim  bool RHSFromHi = 0;
3338249259Sdim  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3339249259Sdim    return SDValue();
3340249259Sdim
3341249259Sdim  // If they're both trying to come from the high part of the register, they're
3342249259Sdim  // not really an EXTR.
3343249259Sdim  if (LHSFromHi == RHSFromHi)
3344249259Sdim    return SDValue();
3345249259Sdim
3346249259Sdim  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3347249259Sdim    return SDValue();
3348249259Sdim
3349249259Sdim  if (LHSFromHi) {
3350249259Sdim    std::swap(LHS, RHS);
3351249259Sdim    std::swap(ShiftLHS, ShiftRHS);
3352249259Sdim  }
3353249259Sdim
3354249259Sdim  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3355249259Sdim                     LHS, RHS,
3356249259Sdim                     DAG.getConstant(ShiftRHS, MVT::i64));
3357249259Sdim}
3358249259Sdim
3359249259Sdim/// Target-specific dag combine xforms for ISD::OR
3360249259Sdimstatic SDValue PerformORCombine(SDNode *N,
3361249259Sdim                                TargetLowering::DAGCombinerInfo &DCI,
3362249259Sdim                                const AArch64Subtarget *Subtarget) {
3363249259Sdim
3364249259Sdim  SelectionDAG &DAG = DCI.DAG;
3365263508Sdim  SDLoc DL(N);
3366249259Sdim  EVT VT = N->getValueType(0);
3367249259Sdim
3368249259Sdim  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3369249259Sdim    return SDValue();
3370249259Sdim
3371249259Sdim  // Attempt to recognise bitfield-insert operations.
3372249259Sdim  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3373249259Sdim  if (Res.getNode())
3374249259Sdim    return Res;
3375249259Sdim
3376249259Sdim  // Attempt to combine an existing MaskedBFI operation into one with a larger
3377249259Sdim  // mask.
3378249259Sdim  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3379249259Sdim  if (Res.getNode())
3380249259Sdim    return Res;
3381249259Sdim
3382249259Sdim  Res = tryCombineToEXTR(N, DCI);
3383249259Sdim  if (Res.getNode())
3384249259Sdim    return Res;
3385249259Sdim
3386263508Sdim  if (!Subtarget->hasNEON())
3387263508Sdim    return SDValue();
3388263508Sdim
3389263508Sdim  // Attempt to use vector immediate-form BSL
3390263508Sdim  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3391263508Sdim
3392263508Sdim  SDValue N0 = N->getOperand(0);
3393263508Sdim  if (N0.getOpcode() != ISD::AND)
3394263508Sdim    return SDValue();
3395263508Sdim
3396263508Sdim  SDValue N1 = N->getOperand(1);
3397263508Sdim  if (N1.getOpcode() != ISD::AND)
3398263508Sdim    return SDValue();
3399263508Sdim
3400263508Sdim  if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3401263508Sdim    APInt SplatUndef;
3402263508Sdim    unsigned SplatBitSize;
3403263508Sdim    bool HasAnyUndefs;
3404263508Sdim    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3405263508Sdim    APInt SplatBits0;
3406263508Sdim    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3407263508Sdim                                      HasAnyUndefs) &&
3408263508Sdim        !HasAnyUndefs) {
3409263508Sdim      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3410263508Sdim      APInt SplatBits1;
3411263508Sdim      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3412263508Sdim                                        HasAnyUndefs) &&
3413263508Sdim          !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3414263508Sdim        // Canonicalize the vector type to make instruction selection simpler.
3415263508Sdim        EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3416263508Sdim        SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3417263508Sdim                                     N0->getOperand(1), N0->getOperand(0),
3418263508Sdim                                     N1->getOperand(0));
3419263508Sdim        return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3420263508Sdim      }
3421263508Sdim    }
3422263508Sdim  }
3423263508Sdim
3424249259Sdim  return SDValue();
3425249259Sdim}
3426249259Sdim
3427249259Sdim/// Target-specific dag combine xforms for ISD::SRA
3428249259Sdimstatic SDValue PerformSRACombine(SDNode *N,
3429249259Sdim                                 TargetLowering::DAGCombinerInfo &DCI) {
3430249259Sdim
3431249259Sdim  SelectionDAG &DAG = DCI.DAG;
3432263508Sdim  SDLoc DL(N);
3433249259Sdim  EVT VT = N->getValueType(0);
3434249259Sdim
3435249259Sdim  // We're looking for an SRA/SHL pair which form an SBFX.
3436249259Sdim
3437249259Sdim  if (VT != MVT::i32 && VT != MVT::i64)
3438249259Sdim    return SDValue();
3439249259Sdim
3440249259Sdim  if (!isa<ConstantSDNode>(N->getOperand(1)))
3441249259Sdim    return SDValue();
3442249259Sdim
3443249259Sdim  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3444249259Sdim  SDValue Shift = N->getOperand(0);
3445249259Sdim
3446249259Sdim  if (Shift.getOpcode() != ISD::SHL)
3447249259Sdim    return SDValue();
3448249259Sdim
3449249259Sdim  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3450249259Sdim    return SDValue();
3451249259Sdim
3452249259Sdim  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3453249259Sdim  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3454249259Sdim  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3455249259Sdim
3456249259Sdim  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3457249259Sdim    return SDValue();
3458249259Sdim
3459249259Sdim  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3460249259Sdim                     DAG.getConstant(LSB, MVT::i64),
3461249259Sdim                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3462249259Sdim}
3463249259Sdim
3464263508Sdim/// Check if this is a valid build_vector for the immediate operand of
3465263508Sdim/// a vector shift operation, where all the elements of the build_vector
3466263508Sdim/// must have the same constant integer value.
3467263508Sdimstatic bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3468263508Sdim  // Ignore bit_converts.
3469263508Sdim  while (Op.getOpcode() == ISD::BITCAST)
3470263508Sdim    Op = Op.getOperand(0);
3471263508Sdim  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3472263508Sdim  APInt SplatBits, SplatUndef;
3473263508Sdim  unsigned SplatBitSize;
3474263508Sdim  bool HasAnyUndefs;
3475263508Sdim  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3476263508Sdim                                      HasAnyUndefs, ElementBits) ||
3477263508Sdim      SplatBitSize > ElementBits)
3478263508Sdim    return false;
3479263508Sdim  Cnt = SplatBits.getSExtValue();
3480263508Sdim  return true;
3481263508Sdim}
3482249259Sdim
3483263508Sdim/// Check if this is a valid build_vector for the immediate operand of
3484263508Sdim/// a vector shift left operation.  That value must be in the range:
3485263508Sdim/// 0 <= Value < ElementBits
3486263508Sdimstatic bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
3487263508Sdim  assert(VT.isVector() && "vector shift count is not a vector type");
3488263508Sdim  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3489263508Sdim  if (!getVShiftImm(Op, ElementBits, Cnt))
3490263508Sdim    return false;
3491263508Sdim  return (Cnt >= 0 && Cnt < ElementBits);
3492263508Sdim}
3493263508Sdim
3494263508Sdim/// Check if this is a valid build_vector for the immediate operand of a
3495263508Sdim/// vector shift right operation. The value must be in the range:
3496263508Sdim///   1 <= Value <= ElementBits
3497263508Sdimstatic bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
3498263508Sdim  assert(VT.isVector() && "vector shift count is not a vector type");
3499263508Sdim  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3500263508Sdim  if (!getVShiftImm(Op, ElementBits, Cnt))
3501263508Sdim    return false;
3502263508Sdim  return (Cnt >= 1 && Cnt <= ElementBits);
3503263508Sdim}
3504263508Sdim
3505263508Sdim/// Checks for immediate versions of vector shifts and lowers them.
