1/* Scalar evolution detector.
2   Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3   Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/*
23   Description:
24
25   This pass analyzes the evolution of scalar variables in loop
26   structures.  The algorithm is based on the SSA representation,
27   and on the loop hierarchy tree.  This algorithm is not based on
28   the notion of versions of a variable, as it was the case for the
29   previous implementations of the scalar evolution algorithm, but
30   it assumes that each defined name is unique.
31
32   The notation used in this file is called "chains of recurrences",
33   and has been proposed by Eugene Zima, Robert Van Engelen, and
34   others for describing induction variables in programs.  For example
35   "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36   when entering in the loop_1 and has a step 2 in this loop, in other
37   words "for (b = 0; b < N; b+=2);".  Note that the coefficients of
38   this chain of recurrence (or chrec [shrek]) can contain the name of
39   other variables, in which case they are called parametric chrecs.
40   For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41   is the value of "a".  In most of the cases these parametric chrecs
42   are fully instantiated before their use because symbolic names can
43   hide some difficult cases such as self-references described later
44   (see the Fibonacci example).
45
46   A short sketch of the algorithm is:
47
48   Given a scalar variable to be analyzed, follow the SSA edge to
49   its definition:
50
51   - When the definition is a MODIFY_EXPR: if the right hand side
52   (RHS) of the definition cannot be statically analyzed, the answer
53   of the analyzer is: "don't know".
54   Otherwise, for all the variables that are not yet analyzed in the
55   RHS, try to determine their evolution, and finally try to
56   evaluate the operation of the RHS that gives the evolution
57   function of the analyzed variable.
58
59   - When the definition is a condition-phi-node: determine the
60   evolution function for all the branches of the phi node, and
61   finally merge these evolutions (see chrec_merge).
62
63   - When the definition is a loop-phi-node: determine its initial
64   condition, that is the SSA edge defined in an outer loop, and
65   keep it symbolic.  Then determine the SSA edges that are defined
66   in the body of the loop.  Follow the inner edges until ending on
67   another loop-phi-node of the same analyzed loop.  If the reached
68   loop-phi-node is not the starting loop-phi-node, then we keep
69   this definition under a symbolic form.  If the reached
70   loop-phi-node is the same as the starting one, then we compute a
71   symbolic stride on the return path.  The result is then the
72   symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74   Examples:
75
76   Example 1: Illustration of the basic algorithm.
77
78   | a = 3
79   | loop_1
80   |   b = phi (a, c)
81   |   c = b + 1
82   |   if (c > 10) exit_loop
83   | endloop
84
85   Suppose that we want to know the number of iterations of the
86   loop_1.  The exit_loop is controlled by a COND_EXPR (c > 10).  We
87   ask the scalar evolution analyzer two questions: what's the
88   scalar evolution (scev) of "c", and what's the scev of "10".  For
89   "10" the answer is "10" since it is a scalar constant.  For the
90   scalar variable "c", it follows the SSA edge to its definition,
91   "c = b + 1", and then asks again what's the scev of "b".
92   Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93   c)", where the initial condition is "a", and the inner loop edge
94   is "c".  The initial condition is kept under a symbolic form (it
95   may be the case that the copy constant propagation has done its
96   work and we end with the constant "3" as one of the edges of the
97   loop-phi-node).  The update edge is followed to the end of the
98   loop, and until reaching again the starting loop-phi-node: b -> c
99   -> b.  At this point we have drawn a path from "b" to "b" from
100   which we compute the stride in the loop: in this example it is
101   "+1".  The resulting scev for "b" is "b -> {a, +, 1}_1".  Now
102   that the scev for "b" is known, it is possible to compute the
103   scev for "c", that is "c -> {a + 1, +, 1}_1".  In order to
104   determine the number of iterations in the loop_1, we have to
105   instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106   more analysis the scev {4, +, 1}_1, or in other words, this is
107   the function "f (x) = x + 4", where x is the iteration count of
108   the loop_1.  Now we have to solve the inequality "x + 4 > 10",
109   and take the smallest iteration number for which the loop is
110   exited: x = 7.  This loop runs from x = 0 to x = 7, and in total
111   there are 8 iterations.  In terms of loop normalization, we have
112   created a variable that is implicitly defined, "x" or just "_1",
113   and all the other analyzed scalars of the loop are defined in
114   function of this variable:
115
116   a -> 3
117   b -> {3, +, 1}_1
118   c -> {4, +, 1}_1
119
120   or in terms of a C program:
121
122   | a = 3
123   | for (x = 0; x <= 7; x++)
