1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34  assert (Subtarget->isTargetELF() && "unknown subtarget type");
35  return new AArch64ElfTargetObjectFile();
36}
37
38AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
39  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
40
41  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
42
43  // SIMD compares set the entire lane's bits to 1
44  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
45
46  // Scalar register <-> type mapping
47  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
48  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
49
50  if (Subtarget->hasFPARMv8()) {
51    addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
52    addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
53    addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
54    addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
55  }
56
57  if (Subtarget->hasNEON()) {
58    // And the vectors
59    addRegisterClass(MVT::v1i8,  &AArch64::FPR8RegClass);
60    addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass);
61    addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass);
62    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
63    addRegisterClass(MVT::v1f32, &AArch64::FPR32RegClass);
64    addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass);
65    addRegisterClass(MVT::v8i8,  &AArch64::FPR64RegClass);
66    addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass);
67    addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass);
68    addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass);
69    addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass);
70    addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass);
71    addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass);
72    addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass);
73    addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass);
74    addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass);
75    addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass);
76  }
77
78  computeRegisterProperties();
79
80  // We combine OR nodes for bitfield and NEON BSL operations.
81  setTargetDAGCombine(ISD::OR);
82
83  setTargetDAGCombine(ISD::AND);
84  setTargetDAGCombine(ISD::SRA);
85  setTargetDAGCombine(ISD::SRL);
86  setTargetDAGCombine(ISD::SHL);
87
88  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
89  setTargetDAGCombine(ISD::INTRINSIC_VOID);
90  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
91
92  // AArch64 does not have i1 loads, or much of anything for i1 really.
93  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
94  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
95  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
96
97  setStackPointerRegisterToSaveRestore(AArch64::XSP);
98  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
99  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
101
102  // We'll lower globals to wrappers for selection.
103  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
104  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
105
106  // A64 instructions have the comparison predicate attached to the user of the
107  // result, but having a separate comparison is valuable for matching.
108  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
109  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
110  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
111  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
112
113  setOperationAction(ISD::SELECT, MVT::i32, Custom);
114  setOperationAction(ISD::SELECT, MVT::i64, Custom);
115  setOperationAction(ISD::SELECT, MVT::f32, Custom);
116  setOperationAction(ISD::SELECT, MVT::f64, Custom);
117
118  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
119  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
120  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
121  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
122
123  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
124
125  setOperationAction(ISD::SETCC, MVT::i32, Custom);
126  setOperationAction(ISD::SETCC, MVT::i64, Custom);
127  setOperationAction(ISD::SETCC, MVT::f32, Custom);
128  setOperationAction(ISD::SETCC, MVT::f64, Custom);
129
130  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
131  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
132  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133
134  setOperationAction(ISD::VASTART, MVT::Other, Custom);
135  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
136  setOperationAction(ISD::VAEND, MVT::Other, Expand);
137  setOperationAction(ISD::VAARG, MVT::Other, Expand);
138
139  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
140
141  setOperationAction(ISD::ROTL, MVT::i32, Expand);
142  setOperationAction(ISD::ROTL, MVT::i64, Expand);
143
144  setOperationAction(ISD::UREM, MVT::i32, Expand);
145  setOperationAction(ISD::UREM, MVT::i64, Expand);
146  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
147  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
148
149  setOperationAction(ISD::SREM, MVT::i32, Expand);
150  setOperationAction(ISD::SREM, MVT::i64, Expand);
151  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
152  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
153
154  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
155  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
156
157  // Legal floating-point operations.
158  setOperationAction(ISD::FABS, MVT::f32, Legal);
159  setOperationAction(ISD::FABS, MVT::f64, Legal);
160
161  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
162  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
163
164  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
165  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
166
167  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
168  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
169
170  setOperationAction(ISD::FNEG, MVT::f32, Legal);
171  setOperationAction(ISD::FNEG, MVT::f64, Legal);
172
173  setOperationAction(ISD::FRINT, MVT::f32, Legal);
174  setOperationAction(ISD::FRINT, MVT::f64, Legal);
175
176  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
177  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
178
179  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
180  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
181
182  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
183  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
184  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
185
186  // Illegal floating-point operations.
187  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
188  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
189
190  setOperationAction(ISD::FCOS, MVT::f32, Expand);
191  setOperationAction(ISD::FCOS, MVT::f64, Expand);
192
193  setOperationAction(ISD::FEXP, MVT::f32, Expand);
194  setOperationAction(ISD::FEXP, MVT::f64, Expand);
195
196  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
197  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
198
199  setOperationAction(ISD::FLOG, MVT::f32, Expand);
200  setOperationAction(ISD::FLOG, MVT::f64, Expand);
201
202  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
203  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
204
205  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
206  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
207
208  setOperationAction(ISD::FPOW, MVT::f32, Expand);
209  setOperationAction(ISD::FPOW, MVT::f64, Expand);
210
211  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
212  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
213
214  setOperationAction(ISD::FREM, MVT::f32, Expand);
215  setOperationAction(ISD::FREM, MVT::f64, Expand);
216
217  setOperationAction(ISD::FSIN, MVT::f32, Expand);
218  setOperationAction(ISD::FSIN, MVT::f64, Expand);
219
220  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
221  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
222
223  // Virtually no operation on f128 is legal, but LLVM can't expand them when
224  // there's a valid register class, so we need custom operations in most cases.
225  setOperationAction(ISD::FABS,       MVT::f128, Expand);
226  setOperationAction(ISD::FADD,       MVT::f128, Custom);
227  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
228  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
229  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
230  setOperationAction(ISD::FMA,        MVT::f128, Expand);
231  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
232  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
233  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
234  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
235  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
236  setOperationAction(ISD::FREM,       MVT::f128, Expand);
237  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
238  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
239  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
240  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
241  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
242  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
243  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
244  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
245  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
246  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
247  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
248
249  // Lowering for many of the conversions is actually specified by the non-f128
250  // type. The LowerXXX function will be trivial when f128 isn't involved.
251  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
252  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
253  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
254  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
255  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
256  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
257  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
258  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
259  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
260  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
261  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
262  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
263  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
264  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
265
266  // This prevents LLVM trying to compress double constants into a floating
267  // constant-pool entry and trying to load from there. It's of doubtful benefit
268  // for A64: we'd need LDR followed by FCVT, I believe.
269  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
270  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
271  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
272
273  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
274  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
275  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
276  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
277  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
278  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
279
280  setExceptionPointerRegister(AArch64::X0);
281  setExceptionSelectorRegister(AArch64::X1);
282
283  if (Subtarget->hasNEON()) {
284    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom);
285    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
286    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
287    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom);
288    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
289    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
290    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom);
291    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
292    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
293    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
294    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
295    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f32, Custom);
296    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
297    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
298    setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom);
299    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
300
301    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
302    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
303    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
304    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom);
305    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
306    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom);
307    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
308    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
309    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom);
310    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
311    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom);
312    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
313
314    setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal);
315    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
316    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
317    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
318    setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal);
319    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal);
320    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
321    setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal);
322    setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal);
323
324    setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
325    setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
326    setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
327    setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
328    setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
329    setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
330    setOperationAction(ISD::SETCC, MVT::v1i64, Custom);
331    setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
332    setOperationAction(ISD::SETCC, MVT::v1f32, Custom);
333    setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
334    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
335    setOperationAction(ISD::SETCC, MVT::v1f64, Custom);
336    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
337
338    setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal);
339    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
340    setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal);
341    setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
342
343    setOperationAction(ISD::FCEIL, MVT::v2f32, Legal);
344    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
345    setOperationAction(ISD::FCEIL, MVT::v1f64, Legal);
346    setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
347
348    setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal);
349    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
350    setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal);
351    setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
352
353    setOperationAction(ISD::FRINT, MVT::v2f32, Legal);
354    setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
355    setOperationAction(ISD::FRINT, MVT::v1f64, Legal);
356    setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
357
358    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal);
359    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
360    setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal);
361    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
362
363    setOperationAction(ISD::FROUND, MVT::v2f32, Legal);
364    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
365    setOperationAction(ISD::FROUND, MVT::v1f64, Legal);
366    setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
367  }
368}
369
370EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
371  // It's reasonably important that this value matches the "natural" legal
372  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
373  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
374  if (!VT.isVector()) return MVT::i32;
375  return VT.changeVectorElementTypeToInteger();
376}
377
378static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
379                                  unsigned &LdrOpc,
380                                  unsigned &StrOpc) {
381  static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
382                                       AArch64::LDXR_word, AArch64::LDXR_dword};
383  static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
384                                     AArch64::LDAXR_word, AArch64::LDAXR_dword};
385  static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
386                                       AArch64::STXR_word, AArch64::STXR_dword};
387  static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
388                                     AArch64::STLXR_word, AArch64::STLXR_dword};
389
390  const unsigned *LoadOps, *StoreOps;
391  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
392    LoadOps = LoadAcqs;
393  else
394    LoadOps = LoadBares;
395
396  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
397    StoreOps = StoreRels;
398  else
399    StoreOps = StoreBares;
400
401  assert(isPowerOf2_32(Size) && Size <= 8 &&
402         "unsupported size for atomic binary op!");
403
404  LdrOpc = LoadOps[Log2_32(Size)];
405  StrOpc = StoreOps[Log2_32(Size)];
406}
407
408// FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really
409// have value type mapped, and they are both being defined as MVT::untyped.
410// Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost
411// would fail to figure out the register pressure correctly.
412std::pair<const TargetRegisterClass*, uint8_t>
413AArch64TargetLowering::findRepresentativeClass(MVT VT) const{
414  const TargetRegisterClass *RRC = 0;
415  uint8_t Cost = 1;
416  switch (VT.SimpleTy) {
417  default:
418    return TargetLowering::findRepresentativeClass(VT);
419  case MVT::v4i64:
420    RRC = &AArch64::QPairRegClass;
421    Cost = 2;
422    break;
423  case MVT::v8i64:
424    RRC = &AArch64::QQuadRegClass;
425    Cost = 4;
426    break;
427  }
428  return std::make_pair(RRC, Cost);
429}
430
431MachineBasicBlock *
432AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
433                                        unsigned Size,
434                                        unsigned BinOpcode) const {
435  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
436  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
437
438  const BasicBlock *LLVM_BB = BB->getBasicBlock();
439  MachineFunction *MF = BB->getParent();
440  MachineFunction::iterator It = BB;
441  ++It;
442
443  unsigned dest = MI->getOperand(0).getReg();
444  unsigned ptr = MI->getOperand(1).getReg();
445  unsigned incr = MI->getOperand(2).getReg();
446  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
447  DebugLoc dl = MI->getDebugLoc();
448
449  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
450
451  unsigned ldrOpc, strOpc;
452  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
453
454  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
455  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
456  MF->insert(It, loopMBB);
457  MF->insert(It, exitMBB);
458
459  // Transfer the remainder of BB and its successor edges to exitMBB.
460  exitMBB->splice(exitMBB->begin(), BB,
461                  llvm::next(MachineBasicBlock::iterator(MI)),
462                  BB->end());
463  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
464
465  const TargetRegisterClass *TRC
466    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
467  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
468
469  //  thisMBB:
470  //   ...
471  //   fallthrough --> loopMBB
472  BB->addSuccessor(loopMBB);
473
474  //  loopMBB:
475  //   ldxr dest, ptr
476  //   <binop> scratch, dest, incr
477  //   stxr stxr_status, scratch, ptr
478  //   cbnz stxr_status, loopMBB
479  //   fallthrough --> exitMBB
480  BB = loopMBB;
481  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
482  if (BinOpcode) {
483    // All arithmetic operations we'll be creating are designed to take an extra
484    // shift or extend operand, which we can conveniently set to zero.
485
486    // Operand order needs to go the other way for NAND.
487    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
488      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
489        .addReg(incr).addReg(dest).addImm(0);
490    else
491      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
492        .addReg(dest).addReg(incr).addImm(0);
493  }
494
495  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
496  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
497  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
498
499  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
500  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
501    .addReg(stxr_status).addMBB(loopMBB);
502
503  BB->addSuccessor(loopMBB);
504  BB->addSuccessor(exitMBB);
505
506  //  exitMBB:
507  //   ...
508  BB = exitMBB;
509
510  MI->eraseFromParent();   // The instruction is gone now.
511
512  return BB;
513}
514
515MachineBasicBlock *
516AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
517                                              MachineBasicBlock *BB,
518                                              unsigned Size,
519                                              unsigned CmpOp,
520                                              A64CC::CondCodes Cond) const {
521  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
522
523  const BasicBlock *LLVM_BB = BB->getBasicBlock();
524  MachineFunction *MF = BB->getParent();
525  MachineFunction::iterator It = BB;
526  ++It;
527
528  unsigned dest = MI->getOperand(0).getReg();
529  unsigned ptr = MI->getOperand(1).getReg();
530  unsigned incr = MI->getOperand(2).getReg();
531  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
532
533  unsigned oldval = dest;
534  DebugLoc dl = MI->getDebugLoc();
535
536  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
537  const TargetRegisterClass *TRC, *TRCsp;
538  if (Size == 8) {
539    TRC = &AArch64::GPR64RegClass;
540    TRCsp = &AArch64::GPR64xspRegClass;
541  } else {
542    TRC = &AArch64::GPR32RegClass;
543    TRCsp = &AArch64::GPR32wspRegClass;
544  }
545
546  unsigned ldrOpc, strOpc;
547  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
548
549  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
550  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
551  MF->insert(It, loopMBB);
552  MF->insert(It, exitMBB);
553
554  // Transfer the remainder of BB and its successor edges to exitMBB.
555  exitMBB->splice(exitMBB->begin(), BB,
556                  llvm::next(MachineBasicBlock::iterator(MI)),
557                  BB->end());
558  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
559
560  unsigned scratch = MRI.createVirtualRegister(TRC);
561  MRI.constrainRegClass(scratch, TRCsp);
562
563  //  thisMBB:
564  //   ...
565  //   fallthrough --> loopMBB
566  BB->addSuccessor(loopMBB);
567
568  //  loopMBB:
569  //   ldxr dest, ptr
570  //   cmp incr, dest (, sign extend if necessary)
571  //   csel scratch, dest, incr, cond
572  //   stxr stxr_status, scratch, ptr
573  //   cbnz stxr_status, loopMBB
574  //   fallthrough --> exitMBB
575  BB = loopMBB;
576  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
577
578  // Build compare and cmov instructions.
579  MRI.constrainRegClass(incr, TRCsp);
580  BuildMI(BB, dl, TII->get(CmpOp))
581    .addReg(incr).addReg(oldval).addImm(0);
582
583  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
584          scratch)
585    .addReg(oldval).addReg(incr).addImm(Cond);
586
587  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
588  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
589
590  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
591    .addReg(scratch).addReg(ptr);
592  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
593    .addReg(stxr_status).addMBB(loopMBB);
594
595  BB->addSuccessor(loopMBB);
596  BB->addSuccessor(exitMBB);
597
598  //  exitMBB:
599  //   ...
600  BB = exitMBB;
601
602  MI->eraseFromParent();   // The instruction is gone now.
603
604  return BB;
605}
606
607MachineBasicBlock *
608AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
609                                         MachineBasicBlock *BB,
610                                         unsigned Size) const {
611  unsigned dest    = MI->getOperand(0).getReg();
612  unsigned ptr     = MI->getOperand(1).getReg();
613  unsigned oldval  = MI->getOperand(2).getReg();
614  unsigned newval  = MI->getOperand(3).getReg();
615  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
616  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
617  DebugLoc dl = MI->getDebugLoc();
618
619  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
620  const TargetRegisterClass *TRCsp;
621  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
622
623  unsigned ldrOpc, strOpc;
624  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
625
626  MachineFunction *MF = BB->getParent();
627  const BasicBlock *LLVM_BB = BB->getBasicBlock();
628  MachineFunction::iterator It = BB;
629  ++It; // insert the new blocks after the current block
630
631  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
632  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
633  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
634  MF->insert(It, loop1MBB);
635  MF->insert(It, loop2MBB);
636  MF->insert(It, exitMBB);
637
638  // Transfer the remainder of BB and its successor edges to exitMBB.
639  exitMBB->splice(exitMBB->begin(), BB,
640                  llvm::next(MachineBasicBlock::iterator(MI)),
641                  BB->end());
642  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
643
644  //  thisMBB:
645  //   ...
646  //   fallthrough --> loop1MBB
647  BB->addSuccessor(loop1MBB);
648
649  // loop1MBB:
650  //   ldxr dest, [ptr]
651  //   cmp dest, oldval
652  //   b.ne exitMBB
653  BB = loop1MBB;
654  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
655
656  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
657  MRI.constrainRegClass(dest, TRCsp);
658  BuildMI(BB, dl, TII->get(CmpOp))
659    .addReg(dest).addReg(oldval).addImm(0);
660  BuildMI(BB, dl, TII->get(AArch64::Bcc))
661    .addImm(A64CC::NE).addMBB(exitMBB);
662  BB->addSuccessor(loop2MBB);
663  BB->addSuccessor(exitMBB);
664
665  // loop2MBB:
666  //   strex stxr_status, newval, [ptr]
667  //   cbnz stxr_status, loop1MBB
668  BB = loop2MBB;
669  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
670  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
671
672  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
673  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
674    .addReg(stxr_status).addMBB(loop1MBB);
675  BB->addSuccessor(loop1MBB);
676  BB->addSuccessor(exitMBB);
677
678  //  exitMBB:
679  //   ...
680  BB = exitMBB;
681
682  MI->eraseFromParent();   // The instruction is gone now.
683
684  return BB;
685}
686
687MachineBasicBlock *
688AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
689                                    MachineBasicBlock *MBB) const {
690  // We materialise the F128CSEL pseudo-instruction using conditional branches
691  // and loads, giving an instruciton sequence like:
692  //     str q0, [sp]
693  //     b.ne IfTrue
694  //     b Finish
695  // IfTrue:
696  //     str q1, [sp]
697  // Finish:
698  //     ldr q0, [sp]
699  //
700  // Using virtual registers would probably not be beneficial since COPY
701  // instructions are expensive for f128 (there's no actual instruction to
702  // implement them).