3506263508Sdimstatic SDValue PerformShiftCombine(SDNode *N,
3507263508Sdim                                   TargetLowering::DAGCombinerInfo &DCI,
3508263508Sdim                                   const AArch64Subtarget *ST) {
3509263508Sdim  SelectionDAG &DAG = DCI.DAG;
3510263508Sdim  EVT VT = N->getValueType(0);
3511263508Sdim  if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
3512263508Sdim    return PerformSRACombine(N, DCI);
3513263508Sdim
3514263508Sdim  // Nothing to be done for scalar shifts.
3515263508Sdim  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516263508Sdim  if (!VT.isVector() || !TLI.isTypeLegal(VT))
3517263508Sdim    return SDValue();
3518263508Sdim
3519263508Sdim  assert(ST->hasNEON() && "unexpected vector shift");
3520263508Sdim  int64_t Cnt;
3521263508Sdim
3522263508Sdim  switch (N->getOpcode()) {
3523263508Sdim  default:
3524263508Sdim    llvm_unreachable("unexpected shift opcode");
3525263508Sdim
3526263508Sdim  case ISD::SHL:
3527263508Sdim    if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
3528263508Sdim      SDValue RHS =
3529263508Sdim          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3530263508Sdim                      DAG.getConstant(Cnt, MVT::i32));
3531263508Sdim      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
3532263508Sdim    }
3533263508Sdim    break;
3534263508Sdim
3535263508Sdim  case ISD::SRA:
3536263508Sdim  case ISD::SRL:
3537263508Sdim    if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
3538263508Sdim      SDValue RHS =
3539263508Sdim          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3540263508Sdim                      DAG.getConstant(Cnt, MVT::i32));
3541263508Sdim      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
3542263508Sdim    }
3543263508Sdim    break;
3544263508Sdim  }
3545263508Sdim
3546263508Sdim  return SDValue();
3547263508Sdim}
3548263508Sdim
3549263508Sdim/// ARM-specific DAG combining for intrinsics.
3550263508Sdimstatic SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3551263508Sdim  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3552263508Sdim
3553263508Sdim  switch (IntNo) {
3554263508Sdim  default:
3555263508Sdim    // Don't do anything for most intrinsics.
3556263508Sdim    break;
3557263508Sdim
3558263508Sdim  case Intrinsic::arm_neon_vqshifts:
3559263508Sdim  case Intrinsic::arm_neon_vqshiftu:
3560263508Sdim    EVT VT = N->getOperand(1).getValueType();
3561263508Sdim    int64_t Cnt;
3562263508Sdim    if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
3563263508Sdim      break;
3564263508Sdim    unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
3565263508Sdim                             ? AArch64ISD::NEON_QSHLs
3566263508Sdim                             : AArch64ISD::NEON_QSHLu;
3567263508Sdim    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
3568263508Sdim                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3569263508Sdim  }
3570263508Sdim
3571263508Sdim  return SDValue();
3572263508Sdim}
3573263508Sdim
3574263508Sdim/// Target-specific DAG combine function for NEON load/store intrinsics
3575263508Sdim/// to merge base address updates.
3576263508Sdimstatic SDValue CombineBaseUpdate(SDNode *N,
3577263508Sdim                                 TargetLowering::DAGCombinerInfo &DCI) {
3578263508Sdim  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
3579263508Sdim    return SDValue();
3580263508Sdim
3581263508Sdim  SelectionDAG &DAG = DCI.DAG;
3582263508Sdim  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
3583263508Sdim                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
3584263508Sdim  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
3585263508Sdim  SDValue Addr = N->getOperand(AddrOpIdx);
3586263508Sdim
3587263508Sdim  // Search for a use of the address operand that is an increment.
3588263508Sdim  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
3589263508Sdim       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
3590263508Sdim    SDNode *User = *UI;
3591263508Sdim    if (User->getOpcode() != ISD::ADD ||
3592263508Sdim        UI.getUse().getResNo() != Addr.getResNo())
3593263508Sdim      continue;
3594263508Sdim
3595263508Sdim    // Check that the add is independent of the load/store.  Otherwise, folding
3596263508Sdim    // it would create a cycle.
3597263508Sdim    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
3598263508Sdim      continue;
3599263508Sdim
3600263508Sdim    // Find the new opcode for the updating load/store.
3601263508Sdim    bool isLoad = true;
3602263508Sdim    bool isLaneOp = false;
3603263508Sdim    unsigned NewOpc = 0;
3604263508Sdim    unsigned NumVecs = 0;
3605263508Sdim    if (isIntrinsic) {
3606263508Sdim      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3607263508Sdim      switch (IntNo) {
3608263508Sdim      default: llvm_unreachable("unexpected intrinsic for Neon base update");
3609263508Sdim      case Intrinsic::arm_neon_vld1:       NewOpc = AArch64ISD::NEON_LD1_UPD;
3610263508Sdim        NumVecs = 1; break;
3611263508Sdim      case Intrinsic::arm_neon_vld2:       NewOpc = AArch64ISD::NEON_LD2_UPD;
3612263508Sdim        NumVecs = 2; break;
3613263508Sdim      case Intrinsic::arm_neon_vld3:       NewOpc = AArch64ISD::NEON_LD3_UPD;
3614263508Sdim        NumVecs = 3; break;
3615263508Sdim      case Intrinsic::arm_neon_vld4:       NewOpc = AArch64ISD::NEON_LD4_UPD;
3616263508Sdim        NumVecs = 4; break;
3617263508Sdim      case Intrinsic::arm_neon_vst1:       NewOpc = AArch64ISD::NEON_ST1_UPD;
3618263508Sdim        NumVecs = 1; isLoad = false; break;
3619263508Sdim      case Intrinsic::arm_neon_vst2:       NewOpc = AArch64ISD::NEON_ST2_UPD;
3620263508Sdim        NumVecs = 2; isLoad = false; break;
3621263508Sdim      case Intrinsic::arm_neon_vst3:       NewOpc = AArch64ISD::NEON_ST3_UPD;
3622263508Sdim        NumVecs = 3; isLoad = false; break;
3623263508Sdim      case Intrinsic::arm_neon_vst4:       NewOpc = AArch64ISD::NEON_ST4_UPD;
3624263508Sdim        NumVecs = 4; isLoad = false; break;
3625263508Sdim      case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
3626263508Sdim        NumVecs = 2; break;
3627263508Sdim      case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
3628263508Sdim        NumVecs = 3; break;
3629263508Sdim      case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
3630263508Sdim        NumVecs = 4; break;
3631263508Sdim      case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
3632263508Sdim        NumVecs = 2; isLoad = false; break;
3633263508Sdim      case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
3634263508Sdim        NumVecs = 3; isLoad = false; break;
3635263508Sdim      case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
3636263508Sdim        NumVecs = 4; isLoad = false; break;
3637263508Sdim      case Intrinsic::arm_neon_vld2lane:   NewOpc = AArch64ISD::NEON_LD2LN_UPD;
3638263508Sdim        NumVecs = 2; isLaneOp = true; break;
3639263508Sdim      case Intrinsic::arm_neon_vld3lane:   NewOpc = AArch64ISD::NEON_LD3LN_UPD;
3640263508Sdim        NumVecs = 3; isLaneOp = true; break;
3641263508Sdim      case Intrinsic::arm_neon_vld4lane:   NewOpc = AArch64ISD::NEON_LD4LN_UPD;
3642263508Sdim        NumVecs = 4; isLaneOp = true; break;
3643263508Sdim      case Intrinsic::arm_neon_vst2lane:   NewOpc = AArch64ISD::NEON_ST2LN_UPD;
3644263508Sdim        NumVecs = 2; isLoad = false; isLaneOp = true; break;
3645263508Sdim      case Intrinsic::arm_neon_vst3lane:   NewOpc = AArch64ISD::NEON_ST3LN_UPD;
3646263508Sdim        NumVecs = 3; isLoad = false; isLaneOp = true; break;
3647263508Sdim      case Intrinsic::arm_neon_vst4lane:   NewOpc = AArch64ISD::NEON_ST4LN_UPD;
3648263508Sdim        NumVecs = 4; isLoad = false; isLaneOp = true; break;
3649263508Sdim      }
3650263508Sdim    } else {
3651263508Sdim      isLaneOp = true;
3652263508Sdim      switch (N->getOpcode()) {
3653263508Sdim      default: llvm_unreachable("unexpected opcode for Neon base update");
3654263508Sdim      case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
3655263508Sdim        NumVecs = 2; break;
3656263508Sdim      case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
3657263508Sdim        NumVecs = 3; break;
3658263508Sdim      case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
3659263508Sdim        NumVecs = 4; break;
3660263508Sdim      }
3661263508Sdim    }
3662263508Sdim
3663263508Sdim    // Find the size of memory referenced by the load/store.
