1/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5   Foundation, Inc.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 59 Temple Place - Suite 330,
22   Boston, MA 02111-1307, USA.  */
23
24#include "defs.h"
25#include "inferior.h"
26#include "target.h"
27#include "gdbcore.h"
28#include "xcoffsolib.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "libbfd.h"		/* For bfd_cache_lookup (FIXME) */
32#include "bfd.h"
33#include "gdb-stabs.h"
34#include "regcache.h"
35#include "arch-utils.h"
36#include "language.h"		/* for local_hex_string().  */
37#include "ppc-tdep.h"
38#include "exec.h"
39
40#include <sys/ptrace.h>
41#include <sys/reg.h>
42
43#include <sys/param.h>
44#include <sys/dir.h>
45#include <sys/user.h>
46#include <signal.h>
47#include <sys/ioctl.h>
48#include <fcntl.h>
49#include <errno.h>
50
51#include <a.out.h>
52#include <sys/file.h>
53#include "gdb_stat.h"
54#include <sys/core.h>
55#define __LDINFO_PTRACE32__	/* for __ld_info32 */
56#define __LDINFO_PTRACE64__	/* for __ld_info64 */
57#include <sys/ldr.h>
58#include <sys/systemcfg.h>
59
60/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
61   debugging 32-bit and 64-bit processes.  Define a typedef and macros for
62   accessing fields in the appropriate structures. */
63
64/* In 32-bit compilation mode (which is the only mode from which ptrace()
65   works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
66
67#ifdef __ld_info32
68# define ARCH3264
69#endif
70
71/* Return whether the current architecture is 64-bit. */
72
73#ifndef ARCH3264
74# define ARCH64() 0
75#else
76# define ARCH64() (DEPRECATED_REGISTER_RAW_SIZE (0) == 8)
77#endif
78
79/* Union of 32-bit and 64-bit ".reg" core file sections. */
80
81typedef union {
82#ifdef ARCH3264
83  struct __context64 r64;
84#else
85  struct mstsave r64;
86#endif
87  struct mstsave r32;
88} CoreRegs;
89
90/* Union of 32-bit and 64-bit versions of ld_info. */
91
92typedef union {
93#ifndef ARCH3264
94  struct ld_info l32;
95  struct ld_info l64;
96#else
97  struct __ld_info32 l32;
98  struct __ld_info64 l64;
99#endif
100} LdInfo;
101
102/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
103   declare and initialize a variable named VAR suitable for use as the arch64
104   parameter to the various LDI_*() macros. */
105
106#ifndef ARCH3264
107# define ARCH64_DECL(var)
108#else
109# define ARCH64_DECL(var) int var = ARCH64 ()
110#endif
111
112/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
113   otherwise.  This technique only works for FIELDs with the same data type in
114   32-bit and 64-bit versions of ld_info. */
115
116#ifndef ARCH3264
117# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
118#else
119# define LDI_FIELD(ldi, arch64, field) \
120  (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
121#endif
122
123/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
124   process otherwise. */
125
126#define LDI_NEXT(ldi, arch64)		LDI_FIELD(ldi, arch64, next)
127#define LDI_FD(ldi, arch64)		LDI_FIELD(ldi, arch64, fd)
128#define LDI_FILENAME(ldi, arch64)	LDI_FIELD(ldi, arch64, filename)
129
130extern struct vmap *map_vmap (bfd * bf, bfd * arch);
131
132static void vmap_exec (void);
133
134static void vmap_ldinfo (LdInfo *);
135
136static struct vmap *add_vmap (LdInfo *);
137
138static int objfile_symbol_add (void *);
139
140static void vmap_symtab (struct vmap *);
141
142static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
143
144static void exec_one_dummy_insn (void);
145
146extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
147
148/* Given REGNO, a gdb register number, return the corresponding
149   number suitable for use as a ptrace() parameter.  Return -1 if
150   there's no suitable mapping.  Also, set the int pointed to by
151   ISFLOAT to indicate whether REGNO is a floating point register.  */
152
153static int
154regmap (int regno, int *isfloat)
155{
156  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
157
158  *isfloat = 0;