703  //
704  // An alternative would be to do an integer-CSEL on some address. E.g.:
705  //     mov x0, sp
706  //     add x1, sp, #16
707  //     str q0, [x0]
708  //     str q1, [x1]
709  //     csel x0, x0, x1, ne
710  //     ldr q0, [x0]
711  //
712  // It's unclear which approach is actually optimal.
713  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
714  MachineFunction *MF = MBB->getParent();
715  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
716  DebugLoc DL = MI->getDebugLoc();
717  MachineFunction::iterator It = MBB;
718  ++It;
719
720  unsigned DestReg = MI->getOperand(0).getReg();
721  unsigned IfTrueReg = MI->getOperand(1).getReg();
722  unsigned IfFalseReg = MI->getOperand(2).getReg();
723  unsigned CondCode = MI->getOperand(3).getImm();
724  bool NZCVKilled = MI->getOperand(4).isKill();
725
726  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
727  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
728  MF->insert(It, TrueBB);
729  MF->insert(It, EndBB);
730
731  // Transfer rest of current basic-block to EndBB
732  EndBB->splice(EndBB->begin(), MBB,
733                llvm::next(MachineBasicBlock::iterator(MI)),
734                MBB->end());
735  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
736
737  // We need somewhere to store the f128 value needed.
738  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
739
740  //     [... start of incoming MBB ...]
741  //     str qIFFALSE, [sp]
742  //     b.cc IfTrue
743  //     b Done
744  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
745    .addReg(IfFalseReg)
746    .addFrameIndex(ScratchFI)
747    .addImm(0);
748  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
749    .addImm(CondCode)
750    .addMBB(TrueBB);
751  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
752    .addMBB(EndBB);
753  MBB->addSuccessor(TrueBB);
754  MBB->addSuccessor(EndBB);
755
756  if (!NZCVKilled) {
757    // NZCV is live-through TrueBB.
758    TrueBB->addLiveIn(AArch64::NZCV);
759    EndBB->addLiveIn(AArch64::NZCV);
760  }
761
762  // IfTrue:
763  //     str qIFTRUE, [sp]
764  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
765    .addReg(IfTrueReg)
766    .addFrameIndex(ScratchFI)
767    .addImm(0);
768
769  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
770  // blocks.
771  TrueBB->addSuccessor(EndBB);
772
773  // Done:
774  //     ldr qDEST, [sp]
775  //     [... rest of incoming MBB ...]
776  MachineInstr *StartOfEnd = EndBB->begin();
777  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
778    .addFrameIndex(ScratchFI)
779    .addImm(0);
780
781  MI->eraseFromParent();
782  return EndBB;
783}
784
785MachineBasicBlock *
786AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
787                                                 MachineBasicBlock *MBB) const {
788  switch (MI->getOpcode()) {
789  default: llvm_unreachable("Unhandled instruction with custom inserter");
790  case AArch64::F128CSEL:
791    return EmitF128CSEL(MI, MBB);
792  case AArch64::ATOMIC_LOAD_ADD_I8:
793    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
794  case AArch64::ATOMIC_LOAD_ADD_I16:
795    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
796  case AArch64::ATOMIC_LOAD_ADD_I32:
797    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
798  case AArch64::ATOMIC_LOAD_ADD_I64:
799    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
800
801  case AArch64::ATOMIC_LOAD_SUB_I8:
802    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
803  case AArch64::ATOMIC_LOAD_SUB_I16:
804    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
805  case AArch64::ATOMIC_LOAD_SUB_I32:
806    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
807  case AArch64::ATOMIC_LOAD_SUB_I64:
808    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
809
810  case AArch64::ATOMIC_LOAD_AND_I8:
811    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
812  case AArch64::ATOMIC_LOAD_AND_I16:
813    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
814  case AArch64::ATOMIC_LOAD_AND_I32:
815    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
816  case AArch64::ATOMIC_LOAD_AND_I64:
817    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
818
819  case AArch64::ATOMIC_LOAD_OR_I8:
820    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
821  case AArch64::ATOMIC_LOAD_OR_I16:
822    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
823  case AArch64::ATOMIC_LOAD_OR_I32:
824    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
825  case AArch64::ATOMIC_LOAD_OR_I64:
826    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
827
828  case AArch64::ATOMIC_LOAD_XOR_I8:
829    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
830  case AArch64::ATOMIC_LOAD_XOR_I16:
831    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
832  case AArch64::ATOMIC_LOAD_XOR_I32:
833    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
834  case AArch64::ATOMIC_LOAD_XOR_I64:
835    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
836
837  case AArch64::ATOMIC_LOAD_NAND_I8:
838    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
839  case AArch64::ATOMIC_LOAD_NAND_I16:
840    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
841  case AArch64::ATOMIC_LOAD_NAND_I32:
842    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
843  case AArch64::ATOMIC_LOAD_NAND_I64:
844    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
845
846  case AArch64::ATOMIC_LOAD_MIN_I8:
847    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
848  case AArch64::ATOMIC_LOAD_MIN_I16:
849    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
850  case AArch64::ATOMIC_LOAD_MIN_I32:
851    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
852  case AArch64::ATOMIC_LOAD_MIN_I64:
853    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
854
855  case AArch64::ATOMIC_LOAD_MAX_I8:
856    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
857  case AArch64::ATOMIC_LOAD_MAX_I16:
858    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
859  case AArch64::ATOMIC_LOAD_MAX_I32:
860    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
861  case AArch64::ATOMIC_LOAD_MAX_I64:
862    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
863
864  case AArch64::ATOMIC_LOAD_UMIN_I8:
865    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
866  case AArch64::ATOMIC_LOAD_UMIN_I16:
867    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
868  case AArch64::ATOMIC_LOAD_UMIN_I32:
869    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
870  case AArch64::ATOMIC_LOAD_UMIN_I64:
871    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
872
873  case AArch64::ATOMIC_LOAD_UMAX_I8:
874    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
875  case AArch64::ATOMIC_LOAD_UMAX_I16:
876    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
877  case AArch64::ATOMIC_LOAD_UMAX_I32:
878    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
879  case AArch64::ATOMIC_LOAD_UMAX_I64:
880    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
881
882  case AArch64::ATOMIC_SWAP_I8:
883    return emitAtomicBinary(MI, MBB, 1, 0);
884  case AArch64::ATOMIC_SWAP_I16:
885    return emitAtomicBinary(MI, MBB, 2, 0);
886  case AArch64::ATOMIC_SWAP_I32:
887    return emitAtomicBinary(MI, MBB, 4, 0);
888  case AArch64::ATOMIC_SWAP_I64:
889    return emitAtomicBinary(MI, MBB, 8, 0);
890
891  case AArch64::ATOMIC_CMP_SWAP_I8:
892    return emitAtomicCmpSwap(MI, MBB, 1);
893  case AArch64::ATOMIC_CMP_SWAP_I16:
894    return emitAtomicCmpSwap(MI, MBB, 2);
895  case AArch64::ATOMIC_CMP_SWAP_I32:
896    return emitAtomicCmpSwap(MI, MBB, 4);
897  case AArch64::ATOMIC_CMP_SWAP_I64:
898    return emitAtomicCmpSwap(MI, MBB, 8);
899  }
900}
901
902
903const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
904  switch (Opcode) {
905  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
906  case AArch64ISD::Call:           return "AArch64ISD::Call";
907  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
908  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
909  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
910  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
911  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
912  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
913  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
914  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
915  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
916  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
917  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
918  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
919  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
920
921  case AArch64ISD::NEON_BSL:
922    return "AArch64ISD::NEON_BSL";
923  case AArch64ISD::NEON_MOVIMM:
924    return "AArch64ISD::NEON_MOVIMM";
925  case AArch64ISD::NEON_MVNIMM:
926    return "AArch64ISD::NEON_MVNIMM";
927  case AArch64ISD::NEON_FMOVIMM:
928    return "AArch64ISD::NEON_FMOVIMM";
929  case AArch64ISD::NEON_CMP:
930    return "AArch64ISD::NEON_CMP";
931  case AArch64ISD::NEON_CMPZ:
932    return "AArch64ISD::NEON_CMPZ";
933  case AArch64ISD::NEON_TST:
934    return "AArch64ISD::NEON_TST";
935  case AArch64ISD::NEON_QSHLs:
936    return "AArch64ISD::NEON_QSHLs";
937  case AArch64ISD::NEON_QSHLu:
938    return "AArch64ISD::NEON_QSHLu";
939  case AArch64ISD::NEON_VDUP:
940    return "AArch64ISD::NEON_VDUP";
941  case AArch64ISD::NEON_VDUPLANE:
942    return "AArch64ISD::NEON_VDUPLANE";
943  case AArch64ISD::NEON_REV16:
944    return "AArch64ISD::NEON_REV16";
945  case AArch64ISD::NEON_REV32:
946    return "AArch64ISD::NEON_REV32";
947  case AArch64ISD::NEON_REV64:
948    return "AArch64ISD::NEON_REV64";
949  case AArch64ISD::NEON_UZP1:
950    return "AArch64ISD::NEON_UZP1";
951  case AArch64ISD::NEON_UZP2:
952    return "AArch64ISD::NEON_UZP2";
953  case AArch64ISD::NEON_ZIP1:
954    return "AArch64ISD::NEON_ZIP1";
955  case AArch64ISD::NEON_ZIP2:
956    return "AArch64ISD::NEON_ZIP2";
957  case AArch64ISD::NEON_TRN1:
958    return "AArch64ISD::NEON_TRN1";
959  case AArch64ISD::NEON_TRN2:
960    return "AArch64ISD::NEON_TRN2";
961  case AArch64ISD::NEON_LD1_UPD:
962    return "AArch64ISD::NEON_LD1_UPD";
963  case AArch64ISD::NEON_LD2_UPD:
964    return "AArch64ISD::NEON_LD2_UPD";
965  case AArch64ISD::NEON_LD3_UPD:
966    return "AArch64ISD::NEON_LD3_UPD";
967  case AArch64ISD::NEON_LD4_UPD:
968    return "AArch64ISD::NEON_LD4_UPD";
969  case AArch64ISD::NEON_ST1_UPD:
970    return "AArch64ISD::NEON_ST1_UPD";
971  case AArch64ISD::NEON_ST2_UPD:
972    return "AArch64ISD::NEON_ST2_UPD";
973  case AArch64ISD::NEON_ST3_UPD:
974    return "AArch64ISD::NEON_ST3_UPD";
975  case AArch64ISD::NEON_ST4_UPD:
976    return "AArch64ISD::NEON_ST4_UPD";
977  case AArch64ISD::NEON_LD1x2_UPD:
978    return "AArch64ISD::NEON_LD1x2_UPD";
979  case AArch64ISD::NEON_LD1x3_UPD:
980    return "AArch64ISD::NEON_LD1x3_UPD";
981  case AArch64ISD::NEON_LD1x4_UPD:
982    return "AArch64ISD::NEON_LD1x4_UPD";
983  case AArch64ISD::NEON_ST1x2_UPD:
984    return "AArch64ISD::NEON_ST1x2_UPD";
985  case AArch64ISD::NEON_ST1x3_UPD:
986    return "AArch64ISD::NEON_ST1x3_UPD";
987  case AArch64ISD::NEON_ST1x4_UPD:
988    return "AArch64ISD::NEON_ST1x4_UPD";
989  case AArch64ISD::NEON_LD2DUP:
990    return "AArch64ISD::NEON_LD2DUP";
991  case AArch64ISD::NEON_LD3DUP:
992    return "AArch64ISD::NEON_LD3DUP";
993  case AArch64ISD::NEON_LD4DUP:
994    return "AArch64ISD::NEON_LD4DUP";
995  case AArch64ISD::NEON_LD2DUP_UPD:
996    return "AArch64ISD::NEON_LD2DUP_UPD";
997  case AArch64ISD::NEON_LD3DUP_UPD:
998    return "AArch64ISD::NEON_LD3DUP_UPD";
999  case AArch64ISD::NEON_LD4DUP_UPD:
1000    return "AArch64ISD::NEON_LD4DUP_UPD";
1001  case AArch64ISD::NEON_LD2LN_UPD:
1002    return "AArch64ISD::NEON_LD2LN_UPD";
1003  case AArch64ISD::NEON_LD3LN_UPD:
1004    return "AArch64ISD::NEON_LD3LN_UPD";
1005  case AArch64ISD::NEON_LD4LN_UPD:
1006    return "AArch64ISD::NEON_LD4LN_UPD";
1007  case AArch64ISD::NEON_ST2LN_UPD:
1008    return "AArch64ISD::NEON_ST2LN_UPD";
1009  case AArch64ISD::NEON_ST3LN_UPD:
1010    return "AArch64ISD::NEON_ST3LN_UPD";
1011  case AArch64ISD::NEON_ST4LN_UPD:
1012    return "AArch64ISD::NEON_ST4LN_UPD";
1013  case AArch64ISD::NEON_VEXTRACT:
1014    return "AArch64ISD::NEON_VEXTRACT";
1015  default:
1016    return NULL;
1017  }
1018}
1019
1020static const uint16_t AArch64FPRArgRegs[] = {
1021  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
1022  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
1023};
1024static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
1025
1026static const uint16_t AArch64ArgRegs[] = {
1027  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
1028  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
1029};
1030static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
1031
1032static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
1033                                 CCValAssign::LocInfo LocInfo,
1034                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
1035  // Mark all remaining general purpose registers as allocated. We don't
1036  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
1037  // i64 will go in registers (C.11).
1038  for (unsigned i = 0; i < NumArgRegs; ++i)
1039    State.AllocateReg(AArch64ArgRegs[i]);
1040
1041  return false;
1042}
1043
1044#include "AArch64GenCallingConv.inc"
1045
1046CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1047
1048  switch(CC) {
1049  default: llvm_unreachable("Unsupported calling convention");
1050  case CallingConv::Fast:
1051  case CallingConv::C:
1052    return CC_A64_APCS;
1053  }
1054}
1055
1056void
1057AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
1058                                           SDLoc DL, SDValue &Chain) const {
1059  MachineFunction &MF = DAG.getMachineFunction();
1060  MachineFrameInfo *MFI = MF.getFrameInfo();
1061  AArch64MachineFunctionInfo *FuncInfo
1062    = MF.getInfo<AArch64MachineFunctionInfo>();
1063
1064  SmallVector<SDValue, 8> MemOps;
1065
1066  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
1067                                                         NumArgRegs);
1068  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
1069                                                         NumFPRArgRegs);
1070
1071  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
1072  int GPRIdx = 0;
1073  if (GPRSaveSize != 0) {
1074    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
1075
1076    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
1077
1078    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
1079      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
1080      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
1081      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1082                                   MachinePointerInfo::getStack(i * 8),
1083                                   false, false, 0);
1084      MemOps.push_back(Store);
1085      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1086                        DAG.getConstant(8, getPointerTy()));
1087    }
1088  }
1089
1090  if (getSubtarget()->hasFPARMv8()) {
1091  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
1092  int FPRIdx = 0;
1093    // According to the AArch64 Procedure Call Standard, section B.1/B.3, we
1094    // can omit a register save area if we know we'll never use registers of
1095    // that class.
1096    if (FPRSaveSize != 0) {
1097      FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
1098
1099      SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
1100
1101      for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
1102        unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
1103            &AArch64::FPR128RegClass);
1104        SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
1105        SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
1106            MachinePointerInfo::getStack(i * 16),
1107            false, false, 0);
1108        MemOps.push_back(Store);
1109        FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
1110            DAG.getConstant(16, getPointerTy()));
1111      }
1112    }
1113    FuncInfo->setVariadicFPRIdx(FPRIdx);
1114    FuncInfo->setVariadicFPRSize(FPRSaveSize);
1115  }
1116
1117  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
1118
1119  FuncInfo->setVariadicStackIdx(StackIdx);
1120  FuncInfo->setVariadicGPRIdx(GPRIdx);
1121  FuncInfo->setVariadicGPRSize(GPRSaveSize);
1122
1123  if (!MemOps.empty()) {
1124    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
1125                        MemOps.size());
1126  }
1127}
1128
1129
1130SDValue
1131AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
1132                                      CallingConv::ID CallConv, bool isVarArg,
1133                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1134                                      SDLoc dl, SelectionDAG &DAG,
1135                                      SmallVectorImpl<SDValue> &InVals) const {
1136  MachineFunction &MF = DAG.getMachineFunction();
1137  AArch64MachineFunctionInfo *FuncInfo
1138    = MF.getInfo<AArch64MachineFunctionInfo>();
1139  MachineFrameInfo *MFI = MF.getFrameInfo();
1140  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1141
1142  SmallVector<CCValAssign, 16> ArgLocs;
1143  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1144                 getTargetMachine(), ArgLocs, *DAG.getContext());
1145  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1146
1147  SmallVector<SDValue, 16> ArgValues;
1148
1149  SDValue ArgValue;
1150  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1151    CCValAssign &VA = ArgLocs[i];
1152    ISD::ArgFlagsTy Flags = Ins[i].Flags;
1153
1154    if (Flags.isByVal()) {
1155      // Byval is used for small structs and HFAs in the PCS, but the system
1156      // should work in a non-compliant manner for larger structs.
1157      EVT PtrTy = getPointerTy();
1158      int Size = Flags.getByValSize();
1159      unsigned NumRegs = (Size + 7) / 8;
1160
1161      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
1162                                                 VA.getLocMemOffset(),
1163                                                 false);
1164      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
1165      InVals.push_back(FrameIdxN);
1166
1167      continue;
1168    } else if (VA.isRegLoc()) {
1169      MVT RegVT = VA.getLocVT();
1170      const TargetRegisterClass *RC = getRegClassFor(RegVT);
1171      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1172
1173      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1174    } else { // VA.isRegLoc()
1175      assert(VA.isMemLoc());
1176
1177      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
1178                                      VA.getLocMemOffset(), true);
1179
1180      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1181      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1182                             MachinePointerInfo::getFixedStack(FI),
1183                             false, false, false, 0);
1184
1185
1186    }
1187
1188    switch (VA.getLocInfo()) {
1189    default: llvm_unreachable("Unknown loc info!");
1190    case CCValAssign::Full: break;
1191    case CCValAssign::BCvt:
1192      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1193      break;
1194    case CCValAssign::SExt:
1195    case CCValAssign::ZExt:
1196    case CCValAssign::AExt: {
1197      unsigned DestSize = VA.getValVT().getSizeInBits();
1198      unsigned DestSubReg;
1199
1200      switch (DestSize) {
1201      case 8: DestSubReg = AArch64::sub_8; break;
1202      case 16: DestSubReg = AArch64::sub_16; break;
1203      case 32: DestSubReg = AArch64::sub_32; break;
1204      case 64: DestSubReg = AArch64::sub_64; break;
1205      default: llvm_unreachable("Unexpected argument promotion");
1206      }
1207
1208      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1209                                   VA.getValVT(), ArgValue,
1210                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
1211                         0);
1212      break;
1213    }
1214    }
1215
1216    InVals.push_back(ArgValue);
1217  }
1218
1219  if (isVarArg)
1220    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1221
1222  unsigned StackArgSize = CCInfo.getNextStackOffset();
1223  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1224    // This is a non-standard ABI so by fiat I say we're allowed to make full
1225    // use of the stack area to be popped, which must be aligned to 16 bytes in
1226    // any case:
1227    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1228
1229    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1230    // a multiple of 16.