3664263508Sdim    EVT VecTy;
3665263508Sdim    if (isLoad)
3666263508Sdim      VecTy = N->getValueType(0);
3667263508Sdim    else
3668263508Sdim      VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
3669263508Sdim    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
3670263508Sdim    if (isLaneOp)
3671263508Sdim      NumBytes /= VecTy.getVectorNumElements();
3672263508Sdim
3673263508Sdim    // If the increment is a constant, it must match the memory ref size.
3674263508Sdim    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
3675263508Sdim    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
3676263508Sdim      uint32_t IncVal = CInc->getZExtValue();
3677263508Sdim      if (IncVal != NumBytes)
3678263508Sdim        continue;
3679263508Sdim      Inc = DAG.getTargetConstant(IncVal, MVT::i32);
3680263508Sdim    }
3681263508Sdim
3682263508Sdim    // Create the new updating load/store node.
3683263508Sdim    EVT Tys[6];
3684263508Sdim    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
3685263508Sdim    unsigned n;
3686263508Sdim    for (n = 0; n < NumResultVecs; ++n)
3687263508Sdim      Tys[n] = VecTy;
3688263508Sdim    Tys[n++] = MVT::i64;
3689263508Sdim    Tys[n] = MVT::Other;
3690263508Sdim    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2);
3691263508Sdim    SmallVector<SDValue, 8> Ops;
3692263508Sdim    Ops.push_back(N->getOperand(0)); // incoming chain
3693263508Sdim    Ops.push_back(N->getOperand(AddrOpIdx));
3694263508Sdim    Ops.push_back(Inc);
3695263508Sdim    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
3696263508Sdim      Ops.push_back(N->getOperand(i));
3697263508Sdim    }
3698263508Sdim    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
3699263508Sdim    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
3700263508Sdim                                           Ops.data(), Ops.size(),
3701263508Sdim                                           MemInt->getMemoryVT(),
3702263508Sdim                                           MemInt->getMemOperand());
3703263508Sdim
3704263508Sdim    // Update the uses.
3705263508Sdim    std::vector<SDValue> NewResults;
3706263508Sdim    for (unsigned i = 0; i < NumResultVecs; ++i) {
3707263508Sdim      NewResults.push_back(SDValue(UpdN.getNode(), i));
3708263508Sdim    }
3709263508Sdim    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
3710263508Sdim    DCI.CombineTo(N, NewResults);
3711263508Sdim    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
3712263508Sdim
3713263508Sdim    break;
3714263508Sdim  }
3715263508Sdim  return SDValue();
3716263508Sdim}
3717263508Sdim
3718263508Sdim/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
3719263508Sdim/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
3720263508Sdim/// If so, combine them to a vldN-dup operation and return true.
3721263508Sdimstatic SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
3722263508Sdim  SelectionDAG &DAG = DCI.DAG;
3723263508Sdim  EVT VT = N->getValueType(0);
3724263508Sdim
3725263508Sdim  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
3726263508Sdim  SDNode *VLD = N->getOperand(0).getNode();
3727263508Sdim  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
3728263508Sdim    return SDValue();
3729263508Sdim  unsigned NumVecs = 0;
3730263508Sdim  unsigned NewOpc = 0;
3731263508Sdim  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
3732263508Sdim  if (IntNo == Intrinsic::arm_neon_vld2lane) {
3733263508Sdim    NumVecs = 2;
3734263508Sdim    NewOpc = AArch64ISD::NEON_LD2DUP;
3735263508Sdim  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
3736263508Sdim    NumVecs = 3;
3737263508Sdim    NewOpc = AArch64ISD::NEON_LD3DUP;
3738263508Sdim  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
3739263508Sdim    NumVecs = 4;
3740263508Sdim    NewOpc = AArch64ISD::NEON_LD4DUP;
3741263508Sdim  } else {
3742263508Sdim    return SDValue();
3743263508Sdim  }
3744263508Sdim
3745263508Sdim  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
3746263508Sdim  // numbers match the load.
3747263508Sdim  unsigned VLDLaneNo =
3748263508Sdim      cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
3749263508Sdim  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3750263508Sdim       UI != UE; ++UI) {
3751263508Sdim    // Ignore uses of the chain result.
3752263508Sdim    if (UI.getUse().getResNo() == NumVecs)
3753263508Sdim      continue;
3754263508Sdim    SDNode *User = *UI;
3755263508Sdim    if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
3756263508Sdim        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
3757263508Sdim      return SDValue();
3758263508Sdim  }
3759263508Sdim
3760263508Sdim  // Create the vldN-dup node.
3761263508Sdim  EVT Tys[5];
3762263508Sdim  unsigned n;
3763263508Sdim  for (n = 0; n < NumVecs; ++n)
3764263508Sdim    Tys[n] = VT;
3765263508Sdim  Tys[n] = MVT::Other;
3766263508Sdim  SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1);
3767263508Sdim  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
3768263508Sdim  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
3769263508Sdim  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
3770263508Sdim                                           VLDMemInt->getMemoryVT(),
3771263508Sdim                                           VLDMemInt->getMemOperand());
3772263508Sdim
3773263508Sdim  // Update the uses.
3774263508Sdim  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3775263508Sdim       UI != UE; ++UI) {
3776263508Sdim    unsigned ResNo = UI.getUse().getResNo();
3777263508Sdim    // Ignore uses of the chain result.
3778263508Sdim    if (ResNo == NumVecs)
3779263508Sdim      continue;
3780263508Sdim    SDNode *User = *UI;
3781263508Sdim    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
3782263508Sdim  }
3783263508Sdim
3784263508Sdim  // Now the vldN-lane intrinsic is dead except for its chain result.
3785263508Sdim  // Update uses of the chain.