159  if (tdep->ppc_gp0_regnum <= regno && regno <= tdep->ppc_gplast_regnum)
160    return regno;
161  else if (FP0_REGNUM <= regno && regno <= FPLAST_REGNUM)
162    {
163      *isfloat = 1;
164      return regno - FP0_REGNUM + FPR0;
165    }
166  else if (regno == PC_REGNUM)
167    return IAR;
168  else if (regno == tdep->ppc_ps_regnum)
169    return MSR;
170  else if (regno == tdep->ppc_cr_regnum)
171    return CR;
172  else if (regno == tdep->ppc_lr_regnum)
173    return LR;
174  else if (regno == tdep->ppc_ctr_regnum)
175    return CTR;
176  else if (regno == tdep->ppc_xer_regnum)
177    return XER;
178  else if (regno == tdep->ppc_fpscr_regnum)
179    return FPSCR;
180  else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
181    return MQ;
182  else
183    return -1;
184}
185
186/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
187
188static int
189rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
190{
191  int ret = ptrace (req, id, (int *)addr, data, buf);
192#if 0
193  printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
194	  req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
195#endif
196  return ret;
197}
198
199/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
200
201static int
202rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
203{
204#ifdef ARCH3264
205  int ret = ptracex (req, id, addr, data, buf);
206#else
207  int ret = 0;
208#endif
209#if 0
210  printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
211	  req, id, addr, data, (unsigned int)buf, ret);
212#endif
213  return ret;
214}
215
216/* Fetch register REGNO from the inferior. */
217
218static void
219fetch_register (int regno)
220{
221  int addr[MAX_REGISTER_SIZE];
222  int nr, isfloat;
223
224  /* Retrieved values may be -1, so infer errors from errno. */
225  errno = 0;
226
227  nr = regmap (regno, &isfloat);
228
229  /* Floating-point registers. */
230  if (isfloat)
231    rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
232
233  /* Bogus register number. */
234  else if (nr < 0)
235    {
236      if (regno >= NUM_REGS)
237	fprintf_unfiltered (gdb_stderr,
238			    "gdb error: register no %d not implemented.\n",
239			    regno);
240      return;
241    }
242
243  /* Fixed-point registers. */
244  else
245    {
246      if (!ARCH64 ())
247	*addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
248      else
249	{
250	  /* PT_READ_GPR requires the buffer parameter to point to long long,
251	     even if the register is really only 32 bits. */
252	  long long buf;
253	  rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
254	  if (DEPRECATED_REGISTER_RAW_SIZE (regno) == 8)
255	    memcpy (addr, &buf, 8);
256	  else
257	    *addr = buf;
258	}
259    }
260
261  if (!errno)
262    supply_register (regno, (char *) addr);
263  else
264    {
265#if 0
266      /* FIXME: this happens 3 times at the start of each 64-bit program. */
267      perror ("ptrace read");
268#endif
269      errno = 0;
270    }
271}
272
273/* Store register REGNO back into the inferior. */
274
275static void
276store_register (int regno)
277{
278  int addr[MAX_REGISTER_SIZE];
279  int nr, isfloat;
280
281  /* Fetch the register's value from the register cache.  */
282  regcache_collect (regno, addr);
283
284  /* -1 can be a successful return value, so infer errors from errno. */
285  errno = 0;
286
287  nr = regmap (regno, &isfloat);
288
289  /* Floating-point registers. */
290  if (isfloat)
291    rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
292
293  /* Bogus register number. */
294  else if (nr < 0)
295    {
296      if (regno >= NUM_REGS)
297	fprintf_unfiltered (gdb_stderr,
298			    "gdb error: register no %d not implemented.\n",
299			    regno);
300    }
301
302  /* Fixed-point registers. */
303  else
304    {
305      if (regno == SP_REGNUM)
306	/* Execute one dummy instruction (which is a breakpoint) in inferior
307	   process to give kernel a chance to do internal housekeeping.