1231    FuncInfo->setArgumentStackToRestore(StackArgSize);
1232
1233    // This realignment carries over to the available bytes below. Our own
1234    // callers will guarantee the space is free by giving an aligned value to
1235    // CALLSEQ_START.
1236  }
1237  // Even if we're not expected to free up the space, it's useful to know how
1238  // much is there while considering tail calls (because we can reuse it).
1239  FuncInfo->setBytesInStackArgArea(StackArgSize);
1240
1241  return Chain;
1242}
1243
1244SDValue
1245AArch64TargetLowering::LowerReturn(SDValue Chain,
1246                                   CallingConv::ID CallConv, bool isVarArg,
1247                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1248                                   const SmallVectorImpl<SDValue> &OutVals,
1249                                   SDLoc dl, SelectionDAG &DAG) const {
1250  // CCValAssign - represent the assignment of the return value to a location.
1251  SmallVector<CCValAssign, 16> RVLocs;
1252
1253  // CCState - Info about the registers and stack slots.
1254  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1255                 getTargetMachine(), RVLocs, *DAG.getContext());
1256
1257  // Analyze outgoing return values.
1258  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1259
1260  SDValue Flag;
1261  SmallVector<SDValue, 4> RetOps(1, Chain);
1262
1263  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1264    // PCS: "If the type, T, of the result of a function is such that
1265    // void func(T arg) would require that arg be passed as a value in a
1266    // register (or set of registers) according to the rules in 5.4, then the
1267    // result is returned in the same registers as would be used for such an
1268    // argument.
1269    //
1270    // Otherwise, the caller shall reserve a block of memory of sufficient
1271    // size and alignment to hold the result. The address of the memory block
1272    // shall be passed as an additional argument to the function in x8."
1273    //
1274    // This is implemented in two places. The register-return values are dealt
1275    // with here, more complex returns are passed as an sret parameter, which
1276    // means we don't have to worry about it during actual return.
1277    CCValAssign &VA = RVLocs[i];
1278    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1279
1280
1281    SDValue Arg = OutVals[i];
1282
1283    // There's no convenient note in the ABI about this as there is for normal
1284    // arguments, but it says return values are passed in the same registers as
1285    // an argument would be. I believe that includes the comments about
1286    // unspecified higher bits, putting the burden of widening on the *caller*
1287    // for return values.
1288    switch (VA.getLocInfo()) {
1289    default: llvm_unreachable("Unknown loc info");
1290    case CCValAssign::Full: break;
1291    case CCValAssign::SExt:
1292    case CCValAssign::ZExt:
1293    case CCValAssign::AExt:
1294      // Floating-point values should only be extended when they're going into
1295      // memory, which can't happen here so an integer extend is acceptable.
1296      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1297      break;
1298    case CCValAssign::BCvt:
1299      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1300      break;
1301    }
1302
1303    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1304    Flag = Chain.getValue(1);
1305    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1306  }
1307
1308  RetOps[0] = Chain;  // Update chain.
1309
1310  // Add the flag if we have it.
1311  if (Flag.getNode())
1312    RetOps.push_back(Flag);
1313
1314  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1315                     &RetOps[0], RetOps.size());
1316}
1317
1318SDValue
1319AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1320                                 SmallVectorImpl<SDValue> &InVals) const {
1321  SelectionDAG &DAG                     = CLI.DAG;
1322  SDLoc &dl                             = CLI.DL;
1323  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1324  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1325  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1326  SDValue Chain                         = CLI.Chain;
1327  SDValue Callee                        = CLI.Callee;
1328  bool &IsTailCall                      = CLI.IsTailCall;
1329  CallingConv::ID CallConv              = CLI.CallConv;
1330  bool IsVarArg                         = CLI.IsVarArg;
1331
1332  MachineFunction &MF = DAG.getMachineFunction();
1333  AArch64MachineFunctionInfo *FuncInfo
1334    = MF.getInfo<AArch64MachineFunctionInfo>();
1335  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1336  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1337  bool IsSibCall = false;
1338
1339  if (IsTailCall) {
1340    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1341                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1342                                                   Outs, OutVals, Ins, DAG);
1343
1344    // A sibling call is one where we're under the usual C ABI and not planning
1345    // to change that but can still do a tail call:
1346    if (!TailCallOpt && IsTailCall)
1347      IsSibCall = true;
1348  }
1349
1350  SmallVector<CCValAssign, 16> ArgLocs;
1351  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1352                 getTargetMachine(), ArgLocs, *DAG.getContext());
1353  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1354
1355  // On AArch64 (and all other architectures I'm aware of) the most this has to
1356  // do is adjust the stack pointer.
1357  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1358  if (IsSibCall) {
1359    // Since we're not changing the ABI to make this a tail call, the memory
1360    // operands are already available in the caller's incoming argument space.
1361    NumBytes = 0;
1362  }
1363
1364  // FPDiff is the byte offset of the call's argument area from the callee's.
1365  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1366  // by this amount for a tail call. In a sibling call it must be 0 because the
1367  // caller will deallocate the entire stack and the callee still expects its
1368  // arguments to begin at SP+0. Completely unused for non-tail calls.
1369  int FPDiff = 0;
1370
1371  if (IsTailCall && !IsSibCall) {
1372    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1373
1374    // FPDiff will be negative if this tail call requires more space than we
1375    // would automatically have in our incoming argument space. Positive if we
1376    // can actually shrink the stack.
1377    FPDiff = NumReusableBytes - NumBytes;
1378
1379    // The stack pointer must be 16-byte aligned at all times it's used for a
1380    // memory operation, which in practice means at *all* times and in
1381    // particular across call boundaries. Therefore our own arguments started at
1382    // a 16-byte aligned SP and the delta applied for the tail call should
1383    // satisfy the same constraint.
1384    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1385  }
1386
1387  if (!IsSibCall)
1388    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1389                                 dl);
1390
1391  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1392                                        getPointerTy());
1393
1394  SmallVector<SDValue, 8> MemOpChains;
1395  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1396
1397  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1398    CCValAssign &VA = ArgLocs[i];
1399    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1400    SDValue Arg = OutVals[i];
1401
1402    // Callee does the actual widening, so all extensions just use an implicit
1403    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1404    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1405    // alternative works on integer types too.
1406    switch (VA.getLocInfo()) {
1407    default: llvm_unreachable("Unknown loc info!");
1408    case CCValAssign::Full: break;
1409    case CCValAssign::SExt:
1410    case CCValAssign::ZExt:
1411    case CCValAssign::AExt: {
1412      unsigned SrcSize = VA.getValVT().getSizeInBits();
1413      unsigned SrcSubReg;
1414
1415      switch (SrcSize) {
1416      case 8: SrcSubReg = AArch64::sub_8; break;
1417      case 16: SrcSubReg = AArch64::sub_16; break;
1418      case 32: SrcSubReg = AArch64::sub_32; break;
1419      case 64: SrcSubReg = AArch64::sub_64; break;
1420      default: llvm_unreachable("Unexpected argument promotion");
1421      }
1422
1423      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1424                                    VA.getLocVT(),
1425                                    DAG.getUNDEF(VA.getLocVT()),
1426                                    Arg,
1427                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1428                    0);
1429
1430      break;
1431    }
1432    case CCValAssign::BCvt:
1433      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1434      break;
1435    }
1436
1437    if (VA.isRegLoc()) {
1438      // A normal register (sub-) argument. For now we just note it down because
1439      // we want to copy things into registers as late as possible to avoid
1440      // register-pressure (and possibly worse).
1441      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1442      continue;
1443    }
1444
1445    assert(VA.isMemLoc() && "unexpected argument location");
1446
1447    SDValue DstAddr;
1448    MachinePointerInfo DstInfo;
1449    if (IsTailCall) {
1450      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1451                                          VA.getLocVT().getSizeInBits();
1452      OpSize = (OpSize + 7) / 8;
1453      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1454      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1455
1456      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1457      DstInfo = MachinePointerInfo::getFixedStack(FI);
1458
1459      // Make sure any stack arguments overlapping with where we're storing are
1460      // loaded before this eventual operation. Otherwise they'll be clobbered.
1461      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1462    } else {
1463      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1464
1465      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1466      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1467    }
1468
1469    if (Flags.isByVal()) {
1470      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1471      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1472                                  Flags.getByValAlign(),
1473                                  /*isVolatile = */ false,
1474                                  /*alwaysInline = */ false,
1475                                  DstInfo, MachinePointerInfo(0));
1476      MemOpChains.push_back(Cpy);
1477    } else {
1478      // Normal stack argument, put it where it's needed.
1479      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1480                                   false, false, 0);
1481      MemOpChains.push_back(Store);
1482    }
1483  }
1484
1485  // The loads and stores generated above shouldn't clash with each
1486  // other. Combining them with this TokenFactor notes that fact for the rest of
1487  // the backend.
1488  if (!MemOpChains.empty())
1489    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1490                        &MemOpChains[0], MemOpChains.size());
1491
1492  // Most of the rest of the instructions need to be glued together; we don't
1493  // want assignments to actual registers used by a call to be rearranged by a
1494  // well-meaning scheduler.
1495  SDValue InFlag;
1496
1497  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1498    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1499                             RegsToPass[i].second, InFlag);
1500    InFlag = Chain.getValue(1);
1501  }
1502
1503  // The linker is responsible for inserting veneers when necessary to put a
1504  // function call destination in range, so we don't need to bother with a
1505  // wrapper here.
1506  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1507    const GlobalValue *GV = G->getGlobal();
1508    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1509  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1510    const char *Sym = S->getSymbol();
1511    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1512  }
1513
1514  // We don't usually want to end the call-sequence here because we would tidy
1515  // the frame up *after* the call, however in the ABI-changing tail-call case
1516  // we've carefully laid out the parameters so that when sp is reset they'll be
1517  // in the correct location.
1518  if (IsTailCall && !IsSibCall) {
1519    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1520                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1521    InFlag = Chain.getValue(1);
1522  }
1523
1524  // We produce the following DAG scheme for the actual call instruction:
1525  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1526  //
1527  // Most arguments aren't going to be used and just keep the values live as
1528  // far as LLVM is concerned. It's expected to be selected as simply "bl
1529  // callee" (for a direct, non-tail call).
1530  std::vector<SDValue> Ops;
1531  Ops.push_back(Chain);
1532  Ops.push_back(Callee);
1533
1534  if (IsTailCall) {
1535    // Each tail call may have to adjust the stack by a different amount, so
1536    // this information must travel along with the operation for eventual
1537    // consumption by emitEpilogue.
1538    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1539  }
1540
1541  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1542    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1543                                  RegsToPass[i].second.getValueType()));
1544
1545
1546  // Add a register mask operand representing the call-preserved registers. This
1547  // is used later in codegen to constrain register-allocation.
1548  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1549  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1550  assert(Mask && "Missing call preserved mask for calling convention");
1551  Ops.push_back(DAG.getRegisterMask(Mask));
1552
1553  // If we needed glue, put it in as the last argument.
1554  if (InFlag.getNode())
1555    Ops.push_back(InFlag);
1556
1557  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1558
1559  if (IsTailCall) {
1560    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1561  }
1562
1563  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1564  InFlag = Chain.getValue(1);
1565
1566  // Now we can reclaim the stack, just as well do it before working out where
1567  // our return value is.
1568  if (!IsSibCall) {
1569    uint64_t CalleePopBytes
1570      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1571
1572    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1573                               DAG.getIntPtrConstant(CalleePopBytes, true),
1574                               InFlag, dl);
1575    InFlag = Chain.getValue(1);
1576  }
1577
1578  return LowerCallResult(Chain, InFlag, CallConv,
1579                         IsVarArg, Ins, dl, DAG, InVals);
1580}
1581
1582SDValue
1583AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1584                                      CallingConv::ID CallConv, bool IsVarArg,
1585                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1586                                      SDLoc dl, SelectionDAG &DAG,
1587                                      SmallVectorImpl<SDValue> &InVals) const {
1588  // Assign locations to each value returned by this call.
1589  SmallVector<CCValAssign, 16> RVLocs;
1590  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1591                 getTargetMachine(), RVLocs, *DAG.getContext());
1592  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1593
1594  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1595    CCValAssign VA = RVLocs[i];
1596
1597    // Return values that are too big to fit into registers should use an sret
1598    // pointer, so this can be a lot simpler than the main argument code.
1599    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1600
1601    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1602                                     InFlag);
1603    Chain = Val.getValue(1);
1604    InFlag = Val.getValue(2);
1605
1606    switch (VA.getLocInfo()) {
1607    default: llvm_unreachable("Unknown loc info!");
1608    case CCValAssign::Full: break;
1609    case CCValAssign::BCvt:
1610      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1611      break;
1612    case CCValAssign::ZExt:
1613    case CCValAssign::SExt:
1614    case CCValAssign::AExt:
1615      // Floating-point arguments only get extended/truncated if they're going
1616      // in memory, so using the integer operation is acceptable here.
1617      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1618      break;
1619    }
1620
1621    InVals.push_back(Val);
1622  }
1623
1624  return Chain;
1625}
1626
1627bool
1628AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1629                                    CallingConv::ID CalleeCC,
1630                                    bool IsVarArg,
1631                                    bool IsCalleeStructRet,
1632                                    bool IsCallerStructRet,
1633                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1634                                    const SmallVectorImpl<SDValue> &OutVals,
1635                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1636                                    SelectionDAG& DAG) const {
1637
1638  // For CallingConv::C this function knows whether the ABI needs
1639  // changing. That's not true for other conventions so they will have to opt in
1640  // manually.
1641  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1642    return false;
1643
1644  const MachineFunction &MF = DAG.getMachineFunction();
1645  const Function *CallerF = MF.getFunction();
1646  CallingConv::ID CallerCC = CallerF->getCallingConv();
1647  bool CCMatch = CallerCC == CalleeCC;
1648
1649  // Byval parameters hand the function a pointer directly into the stack area
1650  // we want to reuse during a tail call. Working around this *is* possible (see
1651  // X86) but less efficient and uglier in LowerCall.
1652  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1653         e = CallerF->arg_end(); i != e; ++i)
1654    if (i->hasByValAttr())
1655      return false;
1656
1657  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1658    if (IsTailCallConvention(CalleeCC) && CCMatch)
1659      return true;
1660    return false;
1661  }
1662
1663  // Now we search for cases where we can use a tail call without changing the
1664  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1665  // concept.
1666
1667  // I want anyone implementing a new calling convention to think long and hard
1668  // about this assert.
1669  assert((!IsVarArg || CalleeCC == CallingConv::C)
1670         && "Unexpected variadic calling convention");
1671
1672  if (IsVarArg && !Outs.empty()) {
1673    // At least two cases here: if caller is fastcc then we can't have any
1674    // memory arguments (we'd be expected to clean up the stack afterwards). If
1675    // caller is C then we could potentially use its argument area.
1676
1677    // FIXME: for now we take the most conservative of these in both cases:
1678    // disallow all variadic memory operands.
1679    SmallVector<CCValAssign, 16> ArgLocs;
1680    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1681                   getTargetMachine(), ArgLocs, *DAG.getContext());
1682
1683    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1684    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1685      if (!ArgLocs[i].isRegLoc())
1686        return false;
1687  }
1688
1689  // If the calling conventions do not match, then we'd better make sure the
1690  // results are returned in the same way as what the caller expects.
1691  if (!CCMatch) {
1692    SmallVector<CCValAssign, 16> RVLocs1;
1693    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1694                    getTargetMachine(), RVLocs1, *DAG.getContext());
1695    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1696
1697    SmallVector<CCValAssign, 16> RVLocs2;
1698    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1699                    getTargetMachine(), RVLocs2, *DAG.getContext());
1700    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1701
1702    if (RVLocs1.size() != RVLocs2.size())
1703      return false;
1704    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1705      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1706        return false;
1707      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1708        return false;
1709      if (RVLocs1[i].isRegLoc()) {
1710        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1711          return false;
1712      } else {
1713        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1714          return false;
1715      }
1716    }
1717  }
1718
1719  // Nothing more to check if the callee is taking no arguments
1720  if (Outs.empty())
1721    return true;
1722
1723  SmallVector<CCValAssign, 16> ArgLocs;
1724  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1725                 getTargetMachine(), ArgLocs, *DAG.getContext());
1726
1727  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1728
1729  const AArch64MachineFunctionInfo *FuncInfo
1730    = MF.getInfo<AArch64MachineFunctionInfo>();
1731
1732  // If the stack arguments for this call would fit into our own save area then
1733  // the call can be made tail.
1734  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1735}
1736
1737bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1738                                                   bool TailCallOpt) const {
1739  return CallCC == CallingConv::Fast && TailCallOpt;
1740}
1741
1742bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1743  return CallCC == CallingConv::Fast;
1744}
1745
1746SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1747                                                   SelectionDAG &DAG,
1748                                                   MachineFrameInfo *MFI,
1749                                                   int ClobberedFI) const {
1750  SmallVector<SDValue, 8> ArgChains;
1751  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1752  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1753
1754  // Include the original chain at the beginning of the list. When this is
1755  // used by target LowerCall hooks, this helps legalize find the
1756  // CALLSEQ_BEGIN node.
1757  ArgChains.push_back(Chain);
1758
1759  // Add a chain value for each stack argument corresponding
1760  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1761         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1762    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1763      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1764        if (FI->getIndex() < 0) {
1765          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1766          int64_t InLastByte = InFirstByte;
1767          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1768
1769          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1770              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1771            ArgChains.push_back(SDValue(L, 1));
1772        }
1773
1774   // Build a tokenfactor for all the chains.