124   |   {
125   |     b = x + 3
126   |     c = x + 4
127   |   }
128
129   Example 2: Illustration of the algorithm on nested loops.
130
131   | loop_1
132   |   a = phi (1, b)
133   |   c = a + 2
134   |   loop_2  10 times
135   |     b = phi (c, d)
136   |     d = b + 3
137   |   endloop
138   | endloop
139
140   For analyzing the scalar evolution of "a", the algorithm follows
141   the SSA edge into the loop's body: "a -> b".  "b" is an inner
142   loop-phi-node, and its analysis as in Example 1, gives:
143
144   b -> {c, +, 3}_2
145   d -> {c + 3, +, 3}_2
146
147   Following the SSA edge for the initial condition, we end on "c = a
148   + 2", and then on the starting loop-phi-node "a".  From this point,
149   the loop stride is computed: back on "c = a + 2" we get a "+2" in
150   the loop_1, then on the loop-phi-node "b" we compute the overall
151   effect of the inner loop that is "b = c + 30", and we get a "+30"
152   in the loop_1.  That means that the overall stride in loop_1 is
153   equal to "+32", and the result is:
154
155   a -> {1, +, 32}_1
156   c -> {3, +, 32}_1
157
158   Example 3: Higher degree polynomials.
159
160   | loop_1
161   |   a = phi (2, b)
162   |   c = phi (5, d)
163   |   b = a + 1
164   |   d = c + a
165   | endloop
166
167   a -> {2, +, 1}_1
168   b -> {3, +, 1}_1
169   c -> {5, +, a}_1
170   d -> {5 + a, +, a}_1
171
172   instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173   instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175   Example 4: Lucas, Fibonacci, or mixers in general.
176
177   | loop_1
178   |   a = phi (1, b)
179   |   c = phi (3, d)
180   |   b = c
181   |   d = c + a
182   | endloop
183
184   a -> (1, c)_1
185   c -> {3, +, a}_1
186
187   The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188   following semantics: during the first iteration of the loop_1, the
189   variable contains the value 1, and then it contains the value "c".
190   Note that this syntax is close to the syntax of the loop-phi-node:
191   "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193   The symbolic chrec representation contains all the semantics of the
194   original code.  What is more difficult is to use this information.
195
196   Example 5: Flip-flops, or exchangers.
197
198   | loop_1
199   |   a = phi (1, b)
200   |   c = phi (3, d)
201   |   b = c
202   |   d = a
203   | endloop
204
205   a -> (1, c)_1
206   c -> (3, a)_1
207
208   Based on these symbolic chrecs, it is possible to refine this
209   information into the more precise PERIODIC_CHRECs:
210
211   a -> |1, 3|_1
212   c -> |3, 1|_1
213
214   This transformation is not yet implemented.
215
216   Further readings:
217
218   You can find a more detailed description of the algorithm in:
219   http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220   http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz.  But note that
221   this is a preliminary report and some of the details of the
222   algorithm have changed.  I'm working on a research report that
223   updates the description of the algorithms to reflect the design
224   choices used in this implementation.
225
226   A set of slides show a high level overview of the algorithm and run
227   an example through the scalar evolution analyzer:
228   http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230   The slides that I have presented at the GCC Summit'04 are available
231   at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232*/
233
234#include "config.h"
235#include "system.h"
236#include "coretypes.h"
237#include "tm.h"
238#include "ggc.h"
239#include "tree.h"
240#include "real.h"
241
242/* These RTL headers are needed for basic-block.h.  */
243#include "rtl.h"
244#include "basic-block.h"
245#include "diagnostic.h"
246#include "tree-flow.h"
247#include "tree-dump.h"
248#include "timevar.h"
249#include "cfgloop.h"
250#include "tree-chrec.h"
251#include "tree-scalar-evolution.h"
252#include "tree-pass.h"
253#include "flags.h"
254#include "params.h"
255
256static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257static tree resolve_mixers (struct loop *, tree);
258
259/* The cached information about a ssa name VAR, claiming that inside LOOP,
260   the value of VAR can be expressed as CHREC.  */
261
262struct scev_info_str
263{
264  tree var;
265  tree chrec;
266};
267
268/* Counters for the scev database.  */
269static unsigned nb_set_scev = 0;
270static unsigned nb_get_scev = 0;
271
272/* The following trees are unique elements.  Thus the comparison of
273   another element to these elements should be done on the pointer to
274   these trees, and not on their value.  */
275
276/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE.  */
277tree chrec_not_analyzed_yet;
278
279/* Reserved to the cases where the analyzer has detected an
280   undecidable property at compile time.  */
281tree chrec_dont_know;
282
283/* When the analyzer has detected that a property will never
284   happen, then it qualifies it with chrec_known.  */
285tree chrec_known;
286
287static bitmap already_instantiated;
288
289static htab_t scalar_evolution_info;
290
291
292/* Constructs a new SCEV_INFO_STR structure.  */
293
294static inline struct scev_info_str *
295new_scev_info_str (tree var)
296{
297  struct scev_info_str *res;
298
299  res = XNEW (struct scev_info_str);
300  res->var = var;
301  res->chrec = chrec_not_analyzed_yet;
302
303  return res;
304}
305
306/* Computes a hash function for database element ELT.  */
307
308static hashval_t
309hash_scev_info (const void *elt)
310{