308	   Otherwise the following ptrace(2) calls will mess up user stack
309	   since kernel will get confused about the bottom of the stack
310	   (%sp). */
311	exec_one_dummy_insn ();
312
313      /* The PT_WRITE_GPR operation is rather odd.  For 32-bit inferiors,
314         the register's value is passed by value, but for 64-bit inferiors,
315	 the address of a buffer containing the value is passed.  */
316      if (!ARCH64 ())
317	rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
318      else
319	{
320	  /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
321	     area, even if the register is really only 32 bits. */
322	  long long buf;
323	  if (DEPRECATED_REGISTER_RAW_SIZE (regno) == 8)
324	    memcpy (&buf, addr, 8);
325	  else
326	    buf = *addr;
327	  rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
328	}
329    }
330
331  if (errno)
332    {
333      perror ("ptrace write");
334      errno = 0;
335    }
336}
337
338/* Read from the inferior all registers if REGNO == -1 and just register
339   REGNO otherwise. */
340
341void
342fetch_inferior_registers (int regno)
343{
344  if (regno != -1)
345    fetch_register (regno);
346
347  else
348    {
349      struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
350
351      /* Read 32 general purpose registers.  */
352      for (regno = tdep->ppc_gp0_regnum;
353           regno <= tdep->ppc_gplast_regnum;
354	   regno++)
355	{
356	  fetch_register (regno);
357	}
358
359      /* Read general purpose floating point registers.  */
360      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
361	fetch_register (regno);
362
363      /* Read special registers.  */
364      fetch_register (PC_REGNUM);
365      fetch_register (tdep->ppc_ps_regnum);
366      fetch_register (tdep->ppc_cr_regnum);
367      fetch_register (tdep->ppc_lr_regnum);
368      fetch_register (tdep->ppc_ctr_regnum);
369      fetch_register (tdep->ppc_xer_regnum);
370      fetch_register (tdep->ppc_fpscr_regnum);
371      if (tdep->ppc_mq_regnum >= 0)
372	fetch_register (tdep->ppc_mq_regnum);
373    }
374}
375
376/* Store our register values back into the inferior.
377   If REGNO is -1, do this for all registers.
378   Otherwise, REGNO specifies which register (so we can save time).  */
379
380void
381store_inferior_registers (int regno)
382{
383  if (regno != -1)
384    store_register (regno);
385
386  else
387    {
388      struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
389
390      /* Write general purpose registers first.  */
391      for (regno = tdep->ppc_gp0_regnum;
392           regno <= tdep->ppc_gplast_regnum;
393	   regno++)
394	{
395	  store_register (regno);
396	}
397
398      /* Write floating point registers.  */
399      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
400	store_register (regno);
401
402      /* Write special registers.  */
403      store_register (PC_REGNUM);
404      store_register (tdep->ppc_ps_regnum);
405      store_register (tdep->ppc_cr_regnum);
406      store_register (tdep->ppc_lr_regnum);
407      store_register (tdep->ppc_ctr_regnum);
408      store_register (tdep->ppc_xer_regnum);
409      store_register (tdep->ppc_fpscr_regnum);
410      if (tdep->ppc_mq_regnum >= 0)
411	store_register (tdep->ppc_mq_regnum);
412    }
413}
414
415/* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
416   process, which is 64-bit if ARCH64 and 32-bit otherwise.  Return
417   success. */
418
419static int
420read_word (CORE_ADDR from, int *to, int arch64)
421{
422  /* Retrieved values may be -1, so infer errors from errno. */
423  errno = 0;
424
425  if (arch64)
426    *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
427  else
428    *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
429                    0, NULL);
430
431  return !errno;
432}
433
434/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
435   to debugger memory starting at MYADDR.  Copy to inferior if
436   WRITE is nonzero.
437
438   Returns the length copied, which is either the LEN argument or zero.
439   This xfer function does not do partial moves, since child_ops
440   doesn't allow memory operations to cross below us in the target stack
441   anyway.  */
442
443int
444child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
445		   int write, struct mem_attrib *attrib,
446		   struct target_ops *target)
447{
448  /* Round starting address down to 32-bit word boundary. */
449  int mask = sizeof (int) - 1;
450  CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
451
452  /* Round ending address up to 32-bit word boundary. */
453  int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
454    / sizeof (int);
455
456  /* Allocate word transfer buffer. */
457  /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
458     because it uses alloca to allocate a buffer of arbitrary size.