3786263508Sdim  std::vector<SDValue> VLDDupResults;
3787263508Sdim  for (unsigned n = 0; n < NumVecs; ++n)
3788263508Sdim    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
3789263508Sdim  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
3790263508Sdim  DCI.CombineTo(VLD, VLDDupResults);
3791263508Sdim
3792263508Sdim  return SDValue(N, 0);
3793263508Sdim}
3794263508Sdim
3795249259SdimSDValue
3796249259SdimAArch64TargetLowering::PerformDAGCombine(SDNode *N,
3797249259Sdim                                         DAGCombinerInfo &DCI) const {
3798249259Sdim  switch (N->getOpcode()) {
3799249259Sdim  default: break;
3800249259Sdim  case ISD::AND: return PerformANDCombine(N, DCI);
3801263508Sdim  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
3802263508Sdim  case ISD::SHL:
3803263508Sdim  case ISD::SRA:
3804263508Sdim  case ISD::SRL:
3805263508Sdim    return PerformShiftCombine(N, DCI, getSubtarget());
3806263508Sdim  case ISD::INTRINSIC_WO_CHAIN:
3807263508Sdim    return PerformIntrinsicCombine(N, DCI.DAG);
3808263508Sdim  case AArch64ISD::NEON_VDUPLANE:
3809263508Sdim    return CombineVLDDUP(N, DCI);
3810263508Sdim  case AArch64ISD::NEON_LD2DUP:
3811263508Sdim  case AArch64ISD::NEON_LD3DUP:
3812263508Sdim  case AArch64ISD::NEON_LD4DUP:
3813263508Sdim    return CombineBaseUpdate(N, DCI);
3814263508Sdim  case ISD::INTRINSIC_VOID:
3815263508Sdim  case ISD::INTRINSIC_W_CHAIN:
3816263508Sdim    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
3817263508Sdim    case Intrinsic::arm_neon_vld1:
3818263508Sdim    case Intrinsic::arm_neon_vld2:
3819263508Sdim    case Intrinsic::arm_neon_vld3:
3820263508Sdim    case Intrinsic::arm_neon_vld4:
3821263508Sdim    case Intrinsic::arm_neon_vst1:
3822263508Sdim    case Intrinsic::arm_neon_vst2:
3823263508Sdim    case Intrinsic::arm_neon_vst3:
3824263508Sdim    case Intrinsic::arm_neon_vst4:
3825263508Sdim    case Intrinsic::arm_neon_vld2lane:
3826263508Sdim    case Intrinsic::arm_neon_vld3lane:
3827263508Sdim    case Intrinsic::arm_neon_vld4lane:
3828263508Sdim    case Intrinsic::aarch64_neon_vld1x2:
3829263508Sdim    case Intrinsic::aarch64_neon_vld1x3:
3830263508Sdim    case Intrinsic::aarch64_neon_vld1x4:
3831263508Sdim    case Intrinsic::aarch64_neon_vst1x2:
3832263508Sdim    case Intrinsic::aarch64_neon_vst1x3:
3833263508Sdim    case Intrinsic::aarch64_neon_vst1x4:
3834263508Sdim    case Intrinsic::arm_neon_vst2lane:
3835263508Sdim    case Intrinsic::arm_neon_vst3lane:
3836263508Sdim    case Intrinsic::arm_neon_vst4lane:
3837263508Sdim      return CombineBaseUpdate(N, DCI);
3838263508Sdim    default:
3839263508Sdim      break;
3840263508Sdim    }
3841249259Sdim  }
3842249259Sdim  return SDValue();
3843249259Sdim}
3844249259Sdim
3845263508Sdimbool
3846263508SdimAArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3847263508Sdim  VT = VT.getScalarType();
3848263508Sdim
3849263508Sdim  if (!VT.isSimple())
3850263508Sdim    return false;
3851263508Sdim
3852263508Sdim  switch (VT.getSimpleVT().SimpleTy) {
3853263508Sdim  case MVT::f16:
3854263508Sdim  case MVT::f32:
3855263508Sdim  case MVT::f64:
3856263508Sdim    return true;
3857263508Sdim  case MVT::f128:
3858263508Sdim    return false;
3859263508Sdim  default:
3860263508Sdim    break;
3861263508Sdim  }
3862263508Sdim
3863263508Sdim  return false;
3864263508Sdim}
3865263508Sdim
3866263508Sdim// Check whether a Build Vector could be presented as Shuffle Vector. If yes,
3867263508Sdim// try to call LowerVECTOR_SHUFFLE to lower it.
3868263508Sdimbool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
3869263508Sdim                                                 SDValue &Res) const {
3870263508Sdim  SDLoc DL(Op);
3871263508Sdim  EVT VT = Op.getValueType();
3872263508Sdim  unsigned NumElts = VT.getVectorNumElements();
3873263508Sdim  unsigned V0NumElts = 0;
3874263508Sdim  int Mask[16];
3875263508Sdim  SDValue V0, V1;
3876263508Sdim
3877263508Sdim  // Check if all elements are extracted from less than 3 vectors.
3878263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
3879263508Sdim    SDValue Elt = Op.getOperand(i);
3880263508Sdim    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
3881263508Sdim      return false;
3882263508Sdim
3883263508Sdim    if (V0.getNode() == 0) {
3884263508Sdim      V0 = Elt.getOperand(0);
3885263508Sdim      V0NumElts = V0.getValueType().getVectorNumElements();
3886263508Sdim    }
3887263508Sdim    if (Elt.getOperand(0) == V0) {
3888263508Sdim      Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
3889263508Sdim      continue;
3890263508Sdim    } else if (V1.getNode() == 0) {
3891263508Sdim      V1 = Elt.getOperand(0);
3892263508Sdim    }
3893263508Sdim    if (Elt.getOperand(0) == V1) {
3894263508Sdim      unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
3895263508Sdim      Mask[i] = (Lane + V0NumElts);
3896263508Sdim      continue;
3897263508Sdim    } else {
3898263508Sdim      return false;
3899263508Sdim    }
3900263508Sdim  }
3901263508Sdim
3902263508Sdim  if (!V1.getNode() && V0NumElts == NumElts * 2) {
3903263508Sdim    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3904263508Sdim                     DAG.getConstant(NumElts, MVT::i64));
3905263508Sdim    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3906263508Sdim                     DAG.getConstant(0, MVT::i64));
3907263508Sdim    V0NumElts = V0.getValueType().getVectorNumElements();
3908263508Sdim  }
3909263508Sdim
3910263508Sdim  if (V1.getNode() && NumElts == V0NumElts &&
3911263508Sdim      V0NumElts == V1.getValueType().getVectorNumElements()) {
3912263508Sdim    SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
3913263508Sdim    Res = LowerVECTOR_SHUFFLE(Shuffle, DAG);
3914263508Sdim    return true;
3915263508Sdim  } else
3916263508Sdim    return false;
3917263508Sdim}
3918263508Sdim
3919263508Sdim// If this is a case we can't handle, return null and let the default
3920263508Sdim// expansion code take care of it.
3921263508SdimSDValue
3922263508SdimAArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3923263508Sdim                                         const AArch64Subtarget *ST) const {
3924263508Sdim
3925263508Sdim  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3926263508Sdim  SDLoc DL(Op);
3927263508Sdim  EVT VT = Op.getValueType();
3928263508Sdim
3929263508Sdim  APInt SplatBits, SplatUndef;
3930263508Sdim  unsigned SplatBitSize;
3931263508Sdim  bool HasAnyUndefs;
3932263508Sdim
3933263508Sdim  unsigned UseNeonMov = VT.getSizeInBits() >= 64;
3934263508Sdim
3935263508Sdim  // Note we favor lowering MOVI over MVNI.
3936263508Sdim  // This has implications on the definition of patterns in TableGen to select
3937263508Sdim  // BIC immediate instructions but not ORR immediate instructions.
3938263508Sdim  // If this lowering order is changed, TableGen patterns for BIC immediate and
3939263508Sdim  // ORR immediate instructions have to be updated.