311  return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312}
313
314/* Compares database elements E1 and E2.  */
315
316static int
317eq_scev_info (const void *e1, const void *e2)
318{
319  const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320  const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
321
322  return elt1->var == elt2->var;
323}
324
325/* Deletes database element E.  */
326
327static void
328del_scev_info (void *e)
329{
330  free (e);
331}
332
333/* Get the index corresponding to VAR in the current LOOP.  If
334   it's the first time we ask for this VAR, then we return
335   chrec_not_analyzed_yet for this VAR and return its index.  */
336
337static tree *
338find_var_scev_info (tree var)
339{
340  struct scev_info_str *res;
341  struct scev_info_str tmp;
342  PTR *slot;
343
344  tmp.var = var;
345  slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347  if (!*slot)
348    *slot = new_scev_info_str (var);
349  res = (struct scev_info_str *) *slot;
350
351  return &res->chrec;
352}
353
354/* Return true when CHREC contains symbolic names defined in
355   LOOP_NB.  */
356
357bool
358chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359{
360  if (chrec == NULL_TREE)
361    return false;
362
363  if (TREE_INVARIANT (chrec))
364    return false;
365
366  if (TREE_CODE (chrec) == VAR_DECL
367      || TREE_CODE (chrec) == PARM_DECL
368      || TREE_CODE (chrec) == FUNCTION_DECL
369      || TREE_CODE (chrec) == LABEL_DECL
370      || TREE_CODE (chrec) == RESULT_DECL
371      || TREE_CODE (chrec) == FIELD_DECL)
372    return true;
373
374  if (TREE_CODE (chrec) == SSA_NAME)
375    {
376      tree def = SSA_NAME_DEF_STMT (chrec);
377      struct loop *def_loop = loop_containing_stmt (def);
378      struct loop *loop = current_loops->parray[loop_nb];
379
380      if (def_loop == NULL)
381	return false;
382
383      if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384	return true;
385
386      return false;
387    }
388
389  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390    {
391    case 3:
392      if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393						  loop_nb))
394	return true;
395
396    case 2:
397      if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398						  loop_nb))
399	return true;
400
401    case 1:
402      if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403						  loop_nb))
404	return true;
405
406    default:
407      return false;
408    }
409}
410
411/* Return true when PHI is a loop-phi-node.  */
412
413static bool
414loop_phi_node_p (tree phi)
415{
416  /* The implementation of this function is based on the following
417     property: "all the loop-phi-nodes of a loop are contained in the
418     loop's header basic block".  */
419
420  return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421}
422
423/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424   In general, in the case of multivariate evolutions we want to get
425   the evolution in different loops.  LOOP specifies the level for
426   which to get the evolution.
427
428   Example:
429
430   | for (j = 0; j < 100; j++)
431   |   {
432   |     for (k = 0; k < 100; k++)
433   |       {
434   |         i = k + j;   - Here the value of i is a function of j, k.
435   |       }
436   |      ... = i         - Here the value of i is a function of j.
437   |   }
438   | ... = i              - Here the value of i is a scalar.
439
440   Example:
441
442   | i_0 = ...
443   | loop_1 10 times
444   |   i_1 = phi (i_0, i_2)
445   |   i_2 = i_1 + 2
446   | endloop
447
448   This loop has the same effect as:
449   LOOP_1 has the same effect as:
450
451   | i_1 = i_0 + 20
452
453   The overall effect of the loop, "i_0 + 20" in the previous example,
454   is obtained by passing in the parameters: LOOP = 1,
455   EVOLUTION_FN = {i_0, +, 2}_1.
456*/
457
458static tree
459compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460{
461  bool val = false;
462
463  if (evolution_fn == chrec_dont_know)
464    return chrec_dont_know;
465
466  else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467    {
468      if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469	{
470	  struct loop *inner_loop =
471	    current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472	  tree nb_iter = number_of_iterations_in_loop (inner_loop);
473
474	  if (nb_iter == chrec_dont_know)
475	    return chrec_dont_know;
476	  else
477	    {
478	      tree res;
479	      tree type = chrec_type (nb_iter);
480
481	      /* Number of iterations is off by one (the ssa name we
482		 analyze must be defined before the exit).  */
483	      nb_iter = chrec_fold_minus (type, nb_iter,
484					  build_int_cst (type, 1));
485
486	      /* evolution_fn is the evolution function in LOOP.  Get
487		 its value in the nb_iter-th iteration.  */
488	      res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
489
490	      /* Continue the computation until ending on a parent of LOOP.  */
491	      return compute_overall_effect_of_inner_loop (loop, res);
492	    }
493	}
494      else
495	return evolution_fn;
496     }
497
498  /* If the evolution function is an invariant, there is nothing to do.  */
499  else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500    return evolution_fn;
501
502  else
503    return chrec_dont_know;
504}
505
506/* Determine whether the CHREC is always positive/negative.  If the expression
507   cannot be statically analyzed, return false, otherwise set the answer into
508   VALUE.  */
509
510bool
511chrec_is_positive (tree chrec, bool *value)
512{
513  bool value0, value1, value2;