459     For very large xfers, this could crash GDB's stack.  */
460  int *buf = (int *) alloca (count * sizeof (int));
461
462  int arch64 = ARCH64 ();
463  int i;
464
465  if (!write)
466    {
467      /* Retrieve memory a word at a time. */
468      for (i = 0; i < count; i++, addr += sizeof (int))
469	{
470	  if (!read_word (addr, buf + i, arch64))
471	    return 0;
472	  QUIT;
473	}
474
475      /* Copy memory to supplied buffer. */
476      addr -= count * sizeof (int);
477      memcpy (myaddr, (char *)buf + (memaddr - addr), len);
478    }
479  else
480    {
481      /* Fetch leading memory needed for alignment. */
482      if (addr < memaddr)
483	if (!read_word (addr, buf, arch64))
484	  return 0;
485
486      /* Fetch trailing memory needed for alignment. */
487      if (addr + count * sizeof (int) > memaddr + len)
488	if (!read_word (addr + (count - 1) * sizeof (int),
489                        buf + count - 1, arch64))
490	  return 0;
491
492      /* Copy supplied data into memory buffer. */
493      memcpy ((char *)buf + (memaddr - addr), myaddr, len);
494
495      /* Store memory one word at a time. */
496      for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
497	{
498	  if (arch64)
499	    rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
500	  else
501	    rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
502		      buf[i], NULL);
503
504	  if (errno)
505	    return 0;
506	  QUIT;
507	}
508    }
509
510  return len;
511}
512
513/* Execute one dummy breakpoint instruction.  This way we give the kernel
514   a chance to do some housekeeping and update inferior's internal data,
515   including u_area. */
516
517static void
518exec_one_dummy_insn (void)
519{
520#define	DUMMY_INSN_ADDR	(TEXT_SEGMENT_BASE)+0x200
521
522  char shadow_contents[BREAKPOINT_MAX];		/* Stash old bkpt addr contents */
523  int ret, status, pid;
524  CORE_ADDR prev_pc;
525
526  /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
527     assume that this address will never be executed again by the real
528     code. */
529
530  target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
531
532  /* You might think this could be done with a single ptrace call, and
533     you'd be correct for just about every platform I've ever worked
534     on.  However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
535     the inferior never hits the breakpoint (it's also worth noting
536     powerpc-ibm-aix4.1.3 works correctly).  */
537  prev_pc = read_pc ();
538  write_pc (DUMMY_INSN_ADDR);
539  if (ARCH64 ())
540    ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
541  else
542    ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
543
544  if (ret != 0)
545    perror ("pt_continue");
546
547  do
548    {
549      pid = wait (&status);
550    }
551  while (pid != PIDGET (inferior_ptid));
552
553  write_pc (prev_pc);
554  target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
555}
556
557/* Fetch registers from the register section in core bfd. */
558
559static void
560fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
561		      int which, CORE_ADDR reg_addr)
562{
563  CoreRegs *regs;
564  int regi;
565  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
566
567  if (which != 0)
568    {
569      fprintf_unfiltered
570	(gdb_stderr,
571	 "Gdb error: unknown parameter to fetch_core_registers().\n");
572      return;
573    }
574
575  regs = (CoreRegs *) core_reg_sect;
576
577  /* Put the register values from the core file section in the regcache.  */
578
579  if (ARCH64 ())
580    {
581      for (regi = 0; regi < 32; regi++)
582        supply_register (regi, (char *) &regs->r64.gpr[regi]);
583
584      for (regi = 0; regi < 32; regi++)
585	supply_register (FP0_REGNUM + regi, (char *) &regs->r64.fpr[regi]);
586
587      supply_register (PC_REGNUM, (char *) &regs->r64.iar);
588      supply_register (tdep->ppc_ps_regnum, (char *) &regs->r64.msr);
589      supply_register (tdep->ppc_cr_regnum, (char *) &regs->r64.cr);
590      supply_register (tdep->ppc_lr_regnum, (char *) &regs->r64.lr);
591      supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r64.ctr);
592      supply_register (tdep->ppc_xer_regnum, (char *) &regs->r64.xer);
593      supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r64.fpscr);
594    }
595  else
596    {
597      for (regi = 0; regi < 32; regi++)
598        supply_register (regi, (char *) &regs->r32.gpr[regi]);
599
600      for (regi = 0; regi < 32; regi++)
601	supply_register (FP0_REGNUM + regi, (char *) &regs->r32.fpr[regi]);
602
603      supply_register (PC_REGNUM, (char *) &regs->r32.iar);
604      supply_register (tdep->ppc_ps_regnum, (char *) &regs->r32.msr);
605      supply_register (tdep->ppc_cr_regnum, (char *) &regs->r32.cr);
606      supply_register (tdep->ppc_lr_regnum, (char *) &regs->r32.lr);
607      supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r32.ctr);
608      supply_register (tdep->ppc_xer_regnum, (char *) &regs->r32.xer);
609      supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r32.fpscr);
610      if (tdep->ppc_mq_regnum >= 0)
611	supply_register (tdep->ppc_mq_regnum, (char *) &regs->r32.mq);
612    }
613}
614
615
616/* Copy information about text and data sections from LDI to VP for a 64-bit
617   process if ARCH64 and for a 32-bit process otherwise. */
618
619static void
620vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
621{
622  if (arch64)
623    {
624      vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
625      vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
626      vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
627      vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
628    }
629  else
630    {
631      vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
632      vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
633      vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
634      vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
635    }
636
637  /* The run time loader maps the file header in addition to the text
638     section and returns a pointer to the header in ldinfo_textorg.
