1//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the BitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_BITVECTOR_H
15#define LLVM_ADT_BITVECTOR_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstdlib>
24
25namespace llvm {
26
27class BitVector {
28  typedef unsigned long BitWord;
29
30  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31
32  BitWord  *Bits;        // Actual bits.
33  unsigned Size;         // Size of bitvector in bits.
34  unsigned Capacity;     // Size of allocated memory in BitWord.
35
36public:
37  // Encapsulation of a single bit.
38  class reference {
39    friend class BitVector;
40
41    BitWord *WordRef;
42    unsigned BitPos;
43
44    reference();  // Undefined
45
46  public:
47    reference(BitVector &b, unsigned Idx) {
48      WordRef = &b.Bits[Idx / BITWORD_SIZE];
49      BitPos = Idx % BITWORD_SIZE;
50    }
51
52    ~reference() {}
53
54    reference &operator=(reference t) {
55      *this = bool(t);
56      return *this;
57    }
58
59    reference& operator=(bool t) {
60      if (t)
61        *WordRef |= 1L << BitPos;
62      else
63        *WordRef &= ~(1L << BitPos);
64      return *this;
65    }
66
67    operator bool() const {
68      return ((*WordRef) & (1L << BitPos)) ? true : false;
69    }
70  };
71
72
73  /// BitVector default ctor - Creates an empty bitvector.
74  BitVector() : Size(0), Capacity(0) {
75    Bits = 0;
76  }
77
78  /// BitVector ctor - Creates a bitvector of specified number of bits. All
79  /// bits are initialized to the specified value.
80  explicit BitVector(unsigned s, bool t = false) : Size(s) {
81    Capacity = NumBitWords(s);
82    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
83    init_words(Bits, Capacity, t);
84    if (t)
85      clear_unused_bits();
86  }
87
88  /// BitVector copy ctor.
89  BitVector(const BitVector &RHS) : Size(RHS.size()) {
90    if (Size == 0) {
91      Bits = 0;
92      Capacity = 0;
93      return;
94    }
95
96    Capacity = NumBitWords(RHS.size());
97    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
98    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
99  }
100
101#if LLVM_HAS_RVALUE_REFERENCES
102  BitVector(BitVector &&RHS)
103    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
104    RHS.Bits = 0;
105  }
106#endif
107
108  ~BitVector() {
109    std::free(Bits);
110  }
111
112  /// empty - Tests whether there are no bits in this bitvector.
113  bool empty() const { return Size == 0; }
114
115  /// size - Returns the number of bits in this bitvector.
116  unsigned size() const { return Size; }
117
118  /// count - Returns the number of bits which are set.
119  unsigned count() const {
120    unsigned NumBits = 0;
121    for (unsigned i = 0; i < NumBitWords(size()); ++i)
122      if (sizeof(BitWord) == 4)
123        NumBits += CountPopulation_32((uint32_t)Bits[i]);
124      else if (sizeof(BitWord) == 8)
125        NumBits += CountPopulation_64(Bits[i]);
126      else
127        llvm_unreachable("Unsupported!");
128    return NumBits;
129  }
130
131  /// any - Returns true if any bit is set.
132  bool any() const {
133    for (unsigned i = 0; i < NumBitWords(size()); ++i)
134      if (Bits[i] != 0)
135        return true;
136    return false;
137  }
138
139  /// all - Returns true if all bits are set.
140  bool all() const {
141    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
142      if (Bits[i] != ~0UL)
143        return false;
144
145    // If bits remain check that they are ones. The unused bits are always zero.
146    if (unsigned Remainder = Size % BITWORD_SIZE)
147      return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
148
149    return true;
150  }
151
152  /// none - Returns true if none of the bits are set.
153  bool none() const {
154    return !any();
155  }
156
157  /// find_first - Returns the index of the first set bit, -1 if none
158  /// of the bits are set.
159  int find_first() const {
160    for (unsigned i = 0; i < NumBitWords(size()); ++i)
161      if (Bits[i] != 0) {
162        if (sizeof(BitWord) == 4)
163          return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
164        if (sizeof(BitWord) == 8)
165          return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
166        llvm_unreachable("Unsupported!");
167      }
168    return -1;
169  }
170
171  /// find_next - Returns the index of the next set bit following the
172  /// "Prev" bit. Returns -1 if the next set bit is not found.