514  tree type, end_value, nb_iter;
515
516  switch (TREE_CODE (chrec))
517    {
518    case POLYNOMIAL_CHREC:
519      if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
520	  || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
521	return false;
522
523      /* FIXME -- overflows.  */
524      if (value0 == value1)
525	{
526	  *value = value0;
527	  return true;
528	}
529
530      /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
531	 and the proof consists in showing that the sign never
532	 changes during the execution of the loop, from 0 to
533	 loop->nb_iterations.  */
534      if (!evolution_function_is_affine_p (chrec))
535	return false;
536
537      nb_iter = number_of_iterations_in_loop
538	(current_loops->parray[CHREC_VARIABLE (chrec)]);
539
540      if (chrec_contains_undetermined (nb_iter))
541	return false;
542
543      type = chrec_type (nb_iter);
544      nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
545
546#if 0
547      /* TODO -- If the test is after the exit, we may decrease the number of
548	 iterations by one.  */
549      if (after_exit)
550	nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
551#endif
552
553      end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
554
555      if (!chrec_is_positive (end_value, &value2))
556	return false;
557
558      *value = value0;
559      return value0 == value1;
560
561    case INTEGER_CST:
562      *value = (tree_int_cst_sgn (chrec) == 1);
563      return true;
564
565    default:
566      return false;
567    }
568}
569
570/* Associate CHREC to SCALAR.  */
571
572static void
573set_scalar_evolution (tree scalar, tree chrec)
574{
575  tree *scalar_info;
576
577  if (TREE_CODE (scalar) != SSA_NAME)
578    return;
579
580  scalar_info = find_var_scev_info (scalar);
581
582  if (dump_file)
583    {
584      if (dump_flags & TDF_DETAILS)
585	{
586	  fprintf (dump_file, "(set_scalar_evolution \n");
587	  fprintf (dump_file, "  (scalar = ");
588	  print_generic_expr (dump_file, scalar, 0);
589	  fprintf (dump_file, ")\n  (scalar_evolution = ");
590	  print_generic_expr (dump_file, chrec, 0);
591	  fprintf (dump_file, "))\n");
592	}
593      if (dump_flags & TDF_STATS)
594	nb_set_scev++;
595    }
596
597  *scalar_info = chrec;
598}
599
600/* Retrieve the chrec associated to SCALAR in the LOOP.  */
601
602static tree
603get_scalar_evolution (tree scalar)
604{
605  tree res;
606
607  if (dump_file)
608    {
609      if (dump_flags & TDF_DETAILS)
610	{
611	  fprintf (dump_file, "(get_scalar_evolution \n");
612	  fprintf (dump_file, "  (scalar = ");
613	  print_generic_expr (dump_file, scalar, 0);
614	  fprintf (dump_file, ")\n");
615	}
616      if (dump_flags & TDF_STATS)
617	nb_get_scev++;
618    }
619
620  switch (TREE_CODE (scalar))
621    {
622    case SSA_NAME:
623      res = *find_var_scev_info (scalar);
624      break;
625
626    case REAL_CST:
627    case INTEGER_CST:
628      res = scalar;
629      break;
630
631    default:
632      res = chrec_not_analyzed_yet;
633      break;
634    }
635
636  if (dump_file && (dump_flags & TDF_DETAILS))
637    {
638      fprintf (dump_file, "  (scalar_evolution = ");
639      print_generic_expr (dump_file, res, 0);
640      fprintf (dump_file, "))\n");
641    }
642
643  return res;
644}
645
646/* Helper function for add_to_evolution.  Returns the evolution
647   function for an assignment of the form "a = b + c", where "a" and
648   "b" are on the strongly connected component.  CHREC_BEFORE is the
649   information that we already have collected up to this point.
650   TO_ADD is the evolution of "c".
651
652   When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
653   evolution the expression TO_ADD, otherwise construct an evolution
654   part for this loop.  */
655
656static tree
657add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
658		    tree at_stmt)
659{
660  tree type, left, right;
661
662  switch (TREE_CODE (chrec_before))
663    {
664    case POLYNOMIAL_CHREC:
665      if (CHREC_VARIABLE (chrec_before) <= loop_nb)
666	{
667	  unsigned var;
668
669	  type = chrec_type (chrec_before);
670
671	  /* When there is no evolution part in this loop, build it.  */
672	  if (CHREC_VARIABLE (chrec_before) < loop_nb)
673	    {
674	      var = loop_nb;
675	      left = chrec_before;
676	      right = SCALAR_FLOAT_TYPE_P (type)
677		? build_real (type, dconst0)
678		: build_int_cst (type, 0);
679	    }
680	  else
681	    {
682	      var = CHREC_VARIABLE (chrec_before);
683	      left = CHREC_LEFT (chrec_before);
684	      right = CHREC_RIGHT (chrec_before);
685	    }
686
687	  to_add = chrec_convert (type, to_add, at_stmt);
688	  right = chrec_convert (type, right, at_stmt);
689	  right = chrec_fold_plus (type, right, to_add);
690	  return build_polynomial_chrec (var, left, right);
691	}
692      else
693	{
694	  /* Search the evolution in LOOP_NB.  */
695	  left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696				     to_add, at_stmt);
697	  right = CHREC_RIGHT (chrec_before);
698	  right = chrec_convert (chrec_type (left), right, at_stmt);
699	  return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700					 left, right);
701	}
702
703    default:
704      /* These nodes do not depend on a loop.  */
705      if (chrec_before == chrec_dont_know)
706	return chrec_dont_know;
707
708      left = chrec_before;
709      right = chrec_convert (chrec_type (left), to_add, at_stmt);
710      return build_polynomial_chrec (loop_nb, left, right);
711    }
712}
713
714/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
715   of LOOP_NB.