639     Adjust the text start address to point to the real start address
640     of the text section.  */
641  vp->tstart += vp->toffs;
642}
643
644/* handle symbol translation on vmapping */
645
646static void
647vmap_symtab (struct vmap *vp)
648{
649  struct objfile *objfile;
650  struct section_offsets *new_offsets;
651  int i;
652
653  objfile = vp->objfile;
654  if (objfile == NULL)
655    {
656      /* OK, it's not an objfile we opened ourselves.
657         Currently, that can only happen with the exec file, so
658         relocate the symbols for the symfile.  */
659      if (symfile_objfile == NULL)
660	return;
661      objfile = symfile_objfile;
662    }
663  else if (!vp->loaded)
664    /* If symbols are not yet loaded, offsets are not yet valid. */
665    return;
666
667  new_offsets =
668    (struct section_offsets *)
669    alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
670
671  for (i = 0; i < objfile->num_sections; ++i)
672    new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
673
674  /* The symbols in the object file are linked to the VMA of the section,
675     relocate them VMA relative.  */
676  new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
677  new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
678  new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
679
680  objfile_relocate (objfile, new_offsets);
681}
682
683/* Add symbols for an objfile.  */
684
685static int
686objfile_symbol_add (void *arg)
687{
688  struct objfile *obj = (struct objfile *) arg;
689
690  syms_from_objfile (obj, NULL, 0, 0, 0, 0);
691  new_symfile_objfile (obj, 0, 0);
692  return 1;
693}
694
695/* Add symbols for a vmap. Return zero upon error.  */
696
697int
698vmap_add_symbols (struct vmap *vp)
699{
700  if (catch_errors (objfile_symbol_add, vp->objfile,
701		    "Error while reading shared library symbols:\n",
702		    RETURN_MASK_ALL))
703    {
704      /* Note this is only done if symbol reading was successful.  */
705      vp->loaded = 1;
706      vmap_symtab (vp);
707      return 1;
708    }
709  return 0;
710}
711
712/* Add a new vmap entry based on ldinfo() information.
713
714   If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
715   core file), the caller should set it to -1, and we will open the file.
716
717   Return the vmap new entry.  */
718
719static struct vmap *
720add_vmap (LdInfo *ldi)
721{
722  bfd *abfd, *last;
723  char *mem, *objname, *filename;
724  struct objfile *obj;
725  struct vmap *vp;
726  int fd;
727  ARCH64_DECL (arch64);
728
729  /* This ldi structure was allocated using alloca() in
730     xcoff_relocate_symtab(). Now we need to have persistent object
731     and member names, so we should save them. */
732
733  filename = LDI_FILENAME (ldi, arch64);
734  mem = filename + strlen (filename) + 1;
735  mem = savestring (mem, strlen (mem));
736  objname = savestring (filename, strlen (filename));
737
738  fd = LDI_FD (ldi, arch64);
739  if (fd < 0)
740    /* Note that this opens it once for every member; a possible
741       enhancement would be to only open it once for every object.  */
742    abfd = bfd_openr (objname, gnutarget);
743  else
744    abfd = bfd_fdopenr (objname, gnutarget, fd);
745  if (!abfd)
746    {
747      warning ("Could not open `%s' as an executable file: %s",
748	       objname, bfd_errmsg (bfd_get_error ()));
749      return NULL;
750    }
751
752  /* make sure we have an object file */
753
754  if (bfd_check_format (abfd, bfd_object))
755    vp = map_vmap (abfd, 0);
756
757  else if (bfd_check_format (abfd, bfd_archive))
758    {
759      last = 0;
760      /* FIXME??? am I tossing BFDs?  bfd? */
761      while ((last = bfd_openr_next_archived_file (abfd, last)))
762	if (DEPRECATED_STREQ (mem, last->filename))
763	  break;
764
765      if (!last)
766	{
767	  warning ("\"%s\": member \"%s\" missing.", objname, mem);
768	  bfd_close (abfd);
769	  return NULL;
770	}
771
772      if (!bfd_check_format (last, bfd_object))
773	{
774	  warning ("\"%s\": member \"%s\" not in executable format: %s.",
775		   objname, mem, bfd_errmsg (bfd_get_error ()));
776	  bfd_close (last);
777	  bfd_close (abfd);
778	  return NULL;
779	}
780
781      vp = map_vmap (last, abfd);
782    }
783  else
784    {
785      warning ("\"%s\": not in executable format: %s.",
786	       objname, bfd_errmsg (bfd_get_error ()));
787      bfd_close (abfd);
788      return NULL;
789    }
790  obj = allocate_objfile (vp->bfd, 0);
791  vp->objfile = obj;
792
793  /* Always add symbols for the main objfile.  */
794  if (vp == vmap || auto_solib_add)
795    vmap_add_symbols (vp);
796  return vp;
797}
798
799/* update VMAP info with ldinfo() information
800   Input is ptr to ldinfo() results.  */
801
802static void
803vmap_ldinfo (LdInfo *ldi)
804{
805  struct stat ii, vi;
806  struct vmap *vp;
807  int got_one, retried;
808  int got_exec_file = 0;
809  uint next;
810  int arch64 = ARCH64 ();
811
812  /* For each *ldi, see if we have a corresponding *vp.