3940263508Sdim  if (UseNeonMov &&
3941263508Sdim      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3942263508Sdim    if (SplatBitSize <= 64) {
3943263508Sdim      // First attempt to use vector immediate-form MOVI
3944263508Sdim      EVT NeonMovVT;
3945263508Sdim      unsigned Imm = 0;
3946263508Sdim      unsigned OpCmode = 0;
3947263508Sdim
3948263508Sdim      if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3949263508Sdim                            SplatBitSize, DAG, VT.is128BitVector(),
3950263508Sdim                            Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3951263508Sdim        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3952263508Sdim        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3953263508Sdim
3954263508Sdim        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3955263508Sdim          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3956263508Sdim                                        ImmVal, OpCmodeVal);
3957263508Sdim          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3958263508Sdim        }
3959263508Sdim      }
3960263508Sdim
3961263508Sdim      // Then attempt to use vector immediate-form MVNI
3962263508Sdim      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3963263508Sdim      if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3964263508Sdim                            DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3965263508Sdim                            Imm, OpCmode)) {
3966263508Sdim        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3967263508Sdim        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3968263508Sdim        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3969263508Sdim          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3970263508Sdim                                        ImmVal, OpCmodeVal);
3971263508Sdim          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3972263508Sdim        }
3973263508Sdim      }
3974263508Sdim
3975263508Sdim      // Attempt to use vector immediate-form FMOV
3976263508Sdim      if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3977263508Sdim          (VT == MVT::v2f64 && SplatBitSize == 64)) {
3978263508Sdim        APFloat RealVal(
3979263508Sdim            SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3980263508Sdim            SplatBits);
3981263508Sdim        uint32_t ImmVal;
3982263508Sdim        if (A64Imms::isFPImm(RealVal, ImmVal)) {
3983263508Sdim          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3984263508Sdim          return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3985263508Sdim        }
3986263508Sdim      }
3987263508Sdim    }
3988263508Sdim  }
3989263508Sdim
3990263508Sdim  unsigned NumElts = VT.getVectorNumElements();
3991263508Sdim  bool isOnlyLowElement = true;
3992263508Sdim  bool usesOnlyOneValue = true;
3993263508Sdim  bool hasDominantValue = false;
3994263508Sdim  bool isConstant = true;
3995263508Sdim
3996263508Sdim  // Map of the number of times a particular SDValue appears in the
3997263508Sdim  // element list.
3998263508Sdim  DenseMap<SDValue, unsigned> ValueCounts;
3999263508Sdim  SDValue Value;
4000263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4001263508Sdim    SDValue V = Op.getOperand(i);
4002263508Sdim    if (V.getOpcode() == ISD::UNDEF)
4003263508Sdim      continue;
4004263508Sdim    if (i > 0)
4005263508Sdim      isOnlyLowElement = false;
4006263508Sdim    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4007263508Sdim      isConstant = false;
4008263508Sdim
4009263508Sdim    ValueCounts.insert(std::make_pair(V, 0));
4010263508Sdim    unsigned &Count = ValueCounts[V];
4011263508Sdim
4012263508Sdim    // Is this value dominant? (takes up more than half of the lanes)
4013263508Sdim    if (++Count > (NumElts / 2)) {
4014263508Sdim      hasDominantValue = true;
4015263508Sdim      Value = V;
4016263508Sdim    }
4017263508Sdim  }
4018263508Sdim  if (ValueCounts.size() != 1)
4019263508Sdim    usesOnlyOneValue = false;
4020263508Sdim  if (!Value.getNode() && ValueCounts.size() > 0)
4021263508Sdim    Value = ValueCounts.begin()->first;
4022263508Sdim
4023263508Sdim  if (ValueCounts.size() == 0)
4024263508Sdim    return DAG.getUNDEF(VT);
4025263508Sdim
4026263508Sdim  // Loads are better lowered with insert_vector_elt.
4027263508Sdim  // Keep going if we are hitting this case.
4028263508Sdim  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4029263508Sdim    return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4030263508Sdim
4031263508Sdim  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4032263508Sdim  if (hasDominantValue && EltSize <= 64) {
4033263508Sdim    // Use VDUP for non-constant splats.
4034263508Sdim    if (!isConstant) {
4035263508Sdim      SDValue N;
4036263508Sdim
4037263508Sdim      // If we are DUPing a value that comes directly from a vector, we could
4038263508Sdim      // just use DUPLANE. We can only do this if the lane being extracted
4039263508Sdim      // is at a constant index, as the DUP from lane instructions only have
4040263508Sdim      // constant-index forms.
4041263508Sdim      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4042263508Sdim          isa<ConstantSDNode>(Value->getOperand(1))) {
4043263508Sdim          N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT,
4044263508Sdim                        Value->getOperand(0), Value->getOperand(1));
4045263508Sdim      } else
4046263508Sdim        N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4047263508Sdim
4048263508Sdim      if (!usesOnlyOneValue) {
4049263508Sdim        // The dominant value was splatted as 'N', but we now have to insert
4050263508Sdim        // all differing elements.
4051263508Sdim        for (unsigned I = 0; I < NumElts; ++I) {
4052263508Sdim          if (Op.getOperand(I) == Value)
4053263508Sdim            continue;
4054263508Sdim          SmallVector<SDValue, 3> Ops;
4055263508Sdim          Ops.push_back(N);
4056263508Sdim          Ops.push_back(Op.getOperand(I));
4057263508Sdim          Ops.push_back(DAG.getConstant(I, MVT::i64));
4058263508Sdim          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
4059263508Sdim        }
4060263508Sdim      }
4061263508Sdim      return N;
4062263508Sdim    }
4063263508Sdim    if (usesOnlyOneValue && isConstant) {
4064263508Sdim      return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4065263508Sdim    }
4066263508Sdim  }
4067263508Sdim  // If all elements are constants and the case above didn't get hit, fall back
4068263508Sdim  // to the default expansion, which will generate a load from the constant
4069263508Sdim  // pool.
4070263508Sdim  if (isConstant)
4071263508Sdim    return SDValue();
4072263508Sdim
4073263508Sdim  // Try to lower this in lowering ShuffleVector way.
4074263508Sdim  SDValue Shuf;
4075263508Sdim  if (isKnownShuffleVector(Op, DAG, Shuf))
4076263508Sdim    return Shuf;
4077263508Sdim
4078263508Sdim  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
4079263508Sdim  // know the default expansion would otherwise fall back on something even
4080263508Sdim  // worse. For a vector with one or two non-undef values, that's
4081263508Sdim  // scalar_to_vector for the elements followed by a shuffle (provided the
4082263508Sdim  // shuffle is valid for the target) and materialization element by element
4083263508Sdim  // on the stack followed by a load for everything else.
4084263508Sdim  if (!isConstant && !usesOnlyOneValue) {
4085263508Sdim    SDValue Vec = DAG.getUNDEF(VT);
4086263508Sdim    for (unsigned i = 0 ; i < NumElts; ++i) {
4087263508Sdim      SDValue V = Op.getOperand(i);
4088263508Sdim      if (V.getOpcode() == ISD::UNDEF)
4089263508Sdim        continue;
4090263508Sdim      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
4091263508Sdim      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
4092263508Sdim    }
4093263508Sdim    return Vec;
4094263508Sdim  }
4095263508Sdim  return SDValue();
4096263508Sdim}
4097263508Sdim
4098263508Sdim/// isREVMask - Check if a vector shuffle corresponds to a REV
4099263508Sdim/// instruction with the specified blocksize.  (The order of the elements
4100263508Sdim/// within each block of the vector is reversed.)
4101263508Sdimstatic bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4102263508Sdim  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4103263508Sdim         "Only possible block sizes for REV are: 16, 32, 64");
4104263508Sdim
4105263508Sdim  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4106263508Sdim  if (EltSz == 64)
4107263508Sdim    return false;
4108263508Sdim
4109263508Sdim  unsigned NumElts = VT.getVectorNumElements();
4110263508Sdim  unsigned BlockElts = M[0] + 1;
4111263508Sdim  // If the first shuffle index is UNDEF, be optimistic.