716
717   Description (provided for completeness, for those who read code in
718   a plane, and for my poor 62 bytes brain that would have forgotten
719   all this in the next two or three months):
720
721   The algorithm of translation of programs from the SSA representation
722   into the chrecs syntax is based on a pattern matching.  After having
723   reconstructed the overall tree expression for a loop, there are only
724   two cases that can arise:
725
726   1. a = loop-phi (init, a + expr)
727   2. a = loop-phi (init, expr)
728
729   where EXPR is either a scalar constant with respect to the analyzed
730   loop (this is a degree 0 polynomial), or an expression containing
731   other loop-phi definitions (these are higher degree polynomials).
732
733   Examples:
734
735   1.
736   | init = ...
737   | loop_1
738   |   a = phi (init, a + 5)
739   | endloop
740
741   2.
742   | inita = ...
743   | initb = ...
744   | loop_1
745   |   a = phi (inita, 2 * b + 3)
746   |   b = phi (initb, b + 1)
747   | endloop
748
749   For the first case, the semantics of the SSA representation is:
750
751   | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
752
753   that is, there is a loop index "x" that determines the scalar value
754   of the variable during the loop execution.  During the first
755   iteration, the value is that of the initial condition INIT, while
756   during the subsequent iterations, it is the sum of the initial
757   condition with the sum of all the values of EXPR from the initial
758   iteration to the before last considered iteration.
759
760   For the second case, the semantics of the SSA program is:
761
762   | a (x) = init, if x = 0;
763   |         expr (x - 1), otherwise.
764
765   The second case corresponds to the PEELED_CHREC, whose syntax is
766   close to the syntax of a loop-phi-node:
767
768   | phi (init, expr)  vs.  (init, expr)_x
769
770   The proof of the translation algorithm for the first case is a
771   proof by structural induction based on the degree of EXPR.
772
773   Degree 0:
774   When EXPR is a constant with respect to the analyzed loop, or in
775   other words when EXPR is a polynomial of degree 0, the evolution of
776   the variable A in the loop is an affine function with an initial
777   condition INIT, and a step EXPR.  In order to show this, we start
778   from the semantics of the SSA representation:
779
780   f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
781
782   and since "expr (j)" is a constant with respect to "j",
783
784   f (x) = init + x * expr
785
786   Finally, based on the semantics of the pure sum chrecs, by
787   identification we get the corresponding chrecs syntax:
788
789   f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
790   f (x) -> {init, +, expr}_x
791
792   Higher degree:
793   Suppose that EXPR is a polynomial of degree N with respect to the
794   analyzed loop_x for which we have already determined that it is
795   written under the chrecs syntax:
796
797   | expr (x)  ->  {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
798
799   We start from the semantics of the SSA program:
800
801   | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
802   |
803   | f (x) = init + \sum_{j = 0}^{x - 1}
804   |                (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
805   |
806   | f (x) = init + \sum_{j = 0}^{x - 1}
807   |                \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
808   |
809   | f (x) = init + \sum_{k = 0}^{n - 1}
810   |                (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
811   |
812   | f (x) = init + \sum_{k = 0}^{n - 1}
813   |                (b_k * \binom{x}{k + 1})
814   |
815   | f (x) = init + b_0 * \binom{x}{1} + ...
816   |              + b_{n-1} * \binom{x}{n}
817   |
818   | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819   |                             + b_{n-1} * \binom{x}{n}
820   |
821
822   And finally from the definition of the chrecs syntax, we identify:
823   | f (x)  ->  {init, +, b_0, +, ..., +, b_{n-1}}_x
824
825   This shows the mechanism that stands behind the add_to_evolution
826   function.  An important point is that the use of symbolic
827   parameters avoids the need of an analysis schedule.
828
829   Example:
830
831   | inita = ...
832   | initb = ...