813     If so, update the mapping, and symbol table.
814     If not, add an entry and symbol table.  */
815
816  do
817    {
818      char *name = LDI_FILENAME (ldi, arch64);
819      char *memb = name + strlen (name) + 1;
820      int fd = LDI_FD (ldi, arch64);
821
822      retried = 0;
823
824      if (fstat (fd, &ii) < 0)
825	{
826	  /* The kernel sets ld_info to -1, if the process is still using the
827	     object, and the object is removed. Keep the symbol info for the
828	     removed object and issue a warning.  */
829	  warning ("%s (fd=%d) has disappeared, keeping its symbols",
830		   name, fd);
831	  continue;
832	}
833    retry:
834      for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
835	{
836	  struct objfile *objfile;
837
838	  /* First try to find a `vp', which is the same as in ldinfo.
839	     If not the same, just continue and grep the next `vp'. If same,
840	     relocate its tstart, tend, dstart, dend values. If no such `vp'
841	     found, get out of this for loop, add this ldi entry as a new vmap
842	     (add_vmap) and come back, find its `vp' and so on... */
843
844	  /* The filenames are not always sufficient to match on. */
845
846	  if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
847	      || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
848	    continue;
849
850	  /* See if we are referring to the same file.
851	     We have to check objfile->obfd, symfile.c:reread_symbols might
852	     have updated the obfd after a change.  */
853	  objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
854	  if (objfile == NULL
855	      || objfile->obfd == NULL
856	      || bfd_stat (objfile->obfd, &vi) < 0)
857	    {
858	      warning ("Unable to stat %s, keeping its symbols", name);
859	      continue;
860	    }
861
862	  if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
863	    continue;
864
865	  if (!retried)
866	    close (fd);
867
868	  ++got_one;
869
870	  /* Found a corresponding VMAP.  Remap!  */
871
872	  vmap_secs (vp, ldi, arch64);
873
874	  /* The objfile is only NULL for the exec file.  */
875	  if (vp->objfile == NULL)
876	    got_exec_file = 1;
877
878	  /* relocate symbol table(s). */
879	  vmap_symtab (vp);
880
881	  /* Announce new object files.  Doing this after symbol relocation
882	     makes aix-thread.c's job easier. */
883	  if (target_new_objfile_hook && vp->objfile)
884	    target_new_objfile_hook (vp->objfile);
885
886	  /* There may be more, so we don't break out of the loop.  */
887	}
888
889      /* if there was no matching *vp, we must perforce create the sucker(s) */
890      if (!got_one && !retried)
891	{
892	  add_vmap (ldi);
893	  ++retried;
894	  goto retry;
895	}
896    }
897  while ((next = LDI_NEXT (ldi, arch64))
898	 && (ldi = (void *) (next + (char *) ldi)));
899
900  /* If we don't find the symfile_objfile anywhere in the ldinfo, it
901     is unlikely that the symbol file is relocated to the proper
902     address.  And we might have attached to a process which is
903     running a different copy of the same executable.  */
904  if (symfile_objfile != NULL && !got_exec_file)
905    {
906      warning ("Symbol file %s\nis not mapped; discarding it.\n\
907If in fact that file has symbols which the mapped files listed by\n\
908\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
909\"add-symbol-file\" commands (note that you must take care of relocating\n\
910symbols to the proper address).",
911	       symfile_objfile->name);
912      free_objfile (symfile_objfile);
913      symfile_objfile = NULL;
914    }
915  breakpoint_re_set ();
916}
917
918/* As well as symbol tables, exec_sections need relocation. After
919   the inferior process' termination, there will be a relocated symbol
920   table exist with no corresponding inferior process. At that time, we
921   need to use `exec' bfd, rather than the inferior process's memory space
922   to look up symbols.