1775   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1776                      &ArgChains[0], ArgChains.size());
1777}
1778
1779static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1780  switch (CC) {
1781  case ISD::SETEQ:  return A64CC::EQ;
1782  case ISD::SETGT:  return A64CC::GT;
1783  case ISD::SETGE:  return A64CC::GE;
1784  case ISD::SETLT:  return A64CC::LT;
1785  case ISD::SETLE:  return A64CC::LE;
1786  case ISD::SETNE:  return A64CC::NE;
1787  case ISD::SETUGT: return A64CC::HI;
1788  case ISD::SETUGE: return A64CC::HS;
1789  case ISD::SETULT: return A64CC::LO;
1790  case ISD::SETULE: return A64CC::LS;
1791  default: llvm_unreachable("Unexpected condition code");
1792  }
1793}
1794
1795bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1796  // icmp is implemented using adds/subs immediate, which take an unsigned
1797  // 12-bit immediate, optionally shifted left by 12 bits.
1798
1799  // Symmetric by using adds/subs
1800  if (Val < 0)
1801    Val = -Val;
1802
1803  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1804}
1805
1806SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1807                                        ISD::CondCode CC, SDValue &A64cc,
1808                                        SelectionDAG &DAG, SDLoc &dl) const {
1809  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1810    int64_t C = 0;
1811    EVT VT = RHSC->getValueType(0);
1812    bool knownInvalid = false;
1813
1814    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1815    // we can at least get it right.
1816    if (isSignedIntSetCC(CC)) {
1817      C = RHSC->getSExtValue();
1818    } else if (RHSC->getZExtValue() > INT64_MAX) {
1819      // A 64-bit constant not representable by a signed 64-bit integer is far
1820      // too big to fit into a SUBS immediate anyway.
1821      knownInvalid = true;
1822    } else {
1823      C = RHSC->getZExtValue();
1824    }
1825
1826    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1827      // Constant does not fit, try adjusting it by one?
1828      switch (CC) {
1829      default: break;
1830      case ISD::SETLT:
1831      case ISD::SETGE:
1832        if (isLegalICmpImmediate(C-1)) {
1833          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1834          RHS = DAG.getConstant(C-1, VT);
1835        }
1836        break;
1837      case ISD::SETULT:
1838      case ISD::SETUGE:
1839        if (isLegalICmpImmediate(C-1)) {
1840          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1841          RHS = DAG.getConstant(C-1, VT);
1842        }
1843        break;
1844      case ISD::SETLE:
1845      case ISD::SETGT:
1846        if (isLegalICmpImmediate(C+1)) {
1847          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1848          RHS = DAG.getConstant(C+1, VT);
1849        }
1850        break;
1851      case ISD::SETULE:
1852      case ISD::SETUGT:
1853        if (isLegalICmpImmediate(C+1)) {
1854          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1855          RHS = DAG.getConstant(C+1, VT);
1856        }
1857        break;
1858      }
1859    }
1860  }
1861
1862  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1863  A64cc = DAG.getConstant(CondCode, MVT::i32);
1864  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1865                     DAG.getCondCode(CC));
1866}
1867
1868static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1869                                    A64CC::CondCodes &Alternative) {
1870  A64CC::CondCodes CondCode = A64CC::Invalid;
1871  Alternative = A64CC::Invalid;
1872
1873  switch (CC) {
1874  default: llvm_unreachable("Unknown FP condition!");
1875  case ISD::SETEQ:
1876  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1877  case ISD::SETGT:
1878  case ISD::SETOGT: CondCode = A64CC::GT; break;
1879  case ISD::SETGE:
1880  case ISD::SETOGE: CondCode = A64CC::GE; break;
1881  case ISD::SETOLT: CondCode = A64CC::MI; break;
1882  case ISD::SETOLE: CondCode = A64CC::LS; break;
1883  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1884  case ISD::SETO:   CondCode = A64CC::VC; break;
1885  case ISD::SETUO:  CondCode = A64CC::VS; break;
1886  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1887  case ISD::SETUGT: CondCode = A64CC::HI; break;
1888  case ISD::SETUGE: CondCode = A64CC::PL; break;
1889  case ISD::SETLT:
1890  case ISD::SETULT: CondCode = A64CC::LT; break;
1891  case ISD::SETLE:
1892  case ISD::SETULE: CondCode = A64CC::LE; break;
1893  case ISD::SETNE:
1894  case ISD::SETUNE: CondCode = A64CC::NE; break;
1895  }
1896  return CondCode;
1897}
1898
1899SDValue
1900AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1901  SDLoc DL(Op);
1902  EVT PtrVT = getPointerTy();
1903  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1904
1905  switch(getTargetMachine().getCodeModel()) {
1906  case CodeModel::Small:
1907    // The most efficient code is PC-relative anyway for the small memory model,
1908    // so we don't need to worry about relocation model.
1909    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1910                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1911                                                 AArch64II::MO_NO_FLAG),
1912                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1913                                                 AArch64II::MO_LO12),
1914                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1915  case CodeModel::Large:
1916    return DAG.getNode(
1917      AArch64ISD::WrapperLarge, DL, PtrVT,
1918      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1919      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1920      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1921      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1922  default:
1923    llvm_unreachable("Only small and large code models supported now");
1924  }
1925}
1926
1927
1928// (BRCOND chain, val, dest)
1929SDValue
1930AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1931  SDLoc dl(Op);
1932  SDValue Chain = Op.getOperand(0);
1933  SDValue TheBit = Op.getOperand(1);
1934  SDValue DestBB = Op.getOperand(2);
1935
1936  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1937  // that as the consumer we are responsible for ignoring rubbish in higher
1938  // bits.
1939  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1940                       DAG.getConstant(1, MVT::i32));
1941
1942  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1943                               DAG.getConstant(0, TheBit.getValueType()),
1944                               DAG.getCondCode(ISD::SETNE));
1945
1946  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1947                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1948                     DestBB);
1949}
1950
1951// (BR_CC chain, condcode, lhs, rhs, dest)
1952SDValue
1953AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1954  SDLoc dl(Op);
1955  SDValue Chain = Op.getOperand(0);
1956  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1957  SDValue LHS = Op.getOperand(2);
1958  SDValue RHS = Op.getOperand(3);
1959  SDValue DestBB = Op.getOperand(4);
1960
1961  if (LHS.getValueType() == MVT::f128) {
1962    // f128 comparisons are lowered to runtime calls by a routine which sets
1963    // LHS, RHS and CC appropriately for the rest of this function to continue.
1964    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1965
1966    // If softenSetCCOperands returned a scalar, we need to compare the result
1967    // against zero to select between true and false values.
1968    if (RHS.getNode() == 0) {
1969      RHS = DAG.getConstant(0, LHS.getValueType());
1970      CC = ISD::SETNE;
1971    }
1972  }
1973
1974  if (LHS.getValueType().isInteger()) {
1975    SDValue A64cc;
1976
1977    // Integers are handled in a separate function because the combinations of
1978    // immediates and tests can get hairy and we may want to fiddle things.
1979    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1980
1981    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1982                       Chain, CmpOp, A64cc, DestBB);
1983  }
1984
1985  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1986  // conditional branch, hence FPCCToA64CC can set a second test, where either
1987  // passing is sufficient.
1988  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1989  CondCode = FPCCToA64CC(CC, Alternative);
1990  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1991  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1992                              DAG.getCondCode(CC));
1993  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1994                                 Chain, SetCC, A64cc, DestBB);
1995
1996  if (Alternative != A64CC::Invalid) {
1997    A64cc = DAG.getConstant(Alternative, MVT::i32);
1998    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1999                           A64BR_CC, SetCC, A64cc, DestBB);
2000
2001  }
2002
2003  return A64BR_CC;
2004}
2005
2006SDValue
2007AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
2008                                       RTLIB::Libcall Call) const {
2009  ArgListTy Args;
2010  ArgListEntry Entry;
2011  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
2012    EVT ArgVT = Op.getOperand(i).getValueType();
2013    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2014    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
2015    Entry.isSExt = false;
2016    Entry.isZExt = false;
2017    Args.push_back(Entry);
2018  }
2019  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
2020
2021  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2022
2023  // By default, the input chain to this libcall is the entry node of the
2024  // function. If the libcall is going to be emitted as a tail call then
2025  // isUsedByReturnOnly will change it to the right chain if the return
2026  // node which is being folded has a non-entry input chain.
2027  SDValue InChain = DAG.getEntryNode();
2028
2029  // isTailCall may be true since the callee does not reference caller stack
2030  // frame. Check if it's in the right position.
2031  SDValue TCChain = InChain;
2032  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
2033  if (isTailCall)
2034    InChain = TCChain;
2035
2036  TargetLowering::
2037  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
2038                    0, getLibcallCallingConv(Call), isTailCall,
2039                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2040                    Callee, Args, DAG, SDLoc(Op));
2041  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2042
2043  if (!CallInfo.second.getNode())
2044    // It's a tailcall, return the chain (which is the DAG root).
2045    return DAG.getRoot();
2046
2047  return CallInfo.first;
2048}
2049
2050SDValue
2051AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
2052  if (Op.getOperand(0).getValueType() != MVT::f128) {
2053    // It's legal except when f128 is involved
2054    return Op;
2055  }
2056
2057  RTLIB::Libcall LC;
2058  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2059
2060  SDValue SrcVal = Op.getOperand(0);
2061  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
2062                     /*isSigned*/ false, SDLoc(Op)).first;
2063}
2064
2065SDValue
2066AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
2067  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2068
2069  RTLIB::Libcall LC;
2070  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2071
2072  return LowerF128ToCall(Op, DAG, LC);
2073}
2074
2075SDValue
2076AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
2077                                      bool IsSigned) const {
2078  if (Op.getOperand(0).getValueType() != MVT::f128) {
2079    // It's legal except when f128 is involved
2080    return Op;
2081  }
2082
2083  RTLIB::Libcall LC;
2084  if (IsSigned)
2085    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2086  else
2087    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2088
2089  return LowerF128ToCall(Op, DAG, LC);
2090}
2091
2092SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2093  MachineFunction &MF = DAG.getMachineFunction();
2094  MachineFrameInfo *MFI = MF.getFrameInfo();
2095  MFI->setReturnAddressIsTaken(true);
2096
2097  EVT VT = Op.getValueType();
2098  SDLoc dl(Op);
2099  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2100  if (Depth) {
2101    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2102    SDValue Offset = DAG.getConstant(8, MVT::i64);
2103    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2104                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2105                       MachinePointerInfo(), false, false, false, 0);
2106  }
2107
2108  // Return X30, which contains the return address. Mark it an implicit live-in.
2109  unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64));
2110  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64);
2111}
2112
2113
2114SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG)
2115                                              const {
2116  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2117  MFI->setFrameAddressIsTaken(true);
2118
2119  EVT VT = Op.getValueType();
2120  SDLoc dl(Op);
2121  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2122  unsigned FrameReg = AArch64::X29;
2123  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2124  while (Depth--)
2125    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2126                            MachinePointerInfo(),
2127                            false, false, false, 0);
2128  return FrameAddr;
2129}
2130
2131SDValue
2132AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
2133                                                  SelectionDAG &DAG) const {
2134  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
2135  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
2136
2137  EVT PtrVT = getPointerTy();
2138  SDLoc dl(Op);
2139  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2140  const GlobalValue *GV = GN->getGlobal();
2141
2142  SDValue GlobalAddr = DAG.getNode(
2143      AArch64ISD::WrapperLarge, dl, PtrVT,
2144      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
2145      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
2146      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
2147      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
2148
2149  if (GN->getOffset() != 0)
2150    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2151                       DAG.getConstant(GN->getOffset(), PtrVT));
2152
2153  return GlobalAddr;
2154}
2155
2156SDValue
2157AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
2158                                                  SelectionDAG &DAG) const {
2159  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
2160
2161  EVT PtrVT = getPointerTy();
2162  SDLoc dl(Op);
2163  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2164  const GlobalValue *GV = GN->getGlobal();
2165  unsigned Alignment = GV->getAlignment();
2166  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2167  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
2168    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
2169    // to zero when they remain undefined. In PIC mode the GOT can take care of
2170    // this, but in absolute mode we use a constant pool load.
2171    SDValue PoolAddr;
2172    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2173                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2174                                                     AArch64II::MO_NO_FLAG),
2175                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
2176                                                     AArch64II::MO_LO12),
2177                           DAG.getConstant(8, MVT::i32));
2178    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
2179                                     MachinePointerInfo::getConstantPool(),
2180                                     /*isVolatile=*/ false,
2181                                     /*isNonTemporal=*/ true,
2182                                     /*isInvariant=*/ true, 8);
2183    if (GN->getOffset() != 0)
2184      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
2185                         DAG.getConstant(GN->getOffset(), PtrVT));
2186
2187    return GlobalAddr;
2188  }
2189
2190  if (Alignment == 0) {
2191    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
2192    if (GVPtrTy->getElementType()->isSized()) {
2193      Alignment
2194        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
2195    } else {
2196      // Be conservative if we can't guess, not that it really matters:
2197      // functions and labels aren't valid for loads, and the methods used to
2198      // actually calculate an address work with any alignment.
2199      Alignment = 1;
2200    }
2201  }
2202
2203  unsigned char HiFixup, LoFixup;
2204  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
2205
2206  if (UseGOT) {
2207    HiFixup = AArch64II::MO_GOT;
2208    LoFixup = AArch64II::MO_GOT_LO12;
2209    Alignment = 8;
2210  } else {
2211    HiFixup = AArch64II::MO_NO_FLAG;
2212    LoFixup = AArch64II::MO_LO12;
2213  }
2214
2215  // AArch64's small model demands the following sequence:
2216  // ADRP x0, somewhere
2217  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
2218  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2219                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2220                                                             HiFixup),
2221                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2222                                                             LoFixup),
2223                                  DAG.getConstant(Alignment, MVT::i32));
2224
2225  if (UseGOT) {
2226    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2227                            GlobalRef);
2228  }
2229
2230  if (GN->getOffset() != 0)
2231    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2232                       DAG.getConstant(GN->getOffset(), PtrVT));
2233
2234  return GlobalRef;
2235}
2236
2237SDValue
2238AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2239                                             SelectionDAG &DAG) const {
2240  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2241  // we make those distinctions here.
2242
2243  switch (getTargetMachine().getCodeModel()) {
2244  case CodeModel::Small:
2245    return LowerGlobalAddressELFSmall(Op, DAG);
2246  case CodeModel::Large:
2247    return LowerGlobalAddressELFLarge(Op, DAG);
2248  default:
2249    llvm_unreachable("Only small and large code models supported now");
2250  }
2251}
2252
2253SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2254                                                SDValue DescAddr,
2255                                                SDLoc DL,
2256                                                SelectionDAG &DAG) const {
2257  EVT PtrVT = getPointerTy();
2258
2259  // The function we need to call is simply the first entry in the GOT for this
2260  // descriptor, load it in preparation.
2261  SDValue Func, Chain;
2262  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2263                     DescAddr);
2264
2265  // The function takes only one argument: the address of the descriptor itself
2266  // in X0.
2267  SDValue Glue;
2268  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2269  Glue = Chain.getValue(1);
2270
2271  // Finally, there's a special calling-convention which means that the lookup
2272  // must preserve all registers (except X0, obviously).
2273  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2274  const AArch64RegisterInfo *A64RI
2275    = static_cast<const AArch64RegisterInfo *>(TRI);
2276  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2277
2278  // We're now ready to populate the argument list, as with a normal call:
2279  std::vector<SDValue> Ops;
2280  Ops.push_back(Chain);
2281  Ops.push_back(Func);
2282  Ops.push_back(SymAddr);
2283  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2284  Ops.push_back(DAG.getRegisterMask(Mask));
2285  Ops.push_back(Glue);
2286
2287  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2288  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2289                      Ops.size());
2290  Glue = Chain.getValue(1);
2291
2292  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2293  // back to the generic handling code.
2294  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2295}
2296
2297SDValue
2298AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2299                                             SelectionDAG &DAG) const {
2300  assert(getSubtarget()->isTargetELF() &&
2301         "TLS not implemented for non-ELF targets");
2302  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2303         && "TLS only supported in small memory model");
2304  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2305
2306  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2307
2308  SDValue TPOff;
2309  EVT PtrVT = getPointerTy();
2310  SDLoc DL(Op);
2311  const GlobalValue *GV = GA->getGlobal();
2312
2313  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2314
2315  if (Model == TLSModel::InitialExec) {
2316    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2317                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2318                                                   AArch64II::MO_GOTTPREL),
2319                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2320                                                   AArch64II::MO_GOTTPREL_LO12),
2321                        DAG.getConstant(8, MVT::i32));
2322    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2323                        TPOff);
2324  } else if (Model == TLSModel::LocalExec) {
2325    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2326                                               AArch64II::MO_TPREL_G1);
2327    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2328                                               AArch64II::MO_TPREL_G0_NC);
2329
2330    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2331                                       DAG.getTargetConstant(1, MVT::i32)), 0);
2332    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2333                                       TPOff, LoVar,
2334                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2335  } else if (Model == TLSModel::GeneralDynamic) {
2336    // Accesses used in this sequence go via the TLS descriptor which lives in
2337    // the GOT. Prepare an address we can use to handle this.
2338    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2339                                                AArch64II::MO_TLSDESC);
2340    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2341                                                AArch64II::MO_TLSDESC_LO12);
2342    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2343                                   HiDesc, LoDesc,
2344                                   DAG.getConstant(8, MVT::i32));
2345    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2346
2347    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2348  } else if (Model == TLSModel::LocalDynamic) {
2349    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2350    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2351    // the beginning of the module's TLS region, followed by a DTPREL offset
2352    // calculation.
2353
2354    // These accesses will need deduplicating if there's more than one.