4112263508Sdim  if (M[0] < 0)
4113263508Sdim    BlockElts = BlockSize / EltSz;
4114263508Sdim
4115263508Sdim  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4116263508Sdim    return false;
4117263508Sdim
4118263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4119263508Sdim    if (M[i] < 0)
4120263508Sdim      continue; // ignore UNDEF indices
4121263508Sdim    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4122263508Sdim      return false;
4123263508Sdim  }
4124263508Sdim
4125263508Sdim  return true;
4126263508Sdim}
4127263508Sdim
4128263508Sdim// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
4129263508Sdim// TRN instruction.
4130263508Sdimstatic unsigned isPermuteMask(ArrayRef<int> M, EVT VT) {
4131263508Sdim  unsigned NumElts = VT.getVectorNumElements();
4132263508Sdim  if (NumElts < 4)
4133263508Sdim    return 0;
4134263508Sdim
4135263508Sdim  bool ismatch = true;
4136263508Sdim
4137263508Sdim  // Check UZP1
4138263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4139263508Sdim    if ((unsigned)M[i] != i * 2) {
4140263508Sdim      ismatch = false;
4141263508Sdim      break;
4142263508Sdim    }
4143263508Sdim  }
4144263508Sdim  if (ismatch)
4145263508Sdim    return AArch64ISD::NEON_UZP1;
4146263508Sdim
4147263508Sdim  // Check UZP2
4148263508Sdim  ismatch = true;
4149263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4150263508Sdim    if ((unsigned)M[i] != i * 2 + 1) {
4151263508Sdim      ismatch = false;
4152263508Sdim      break;
4153263508Sdim    }
4154263508Sdim  }
4155263508Sdim  if (ismatch)
4156263508Sdim    return AArch64ISD::NEON_UZP2;
4157263508Sdim
4158263508Sdim  // Check ZIP1
4159263508Sdim  ismatch = true;
4160263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4161263508Sdim    if ((unsigned)M[i] != i / 2 + NumElts * (i % 2)) {
4162263508Sdim      ismatch = false;
4163263508Sdim      break;
4164263508Sdim    }
4165263508Sdim  }
4166263508Sdim  if (ismatch)
4167263508Sdim    return AArch64ISD::NEON_ZIP1;
4168263508Sdim
4169263508Sdim  // Check ZIP2
4170263508Sdim  ismatch = true;
4171263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4172263508Sdim    if ((unsigned)M[i] != (NumElts + i) / 2 + NumElts * (i % 2)) {
4173263508Sdim      ismatch = false;
4174263508Sdim      break;
4175263508Sdim    }
4176263508Sdim  }
4177263508Sdim  if (ismatch)
4178263508Sdim    return AArch64ISD::NEON_ZIP2;
4179263508Sdim
4180263508Sdim  // Check TRN1
4181263508Sdim  ismatch = true;
4182263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4183263508Sdim    if ((unsigned)M[i] != i + (NumElts - 1) * (i % 2)) {
4184263508Sdim      ismatch = false;
4185263508Sdim      break;
4186263508Sdim    }
4187263508Sdim  }
4188263508Sdim  if (ismatch)
4189263508Sdim    return AArch64ISD::NEON_TRN1;
4190263508Sdim
4191263508Sdim  // Check TRN2
4192263508Sdim  ismatch = true;
4193263508Sdim  for (unsigned i = 0; i < NumElts; ++i) {
4194263508Sdim    if ((unsigned)M[i] != 1 + i + (NumElts - 1) * (i % 2)) {
4195263508Sdim      ismatch = false;
4196263508Sdim      break;
4197263508Sdim    }
4198263508Sdim  }
4199263508Sdim  if (ismatch)
4200263508Sdim    return AArch64ISD::NEON_TRN2;
4201263508Sdim
4202263508Sdim  return 0;
4203263508Sdim}
4204263508Sdim
4205263508SdimSDValue
4206263508SdimAArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4207263508Sdim                                           SelectionDAG &DAG) const {
4208263508Sdim  SDValue V1 = Op.getOperand(0);
4209263508Sdim  SDValue V2 = Op.getOperand(1);
4210263508Sdim  SDLoc dl(Op);
4211263508Sdim  EVT VT = Op.getValueType();
4212263508Sdim  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4213263508Sdim
4214263508Sdim  // Convert shuffles that are directly supported on NEON to target-specific
4215263508Sdim  // DAG nodes, instead of keeping them as shuffles and matching them again
4216263508Sdim  // during code selection.  This is more efficient and avoids the possibility
4217263508Sdim  // of inconsistencies between legalization and selection.
4218263508Sdim  ArrayRef<int> ShuffleMask = SVN->getMask();
4219263508Sdim
4220263508Sdim  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4221263508Sdim  if (EltSize > 64)
4222263508Sdim    return SDValue();
4223263508Sdim
4224263508Sdim  if (isREVMask(ShuffleMask, VT, 64))
4225263508Sdim    return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
4226263508Sdim  if (isREVMask(ShuffleMask, VT, 32))
4227263508Sdim    return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
4228263508Sdim  if (isREVMask(ShuffleMask, VT, 16))
4229263508Sdim    return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
4230263508Sdim
4231263508Sdim  unsigned ISDNo = isPermuteMask(ShuffleMask, VT);
4232263508Sdim  if (ISDNo)
4233263508Sdim    return DAG.getNode(ISDNo, dl, VT, V1, V2);
4234263508Sdim
4235263508Sdim  // If the element of shuffle mask are all the same constant, we can
4236263508Sdim  // transform it into either NEON_VDUP or NEON_VDUPLANE
4237263508Sdim  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4238263508Sdim    int Lane = SVN->getSplatIndex();
4239263508Sdim    // If this is undef splat, generate it via "just" vdup, if possible.
4240263508Sdim    if (Lane == -1) Lane = 0;
4241263508Sdim
4242263508Sdim    // Test if V1 is a SCALAR_TO_VECTOR.
4243263508Sdim    if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4244263508Sdim      return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
4245263508Sdim    }
4246263508Sdim    // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
4247263508Sdim    if (V1.getOpcode() == ISD::BUILD_VECTOR) {
4248263508Sdim      bool IsScalarToVector = true;
4249263508Sdim      for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
4250263508Sdim        if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
4251263508Sdim            i != (unsigned)Lane) {
4252263508Sdim          IsScalarToVector = false;
4253263508Sdim          break;
4254263508Sdim        }
4255263508Sdim      if (IsScalarToVector)
4256263508Sdim        return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
4257263508Sdim                           V1.getOperand(Lane));
4258263508Sdim    }
4259263508Sdim
4260263508Sdim    // Test if V1 is a EXTRACT_SUBVECTOR.
4261263508Sdim    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4262263508Sdim      int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4263263508Sdim      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
4264263508Sdim                         DAG.getConstant(Lane + ExtLane, MVT::i64));
4265263508Sdim    }
4266263508Sdim    // Test if V1 is a CONCAT_VECTORS.
4267263508Sdim    if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
4268263508Sdim        V1.getOperand(1).getOpcode() == ISD::UNDEF) {
4269263508Sdim      SDValue Op0 = V1.getOperand(0);
4270263508Sdim      assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
4271263508Sdim             "Invalid vector lane access");
4272263508Sdim      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
4273263508Sdim                         DAG.getConstant(Lane, MVT::i64));
4274263508Sdim    }
4275263508Sdim
4276263508Sdim    return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
4277263508Sdim                       DAG.getConstant(Lane, MVT::i64));
4278263508Sdim  }
4279263508Sdim
4280263508Sdim  int Length = ShuffleMask.size();
4281263508Sdim  int V1EltNum = V1.getValueType().getVectorNumElements();
4282263508Sdim
4283263508Sdim  // If the number of v1 elements is the same as the number of shuffle mask
4284263508Sdim  // element and the shuffle masks are sequential values, we can transform
4285263508Sdim  // it into NEON_VEXTRACT.