923
924   `exec_sections' need to be relocated only once, as long as the exec
925   file remains unchanged.
926 */
927
928static void
929vmap_exec (void)
930{
931  static bfd *execbfd;
932  int i;
933
934  if (execbfd == exec_bfd)
935    return;
936
937  execbfd = exec_bfd;
938
939  if (!vmap || !exec_ops.to_sections)
940    error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
941
942  for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
943    {
944      if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
945	{
946	  exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
947	  exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
948	}
949      else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
950	{
951	  exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
952	  exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
953	}
954      else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
955	{
956	  exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
957	  exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
958	}
959    }
960}
961
962/* Set the current architecture from the host running GDB.  Called when
963   starting a child process. */
964
965static void
966set_host_arch (int pid)
967{
968  enum bfd_architecture arch;
969  unsigned long mach;
970  bfd abfd;
971  struct gdbarch_info info;
972
973  if (__power_rs ())
974    {
975      arch = bfd_arch_rs6000;
976      mach = bfd_mach_rs6k;
977    }
978  else
979    {
980      arch = bfd_arch_powerpc;
981      mach = bfd_mach_ppc;
982    }
983
984  /* FIXME: schauer/2002-02-25:
985     We don't know if we are executing a 32 or 64 bit executable,
986     and have no way to pass the proper word size to rs6000_gdbarch_init.
987     So we have to avoid switching to a new architecture, if the architecture
988     matches already.
989     Blindly calling rs6000_gdbarch_init used to work in older versions of
990     GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
991     determine the wordsize.  */
992  if (exec_bfd)
993    {
994      const struct bfd_arch_info *exec_bfd_arch_info;
995
996      exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
997      if (arch == exec_bfd_arch_info->arch)
998	return;
999    }
1000
1001  bfd_default_set_arch_mach (&abfd, arch, mach);
1002
1003  gdbarch_info_init (&info);
1004  info.bfd_arch_info = bfd_get_arch_info (&abfd);
1005  info.abfd = exec_bfd;
1006
1007  if (!gdbarch_update_p (info))
1008    {
1009      internal_error (__FILE__, __LINE__,
1010		      "set_host_arch: failed to select architecture");
1011    }
1012}
1013
1014
1015/* xcoff_relocate_symtab -      hook for symbol table relocation.
1016   also reads shared libraries.. */
1017
1018void
1019xcoff_relocate_symtab (unsigned int pid)
1020{
1021  int load_segs = 64; /* number of load segments */
1022  int rc;
1023  LdInfo *ldi = NULL;
1024  int arch64 = ARCH64 ();
1025  int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1026  int size;
1027
1028  do
1029    {
1030      size = load_segs * ldisize;
1031      ldi = (void *) xrealloc (ldi, size);
1032
1033#if 0
1034      /* According to my humble theory, AIX has some timing problems and
1035         when the user stack grows, kernel doesn't update stack info in time
1036         and ptrace calls step on user stack. That is why we sleep here a
1037         little, and give kernel to update its internals. */
1038      usleep (36000);
1039#endif
1040
1041      if (arch64)
1042	rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1043      else
1044	rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1045
1046      if (rc == -1)
1047        {
1048          if (errno == ENOMEM)
1049            load_segs *= 2;
1050          else
1051            perror_with_name ("ptrace ldinfo");
1052        }
1053      else
1054	{
1055          vmap_ldinfo (ldi);
1056          vmap_exec (); /* relocate the exec and core sections as well. */
1057	}
1058    } while (rc == -1);
1059  if (ldi)
1060    xfree (ldi);
1061}
1062
1063/* Core file stuff.  */
1064
1065/* Relocate symtabs and read in shared library info, based on symbols
1066   from the core file.  */
1067
1068void
1069xcoff_relocate_core (struct target_ops *target)
1070{
1071  struct bfd_section *ldinfo_sec;
1072  int offset = 0;
1073  LdInfo *ldi;
1074  struct vmap *vp;
1075  int arch64 = ARCH64 ();
1076
1077  /* Size of a struct ld_info except for the variable-length filename. */