173  int find_next(unsigned Prev) const {
174    ++Prev;
175    if (Prev >= Size)
176      return -1;
177
178    unsigned WordPos = Prev / BITWORD_SIZE;
179    unsigned BitPos = Prev % BITWORD_SIZE;
180    BitWord Copy = Bits[WordPos];
181    // Mask off previous bits.
182    Copy &= ~0UL << BitPos;
183
184    if (Copy != 0) {
185      if (sizeof(BitWord) == 4)
186        return WordPos * BITWORD_SIZE + countTrailingZeros((uint32_t)Copy);
187      if (sizeof(BitWord) == 8)
188        return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
189      llvm_unreachable("Unsupported!");
190    }
191
192    // Check subsequent words.
193    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
194      if (Bits[i] != 0) {
195        if (sizeof(BitWord) == 4)
196          return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
197        if (sizeof(BitWord) == 8)
198          return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
199        llvm_unreachable("Unsupported!");
200      }
201    return -1;
202  }
203
204  /// clear - Clear all bits.
205  void clear() {
206    Size = 0;
207  }
208
209  /// resize - Grow or shrink the bitvector.
210  void resize(unsigned N, bool t = false) {
211    if (N > Capacity * BITWORD_SIZE) {
212      unsigned OldCapacity = Capacity;
213      grow(N);
214      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
215    }
216
217    // Set any old unused bits that are now included in the BitVector. This
218    // may set bits that are not included in the new vector, but we will clear
219    // them back out below.
220    if (N > Size)
221      set_unused_bits(t);
222
223    // Update the size, and clear out any bits that are now unused
224    unsigned OldSize = Size;
225    Size = N;
226    if (t || N < OldSize)
227      clear_unused_bits();
228  }
229
230  void reserve(unsigned N) {
231    if (N > Capacity * BITWORD_SIZE)
232      grow(N);
233  }
234
235  // Set, reset, flip
236  BitVector &set() {
237    init_words(Bits, Capacity, true);
238    clear_unused_bits();
239    return *this;
240  }
241
242  BitVector &set(unsigned Idx) {
243    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
244    return *this;
245  }
246
247  /// set - Efficiently set a range of bits in [I, E)
248  BitVector &set(unsigned I, unsigned E) {
249    assert(I <= E && "Attempted to set backwards range!");
250    assert(E <= size() && "Attempted to set out-of-bounds range!");
251
252    if (I == E) return *this;
253
254    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
255      BitWord EMask = 1UL << (E % BITWORD_SIZE);
256      BitWord IMask = 1UL << (I % BITWORD_SIZE);
257      BitWord Mask = EMask - IMask;
258      Bits[I / BITWORD_SIZE] |= Mask;
259      return *this;
260    }
261
262    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
263    Bits[I / BITWORD_SIZE] |= PrefixMask;
264    I = RoundUpToAlignment(I, BITWORD_SIZE);
265
266    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
267      Bits[I / BITWORD_SIZE] = ~0UL;
268
269    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
270    Bits[I / BITWORD_SIZE] |= PostfixMask;
271
272    return *this;
273  }
274
275  BitVector &reset() {
276    init_words(Bits, Capacity, false);
277    return *this;
278  }
279
280  BitVector &reset(unsigned Idx) {
281    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
282    return *this;
283  }
284
285  /// reset - Efficiently reset a range of bits in [I, E)
286  BitVector &reset(unsigned I, unsigned E) {
287    assert(I <= E && "Attempted to reset backwards range!");
288    assert(E <= size() && "Attempted to reset out-of-bounds range!");
289
290    if (I == E) return *this;
291
292    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
293      BitWord EMask = 1UL << (E % BITWORD_SIZE);
294      BitWord IMask = 1UL << (I % BITWORD_SIZE);
295      BitWord Mask = EMask - IMask;
296      Bits[I / BITWORD_SIZE] &= ~Mask;
297      return *this;
298    }
299
300    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
301    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
302    I = RoundUpToAlignment(I, BITWORD_SIZE);
303
304    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
305      Bits[I / BITWORD_SIZE] = 0UL;
306
307    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
308    Bits[I / BITWORD_SIZE] &= ~PostfixMask;
309
310    return *this;
311  }
312
313  BitVector &flip() {
314    for (unsigned i = 0; i < NumBitWords(size()); ++i)
315      Bits[i] = ~Bits[i];
316    clear_unused_bits();
317    return *this;
318  }
319
320  BitVector &flip(unsigned Idx) {
321    Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
322    return *this;
323  }
324
325  // Indexing.