2355    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2356      .getInfo<AArch64MachineFunctionInfo>();
2357    MFI->incNumLocalDynamicTLSAccesses();
2358
2359
2360    // Get the location of _TLS_MODULE_BASE_:
2361    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2362                                                AArch64II::MO_TLSDESC);
2363    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2364                                                AArch64II::MO_TLSDESC_LO12);
2365    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2366                                   HiDesc, LoDesc,
2367                                   DAG.getConstant(8, MVT::i32));
2368    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2369
2370    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2371
2372    // Get the variable's offset from _TLS_MODULE_BASE_
2373    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2374                                               AArch64II::MO_DTPREL_G1);
2375    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2376                                               AArch64II::MO_DTPREL_G0_NC);
2377
2378    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2379                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2380    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2381                                       TPOff, LoVar,
2382                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2383  } else
2384      llvm_unreachable("Unsupported TLS access model");
2385
2386
2387  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2388}
2389
2390SDValue
2391AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2392                                      bool IsSigned) const {
2393  if (Op.getValueType() != MVT::f128) {
2394    // Legal for everything except f128.
2395    return Op;
2396  }
2397
2398  RTLIB::Libcall LC;
2399  if (IsSigned)
2400    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2401  else
2402    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2403
2404  return LowerF128ToCall(Op, DAG, LC);
2405}
2406
2407
2408SDValue
2409AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2410  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2411  SDLoc dl(JT);
2412  EVT PtrVT = getPointerTy();
2413
2414  // When compiling PIC, jump tables get put in the code section so a static
2415  // relocation-style is acceptable for both cases.
2416  switch (getTargetMachine().getCodeModel()) {
2417  case CodeModel::Small:
2418    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2419                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2420                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2421                                              AArch64II::MO_LO12),
2422                       DAG.getConstant(1, MVT::i32));
2423  case CodeModel::Large:
2424    return DAG.getNode(
2425      AArch64ISD::WrapperLarge, dl, PtrVT,
2426      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2427      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2428      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2429      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2430  default:
2431    llvm_unreachable("Only small and large code models supported now");
2432  }
2433}
2434
2435// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2436SDValue
2437AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2438  SDLoc dl(Op);
2439  SDValue LHS = Op.getOperand(0);
2440  SDValue RHS = Op.getOperand(1);
2441  SDValue IfTrue = Op.getOperand(2);
2442  SDValue IfFalse = Op.getOperand(3);
2443  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2444
2445  if (LHS.getValueType() == MVT::f128) {
2446    // f128 comparisons are lowered to libcalls, but slot in nicely here
2447    // afterwards.
2448    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2449
2450    // If softenSetCCOperands returned a scalar, we need to compare the result
2451    // against zero to select between true and false values.
2452    if (RHS.getNode() == 0) {
2453      RHS = DAG.getConstant(0, LHS.getValueType());
2454      CC = ISD::SETNE;
2455    }
2456  }
2457
2458  if (LHS.getValueType().isInteger()) {
2459    SDValue A64cc;
2460
2461    // Integers are handled in a separate function because the combinations of
2462    // immediates and tests can get hairy and we may want to fiddle things.
2463    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2464
2465    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2466                       CmpOp, IfTrue, IfFalse, A64cc);
2467  }
2468
2469  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2470  // conditional branch, hence FPCCToA64CC can set a second test, where either
2471  // passing is sufficient.
2472  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2473  CondCode = FPCCToA64CC(CC, Alternative);
2474  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2475  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2476                              DAG.getCondCode(CC));
2477  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2478                                     Op.getValueType(),
2479                                     SetCC, IfTrue, IfFalse, A64cc);
2480
2481  if (Alternative != A64CC::Invalid) {
2482    A64cc = DAG.getConstant(Alternative, MVT::i32);
2483    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2484                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2485
2486  }
2487
2488  return A64SELECT_CC;
2489}
2490
2491// (SELECT testbit, iftrue, iffalse)
2492SDValue
2493AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2494  SDLoc dl(Op);
2495  SDValue TheBit = Op.getOperand(0);
2496  SDValue IfTrue = Op.getOperand(1);
2497  SDValue IfFalse = Op.getOperand(2);
2498
2499  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2500  // that as the consumer we are responsible for ignoring rubbish in higher
2501  // bits.
2502  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2503                       DAG.getConstant(1, MVT::i32));
2504  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2505                               DAG.getConstant(0, TheBit.getValueType()),
2506                               DAG.getCondCode(ISD::SETNE));
2507
2508  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2509                     A64CMP, IfTrue, IfFalse,
2510                     DAG.getConstant(A64CC::NE, MVT::i32));
2511}
2512
2513static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2514  SDLoc DL(Op);
2515  SDValue LHS = Op.getOperand(0);
2516  SDValue RHS = Op.getOperand(1);
2517  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2518  EVT VT = Op.getValueType();
2519  bool Invert = false;
2520  SDValue Op0, Op1;
2521  unsigned Opcode;
2522
2523  if (LHS.getValueType().isInteger()) {
2524
2525    // Attempt to use Vector Integer Compare Mask Test instruction.
2526    // TST = icmp ne (and (op0, op1), zero).
2527    if (CC == ISD::SETNE) {
2528      if (((LHS.getOpcode() == ISD::AND) &&
2529           ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2530          ((RHS.getOpcode() == ISD::AND) &&
2531           ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2532
2533        SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2534        SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2535        SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2536        return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2537      }
2538    }
2539
2540    // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2541    // Note: Compare against Zero does not support unsigned predicates.
2542    if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2543         ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2544        !isUnsignedIntSetCC(CC)) {
2545
2546      // If LHS is the zero value, swap operands and CondCode.
2547      if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2548        CC = getSetCCSwappedOperands(CC);
2549        Op0 = RHS;
2550      } else
2551        Op0 = LHS;
2552
2553      // Ensure valid CondCode for Compare Mask against Zero instruction:
2554      // EQ, GE, GT, LE, LT.
2555      if (ISD::SETNE == CC) {
2556        Invert = true;
2557        CC = ISD::SETEQ;
2558      }
2559
2560      // Using constant type to differentiate integer and FP compares with zero.
2561      Op1 = DAG.getConstant(0, MVT::i32);
2562      Opcode = AArch64ISD::NEON_CMPZ;
2563
2564    } else {
2565      // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2566      // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2567      bool Swap = false;
2568      switch (CC) {
2569      default:
2570        llvm_unreachable("Illegal integer comparison.");
2571      case ISD::SETEQ:
2572      case ISD::SETGT:
2573      case ISD::SETGE:
2574      case ISD::SETUGT:
2575      case ISD::SETUGE:
2576        break;
2577      case ISD::SETNE:
2578        Invert = true;
2579        CC = ISD::SETEQ;
2580        break;
2581      case ISD::SETULT:
2582      case ISD::SETULE:
2583      case ISD::SETLT:
2584      case ISD::SETLE:
2585        Swap = true;
2586        CC = getSetCCSwappedOperands(CC);
2587      }
2588
2589      if (Swap)
2590        std::swap(LHS, RHS);
2591
2592      Opcode = AArch64ISD::NEON_CMP;
2593      Op0 = LHS;
2594      Op1 = RHS;
2595    }
2596
2597    // Generate Compare Mask instr or Compare Mask against Zero instr.
2598    SDValue NeonCmp =
2599        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2600
2601    if (Invert)
2602      NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2603
2604    return NeonCmp;
2605  }
2606
2607  // Now handle Floating Point cases.
2608  // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2609  if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2610      ISD::isBuildVectorAllZeros(LHS.getNode())) {
2611
2612    // If LHS is the zero value, swap operands and CondCode.
2613    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2614      CC = getSetCCSwappedOperands(CC);
2615      Op0 = RHS;
2616    } else
2617      Op0 = LHS;
2618
2619    // Using constant type to differentiate integer and FP compares with zero.
2620    Op1 = DAG.getConstantFP(0, MVT::f32);
2621    Opcode = AArch64ISD::NEON_CMPZ;
2622  } else {
2623    // Attempt to use Vector Floating Point Compare Mask instruction.
2624    Op0 = LHS;
2625    Op1 = RHS;
2626    Opcode = AArch64ISD::NEON_CMP;
2627  }
2628
2629  SDValue NeonCmpAlt;
2630  // Some register compares have to be implemented with swapped CC and operands,
2631  // e.g.: OLT implemented as OGT with swapped operands.
2632  bool SwapIfRegArgs = false;
2633
2634  // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2635  // EQ, GE, GT, LE, LT.
2636  // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2637  switch (CC) {
2638  default:
2639    llvm_unreachable("Illegal FP comparison");
2640  case ISD::SETUNE:
2641  case ISD::SETNE:
2642    Invert = true; // Fallthrough
2643  case ISD::SETOEQ:
2644  case ISD::SETEQ:
2645    CC = ISD::SETEQ;
2646    break;
2647  case ISD::SETOLT:
2648  case ISD::SETLT:
2649    CC = ISD::SETLT;
2650    SwapIfRegArgs = true;
2651    break;
2652  case ISD::SETOGT:
2653  case ISD::SETGT:
2654    CC = ISD::SETGT;
2655    break;
2656  case ISD::SETOLE:
2657  case ISD::SETLE:
2658    CC = ISD::SETLE;
2659    SwapIfRegArgs = true;
2660    break;
2661  case ISD::SETOGE:
2662  case ISD::SETGE:
2663    CC = ISD::SETGE;
2664    break;
2665  case ISD::SETUGE:
2666    Invert = true;
2667    CC = ISD::SETLT;
2668    SwapIfRegArgs = true;
2669    break;
2670  case ISD::SETULE:
2671    Invert = true;
2672    CC = ISD::SETGT;
2673    break;
2674  case ISD::SETUGT:
2675    Invert = true;
2676    CC = ISD::SETLE;
2677    SwapIfRegArgs = true;
2678    break;
2679  case ISD::SETULT:
2680    Invert = true;
2681    CC = ISD::SETGE;
2682    break;
2683  case ISD::SETUEQ:
2684    Invert = true; // Fallthrough
2685  case ISD::SETONE:
2686    // Expand this to (OGT |OLT).
2687    NeonCmpAlt =
2688        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2689    CC = ISD::SETLT;
2690    SwapIfRegArgs = true;
2691    break;
2692  case ISD::SETUO:
2693    Invert = true; // Fallthrough
2694  case ISD::SETO:
2695    // Expand this to (OGE | OLT).
2696    NeonCmpAlt =
2697        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2698    CC = ISD::SETLT;
2699    SwapIfRegArgs = true;
2700    break;
2701  }
2702
2703  if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2704    CC = getSetCCSwappedOperands(CC);
2705    std::swap(Op0, Op1);
2706  }
2707
2708  // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2709  SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2710
2711  if (NeonCmpAlt.getNode())
2712    NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2713
2714  if (Invert)
2715    NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2716
2717  return NeonCmp;
2718}
2719
2720// (SETCC lhs, rhs, condcode)
2721SDValue
2722AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2723  SDLoc dl(Op);
2724  SDValue LHS = Op.getOperand(0);
2725  SDValue RHS = Op.getOperand(1);
2726  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2727  EVT VT = Op.getValueType();
2728
2729  if (VT.isVector())
2730    return LowerVectorSETCC(Op, DAG);
2731
2732  if (LHS.getValueType() == MVT::f128) {
2733    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2734    // for the rest of the function (some i32 or i64 values).
2735    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2736
2737    // If softenSetCCOperands returned a scalar, use it.
2738    if (RHS.getNode() == 0) {
2739      assert(LHS.getValueType() == Op.getValueType() &&
2740             "Unexpected setcc expansion!");
2741      return LHS;
2742    }
2743  }
2744
2745  if (LHS.getValueType().isInteger()) {
2746    SDValue A64cc;
2747
2748    // Integers are handled in a separate function because the combinations of
2749    // immediates and tests can get hairy and we may want to fiddle things.
2750    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2751
2752    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2753                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2754                       A64cc);
2755  }
2756
2757  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2758  // conditional branch, hence FPCCToA64CC can set a second test, where either
2759  // passing is sufficient.
2760  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2761  CondCode = FPCCToA64CC(CC, Alternative);
2762  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2763  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2764                              DAG.getCondCode(CC));
2765  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2766                                     CmpOp, DAG.getConstant(1, VT),
2767                                     DAG.getConstant(0, VT), A64cc);
2768
2769  if (Alternative != A64CC::Invalid) {
2770    A64cc = DAG.getConstant(Alternative, MVT::i32);
2771    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2772                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2773  }
2774
2775  return A64SELECT_CC;
2776}
2777
2778SDValue
2779AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2780  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2781  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2782
2783  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2784  // rather than just 8.
2785  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2786                       Op.getOperand(1), Op.getOperand(2),
2787                       DAG.getConstant(32, MVT::i32), 8, false, false,
2788                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2789}
2790
2791SDValue
2792AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2793  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2794  // Standard, section B.3.
2795  MachineFunction &MF = DAG.getMachineFunction();
2796  AArch64MachineFunctionInfo *FuncInfo
2797    = MF.getInfo<AArch64MachineFunctionInfo>();
2798  SDLoc DL(Op);
2799
2800  SDValue Chain = Op.getOperand(0);
2801  SDValue VAList = Op.getOperand(1);
2802  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2803  SmallVector<SDValue, 4> MemOps;
2804
2805  // void *__stack at offset 0
2806  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2807                                    getPointerTy());
2808  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2809                                MachinePointerInfo(SV), false, false, 0));
2810
2811  // void *__gr_top at offset 8
2812  int GPRSize = FuncInfo->getVariadicGPRSize();
2813  if (GPRSize > 0) {
2814    SDValue GRTop, GRTopAddr;
2815
2816    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2817                            DAG.getConstant(8, getPointerTy()));
2818
2819    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2820    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2821                        DAG.getConstant(GPRSize, getPointerTy()));
2822
2823    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2824                                  MachinePointerInfo(SV, 8),
2825                                  false, false, 0));
2826  }
2827
2828  // void *__vr_top at offset 16
2829  int FPRSize = FuncInfo->getVariadicFPRSize();
2830  if (FPRSize > 0) {
2831    SDValue VRTop, VRTopAddr;
2832    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2833                            DAG.getConstant(16, getPointerTy()));
2834
2835    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2836    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2837                        DAG.getConstant(FPRSize, getPointerTy()));
2838
2839    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2840                                  MachinePointerInfo(SV, 16),
2841                                  false, false, 0));
2842  }
2843
2844  // int __gr_offs at offset 24
2845  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2846                                   DAG.getConstant(24, getPointerTy()));
2847  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2848                                GROffsAddr, MachinePointerInfo(SV, 24),
2849                                false, false, 0));
2850
2851  // int __vr_offs at offset 28
2852  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2853                                   DAG.getConstant(28, getPointerTy()));
2854  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2855                                VROffsAddr, MachinePointerInfo(SV, 28),
2856                                false, false, 0));
2857
2858  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2859                     MemOps.size());
2860}
2861
2862SDValue
2863AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2864  switch (Op.getOpcode()) {
2865  default: llvm_unreachable("Don't know how to custom lower this!");
2866  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2867  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2868  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2869  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2870  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2871  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2872  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2873  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2874  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2875  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2876  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
2877  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2878
2879  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2880  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2881  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2882  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2883  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2884  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2885  case ISD::SELECT: return LowerSELECT(Op, DAG);
2886  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2887  case ISD::SETCC: return LowerSETCC(Op, DAG);
2888  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2889  case ISD::VASTART: return LowerVASTART(Op, DAG);
2890  case ISD::BUILD_VECTOR:
2891    return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
2892  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2893  }
2894
2895  return SDValue();
2896}
2897
2898/// Check if the specified splat value corresponds to a valid vector constant
2899/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI).  If
2900/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2901/// values.
2902static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2903                              unsigned SplatBitSize, SelectionDAG &DAG,
2904                              bool is128Bits, NeonModImmType type, EVT &VT,
2905                              unsigned &Imm, unsigned &OpCmode) {
2906  switch (SplatBitSize) {
2907  default:
2908    llvm_unreachable("unexpected size for isNeonModifiedImm");
2909  case 8: {
2910    if (type != Neon_Mov_Imm)
2911      return false;
2912    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2913    // Neon movi per byte: Op=0, Cmode=1110.
2914    OpCmode = 0xe;
2915    Imm = SplatBits;
2916    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2917    break;
2918  }
2919  case 16: {
2920    // Neon move inst per halfword
2921    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2922    if ((SplatBits & ~0xff) == 0) {
2923      // Value = 0x00nn is 0x00nn LSL 0
2924      // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2925      // bic:  Op=1, Cmode=1001;  orr:  Op=0, Cmode=1001
2926      // Op=x, Cmode=100y
2927      Imm = SplatBits;
2928      OpCmode = 0x8;
2929      break;
2930    }
2931    if ((SplatBits & ~0xff00) == 0) {
2932      // Value = 0xnn00 is 0x00nn LSL 8
2933      // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2934      // bic:  Op=1, Cmode=1011;  orr:  Op=0, Cmode=1011
2935      // Op=x, Cmode=101x
2936      Imm = SplatBits >> 8;
2937      OpCmode = 0xa;
2938      break;
2939    }
2940    // can't handle any other
2941    return false;
2942  }
2943
2944  case 32: {
2945    // First the LSL variants (MSL is unusable by some interested instructions).
2946
2947    // Neon move instr per word, shift zeros
2948    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2949    if ((SplatBits & ~0xff) == 0) {
2950      // Value = 0x000000nn is 0x000000nn LSL 0
2951      // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2952      // bic:  Op=1, Cmode= 0001; orr:  Op=0, Cmode= 0001
2953      // Op=x, Cmode=000x
2954      Imm = SplatBits;
2955      OpCmode = 0;
2956      break;
2957    }
2958    if ((SplatBits & ~0xff00) == 0) {
2959      // Value = 0x0000nn00 is 0x000000nn LSL 8
2960      // movi: Op=0, Cmode= 0010;  mvni: Op=1, Cmode= 0010
2961      // bic:  Op=1, Cmode= 0011;  orr : Op=0, Cmode= 0011
2962      // Op=x, Cmode=001x
2963      Imm = SplatBits >> 8;
2964      OpCmode = 0x2;
2965      break;
2966    }
2967    if ((SplatBits & ~0xff0000) == 0) {
2968      // Value = 0x00nn0000 is 0x000000nn LSL 16
2969      // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2970      // bic:  Op=1, Cmode= 0101; orr:  Op=0, Cmode= 0101
2971      // Op=x, Cmode=010x
2972      Imm = SplatBits >> 16;
2973      OpCmode = 0x4;
2974      break;
2975    }
2976    if ((SplatBits & ~0xff000000) == 0) {
2977      // Value = 0xnn000000 is 0x000000nn LSL 24
2978      // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2979      // bic:  Op=1, Cmode= 0111; orr:  Op=0, Cmode= 0111
2980      // Op=x, Cmode=011x
2981      Imm = SplatBits >> 24;
2982      OpCmode = 0x6;
2983      break;
2984    }
2985
2986    // Now the MSL immediates.