4286263508Sdim  if (V1EltNum == Length) {
4287263508Sdim    // Check if the shuffle mask is sequential.
4288263508Sdim    bool IsSequential = true;
4289263508Sdim    int CurMask = ShuffleMask[0];
4290263508Sdim    for (int I = 0; I < Length; ++I) {
4291263508Sdim      if (ShuffleMask[I] != CurMask) {
4292263508Sdim        IsSequential = false;
4293263508Sdim        break;
4294263508Sdim      }
4295263508Sdim      CurMask++;
4296263508Sdim    }
4297263508Sdim    if (IsSequential) {
4298263508Sdim      assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
4299263508Sdim      unsigned VecSize = EltSize * V1EltNum;
4300263508Sdim      unsigned Index = (EltSize/8) * ShuffleMask[0];
4301263508Sdim      if (VecSize == 64 || VecSize == 128)
4302263508Sdim        return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
4303263508Sdim                           DAG.getConstant(Index, MVT::i64));
4304263508Sdim    }
4305263508Sdim  }
4306263508Sdim
4307263508Sdim  // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
4308263508Sdim  // by element from V2 to V1 .
4309263508Sdim  // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
4310263508Sdim  // better choice to be inserted than V1 as less insert needed, so we count
4311263508Sdim  // element to be inserted for both V1 and V2, and select less one as insert
4312263508Sdim  // target.
4313263508Sdim
4314263508Sdim  // Collect elements need to be inserted and their index.
4315263508Sdim  SmallVector<int, 8> NV1Elt;
4316263508Sdim  SmallVector<int, 8> N1Index;
4317263508Sdim  SmallVector<int, 8> NV2Elt;
4318263508Sdim  SmallVector<int, 8> N2Index;
4319263508Sdim  for (int I = 0; I != Length; ++I) {
4320263508Sdim    if (ShuffleMask[I] != I) {
4321263508Sdim      NV1Elt.push_back(ShuffleMask[I]);
4322263508Sdim      N1Index.push_back(I);
4323263508Sdim    }
4324263508Sdim  }
4325263508Sdim  for (int I = 0; I != Length; ++I) {
4326263508Sdim    if (ShuffleMask[I] != (I + V1EltNum)) {
4327263508Sdim      NV2Elt.push_back(ShuffleMask[I]);
4328263508Sdim      N2Index.push_back(I);
4329263508Sdim    }
4330263508Sdim  }
4331263508Sdim
4332263508Sdim  // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
4333263508Sdim  // will be inserted.
4334263508Sdim  SDValue InsV = V1;
4335263508Sdim  SmallVector<int, 8> InsMasks = NV1Elt;
4336263508Sdim  SmallVector<int, 8> InsIndex = N1Index;
4337263508Sdim  if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
4338263508Sdim    if (NV1Elt.size() > NV2Elt.size()) {
4339263508Sdim      InsV = V2;
4340263508Sdim      InsMasks = NV2Elt;
4341263508Sdim      InsIndex = N2Index;
4342263508Sdim    }
4343263508Sdim  } else {
4344263508Sdim    InsV = DAG.getNode(ISD::UNDEF, dl, VT);
4345263508Sdim  }
4346263508Sdim
4347263508Sdim  for (int I = 0, E = InsMasks.size(); I != E; ++I) {
4348263508Sdim    SDValue ExtV = V1;
4349263508Sdim    int Mask = InsMasks[I];
4350263508Sdim    if (Mask >= V1EltNum) {
4351263508Sdim      ExtV = V2;
4352263508Sdim      Mask -= V1EltNum;
4353263508Sdim    }
4354263508Sdim    // Any value type smaller than i32 is illegal in AArch64, and this lower
4355263508Sdim    // function is called after legalize pass, so we need to legalize
4356263508Sdim    // the result here.
4357263508Sdim    EVT EltVT;
4358263508Sdim    if (VT.getVectorElementType().isFloatingPoint())
4359263508Sdim      EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
4360263508Sdim    else
4361263508Sdim      EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
4362263508Sdim
4363263508Sdim    if (Mask >= 0) {
4364263508Sdim      ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
4365263508Sdim                         DAG.getConstant(Mask, MVT::i64));
4366263508Sdim      InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
4367263508Sdim                         DAG.getConstant(InsIndex[I], MVT::i64));
4368263508Sdim    }
4369263508Sdim  }
4370263508Sdim  return InsV;
4371263508Sdim}
4372263508Sdim
4373249259SdimAArch64TargetLowering::ConstraintType
4374249259SdimAArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4375249259Sdim  if (Constraint.size() == 1) {
4376249259Sdim    switch (Constraint[0]) {
4377249259Sdim    default: break;
4378249259Sdim    case 'w': // An FP/SIMD vector register
4379249259Sdim      return C_RegisterClass;
4380249259Sdim    case 'I': // Constant that can be used with an ADD instruction
4381249259Sdim    case 'J': // Constant that can be used with a SUB instruction
4382249259Sdim    case 'K': // Constant that can be used with a 32-bit logical instruction
4383249259Sdim    case 'L': // Constant that can be used with a 64-bit logical instruction
4384249259Sdim    case 'M': // Constant that can be used as a 32-bit MOV immediate
4385249259Sdim    case 'N': // Constant that can be used as a 64-bit MOV immediate
4386249259Sdim    case 'Y': // Floating point constant zero
4387249259Sdim    case 'Z': // Integer constant zero
4388249259Sdim      return C_Other;
4389249259Sdim    case 'Q': // A memory reference with base register and no offset
4390249259Sdim      return C_Memory;
4391249259Sdim    case 'S': // A symbolic address
4392249259Sdim      return C_Other;
4393249259Sdim    }
4394249259Sdim  }
4395249259Sdim
4396249259Sdim  // FIXME: Ump, Utf, Usa, Ush
4397249259Sdim  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
4398249259Sdim  //      whatever they may be
4399249259Sdim  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
4400249259Sdim  // Usa: An absolute symbolic address
4401249259Sdim  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
4402249259Sdim  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
4403249259Sdim         && Constraint != "Ush" && "Unimplemented constraints");
4404249259Sdim
4405249259Sdim  return TargetLowering::getConstraintType(Constraint);
4406249259Sdim}
4407249259Sdim
4408249259SdimTargetLowering::ConstraintWeight
4409249259SdimAArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
4410249259Sdim                                                const char *Constraint) const {
4411249259Sdim
4412249259Sdim  llvm_unreachable("Constraint weight unimplemented");
4413249259Sdim}
4414249259Sdim
4415249259Sdimvoid
4416249259SdimAArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4417249259Sdim                                                    std::string &Constraint,
4418249259Sdim                                                    std::vector<SDValue> &Ops,
4419249259Sdim                                                    SelectionDAG &DAG) const {
4420249259Sdim  SDValue Result(0, 0);
4421249259Sdim
4422249259Sdim  // Only length 1 constraints are C_Other.
4423249259Sdim  if (Constraint.size() != 1) return;
4424249259Sdim
4425249259Sdim  // Only C_Other constraints get lowered like this. That means constants for us
4426249259Sdim  // so return early if there's no hope the constraint can be lowered.
4427249259Sdim
4428249259Sdim  switch(Constraint[0]) {
4429249259Sdim  default: break;
4430249259Sdim  case 'I': case 'J': case 'K': case 'L':
4431249259Sdim  case 'M': case 'N': case 'Z': {
4432249259Sdim    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4433249259Sdim    if (!C)
4434249259Sdim      return;
4435249259Sdim
4436249259Sdim    uint64_t CVal = C->getZExtValue();
4437249259Sdim    uint32_t Bits;
4438249259Sdim
4439249259Sdim    switch (Constraint[0]) {
4440249259Sdim    default:
4441249259Sdim      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
4442249259Sdim      // is a peculiarly useless SUB constraint.