326  reference operator[](unsigned Idx) {
327    assert (Idx < Size && "Out-of-bounds Bit access.");
328    return reference(*this, Idx);
329  }
330
331  bool operator[](unsigned Idx) const {
332    assert (Idx < Size && "Out-of-bounds Bit access.");
333    BitWord Mask = 1L << (Idx % BITWORD_SIZE);
334    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
335  }
336
337  bool test(unsigned Idx) const {
338    return (*this)[Idx];
339  }
340
341  /// Test if any common bits are set.
342  bool anyCommon(const BitVector &RHS) const {
343    unsigned ThisWords = NumBitWords(size());
344    unsigned RHSWords  = NumBitWords(RHS.size());
345    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
346      if (Bits[i] & RHS.Bits[i])
347        return true;
348    return false;
349  }
350
351  // Comparison operators.
352  bool operator==(const BitVector &RHS) const {
353    unsigned ThisWords = NumBitWords(size());
354    unsigned RHSWords  = NumBitWords(RHS.size());
355    unsigned i;
356    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
357      if (Bits[i] != RHS.Bits[i])
358        return false;
359
360    // Verify that any extra words are all zeros.
361    if (i != ThisWords) {
362      for (; i != ThisWords; ++i)
363        if (Bits[i])
364          return false;
365    } else if (i != RHSWords) {
366      for (; i != RHSWords; ++i)
367        if (RHS.Bits[i])
368          return false;
369    }
370    return true;
371  }
372
373  bool operator!=(const BitVector &RHS) const {
374    return !(*this == RHS);
375  }
376
377  /// Intersection, union, disjoint union.
378  BitVector &operator&=(const BitVector &RHS) {
379    unsigned ThisWords = NumBitWords(size());
380    unsigned RHSWords  = NumBitWords(RHS.size());
381    unsigned i;
382    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
383      Bits[i] &= RHS.Bits[i];
384
385    // Any bits that are just in this bitvector become zero, because they aren't
386    // in the RHS bit vector.  Any words only in RHS are ignored because they
387    // are already zero in the LHS.
388    for (; i != ThisWords; ++i)
389      Bits[i] = 0;
390
391    return *this;
392  }
393
394  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
395  BitVector &reset(const BitVector &RHS) {
396    unsigned ThisWords = NumBitWords(size());
397    unsigned RHSWords  = NumBitWords(RHS.size());
398    unsigned i;
399    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
400      Bits[i] &= ~RHS.Bits[i];
401    return *this;
402  }
403
404  /// test - Check if (This - RHS) is zero.
405  /// This is the same as reset(RHS) and any().
406  bool test(const BitVector &RHS) const {
407    unsigned ThisWords = NumBitWords(size());
408    unsigned RHSWords  = NumBitWords(RHS.size());
409    unsigned i;
410    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
411      if ((Bits[i] & ~RHS.Bits[i]) != 0)
412        return true;
413
414    for (; i != ThisWords ; ++i)
415      if (Bits[i] != 0)
416        return true;
417
418    return false;
419  }
420
421  BitVector &operator|=(const BitVector &RHS) {
422    if (size() < RHS.size())
423      resize(RHS.size());
424    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
425      Bits[i] |= RHS.Bits[i];
426    return *this;
427  }
428
429  BitVector &operator^=(const BitVector &RHS) {
430    if (size() < RHS.size())
431      resize(RHS.size());
432    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
433      Bits[i] ^= RHS.Bits[i];
434    return *this;
435  }
436
437  // Assignment operator.
438  const BitVector &operator=(const BitVector &RHS) {
439    if (this == &RHS) return *this;
440
441    Size = RHS.size();
442    unsigned RHSWords = NumBitWords(Size);
443    if (Size <= Capacity * BITWORD_SIZE) {
444      if (Size)
445        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
446      clear_unused_bits();
447      return *this;
448    }
449
450    // Grow the bitvector to have enough elements.