2987
2988    // Neon move instr per word, shift ones
2989    if ((SplatBits & ~0xffff) == 0 &&
2990        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2991      // Value = 0x0000nnff is 0x000000nn MSL 8
2992      // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2993      // Op=x, Cmode=1100
2994      Imm = SplatBits >> 8;
2995      OpCmode = 0xc;
2996      break;
2997    }
2998    if ((SplatBits & ~0xffffff) == 0 &&
2999        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3000      // Value = 0x00nnffff is 0x000000nn MSL 16
3001      // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
3002      // Op=x, Cmode=1101
3003      Imm = SplatBits >> 16;
3004      OpCmode = 0xd;
3005      break;
3006    }
3007    // can't handle any other
3008    return false;
3009  }
3010
3011  case 64: {
3012    if (type != Neon_Mov_Imm)
3013      return false;
3014    // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
3015    // movi Op=1, Cmode=1110.
3016    OpCmode = 0x1e;
3017    uint64_t BitMask = 0xff;
3018    uint64_t Val = 0;
3019    unsigned ImmMask = 1;
3020    Imm = 0;
3021    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3022      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3023        Val |= BitMask;
3024        Imm |= ImmMask;
3025      } else if ((SplatBits & BitMask) != 0) {
3026        return false;
3027      }
3028      BitMask <<= 8;
3029      ImmMask <<= 1;
3030    }
3031    SplatBits = Val;
3032    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3033    break;
3034  }
3035  }
3036
3037  return true;
3038}
3039
3040static SDValue PerformANDCombine(SDNode *N,
3041                                 TargetLowering::DAGCombinerInfo &DCI) {
3042
3043  SelectionDAG &DAG = DCI.DAG;
3044  SDLoc DL(N);
3045  EVT VT = N->getValueType(0);
3046
3047  // We're looking for an SRA/SHL pair which form an SBFX.
3048
3049  if (VT != MVT::i32 && VT != MVT::i64)
3050    return SDValue();
3051
3052  if (!isa<ConstantSDNode>(N->getOperand(1)))
3053    return SDValue();
3054
3055  uint64_t TruncMask = N->getConstantOperandVal(1);
3056  if (!isMask_64(TruncMask))
3057    return SDValue();
3058
3059  uint64_t Width = CountPopulation_64(TruncMask);
3060  SDValue Shift = N->getOperand(0);
3061
3062  if (Shift.getOpcode() != ISD::SRL)
3063    return SDValue();
3064
3065  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3066    return SDValue();
3067  uint64_t LSB = Shift->getConstantOperandVal(1);
3068
3069  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3070    return SDValue();
3071
3072  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
3073                     DAG.getConstant(LSB, MVT::i64),
3074                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3075}
3076
3077/// For a true bitfield insert, the bits getting into that contiguous mask
3078/// should come from the low part of an existing value: they must be formed from
3079/// a compatible SHL operation (unless they're already low). This function
3080/// checks that condition and returns the least-significant bit that's
3081/// intended. If the operation not a field preparation, -1 is returned.
3082static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
3083                            SDValue &MaskedVal, uint64_t Mask) {
3084  if (!isShiftedMask_64(Mask))
3085    return -1;
3086
3087  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
3088  // instruction. BFI will do a left-shift by LSB before applying the mask we've
3089  // spotted, so in general we should pre-emptively "undo" that by making sure
3090  // the incoming bits have had a right-shift applied to them.
3091  //
3092  // This right shift, however, will combine with existing left/right shifts. In
3093  // the simplest case of a completely straight bitfield operation, it will be
3094  // expected to completely cancel out with an existing SHL. More complicated
3095  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
3096  // the BFI.
3097
3098  uint64_t LSB = countTrailingZeros(Mask);
3099  int64_t ShiftRightRequired = LSB;
3100  if (MaskedVal.getOpcode() == ISD::SHL &&
3101      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3102    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
3103    MaskedVal = MaskedVal.getOperand(0);
3104  } else if (MaskedVal.getOpcode() == ISD::SRL &&
3105             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
3106    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
3107    MaskedVal = MaskedVal.getOperand(0);
3108  }
3109
3110  if (ShiftRightRequired > 0)
3111    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
3112                            DAG.getConstant(ShiftRightRequired, MVT::i64));
3113  else if (ShiftRightRequired < 0) {
3114    // We could actually end up with a residual left shift, for example with
3115    // "struc.bitfield = val << 1".
3116    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
3117                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
3118  }
3119
3120  return LSB;
3121}
3122
3123/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
3124/// a mask and an extension. Returns true if a BFI was found and provides
3125/// information on its surroundings.
3126static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
3127                          bool &Extended) {
3128  Extended = false;
3129  if (N.getOpcode() == ISD::ZERO_EXTEND) {
3130    Extended = true;
3131    N = N.getOperand(0);
3132  }
3133
3134  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
3135    Mask = N->getConstantOperandVal(1);
3136    N = N.getOperand(0);
3137  } else {
3138    // Mask is the whole width.
3139    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
3140  }
3141
3142  if (N.getOpcode() == AArch64ISD::BFI) {
3143    BFI = N;
3144    return true;
3145  }
3146
3147  return false;
3148}
3149
3150/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
3151/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
3152/// can often be further combined with a larger mask. Ultimately, we want mask
3153/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
3154static SDValue tryCombineToBFI(SDNode *N,
3155                               TargetLowering::DAGCombinerInfo &DCI,
3156                               const AArch64Subtarget *Subtarget) {
3157  SelectionDAG &DAG = DCI.DAG;
3158  SDLoc DL(N);
3159  EVT VT = N->getValueType(0);
3160
3161  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3162
3163  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
3164  // abandon the effort.
3165  SDValue LHS = N->getOperand(0);
3166  if (LHS.getOpcode() != ISD::AND)
3167    return SDValue();
3168
3169  uint64_t LHSMask;
3170  if (isa<ConstantSDNode>(LHS.getOperand(1)))
3171    LHSMask = LHS->getConstantOperandVal(1);
3172  else
3173    return SDValue();
3174
3175  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
3176  // is or abandon the effort.
3177  SDValue RHS = N->getOperand(1);
3178  if (RHS.getOpcode() != ISD::AND)
3179    return SDValue();
3180
3181  uint64_t RHSMask;
3182  if (isa<ConstantSDNode>(RHS.getOperand(1)))
3183    RHSMask = RHS->getConstantOperandVal(1);
3184  else
3185    return SDValue();
3186
3187  // Can't do anything if the masks are incompatible.
3188  if (LHSMask & RHSMask)
3189    return SDValue();
3190
3191  // Now we need one of the masks to be a contiguous field. Without loss of
3192  // generality that should be the RHS one.
3193  SDValue Bitfield = LHS.getOperand(0);
3194  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
3195    // We know that LHS is a candidate new value, and RHS isn't already a better
3196    // one.
3197    std::swap(LHS, RHS);
3198    std::swap(LHSMask, RHSMask);
3199  }
3200
3201  // We've done our best to put the right operands in the right places, all we
3202  // can do now is check whether a BFI exists.
3203  Bitfield = RHS.getOperand(0);
3204  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
3205  if (LSB == -1)
3206    return SDValue();
3207
3208  uint32_t Width = CountPopulation_64(RHSMask);
3209  assert(Width && "Expected non-zero bitfield width");
3210
3211  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3212                            LHS.getOperand(0), Bitfield,
3213                            DAG.getConstant(LSB, MVT::i64),
3214                            DAG.getConstant(Width, MVT::i64));
3215
3216  // Mask is trivial
3217  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3218    return BFI;
3219
3220  return DAG.getNode(ISD::AND, DL, VT, BFI,
3221                     DAG.getConstant(LHSMask | RHSMask, VT));
3222}
3223
3224/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
3225/// original input. This is surprisingly common because SROA splits things up
3226/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3227/// on the low (say) byte of a word. This is then orred into the rest of the
3228/// word afterwards.
3229///
3230/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3231///
3232/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3233/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3234/// involved.
3235static SDValue tryCombineToLargerBFI(SDNode *N,
3236                                     TargetLowering::DAGCombinerInfo &DCI,
3237                                     const AArch64Subtarget *Subtarget) {
3238  SelectionDAG &DAG = DCI.DAG;
3239  SDLoc DL(N);
3240  EVT VT = N->getValueType(0);
3241
3242  // First job is to hunt for a MaskedBFI on either the left or right. Swap
3243  // operands if it's actually on the right.
3244  SDValue BFI;
3245  SDValue PossExtraMask;
3246  uint64_t ExistingMask = 0;
3247  bool Extended = false;
3248  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3249    PossExtraMask = N->getOperand(1);
3250  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3251    PossExtraMask = N->getOperand(0);
3252  else
3253    return SDValue();
3254
3255  // We can only combine a BFI with another compatible mask.
3256  if (PossExtraMask.getOpcode() != ISD::AND ||
3257      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3258    return SDValue();
3259
3260  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3261
3262  // Masks must be compatible.
3263  if (ExtraMask & ExistingMask)
3264    return SDValue();
3265
3266  SDValue OldBFIVal = BFI.getOperand(0);
3267  SDValue NewBFIVal = BFI.getOperand(1);
3268  if (Extended) {
3269    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3270    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3271    // need to be made compatible.
3272    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3273           && "Invalid types for BFI");
3274    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3275    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3276  }
3277
3278  // We need the MaskedBFI to be combined with a mask of the *same* value.
3279  if (PossExtraMask.getOperand(0) != OldBFIVal)
3280    return SDValue();
3281
3282  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3283                    OldBFIVal, NewBFIVal,
3284                    BFI.getOperand(2), BFI.getOperand(3));
3285
3286  // If the masking is trivial, we don't need to create it.
3287  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3288    return BFI;
3289
3290  return DAG.getNode(ISD::AND, DL, VT, BFI,
3291                     DAG.getConstant(ExtraMask | ExistingMask, VT));
3292}
3293
3294/// An EXTR instruction is made up of two shifts, ORed together. This helper
3295/// searches for and classifies those shifts.
3296static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3297                         bool &FromHi) {
3298  if (N.getOpcode() == ISD::SHL)
3299    FromHi = false;
3300  else if (N.getOpcode() == ISD::SRL)
3301    FromHi = true;
3302  else
3303    return false;
3304
3305  if (!isa<ConstantSDNode>(N.getOperand(1)))
3306    return false;
3307
3308  ShiftAmount = N->getConstantOperandVal(1);
3309  Src = N->getOperand(0);
3310  return true;
3311}
3312
3313/// EXTR instruction extracts a contiguous chunk of bits from two existing
3314/// registers viewed as a high/low pair. This function looks for the pattern:
3315/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3316/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3317/// independent.
3318static SDValue tryCombineToEXTR(SDNode *N,
3319                                TargetLowering::DAGCombinerInfo &DCI) {
3320  SelectionDAG &DAG = DCI.DAG;
3321  SDLoc DL(N);
3322  EVT VT = N->getValueType(0);
3323
3324  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3325
3326  if (VT != MVT::i32 && VT != MVT::i64)
3327    return SDValue();
3328
3329  SDValue LHS;
3330  uint32_t ShiftLHS = 0;
3331  bool LHSFromHi = 0;
3332  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3333    return SDValue();
3334
3335  SDValue RHS;
3336  uint32_t ShiftRHS = 0;
3337  bool RHSFromHi = 0;
3338  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3339    return SDValue();
3340
3341  // If they're both trying to come from the high part of the register, they're
3342  // not really an EXTR.
3343  if (LHSFromHi == RHSFromHi)
3344    return SDValue();
3345
3346  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3347    return SDValue();
3348
3349  if (LHSFromHi) {
3350    std::swap(LHS, RHS);
3351    std::swap(ShiftLHS, ShiftRHS);
3352  }
3353
3354  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3355                     LHS, RHS,
3356                     DAG.getConstant(ShiftRHS, MVT::i64));
3357}
3358
3359/// Target-specific dag combine xforms for ISD::OR
3360static SDValue PerformORCombine(SDNode *N,
3361                                TargetLowering::DAGCombinerInfo &DCI,
3362                                const AArch64Subtarget *Subtarget) {
3363
3364  SelectionDAG &DAG = DCI.DAG;
3365  SDLoc DL(N);
3366  EVT VT = N->getValueType(0);
3367
3368  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3369    return SDValue();
3370
3371  // Attempt to recognise bitfield-insert operations.
3372  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3373  if (Res.getNode())
3374    return Res;
3375
3376  // Attempt to combine an existing MaskedBFI operation into one with a larger
3377  // mask.
3378  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3379  if (Res.getNode())
3380    return Res;
3381
3382  Res = tryCombineToEXTR(N, DCI);
3383  if (Res.getNode())
3384    return Res;
3385
3386  if (!Subtarget->hasNEON())
3387    return SDValue();
3388
3389  // Attempt to use vector immediate-form BSL
3390  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3391
3392  SDValue N0 = N->getOperand(0);
3393  if (N0.getOpcode() != ISD::AND)
3394    return SDValue();
3395
3396  SDValue N1 = N->getOperand(1);
3397  if (N1.getOpcode() != ISD::AND)
3398    return SDValue();
3399
3400  if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3401    APInt SplatUndef;
3402    unsigned SplatBitSize;
3403    bool HasAnyUndefs;
3404    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3405    APInt SplatBits0;
3406    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3407                                      HasAnyUndefs) &&
3408        !HasAnyUndefs) {
3409      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3410      APInt SplatBits1;
3411      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3412                                        HasAnyUndefs) &&
3413          !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3414        // Canonicalize the vector type to make instruction selection simpler.
3415        EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3416        SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3417                                     N0->getOperand(1), N0->getOperand(0),
3418                                     N1->getOperand(0));
3419        return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3420      }
3421    }
3422  }
3423
3424  return SDValue();
3425}
3426
3427/// Target-specific dag combine xforms for ISD::SRA
3428static SDValue PerformSRACombine(SDNode *N,
3429                                 TargetLowering::DAGCombinerInfo &DCI) {
3430
3431  SelectionDAG &DAG = DCI.DAG;
3432  SDLoc DL(N);
3433  EVT VT = N->getValueType(0);
3434
3435  // We're looking for an SRA/SHL pair which form an SBFX.
3436
3437  if (VT != MVT::i32 && VT != MVT::i64)
3438    return SDValue();
3439
3440  if (!isa<ConstantSDNode>(N->getOperand(1)))
3441    return SDValue();
3442
3443  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3444  SDValue Shift = N->getOperand(0);
3445
3446  if (Shift.getOpcode() != ISD::SHL)
3447    return SDValue();
3448
3449  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3450    return SDValue();
3451
3452  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3453  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3454  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3455
3456  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3457    return SDValue();
3458
3459  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3460                     DAG.getConstant(LSB, MVT::i64),
3461                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3462}
3463
3464/// Check if this is a valid build_vector for the immediate operand of
3465/// a vector shift operation, where all the elements of the build_vector
3466/// must have the same constant integer value.
3467static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3468  // Ignore bit_converts.
3469  while (Op.getOpcode() == ISD::BITCAST)
3470    Op = Op.getOperand(0);
3471  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3472  APInt SplatBits, SplatUndef;
3473  unsigned SplatBitSize;
3474  bool HasAnyUndefs;
3475  if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3476                                      HasAnyUndefs, ElementBits) ||
3477      SplatBitSize > ElementBits)
3478    return false;
3479  Cnt = SplatBits.getSExtValue();
3480  return true;
3481}
3482
3483/// Check if this is a valid build_vector for the immediate operand of
3484/// a vector shift left operation.  That value must be in the range:
3485/// 0 <= Value < ElementBits
3486static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
3487  assert(VT.isVector() && "vector shift count is not a vector type");
3488  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3489  if (!getVShiftImm(Op, ElementBits, Cnt))
3490    return false;
3491  return (Cnt >= 0 && Cnt < ElementBits);
3492}
3493
3494/// Check if this is a valid build_vector for the immediate operand of a
3495/// vector shift right operation. The value must be in the range:
3496///   1 <= Value <= ElementBits
3497static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
3498  assert(VT.isVector() && "vector shift count is not a vector type");
3499  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3500  if (!getVShiftImm(Op, ElementBits, Cnt))
3501    return false;
3502  return (Cnt >= 1 && Cnt <= ElementBits);
3503}
3504
3505/// Checks for immediate versions of vector shifts and lowers them.
3506static SDValue PerformShiftCombine(SDNode *N,
3507                                   TargetLowering::DAGCombinerInfo &DCI,
3508                                   const AArch64Subtarget *ST) {
3509  SelectionDAG &DAG = DCI.DAG;
3510  EVT VT = N->getValueType(0);
3511  if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
3512    return PerformSRACombine(N, DCI);
3513
3514  // Nothing to be done for scalar shifts.
3515  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516  if (!VT.isVector() || !TLI.isTypeLegal(VT))
3517    return SDValue();
3518
3519  assert(ST->hasNEON() && "unexpected vector shift");
3520  int64_t Cnt;
3521
3522  switch (N->getOpcode()) {
3523  default:
3524    llvm_unreachable("unexpected shift opcode");
3525
3526  case ISD::SHL:
3527    if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
3528      SDValue RHS =
3529          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3530                      DAG.getConstant(Cnt, MVT::i32));
3531      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
3532    }
3533    break;
3534
3535  case ISD::SRA:
3536  case ISD::SRL:
3537    if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
3538      SDValue RHS =
3539          DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT,
3540                      DAG.getConstant(Cnt, MVT::i32));
3541      return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
3542    }
3543    break;
3544  }
3545
3546  return SDValue();
3547}
3548
3549/// ARM-specific DAG combining for intrinsics.
3550static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3551  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3552
3553  switch (IntNo) {
3554  default:
3555    // Don't do anything for most intrinsics.