4443249259Sdim      llvm_unreachable("Unimplemented C_Other constraint");
4444249259Sdim    case 'I':
4445249259Sdim      if (CVal <= 0xfff)
4446249259Sdim        break;
4447249259Sdim      return;
4448249259Sdim    case 'K':
4449249259Sdim      if (A64Imms::isLogicalImm(32, CVal, Bits))
4450249259Sdim        break;
4451249259Sdim      return;
4452249259Sdim    case 'L':
4453249259Sdim      if (A64Imms::isLogicalImm(64, CVal, Bits))
4454249259Sdim        break;
4455249259Sdim      return;
4456249259Sdim    case 'Z':
4457249259Sdim      if (CVal == 0)
4458249259Sdim        break;
4459249259Sdim      return;
4460249259Sdim    }
4461249259Sdim
4462249259Sdim    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4463249259Sdim    break;
4464249259Sdim  }
4465249259Sdim  case 'S': {
4466249259Sdim    // An absolute symbolic address or label reference.
4467249259Sdim    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4468263508Sdim      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4469249259Sdim                                          GA->getValueType(0));
4470249259Sdim    } else if (const BlockAddressSDNode *BA
4471249259Sdim                 = dyn_cast<BlockAddressSDNode>(Op)) {
4472249259Sdim      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
4473249259Sdim                                         BA->getValueType(0));
4474249259Sdim    } else if (const ExternalSymbolSDNode *ES
4475249259Sdim                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
4476249259Sdim      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
4477249259Sdim                                           ES->getValueType(0));
4478249259Sdim    } else
4479249259Sdim      return;
4480249259Sdim    break;
4481249259Sdim  }
4482249259Sdim  case 'Y':
4483249259Sdim    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
4484249259Sdim      if (CFP->isExactlyValue(0.0)) {
4485249259Sdim        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
4486249259Sdim        break;
4487249259Sdim      }
4488249259Sdim    }
4489249259Sdim    return;
4490249259Sdim  }
4491249259Sdim
4492249259Sdim  if (Result.getNode()) {
4493249259Sdim    Ops.push_back(Result);
4494249259Sdim    return;
4495249259Sdim  }
4496249259Sdim
4497249259Sdim  // It's an unknown constraint for us. Let generic code have a go.
4498249259Sdim  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4499249259Sdim}
4500249259Sdim
4501249259Sdimstd::pair<unsigned, const TargetRegisterClass*>
4502249259SdimAArch64TargetLowering::getRegForInlineAsmConstraint(
4503249259Sdim                                                  const std::string &Constraint,
4504263508Sdim                                                  MVT VT) const {
4505249259Sdim  if (Constraint.size() == 1) {
4506249259Sdim    switch (Constraint[0]) {
4507249259Sdim    case 'r':
4508249259Sdim      if (VT.getSizeInBits() <= 32)
4509249259Sdim        return std::make_pair(0U, &AArch64::GPR32RegClass);
4510249259Sdim      else if (VT == MVT::i64)
4511249259Sdim        return std::make_pair(0U, &AArch64::GPR64RegClass);
4512249259Sdim      break;
4513249259Sdim    case 'w':
4514249259Sdim      if (VT == MVT::f16)
4515249259Sdim        return std::make_pair(0U, &AArch64::FPR16RegClass);
4516249259Sdim      else if (VT == MVT::f32)
4517249259Sdim        return std::make_pair(0U, &AArch64::FPR32RegClass);
4518263508Sdim      else if (VT.getSizeInBits() == 64)
4519249259Sdim        return std::make_pair(0U, &AArch64::FPR64RegClass);
4520263508Sdim      else if (VT.getSizeInBits() == 128)
4521249259Sdim        return std::make_pair(0U, &AArch64::FPR128RegClass);
4522249259Sdim      break;
4523249259Sdim    }
4524249259Sdim  }
4525249259Sdim
4526249259Sdim  // Use the default implementation in TargetLowering to convert the register
4527249259Sdim  // constraint into a member of a register class.
4528249259Sdim  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4529249259Sdim}
4530263508Sdim
4531263508Sdim/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
4532263508Sdim/// The associated MachineMemOperands record the alignment specified
4533263508Sdim/// in the intrinsic calls.
4534263508Sdimbool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
4535263508Sdim                                               const CallInst &I,
4536263508Sdim                                               unsigned Intrinsic) const {
4537263508Sdim  switch (Intrinsic) {
4538263508Sdim  case Intrinsic::arm_neon_vld1:
4539263508Sdim  case Intrinsic::arm_neon_vld2:
4540263508Sdim  case Intrinsic::arm_neon_vld3:
4541263508Sdim  case Intrinsic::arm_neon_vld4:
4542263508Sdim  case Intrinsic::aarch64_neon_vld1x2:
4543263508Sdim  case Intrinsic::aarch64_neon_vld1x3:
4544263508Sdim  case Intrinsic::aarch64_neon_vld1x4:
4545263508Sdim  case Intrinsic::arm_neon_vld2lane:
4546263508Sdim  case Intrinsic::arm_neon_vld3lane:
4547263508Sdim  case Intrinsic::arm_neon_vld4lane: {
4548263508Sdim    Info.opc = ISD::INTRINSIC_W_CHAIN;
4549263508Sdim    // Conservatively set memVT to the entire set of vectors loaded.
4550263508Sdim    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
4551263508Sdim    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4552263508Sdim    Info.ptrVal = I.getArgOperand(0);
4553263508Sdim    Info.offset = 0;
4554263508Sdim    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4555263508Sdim    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4556263508Sdim    Info.vol = false; // volatile loads with NEON intrinsics not supported
4557263508Sdim    Info.readMem = true;
4558263508Sdim    Info.writeMem = false;
4559263508Sdim    return true;
4560263508Sdim  }
4561263508Sdim  case Intrinsic::arm_neon_vst1:
4562263508Sdim  case Intrinsic::arm_neon_vst2:
4563263508Sdim  case Intrinsic::arm_neon_vst3:
4564263508Sdim  case Intrinsic::arm_neon_vst4:
4565263508Sdim  case Intrinsic::aarch64_neon_vst1x2:
4566263508Sdim  case Intrinsic::aarch64_neon_vst1x3:
4567263508Sdim  case Intrinsic::aarch64_neon_vst1x4:
4568263508Sdim  case Intrinsic::arm_neon_vst2lane:
4569263508Sdim  case Intrinsic::arm_neon_vst3lane:
4570263508Sdim  case Intrinsic::arm_neon_vst4lane: {
4571263508Sdim    Info.opc = ISD::INTRINSIC_VOID;
4572263508Sdim    // Conservatively set memVT to the entire set of vectors stored.
4573263508Sdim    unsigned NumElts = 0;
4574263508Sdim    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
4575263508Sdim      Type *ArgTy = I.getArgOperand(ArgI)->getType();
4576263508Sdim      if (!ArgTy->isVectorTy())
4577263508Sdim        break;
4578263508Sdim      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
4579263508Sdim    }
4580263508Sdim    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4581263508Sdim    Info.ptrVal = I.getArgOperand(0);
4582263508Sdim    Info.offset = 0;
4583263508Sdim    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4584263508Sdim    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4585263508Sdim    Info.vol = false; // volatile stores with NEON intrinsics not supported
4586263508Sdim    Info.readMem = false;
4587263508Sdim    Info.writeMem = true;
4588263508Sdim    return true;
4589263508Sdim  }
4590263508Sdim  default:
4591263508Sdim    break;
4592263508Sdim  }
4593263508Sdim
4594263508Sdim  return false;
4595263508Sdim}
4596