833   | loop_1
834   |   a = phi (inita, a + 2 + b)
835   |   b = phi (initb, b + 1)
836   | endloop
837
838   When analyzing "a", the algorithm keeps "b" symbolically:
839
840   | a  ->  {inita, +, 2 + b}_1
841
842   Then, after instantiation, the analyzer ends on the evolution:
843
844   | a  ->  {inita, +, 2 + initb, +, 1}_1
845
846*/
847
848static tree
849add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
850		  tree to_add, tree at_stmt)
851{
852  tree type = chrec_type (to_add);
853  tree res = NULL_TREE;
854
855  if (to_add == NULL_TREE)
856    return chrec_before;
857
858  /* TO_ADD is either a scalar, or a parameter.  TO_ADD is not
859     instantiated at this point.  */
860  if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861    /* This should not happen.  */
862    return chrec_dont_know;
863
864  if (dump_file && (dump_flags & TDF_DETAILS))
865    {
866      fprintf (dump_file, "(add_to_evolution \n");
867      fprintf (dump_file, "  (loop_nb = %d)\n", loop_nb);
868      fprintf (dump_file, "  (chrec_before = ");
869      print_generic_expr (dump_file, chrec_before, 0);
870      fprintf (dump_file, ")\n  (to_add = ");
871      print_generic_expr (dump_file, to_add, 0);
872      fprintf (dump_file, ")\n");
873    }
874
875  if (code == MINUS_EXPR)
876    to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877				  ? build_real (type, dconstm1)
878				  : build_int_cst_type (type, -1));
879
880  res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
881
882  if (dump_file && (dump_flags & TDF_DETAILS))
883    {
884      fprintf (dump_file, "  (res = ");
885      print_generic_expr (dump_file, res, 0);
886      fprintf (dump_file, "))\n");
887    }
888
889  return res;
890}
891
892/* Helper function.  */
893
894static inline tree
895set_nb_iterations_in_loop (struct loop *loop,
896			   tree res)
897{
898  tree type = chrec_type (res);
899
900  res = chrec_fold_plus (type, res, build_int_cst (type, 1));
901
902  /* FIXME HWI: However we want to store one iteration less than the
903     count of the loop in order to be compatible with the other
904     nb_iter computations in loop-iv.  This also allows the
905     representation of nb_iters that are equal to MAX_INT.  */
906  if (TREE_CODE (res) == INTEGER_CST
907      && (TREE_INT_CST_LOW (res) == 0
908	  || TREE_OVERFLOW (res)))
909    res = chrec_dont_know;
910
911  if (dump_file && (dump_flags & TDF_DETAILS))
912    {
913      fprintf (dump_file, "  (set_nb_iterations_in_loop = ");
914      print_generic_expr (dump_file, res, 0);
915      fprintf (dump_file, "))\n");
916    }
917
918  loop->nb_iterations = res;
919  return res;
920}
921
922
923
924/* This section selects the loops that will be good candidates for the
925   scalar evolution analysis.  For the moment, greedily select all the
926   loop nests we could analyze.  */
927
928/* Return true when it is possible to analyze the condition expression
929   EXPR.  */
930
931static bool
932analyzable_condition (tree expr)
933{
934  tree condition;
935
936  if (TREE_CODE (expr) != COND_EXPR)
937    return false;
938
939  condition = TREE_OPERAND (expr, 0);
940
941  switch (TREE_CODE (condition))
942    {
943    case SSA_NAME:
944      return true;
945
946    case LT_EXPR:
947    case LE_EXPR:
948    case GT_EXPR:
949    case GE_EXPR:
950    case EQ_EXPR:
951    case NE_EXPR:
952      return true;
953
954    default:
955      return false;
956    }
957
958  return false;
959}
960
961/* For a loop with a single exit edge, return the COND_EXPR that
962   guards the exit edge.  If the expression is too difficult to
963   analyze, then give up.  */
964
965tree
966get_loop_exit_condition (struct loop *loop)
967{
968  tree res = NULL_TREE;
969  edge exit_edge = loop->single_exit;
970
971
972  if (dump_file && (dump_flags & TDF_DETAILS))
973    fprintf (dump_file, "(get_loop_exit_condition \n  ");
974
975  if (exit_edge)
976    {
977      tree expr;
978
979      expr = last_stmt (exit_edge->src);
980      if (analyzable_condition (expr))
981	res = expr;
982    }
983
984  if (dump_file && (dump_flags & TDF_DETAILS))
985    {
986      print_generic_expr (dump_file, res, 0);
987      fprintf (dump_file, ")\n");
988    }
989
990  return res;
991}
992
993/* Recursively determine and enqueue the exit conditions for a loop.  */
994
995static void
996get_exit_conditions_rec (struct loop *loop,
997			 VEC(tree,heap) **exit_conditions)
998{
999  if (!loop)
1000    return;
1001
1002  /* Recurse on the inner loops, then on the next (sibling) loops.  */
1003  get_exit_conditions_rec (loop->inner, exit_conditions);
1004  get_exit_conditions_rec (loop->next, exit_conditions);
1005
1006  if (loop->single_exit)
1007    {
1008      tree loop_condition = get_loop_exit_condition (loop);
1009
1010      if (loop_condition)
1011	VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1012    }
1013}
1014
1015/* Select the candidate loop nests for the analysis.  This function
1016   initializes the EXIT_CONDITIONS array.  */
1017
1018static void
1019select_loops_exit_conditions (struct loops *loops,
1020			      VEC(tree,heap) **exit_conditions)
1021{
1022  struct loop *function_body = loops->parray[0];
1023
1024  get_exit_conditions_rec (function_body->inner, exit_conditions);
1025}
1026
1027
1028/* Depth first search algorithm.  */
1029
1030typedef enum t_bool {
1031  t_false,
1032  t_true,
1033  t_dont_know
1034} t_bool;
1035
1036
1037static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1038
1039/* Follow the ssa edge into the right hand side RHS of an assignment.