451    Capacity = RHSWords;
452    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
453    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
454
455    // Destroy the old bits.
456    std::free(Bits);
457    Bits = NewBits;
458
459    return *this;
460  }
461
462#if LLVM_HAS_RVALUE_REFERENCES
463  const BitVector &operator=(BitVector &&RHS) {
464    if (this == &RHS) return *this;
465
466    std::free(Bits);
467    Bits = RHS.Bits;
468    Size = RHS.Size;
469    Capacity = RHS.Capacity;
470
471    RHS.Bits = 0;
472
473    return *this;
474  }
475#endif
476
477  void swap(BitVector &RHS) {
478    std::swap(Bits, RHS.Bits);
479    std::swap(Size, RHS.Size);
480    std::swap(Capacity, RHS.Capacity);
481  }
482
483  //===--------------------------------------------------------------------===//
484  // Portable bit mask operations.
485  //===--------------------------------------------------------------------===//
486  //
487  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
488  // fixed word size makes it easier to work with literal bit vector constants
489  // in portable code.
490  //
491  // The LSB in each word is the lowest numbered bit.  The size of a portable
492  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
493  // given, the bit mask is assumed to cover the entire BitVector.
494
495  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
496  /// This computes "*this |= Mask".
497  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
498    applyMask<true, false>(Mask, MaskWords);
499  }
500
501  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
502  /// Don't resize. This computes "*this &= ~Mask".
503  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
504    applyMask<false, false>(Mask, MaskWords);
505  }
506
507  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
508  /// Don't resize.  This computes "*this |= ~Mask".
509  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
510    applyMask<true, true>(Mask, MaskWords);
511  }
512
513  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
514  /// Don't resize.  This computes "*this &= Mask".
515  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
516    applyMask<false, true>(Mask, MaskWords);
517  }
518
519private:
520  unsigned NumBitWords(unsigned S) const {
521    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
522  }
523
524  // Set the unused bits in the high words.
525  void set_unused_bits(bool t = true) {
526    //  Set high words first.
527    unsigned UsedWords = NumBitWords(Size);
528    if (Capacity > UsedWords)
529      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
530
531    //  Then set any stray high bits of the last used word.
532    unsigned ExtraBits = Size % BITWORD_SIZE;
533    if (ExtraBits) {
534      BitWord ExtraBitMask = ~0UL << ExtraBits;
535      if (t)
536        Bits[UsedWords-1] |= ExtraBitMask;
537      else
538        Bits[UsedWords-1] &= ~ExtraBitMask;
539    }
540  }
541
542  // Clear the unused bits in the high words.
543  void clear_unused_bits() {
544    set_unused_bits(false);
545  }
546
547  void grow(unsigned NewSize) {
548    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
549    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
550
551    clear_unused_bits();
552  }
553
554  void init_words(BitWord *B, unsigned NumWords, bool t) {
555    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
556  }
557
558  template<bool AddBits, bool InvertMask>
559  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
560    assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
561    MaskWords = std::min(MaskWords, (size() + 31) / 32);
562    const unsigned Scale = BITWORD_SIZE / 32;
563    unsigned i;
564    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
565      BitWord BW = Bits[i];
566      // This inner loop should unroll completely when BITWORD_SIZE > 32.
567      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
568        uint32_t M = *Mask++;
569        if (InvertMask) M = ~M;
570        if (AddBits) BW |=   BitWord(M) << b;
571        else         BW &= ~(BitWord(M) << b);
572      }
573      Bits[i] = BW;
574    }
575    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
576      uint32_t M = *Mask++;
577      if (InvertMask) M = ~M;
578      if (AddBits) Bits[i] |=   BitWord(M) << b;
579      else         Bits[i] &= ~(BitWord(M) << b);
580    }
581    if (AddBits)
582      clear_unused_bits();
583  }
584};
585
586} // End llvm namespace
587
588namespace std {
589  /// Implement std::swap in terms of BitVector swap.
590  inline void
591  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
592    LHS.swap(RHS);
593  }
594}
595
596#endif
597