1078  int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1079
1080  /* Allocated size of buffer.  */
1081  int buffer_size = nonfilesz;
1082  char *buffer = xmalloc (buffer_size);
1083  struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1084
1085  ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1086  if (ldinfo_sec == NULL)
1087    {
1088    bfd_err:
1089      fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1090			bfd_errmsg (bfd_get_error ()));
1091      do_cleanups (old);
1092      return;
1093    }
1094  do
1095    {
1096      int i;
1097      int names_found = 0;
1098
1099      /* Read in everything but the name.  */
1100      if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1101				    offset, nonfilesz) == 0)
1102	goto bfd_err;
1103
1104      /* Now the name.  */
1105      i = nonfilesz;
1106      do
1107	{
1108	  if (i == buffer_size)
1109	    {
1110	      buffer_size *= 2;
1111	      buffer = xrealloc (buffer, buffer_size);
1112	    }
1113	  if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1114					offset + i, 1) == 0)
1115	    goto bfd_err;
1116	  if (buffer[i++] == '\0')
1117	    ++names_found;
1118	}
1119      while (names_found < 2);
1120
1121      ldi = (LdInfo *) buffer;
1122
1123      /* Can't use a file descriptor from the core file; need to open it.  */
1124      if (arch64)
1125	ldi->l64.ldinfo_fd = -1;
1126      else
1127	ldi->l32.ldinfo_fd = -1;
1128
1129      /* The first ldinfo is for the exec file, allocated elsewhere.  */
1130      if (offset == 0 && vmap != NULL)
1131	vp = vmap;
1132      else
1133	vp = add_vmap (ldi);
1134
1135      /* Process next shared library upon error. */
1136      offset += LDI_NEXT (ldi, arch64);
1137      if (vp == NULL)
1138	continue;
1139
1140      vmap_secs (vp, ldi, arch64);
1141
1142      /* Unless this is the exec file,
1143         add our sections to the section table for the core target.  */
1144      if (vp != vmap)
1145	{
1146	  struct section_table *stp;
1147
1148	  target_resize_to_sections (target, 2);
1149	  stp = target->to_sections_end - 2;
1150
1151	  stp->bfd = vp->bfd;
1152	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1153	  stp->addr = vp->tstart;
1154	  stp->endaddr = vp->tend;
1155	  stp++;
1156
1157	  stp->bfd = vp->bfd;
1158	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1159	  stp->addr = vp->dstart;
1160	  stp->endaddr = vp->dend;
1161	}
1162
1163      vmap_symtab (vp);
1164
1165      if (target_new_objfile_hook && vp != vmap && vp->objfile)
1166	target_new_objfile_hook (vp->objfile);
1167    }
1168  while (LDI_NEXT (ldi, arch64) != 0);
1169  vmap_exec ();
1170  breakpoint_re_set ();
1171  do_cleanups (old);
1172}
1173
1174int
1175kernel_u_size (void)
1176{
1177  return (sizeof (struct user));
1178}
1179
1180/* Under AIX, we have to pass the correct TOC pointer to a function
1181   when calling functions in the inferior.
1182   We try to find the relative toc offset of the objfile containing PC
1183   and add the current load address of the data segment from the vmap.  */
1184
1185static CORE_ADDR
1186find_toc_address (CORE_ADDR pc)
1187{
1188  struct vmap *vp;
1189  extern CORE_ADDR get_toc_offset (struct objfile *);	/* xcoffread.c */
1190
1191  for (vp = vmap; vp; vp = vp->nxt)
1192    {
1193      if (pc >= vp->tstart && pc < vp->tend)
1194	{
1195	  /* vp->objfile is only NULL for the exec file.  */
1196	  return vp->dstart + get_toc_offset (vp->objfile == NULL
1197					      ? symfile_objfile
1198					      : vp->objfile);
1199	}
1200    }
1201  error ("Unable to find TOC entry for pc %s\n", local_hex_string (pc));
1202}
1203
1204/* Register that we are able to handle rs6000 core file formats. */
1205
1206static struct core_fns rs6000_core_fns =
1207{
1208  bfd_target_xcoff_flavour,		/* core_flavour */
1209  default_check_format,			/* check_format */
1210  default_core_sniffer,			/* core_sniffer */
1211  fetch_core_registers,			/* core_read_registers */
1212  NULL					/* next */
1213};
1214
1215void
1216_initialize_core_rs6000 (void)
1217{
1218  /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1219     calling functions in the inferior.  */
1220  rs6000_find_toc_address_hook = find_toc_address;
1221
1222  /* Initialize hook in rs6000-tdep.c to set the current architecture when
1223     starting a child process. */
1224  rs6000_set_host_arch_hook = set_host_arch;
1225
1226  add_core_fns (&rs6000_core_fns);
1227}
1228