1040   Return true if the strongly connected component has been found.  */
1041
1042static t_bool
1043follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1044			tree halting_phi, tree *evolution_of_loop, int limit)
1045{
1046  t_bool res = t_false;
1047  tree rhs0, rhs1;
1048  tree type_rhs = TREE_TYPE (rhs);
1049  tree evol;
1050
1051  /* The RHS is one of the following cases:
1052     - an SSA_NAME,
1053     - an INTEGER_CST,
1054     - a PLUS_EXPR,
1055     - a MINUS_EXPR,
1056     - an ASSERT_EXPR,
1057     - other cases are not yet handled.  */
1058  switch (TREE_CODE (rhs))
1059    {
1060    case NOP_EXPR:
1061      /* This assignment is under the form "a_1 = (cast) rhs.  */
1062      res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1063				    halting_phi, evolution_of_loop, limit);
1064      *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1065					  *evolution_of_loop, at_stmt);
1066      break;
1067
1068    case INTEGER_CST:
1069      /* This assignment is under the form "a_1 = 7".  */
1070      res = t_false;
1071      break;
1072
1073    case SSA_NAME:
1074      /* This assignment is under the form: "a_1 = b_2".  */
1075      res = follow_ssa_edge
1076	(loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1077      break;
1078
1079    case PLUS_EXPR:
1080      /* This case is under the form "rhs0 + rhs1".  */
1081      rhs0 = TREE_OPERAND (rhs, 0);
1082      rhs1 = TREE_OPERAND (rhs, 1);
1083      STRIP_TYPE_NOPS (rhs0);
1084      STRIP_TYPE_NOPS (rhs1);
1085
1086      if (TREE_CODE (rhs0) == SSA_NAME)
1087	{
1088	  if (TREE_CODE (rhs1) == SSA_NAME)
1089	    {
1090	      /* Match an assignment under the form:
1091		 "a = b + c".  */
1092	      evol = *evolution_of_loop;
1093	      res = follow_ssa_edge
1094		(loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1095		 &evol, limit);
1096
1097	      if (res == t_true)
1098		*evolution_of_loop = add_to_evolution
1099		  (loop->num,
1100		   chrec_convert (type_rhs, evol, at_stmt),
1101		   PLUS_EXPR, rhs1, at_stmt);
1102
1103	      else if (res == t_false)
1104		{
1105		  res = follow_ssa_edge
1106		    (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1107		     evolution_of_loop, limit);
1108
1109		  if (res == t_true)
1110		    *evolution_of_loop = add_to_evolution
1111		      (loop->num,
1112		       chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1113		       PLUS_EXPR, rhs0, at_stmt);
1114
1115		  else if (res == t_dont_know)
1116		    *evolution_of_loop = chrec_dont_know;
1117		}
1118
1119	      else if (res == t_dont_know)
1120		*evolution_of_loop = chrec_dont_know;
1121	    }
1122
1123	  else
1124	    {
1125	      /* Match an assignment under the form:
1126		 "a = b + ...".  */
1127	      res = follow_ssa_edge
1128		(loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1129		 evolution_of_loop, limit);
1130	      if (res == t_true)
1131		*evolution_of_loop = add_to_evolution
1132		  (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1133					     at_stmt),
1134		   PLUS_EXPR, rhs1, at_stmt);
1135
1136	      else if (res == t_dont_know)
1137		*evolution_of_loop = chrec_dont_know;
1138	    }
1139	}
1140
1141      else if (TREE_CODE (rhs1) == SSA_NAME)
1142	{
1143	  /* Match an assignment under the form:
1144	     "a = ... + c".  */
1145	  res = follow_ssa_edge
1146	    (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1147	     evolution_of_loop, limit);
1148	  if (res == t_true)
1149	    *evolution_of_loop = add_to_evolution
1150	      (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1151					 at_stmt),
1152	       PLUS_EXPR, rhs0, at_stmt);
1153
1154	  else if (res == t_dont_know)
1155	    *evolution_of_loop = chrec_dont_know;
1156	}
1157
1158      else
1159	/* Otherwise, match an assignment under the form:
1160	   "a = ... + ...".  */
1161	/* And there is nothing to do.  */
1162	res = t_false;
1163
1164      break;
1165
1166    case MINUS_EXPR:
1167      /* This case is under the form "opnd0 = rhs0 - rhs1".  */
1168      rhs0 = TREE_OPERAND (rhs, 0);
1169      rhs1 = TREE_OPERAND (rhs, 1);
1170      STRIP_TYPE_NOPS (rhs0);
1171      STRIP_TYPE_NOPS (rhs1);
1172
1173      if (TREE_CODE (rhs0) == SSA_NAME)
1174	{
1175	  /* Match an assignment under the form:
1176	     "a = b - ...".  */
1177	  res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1178				 evolution_of_loop, limit);
1179	  if (res == t_true)
1180	    *evolution_of_loop = add_to_evolution
1181	      (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1182	       MINUS_EXPR, rhs1, at_stmt);
1183
1184	  else if (res == t_dont_know)
1185	    *evolution_of_loop = chrec_dont_know;
1186	}
1187      else
1188	/* Otherwise, match an assignment under the form:
1189	   "a = ... - ...".  */
1190	/* And there is nothing to do.  */
1191	res = t_false;
1192
1193      break;
1194
1195    case ASSERT_EXPR:
1196      {
1197	/* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1198	   It must be handled as a copy assignment of the form a_1 = a_2.  */
1199	tree op0 = ASSERT_EXPR_VAR (rhs);
1200	if (TREE_CODE (op0) == SSA_NAME)
1201	  res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1202				 halting_phi, evolution_of_loop, limit);
1203	else
1204	  res = t_false;
1205	break;
1206      }
1207
1208
1209    default:
1210      res = t_false;
1211      break;
1212    }
1213
1214  return res;
1215}
1216
1217/* Checks whether the I-th argument of a PHI comes from a backedge.  */
1218
1219static bool
1220backedge_phi_arg_p (tree phi, int i)
1221{
1222  edge e = PHI_ARG_EDGE (phi, i);
1223
1224  /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1225     about updating it anywhere, and this should work as well most of the
1226     time.  */
1227  if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1228    return true;
1229
1230  return false;
1231}
1232
1233/* Helper function for one branch of the condition-phi-node.  Return
1234   true if the strongly connected component has been found following
1235   this path.  */
1236
1237static inline t_bool
1238follow_ssa_edge_in_condition_phi_branch (int i,
1239					 struct loop *loop,
1240					 tree condition_phi,
1241					 tree halting_phi,
1242					 tree *evolution_of_branch,
1243					 tree init_cond, int limit)
1244{
1245  tree branch = PHI_ARG_DEF (condition_phi, i);
1246  *evolution_of_branch = chrec_dont_know;
1247
1248  /* Do not follow back edges (they must belong to an irreducible loop, which
1249     we really do not want to worry about).  */
1250  if (backedge_phi_arg_p (condition_phi, i))
1251    return t_false;
1252
1253  if (TREE_CODE (branch) == SSA_NAME)
1254    {
1255      *evolution_of_branch = init_cond;
1256      return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1257			      evolution_of_branch, limit);
1258    }
1259
1260  /* This case occurs when one of the condition branches sets
1261     the variable to a constant: i.e. a phi-node like
1262     "a_2 = PHI <a_7(5), 2(6)>;".