3556    break;
3557
3558  case Intrinsic::arm_neon_vqshifts:
3559  case Intrinsic::arm_neon_vqshiftu:
3560    EVT VT = N->getOperand(1).getValueType();
3561    int64_t Cnt;
3562    if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
3563      break;
3564    unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
3565                             ? AArch64ISD::NEON_QSHLs
3566                             : AArch64ISD::NEON_QSHLu;
3567    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
3568                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3569  }
3570
3571  return SDValue();
3572}
3573
3574/// Target-specific DAG combine function for NEON load/store intrinsics
3575/// to merge base address updates.
3576static SDValue CombineBaseUpdate(SDNode *N,
3577                                 TargetLowering::DAGCombinerInfo &DCI) {
3578  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
3579    return SDValue();
3580
3581  SelectionDAG &DAG = DCI.DAG;
3582  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
3583                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
3584  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
3585  SDValue Addr = N->getOperand(AddrOpIdx);
3586
3587  // Search for a use of the address operand that is an increment.
3588  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
3589       UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
3590    SDNode *User = *UI;
3591    if (User->getOpcode() != ISD::ADD ||
3592        UI.getUse().getResNo() != Addr.getResNo())
3593      continue;
3594
3595    // Check that the add is independent of the load/store.  Otherwise, folding
3596    // it would create a cycle.
3597    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
3598      continue;
3599
3600    // Find the new opcode for the updating load/store.
3601    bool isLoad = true;
3602    bool isLaneOp = false;
3603    unsigned NewOpc = 0;
3604    unsigned NumVecs = 0;
3605    if (isIntrinsic) {
3606      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3607      switch (IntNo) {
3608      default: llvm_unreachable("unexpected intrinsic for Neon base update");
3609      case Intrinsic::arm_neon_vld1:       NewOpc = AArch64ISD::NEON_LD1_UPD;
3610        NumVecs = 1; break;
3611      case Intrinsic::arm_neon_vld2:       NewOpc = AArch64ISD::NEON_LD2_UPD;
3612        NumVecs = 2; break;
3613      case Intrinsic::arm_neon_vld3:       NewOpc = AArch64ISD::NEON_LD3_UPD;
3614        NumVecs = 3; break;
3615      case Intrinsic::arm_neon_vld4:       NewOpc = AArch64ISD::NEON_LD4_UPD;
3616        NumVecs = 4; break;
3617      case Intrinsic::arm_neon_vst1:       NewOpc = AArch64ISD::NEON_ST1_UPD;
3618        NumVecs = 1; isLoad = false; break;
3619      case Intrinsic::arm_neon_vst2:       NewOpc = AArch64ISD::NEON_ST2_UPD;
3620        NumVecs = 2; isLoad = false; break;
3621      case Intrinsic::arm_neon_vst3:       NewOpc = AArch64ISD::NEON_ST3_UPD;
3622        NumVecs = 3; isLoad = false; break;
3623      case Intrinsic::arm_neon_vst4:       NewOpc = AArch64ISD::NEON_ST4_UPD;
3624        NumVecs = 4; isLoad = false; break;
3625      case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD;
3626        NumVecs = 2; break;
3627      case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD;
3628        NumVecs = 3; break;
3629      case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD;
3630        NumVecs = 4; break;
3631      case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD;
3632        NumVecs = 2; isLoad = false; break;
3633      case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD;
3634        NumVecs = 3; isLoad = false; break;
3635      case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD;
3636        NumVecs = 4; isLoad = false; break;
3637      case Intrinsic::arm_neon_vld2lane:   NewOpc = AArch64ISD::NEON_LD2LN_UPD;
3638        NumVecs = 2; isLaneOp = true; break;
3639      case Intrinsic::arm_neon_vld3lane:   NewOpc = AArch64ISD::NEON_LD3LN_UPD;
3640        NumVecs = 3; isLaneOp = true; break;
3641      case Intrinsic::arm_neon_vld4lane:   NewOpc = AArch64ISD::NEON_LD4LN_UPD;
3642        NumVecs = 4; isLaneOp = true; break;
3643      case Intrinsic::arm_neon_vst2lane:   NewOpc = AArch64ISD::NEON_ST2LN_UPD;
3644        NumVecs = 2; isLoad = false; isLaneOp = true; break;
3645      case Intrinsic::arm_neon_vst3lane:   NewOpc = AArch64ISD::NEON_ST3LN_UPD;
3646        NumVecs = 3; isLoad = false; isLaneOp = true; break;
3647      case Intrinsic::arm_neon_vst4lane:   NewOpc = AArch64ISD::NEON_ST4LN_UPD;
3648        NumVecs = 4; isLoad = false; isLaneOp = true; break;
3649      }
3650    } else {
3651      isLaneOp = true;
3652      switch (N->getOpcode()) {
3653      default: llvm_unreachable("unexpected opcode for Neon base update");
3654      case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD;
3655        NumVecs = 2; break;
3656      case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD;
3657        NumVecs = 3; break;
3658      case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD;
3659        NumVecs = 4; break;
3660      }
3661    }
3662
3663    // Find the size of memory referenced by the load/store.
3664    EVT VecTy;
3665    if (isLoad)
3666      VecTy = N->getValueType(0);
3667    else
3668      VecTy = N->getOperand(AddrOpIdx + 1).getValueType();
3669    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
3670    if (isLaneOp)
3671      NumBytes /= VecTy.getVectorNumElements();
3672
3673    // If the increment is a constant, it must match the memory ref size.
3674    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
3675    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
3676      uint32_t IncVal = CInc->getZExtValue();
3677      if (IncVal != NumBytes)
3678        continue;
3679      Inc = DAG.getTargetConstant(IncVal, MVT::i32);
3680    }
3681
3682    // Create the new updating load/store node.
3683    EVT Tys[6];
3684    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
3685    unsigned n;
3686    for (n = 0; n < NumResultVecs; ++n)
3687      Tys[n] = VecTy;
3688    Tys[n++] = MVT::i64;
3689    Tys[n] = MVT::Other;
3690    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2);
3691    SmallVector<SDValue, 8> Ops;
3692    Ops.push_back(N->getOperand(0)); // incoming chain
3693    Ops.push_back(N->getOperand(AddrOpIdx));
3694    Ops.push_back(Inc);
3695    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
3696      Ops.push_back(N->getOperand(i));
3697    }
3698    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
3699    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
3700                                           Ops.data(), Ops.size(),
3701                                           MemInt->getMemoryVT(),
3702                                           MemInt->getMemOperand());
3703
3704    // Update the uses.
3705    std::vector<SDValue> NewResults;
3706    for (unsigned i = 0; i < NumResultVecs; ++i) {
3707      NewResults.push_back(SDValue(UpdN.getNode(), i));
3708    }
3709    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
3710    DCI.CombineTo(N, NewResults);
3711    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
3712
3713    break;
3714  }
3715  return SDValue();
3716}
3717
3718/// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1)
3719/// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs.
3720/// If so, combine them to a vldN-dup operation and return true.
3721static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
3722  SelectionDAG &DAG = DCI.DAG;
3723  EVT VT = N->getValueType(0);
3724
3725  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
3726  SDNode *VLD = N->getOperand(0).getNode();
3727  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
3728    return SDValue();
3729  unsigned NumVecs = 0;
3730  unsigned NewOpc = 0;
3731  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
3732  if (IntNo == Intrinsic::arm_neon_vld2lane) {
3733    NumVecs = 2;
3734    NewOpc = AArch64ISD::NEON_LD2DUP;
3735  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
3736    NumVecs = 3;
3737    NewOpc = AArch64ISD::NEON_LD3DUP;
3738  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
3739    NumVecs = 4;
3740    NewOpc = AArch64ISD::NEON_LD4DUP;
3741  } else {
3742    return SDValue();
3743  }
3744
3745  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
3746  // numbers match the load.
3747  unsigned VLDLaneNo =
3748      cast<ConstantSDNode>(VLD->getOperand(NumVecs + 3))->getZExtValue();
3749  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3750       UI != UE; ++UI) {
3751    // Ignore uses of the chain result.
3752    if (UI.getUse().getResNo() == NumVecs)
3753      continue;
3754    SDNode *User = *UI;
3755    if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE ||
3756        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
3757      return SDValue();
3758  }
3759
3760  // Create the vldN-dup node.
3761  EVT Tys[5];
3762  unsigned n;
3763  for (n = 0; n < NumVecs; ++n)
3764    Tys[n] = VT;
3765  Tys[n] = MVT::Other;
3766  SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1);
3767  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
3768  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
3769  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2,
3770                                           VLDMemInt->getMemoryVT(),
3771                                           VLDMemInt->getMemOperand());
3772
3773  // Update the uses.
3774  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
3775       UI != UE; ++UI) {
3776    unsigned ResNo = UI.getUse().getResNo();
3777    // Ignore uses of the chain result.
3778    if (ResNo == NumVecs)
3779      continue;
3780    SDNode *User = *UI;
3781    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
3782  }
3783
3784  // Now the vldN-lane intrinsic is dead except for its chain result.
3785  // Update uses of the chain.
3786  std::vector<SDValue> VLDDupResults;
3787  for (unsigned n = 0; n < NumVecs; ++n)
3788    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
3789  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
3790  DCI.CombineTo(VLD, VLDDupResults);
3791
3792  return SDValue(N, 0);
3793}
3794
3795SDValue
3796AArch64TargetLowering::PerformDAGCombine(SDNode *N,
3797                                         DAGCombinerInfo &DCI) const {
3798  switch (N->getOpcode()) {
3799  default: break;
3800  case ISD::AND: return PerformANDCombine(N, DCI);
3801  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
3802  case ISD::SHL:
3803  case ISD::SRA:
3804  case ISD::SRL:
3805    return PerformShiftCombine(N, DCI, getSubtarget());
3806  case ISD::INTRINSIC_WO_CHAIN:
3807    return PerformIntrinsicCombine(N, DCI.DAG);
3808  case AArch64ISD::NEON_VDUPLANE:
3809    return CombineVLDDUP(N, DCI);
3810  case AArch64ISD::NEON_LD2DUP:
3811  case AArch64ISD::NEON_LD3DUP:
3812  case AArch64ISD::NEON_LD4DUP:
3813    return CombineBaseUpdate(N, DCI);
3814  case ISD::INTRINSIC_VOID:
3815  case ISD::INTRINSIC_W_CHAIN:
3816    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
3817    case Intrinsic::arm_neon_vld1:
3818    case Intrinsic::arm_neon_vld2:
3819    case Intrinsic::arm_neon_vld3:
3820    case Intrinsic::arm_neon_vld4:
3821    case Intrinsic::arm_neon_vst1:
3822    case Intrinsic::arm_neon_vst2:
3823    case Intrinsic::arm_neon_vst3:
3824    case Intrinsic::arm_neon_vst4:
3825    case Intrinsic::arm_neon_vld2lane:
3826    case Intrinsic::arm_neon_vld3lane:
3827    case Intrinsic::arm_neon_vld4lane:
3828    case Intrinsic::aarch64_neon_vld1x2:
3829    case Intrinsic::aarch64_neon_vld1x3:
3830    case Intrinsic::aarch64_neon_vld1x4:
3831    case Intrinsic::aarch64_neon_vst1x2:
3832    case Intrinsic::aarch64_neon_vst1x3:
3833    case Intrinsic::aarch64_neon_vst1x4:
3834    case Intrinsic::arm_neon_vst2lane:
3835    case Intrinsic::arm_neon_vst3lane:
3836    case Intrinsic::arm_neon_vst4lane:
3837      return CombineBaseUpdate(N, DCI);
3838    default:
3839      break;
3840    }
3841  }
3842  return SDValue();
3843}
3844
3845bool
3846AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3847  VT = VT.getScalarType();
3848
3849  if (!VT.isSimple())
3850    return false;
3851
3852  switch (VT.getSimpleVT().SimpleTy) {
3853  case MVT::f16:
3854  case MVT::f32:
3855  case MVT::f64:
3856    return true;
3857  case MVT::f128:
3858    return false;
3859  default:
3860    break;
3861  }
3862
3863  return false;
3864}
3865
3866// Check whether a Build Vector could be presented as Shuffle Vector. If yes,
3867// try to call LowerVECTOR_SHUFFLE to lower it.
3868bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG,
3869                                                 SDValue &Res) const {
3870  SDLoc DL(Op);
3871  EVT VT = Op.getValueType();
3872  unsigned NumElts = VT.getVectorNumElements();
3873  unsigned V0NumElts = 0;
3874  int Mask[16];
3875  SDValue V0, V1;
3876
3877  // Check if all elements are extracted from less than 3 vectors.
3878  for (unsigned i = 0; i < NumElts; ++i) {
3879    SDValue Elt = Op.getOperand(i);
3880    if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
3881      return false;
3882
3883    if (V0.getNode() == 0) {
3884      V0 = Elt.getOperand(0);
3885      V0NumElts = V0.getValueType().getVectorNumElements();
3886    }
3887    if (Elt.getOperand(0) == V0) {
3888      Mask[i] = (cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue());
3889      continue;
3890    } else if (V1.getNode() == 0) {
3891      V1 = Elt.getOperand(0);
3892    }
3893    if (Elt.getOperand(0) == V1) {
3894      unsigned Lane = cast<ConstantSDNode>(Elt->getOperand(1))->getZExtValue();
3895      Mask[i] = (Lane + V0NumElts);
3896      continue;
3897    } else {
3898      return false;
3899    }
3900  }
3901
3902  if (!V1.getNode() && V0NumElts == NumElts * 2) {
3903    V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3904                     DAG.getConstant(NumElts, MVT::i64));
3905    V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0,
3906                     DAG.getConstant(0, MVT::i64));
3907    V0NumElts = V0.getValueType().getVectorNumElements();
3908  }
3909
3910  if (V1.getNode() && NumElts == V0NumElts &&
3911      V0NumElts == V1.getValueType().getVectorNumElements()) {
3912    SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask);
3913    Res = LowerVECTOR_SHUFFLE(Shuffle, DAG);
3914    return true;
3915  } else
3916    return false;
3917}
3918
3919// If this is a case we can't handle, return null and let the default
3920// expansion code take care of it.
3921SDValue
3922AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3923                                         const AArch64Subtarget *ST) const {
3924
3925  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3926  SDLoc DL(Op);
3927  EVT VT = Op.getValueType();
3928
3929  APInt SplatBits, SplatUndef;
3930  unsigned SplatBitSize;
3931  bool HasAnyUndefs;
3932
3933  unsigned UseNeonMov = VT.getSizeInBits() >= 64;
3934
3935  // Note we favor lowering MOVI over MVNI.
3936  // This has implications on the definition of patterns in TableGen to select
3937  // BIC immediate instructions but not ORR immediate instructions.
3938  // If this lowering order is changed, TableGen patterns for BIC immediate and
3939  // ORR immediate instructions have to be updated.
3940  if (UseNeonMov &&
3941      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3942    if (SplatBitSize <= 64) {
3943      // First attempt to use vector immediate-form MOVI
3944      EVT NeonMovVT;
3945      unsigned Imm = 0;
3946      unsigned OpCmode = 0;
3947
3948      if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3949                            SplatBitSize, DAG, VT.is128BitVector(),
3950                            Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3951        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3952        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3953
3954        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3955          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3956                                        ImmVal, OpCmodeVal);
3957          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3958        }
3959      }
3960
3961      // Then attempt to use vector immediate-form MVNI
3962      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3963      if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3964                            DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3965                            Imm, OpCmode)) {
3966        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3967        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3968        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3969          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3970                                        ImmVal, OpCmodeVal);
3971          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3972        }
3973      }
3974
3975      // Attempt to use vector immediate-form FMOV
3976      if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3977          (VT == MVT::v2f64 && SplatBitSize == 64)) {
3978        APFloat RealVal(
3979            SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3980            SplatBits);
3981        uint32_t ImmVal;
3982        if (A64Imms::isFPImm(RealVal, ImmVal)) {
3983          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3984          return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3985        }
3986      }
3987    }
3988  }
3989
3990  unsigned NumElts = VT.getVectorNumElements();
3991  bool isOnlyLowElement = true;
3992  bool usesOnlyOneValue = true;
3993  bool hasDominantValue = false;
3994  bool isConstant = true;
3995
3996  // Map of the number of times a particular SDValue appears in the
3997  // element list.
3998  DenseMap<SDValue, unsigned> ValueCounts;
3999  SDValue Value;
4000  for (unsigned i = 0; i < NumElts; ++i) {
4001    SDValue V = Op.getOperand(i);
4002    if (V.getOpcode() == ISD::UNDEF)
4003      continue;
4004    if (i > 0)
4005      isOnlyLowElement = false;
4006    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4007      isConstant = false;
4008
4009    ValueCounts.insert(std::make_pair(V, 0));
4010    unsigned &Count = ValueCounts[V];
4011
4012    // Is this value dominant? (takes up more than half of the lanes)
4013    if (++Count > (NumElts / 2)) {
4014      hasDominantValue = true;
4015      Value = V;
4016    }
4017  }
4018  if (ValueCounts.size() != 1)
4019    usesOnlyOneValue = false;
4020  if (!Value.getNode() && ValueCounts.size() > 0)
4021    Value = ValueCounts.begin()->first;
4022
4023  if (ValueCounts.size() == 0)
4024    return DAG.getUNDEF(VT);
4025
4026  // Loads are better lowered with insert_vector_elt.
4027  // Keep going if we are hitting this case.
4028  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4029    return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4030
4031  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4032  if (hasDominantValue && EltSize <= 64) {
4033    // Use VDUP for non-constant splats.
4034    if (!isConstant) {
4035      SDValue N;
4036
4037      // If we are DUPing a value that comes directly from a vector, we could
4038      // just use DUPLANE. We can only do this if the lane being extracted
4039      // is at a constant index, as the DUP from lane instructions only have
4040      // constant-index forms.
4041      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4042          isa<ConstantSDNode>(Value->getOperand(1))) {
4043          N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT,
4044                        Value->getOperand(0), Value->getOperand(1));
4045      } else
4046        N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4047
4048      if (!usesOnlyOneValue) {
4049        // The dominant value was splatted as 'N', but we now have to insert
4050        // all differing elements.
4051        for (unsigned I = 0; I < NumElts; ++I) {
4052          if (Op.getOperand(I) == Value)
4053            continue;
4054          SmallVector<SDValue, 3> Ops;
4055          Ops.push_back(N);
4056          Ops.push_back(Op.getOperand(I));
4057          Ops.push_back(DAG.getConstant(I, MVT::i64));
4058          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3);
4059        }
4060      }
4061      return N;
4062    }
4063    if (usesOnlyOneValue && isConstant) {
4064      return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value);
4065    }
4066  }
4067  // If all elements are constants and the case above didn't get hit, fall back
4068  // to the default expansion, which will generate a load from the constant
4069  // pool.
4070  if (isConstant)
4071    return SDValue();
4072
4073  // Try to lower this in lowering ShuffleVector way.
4074  SDValue Shuf;
4075  if (isKnownShuffleVector(Op, DAG, Shuf))
4076    return Shuf;
4077
4078  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
4079  // know the default expansion would otherwise fall back on something even
4080  // worse. For a vector with one or two non-undef values, that's
4081  // scalar_to_vector for the elements followed by a shuffle (provided the
4082  // shuffle is valid for the target) and materialization element by element
4083  // on the stack followed by a load for everything else.
4084  if (!isConstant && !usesOnlyOneValue) {
4085    SDValue Vec = DAG.getUNDEF(VT);
4086    for (unsigned i = 0 ; i < NumElts; ++i) {
4087      SDValue V = Op.getOperand(i);
4088      if (V.getOpcode() == ISD::UNDEF)
4089        continue;
4090      SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
4091      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx);
4092    }
4093    return Vec;
4094  }
4095  return SDValue();
4096}
4097
4098/// isREVMask - Check if a vector shuffle corresponds to a REV
4099/// instruction with the specified blocksize.  (The order of the elements
4100/// within each block of the vector is reversed.)
4101static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4102  assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4103         "Only possible block sizes for REV are: 16, 32, 64");
4104
4105  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4106  if (EltSz == 64)
4107    return false;
4108
4109  unsigned NumElts = VT.getVectorNumElements();
4110  unsigned BlockElts = M[0] + 1;
4111  // If the first shuffle index is UNDEF, be optimistic.
4112  if (M[0] < 0)
4113    BlockElts = BlockSize / EltSz;
4114
4115  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4116    return false;
4117
4118  for (unsigned i = 0; i < NumElts; ++i) {
4119    if (M[i] < 0)
4120      continue; // ignore UNDEF indices
4121    if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4122      return false;
4123  }
4124
4125  return true;
4126}
4127
4128// isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and
4129// TRN instruction.
4130static unsigned isPermuteMask(ArrayRef<int> M, EVT VT) {
4131  unsigned NumElts = VT.getVectorNumElements();
4132  if (NumElts < 4)
4133    return 0;
4134
4135  bool ismatch = true;
4136
4137  // Check UZP1
4138  for (unsigned i = 0; i < NumElts; ++i) {
4139    if ((unsigned)M[i] != i * 2) {
4140      ismatch = false;
4141      break;
4142    }
4143  }
4144  if (ismatch)
4145    return AArch64ISD::NEON_UZP1;
4146
4147  // Check UZP2
4148  ismatch = true;
4149  for (unsigned i = 0; i < NumElts; ++i) {
4150    if ((unsigned)M[i] != i * 2 + 1) {
4151      ismatch = false;
4152      break;
4153    }
4154  }
4155  if (ismatch)
4156    return AArch64ISD::NEON_UZP2;
4157
4158  // Check ZIP1
4159  ismatch = true;
4160  for (unsigned i = 0; i < NumElts; ++i) {
4161    if ((unsigned)M[i] != i / 2 + NumElts * (i % 2)) {
4162      ismatch = false;
4163      break;
4164    }
4165  }
4166  if (ismatch)
4167    return AArch64ISD::NEON_ZIP1;
4168
4169  // Check ZIP2
4170  ismatch = true;
4171  for (unsigned i = 0; i < NumElts; ++i) {
4172    if ((unsigned)M[i] != (NumElts + i) / 2 + NumElts * (i % 2)) {
4173      ismatch = false;
4174      break;
4175    }
4176  }
4177  if (ismatch)
4178    return AArch64ISD::NEON_ZIP2;
4179
4180  // Check TRN1
4181  ismatch = true;
4182  for (unsigned i = 0; i < NumElts; ++i) {
4183    if ((unsigned)M[i] != i + (NumElts - 1) * (i % 2)) {
4184      ismatch = false;
4185      break;
4186    }
4187  }
4188  if (ismatch)
4189    return AArch64ISD::NEON_TRN1;
4190
4191  // Check TRN2
4192  ismatch = true;
4193  for (unsigned i = 0; i < NumElts; ++i) {
4194    if ((unsigned)M[i] != 1 + i + (NumElts - 1) * (i % 2)) {
4195      ismatch = false;
4196      break;
4197    }
4198  }
4199  if (ismatch)
4200    return AArch64ISD::NEON_TRN2;
4201
4202  return 0;
4203}
4204
4205SDValue
4206AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4207                                           SelectionDAG &DAG) const {
4208  SDValue V1 = Op.getOperand(0);
4209  SDValue V2 = Op.getOperand(1);
4210  SDLoc dl(Op);
4211  EVT VT = Op.getValueType();
4212  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4213
4214  // Convert shuffles that are directly supported on NEON to target-specific
4215  // DAG nodes, instead of keeping them as shuffles and matching them again
4216  // during code selection.  This is more efficient and avoids the possibility
4217  // of inconsistencies between legalization and selection.
4218  ArrayRef<int> ShuffleMask = SVN->getMask();
4219
4220  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4221  if (EltSize > 64)
4222    return SDValue();
4223
4224  if (isREVMask(ShuffleMask, VT, 64))
4225    return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1);
4226  if (isREVMask(ShuffleMask, VT, 32))
4227    return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1);
4228  if (isREVMask(ShuffleMask, VT, 16))
4229    return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1);
4230
4231  unsigned ISDNo = isPermuteMask(ShuffleMask, VT);
4232  if (ISDNo)
4233    return DAG.getNode(ISDNo, dl, VT, V1, V2);
4234
4235  // If the element of shuffle mask are all the same constant, we can
4236  // transform it into either NEON_VDUP or NEON_VDUPLANE
4237  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4238    int Lane = SVN->getSplatIndex();
4239    // If this is undef splat, generate it via "just" vdup, if possible.
4240    if (Lane == -1) Lane = 0;
4241
4242    // Test if V1 is a SCALAR_TO_VECTOR.
4243    if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4244      return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0));
4245    }
4246    // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR.
4247    if (V1.getOpcode() == ISD::BUILD_VECTOR) {
4248      bool IsScalarToVector = true;
4249      for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i)
4250        if (V1.getOperand(i).getOpcode() != ISD::UNDEF &&
4251            i != (unsigned)Lane) {
4252          IsScalarToVector = false;
4253          break;
4254        }
4255      if (IsScalarToVector)
4256        return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT,
4257                           V1.getOperand(Lane));
4258    }
4259
4260    // Test if V1 is a EXTRACT_SUBVECTOR.
4261    if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
4262      int ExtLane = cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
4263      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0),
4264                         DAG.getConstant(Lane + ExtLane, MVT::i64));
4265    }
4266    // Test if V1 is a CONCAT_VECTORS.
4267    if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
4268        V1.getOperand(1).getOpcode() == ISD::UNDEF) {
4269      SDValue Op0 = V1.getOperand(0);
4270      assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() &&
4271             "Invalid vector lane access");
4272      return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0,
4273                         DAG.getConstant(Lane, MVT::i64));
4274    }
4275
4276    return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1,
4277                       DAG.getConstant(Lane, MVT::i64));
4278  }
4279
4280  int Length = ShuffleMask.size();
4281  int V1EltNum = V1.getValueType().getVectorNumElements();
4282
4283  // If the number of v1 elements is the same as the number of shuffle mask
4284  // element and the shuffle masks are sequential values, we can transform
4285  // it into NEON_VEXTRACT.
4286  if (V1EltNum == Length) {
4287    // Check if the shuffle mask is sequential.
4288    bool IsSequential = true;
4289    int CurMask = ShuffleMask[0];
4290    for (int I = 0; I < Length; ++I) {
4291      if (ShuffleMask[I] != CurMask) {
4292        IsSequential = false;
4293        break;
4294      }
4295      CurMask++;
4296    }
4297    if (IsSequential) {
4298      assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect");
4299      unsigned VecSize = EltSize * V1EltNum;
4300      unsigned Index = (EltSize/8) * ShuffleMask[0];
4301      if (VecSize == 64 || VecSize == 128)
4302        return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2,
4303                           DAG.getConstant(Index, MVT::i64));
4304    }
4305  }
4306
4307  // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert
4308  // by element from V2 to V1 .
4309  // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a
4310  // better choice to be inserted than V1 as less insert needed, so we count
4311  // element to be inserted for both V1 and V2, and select less one as insert
4312  // target.
4313
4314  // Collect elements need to be inserted and their index.
4315  SmallVector<int, 8> NV1Elt;
4316  SmallVector<int, 8> N1Index;
4317  SmallVector<int, 8> NV2Elt;
4318  SmallVector<int, 8> N2Index;
4319  for (int I = 0; I != Length; ++I) {
4320    if (ShuffleMask[I] != I) {
4321      NV1Elt.push_back(ShuffleMask[I]);
4322      N1Index.push_back(I);
4323    }
4324  }
4325  for (int I = 0; I != Length; ++I) {
4326    if (ShuffleMask[I] != (I + V1EltNum)) {
4327      NV2Elt.push_back(ShuffleMask[I]);
4328      N2Index.push_back(I);
4329    }
4330  }
4331
4332  // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2
4333  // will be inserted.
4334  SDValue InsV = V1;
4335  SmallVector<int, 8> InsMasks = NV1Elt;
4336  SmallVector<int, 8> InsIndex = N1Index;
4337  if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) {
4338    if (NV1Elt.size() > NV2Elt.size()) {
4339      InsV = V2;
4340      InsMasks = NV2Elt;
4341      InsIndex = N2Index;
4342    }
4343  } else {
4344    InsV = DAG.getNode(ISD::UNDEF, dl, VT);
4345  }
4346
4347  for (int I = 0, E = InsMasks.size(); I != E; ++I) {
4348    SDValue ExtV = V1;
4349    int Mask = InsMasks[I];
4350    if (Mask >= V1EltNum) {
4351      ExtV = V2;
4352      Mask -= V1EltNum;
4353    }
4354    // Any value type smaller than i32 is illegal in AArch64, and this lower
4355    // function is called after legalize pass, so we need to legalize
4356    // the result here.
4357    EVT EltVT;
4358    if (VT.getVectorElementType().isFloatingPoint())
4359      EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32;
4360    else
4361      EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32;
4362
4363    if (Mask >= 0) {
4364      ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV,
4365                         DAG.getConstant(Mask, MVT::i64));
4366      InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV,
4367                         DAG.getConstant(InsIndex[I], MVT::i64));
4368    }
4369  }
4370  return InsV;
4371}
4372
4373AArch64TargetLowering::ConstraintType
4374AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4375  if (Constraint.size() == 1) {
4376    switch (Constraint[0]) {
4377    default: break;
4378    case 'w': // An FP/SIMD vector register
4379      return C_RegisterClass;
4380    case 'I': // Constant that can be used with an ADD instruction
4381    case 'J': // Constant that can be used with a SUB instruction
4382    case 'K': // Constant that can be used with a 32-bit logical instruction
4383    case 'L': // Constant that can be used with a 64-bit logical instruction
4384    case 'M': // Constant that can be used as a 32-bit MOV immediate
4385    case 'N': // Constant that can be used as a 64-bit MOV immediate
4386    case 'Y': // Floating point constant zero
4387    case 'Z': // Integer constant zero
4388      return C_Other;
4389    case 'Q': // A memory reference with base register and no offset
4390      return C_Memory;
4391    case 'S': // A symbolic address
4392      return C_Other;
4393    }
4394  }
4395
4396  // FIXME: Ump, Utf, Usa, Ush
4397  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
4398  //      whatever they may be
4399  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
4400  // Usa: An absolute symbolic address
4401  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
4402  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
4403         && Constraint != "Ush" && "Unimplemented constraints");
4404
4405  return TargetLowering::getConstraintType(Constraint);
4406}
4407
4408TargetLowering::ConstraintWeight
4409AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
4410                                                const char *Constraint) const {
4411
4412  llvm_unreachable("Constraint weight unimplemented");
4413}
4414
4415void
4416AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4417                                                    std::string &Constraint,
4418                                                    std::vector<SDValue> &Ops,
4419                                                    SelectionDAG &DAG) const {
4420  SDValue Result(0, 0);
4421
4422  // Only length 1 constraints are C_Other.
4423  if (Constraint.size() != 1) return;
4424
4425  // Only C_Other constraints get lowered like this. That means constants for us
4426  // so return early if there's no hope the constraint can be lowered.
4427
4428  switch(Constraint[0]) {
4429  default: break;
4430  case 'I': case 'J': case 'K': case 'L':
4431  case 'M': case 'N': case 'Z': {
4432    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4433    if (!C)
4434      return;
4435
4436    uint64_t CVal = C->getZExtValue();
4437    uint32_t Bits;
4438
4439    switch (Constraint[0]) {
4440    default:
4441      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
4442      // is a peculiarly useless SUB constraint.
4443      llvm_unreachable("Unimplemented C_Other constraint");
4444    case 'I':
4445      if (CVal <= 0xfff)
4446        break;
4447      return;
4448    case 'K':
4449      if (A64Imms::isLogicalImm(32, CVal, Bits))
4450        break;
4451      return;
4452    case 'L':
4453      if (A64Imms::isLogicalImm(64, CVal, Bits))
4454        break;
4455      return;
4456    case 'Z':
4457      if (CVal == 0)
4458        break;
4459      return;
4460    }
4461
4462    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4463    break;
4464  }
4465  case 'S': {
4466    // An absolute symbolic address or label reference.
4467    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4468      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4469                                          GA->getValueType(0));
4470    } else if (const BlockAddressSDNode *BA
4471                 = dyn_cast<BlockAddressSDNode>(Op)) {
4472      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
4473                                         BA->getValueType(0));
4474    } else if (const ExternalSymbolSDNode *ES
4475                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
4476      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
4477                                           ES->getValueType(0));
4478    } else
4479      return;
4480    break;
4481  }
4482  case 'Y':
4483    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
4484      if (CFP->isExactlyValue(0.0)) {
4485        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
4486        break;
4487      }
4488    }
4489    return;
4490  }
4491
4492  if (Result.getNode()) {
4493    Ops.push_back(Result);
4494    return;
4495  }
4496
4497  // It's an unknown constraint for us. Let generic code have a go.
4498  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4499}
4500
4501std::pair<unsigned, const TargetRegisterClass*>
4502AArch64TargetLowering::getRegForInlineAsmConstraint(
4503                                                  const std::string &Constraint,
4504                                                  MVT VT) const {
4505  if (Constraint.size() == 1) {
4506    switch (Constraint[0]) {
4507    case 'r':
4508      if (VT.getSizeInBits() <= 32)
4509        return std::make_pair(0U, &AArch64::GPR32RegClass);
4510      else if (VT == MVT::i64)
4511        return std::make_pair(0U, &AArch64::GPR64RegClass);
4512      break;
4513    case 'w':
4514      if (VT == MVT::f16)
4515        return std::make_pair(0U, &AArch64::FPR16RegClass);
4516      else if (VT == MVT::f32)
4517        return std::make_pair(0U, &AArch64::FPR32RegClass);
4518      else if (VT.getSizeInBits() == 64)
4519        return std::make_pair(0U, &AArch64::FPR64RegClass);
4520      else if (VT.getSizeInBits() == 128)
4521        return std::make_pair(0U, &AArch64::FPR128RegClass);
4522      break;
4523    }
4524  }
4525
4526  // Use the default implementation in TargetLowering to convert the register
4527  // constraint into a member of a register class.
4528  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4529}
4530
4531/// Represent NEON load and store intrinsics as MemIntrinsicNodes.
4532/// The associated MachineMemOperands record the alignment specified
4533/// in the intrinsic calls.
4534bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
4535                                               const CallInst &I,
4536                                               unsigned Intrinsic) const {
4537  switch (Intrinsic) {
4538  case Intrinsic::arm_neon_vld1:
4539  case Intrinsic::arm_neon_vld2:
4540  case Intrinsic::arm_neon_vld3:
4541  case Intrinsic::arm_neon_vld4:
4542  case Intrinsic::aarch64_neon_vld1x2:
4543  case Intrinsic::aarch64_neon_vld1x3:
4544  case Intrinsic::aarch64_neon_vld1x4:
4545  case Intrinsic::arm_neon_vld2lane:
4546  case Intrinsic::arm_neon_vld3lane:
4547  case Intrinsic::arm_neon_vld4lane: {
4548    Info.opc = ISD::INTRINSIC_W_CHAIN;
4549    // Conservatively set memVT to the entire set of vectors loaded.
4550    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
4551    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4552    Info.ptrVal = I.getArgOperand(0);
4553    Info.offset = 0;
4554    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4555    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4556    Info.vol = false; // volatile loads with NEON intrinsics not supported
4557    Info.readMem = true;
4558    Info.writeMem = false;
4559    return true;
4560  }
4561  case Intrinsic::arm_neon_vst1:
4562  case Intrinsic::arm_neon_vst2:
4563  case Intrinsic::arm_neon_vst3:
4564  case Intrinsic::arm_neon_vst4:
4565  case Intrinsic::aarch64_neon_vst1x2:
4566  case Intrinsic::aarch64_neon_vst1x3:
4567  case Intrinsic::aarch64_neon_vst1x4:
4568  case Intrinsic::arm_neon_vst2lane:
4569  case Intrinsic::arm_neon_vst3lane:
4570  case Intrinsic::arm_neon_vst4lane: {
4571    Info.opc = ISD::INTRINSIC_VOID;
4572    // Conservatively set memVT to the entire set of vectors stored.
4573    unsigned NumElts = 0;
4574    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
4575      Type *ArgTy = I.getArgOperand(ArgI)->getType();
4576      if (!ArgTy->isVectorTy())
4577        break;
4578      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
4579    }
4580    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
4581    Info.ptrVal = I.getArgOperand(0);
4582    Info.offset = 0;
4583    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
4584    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
4585    Info.vol = false; // volatile stores with NEON intrinsics not supported
4586    Info.readMem = false;
4587    Info.writeMem = true;
4588    return true;
4589  }
4590  default:
4591    break;
4592  }
4593
4594  return false;
4595}
4596