1263
1264     FIXME:  This case have to be refined correctly:
1265     in some cases it is possible to say something better than
1266     chrec_dont_know, for example using a wrap-around notation.  */
1267  return t_false;
1268}
1269
1270/* This function merges the branches of a condition-phi-node in a
1271   loop.  */
1272
1273static t_bool
1274follow_ssa_edge_in_condition_phi (struct loop *loop,
1275				  tree condition_phi,
1276				  tree halting_phi,
1277				  tree *evolution_of_loop, int limit)
1278{
1279  int i;
1280  tree init = *evolution_of_loop;
1281  tree evolution_of_branch;
1282  t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1283							halting_phi,
1284							&evolution_of_branch,
1285							init, limit);
1286  if (res == t_false || res == t_dont_know)
1287    return res;
1288
1289  *evolution_of_loop = evolution_of_branch;
1290
1291  for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1292    {
1293      /* Quickly give up when the evolution of one of the branches is
1294	 not known.  */
1295      if (*evolution_of_loop == chrec_dont_know)
1296	return t_true;
1297
1298      res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1299						     halting_phi,
1300						     &evolution_of_branch,
1301						     init, limit);
1302      if (res == t_false || res == t_dont_know)
1303	return res;
1304
1305      *evolution_of_loop = chrec_merge (*evolution_of_loop,
1306					evolution_of_branch);
1307    }
1308
1309  return t_true;
1310}
1311
1312/* Follow an SSA edge in an inner loop.  It computes the overall
1313   effect of the loop, and following the symbolic initial conditions,
1314   it follows the edges in the parent loop.  The inner loop is
1315   considered as a single statement.  */
1316
1317static t_bool
1318follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1319				tree loop_phi_node,
1320				tree halting_phi,
1321				tree *evolution_of_loop, int limit)
1322{
1323  struct loop *loop = loop_containing_stmt (loop_phi_node);
1324  tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1325
1326  /* Sometimes, the inner loop is too difficult to analyze, and the
1327     result of the analysis is a symbolic parameter.  */
1328  if (ev == PHI_RESULT (loop_phi_node))
1329    {
1330      t_bool res = t_false;
1331      int i;
1332
1333      for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1334	{
1335	  tree arg = PHI_ARG_DEF (loop_phi_node, i);
1336	  basic_block bb;
1337
1338	  /* Follow the edges that exit the inner loop.  */
1339	  bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1340	  if (!flow_bb_inside_loop_p (loop, bb))
1341	    res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1342					  arg, halting_phi,
1343					  evolution_of_loop, limit);
1344	  if (res == t_true)
1345	    break;
1346	}
1347
1348      /* If the path crosses this loop-phi, give up.  */
1349      if (res == t_true)
1350	*evolution_of_loop = chrec_dont_know;
1351
1352      return res;
1353    }
1354
1355  /* Otherwise, compute the overall effect of the inner loop.  */
1356  ev = compute_overall_effect_of_inner_loop (loop, ev);
1357  return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1358				 evolution_of_loop, limit);
1359}
1360
1361/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1362   path that is analyzed on the return walk.  */
1363
1364static t_bool
1365follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1366		 tree *evolution_of_loop, int limit)
1367{
1368  struct loop *def_loop;
1369
1370  if (TREE_CODE (def) == NOP_EXPR)
1371    return t_false;
1372
1373  /* Give up if the path is longer than the MAX that we allow.  */
1374  if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1375    return t_dont_know;
1376
1377  def_loop = loop_containing_stmt (def);
1378
1379  switch (TREE_CODE (def))
1380    {
1381    case PHI_NODE:
1382      if (!loop_phi_node_p (def))
1383	/* DEF is a condition-phi-node.  Follow the branches, and
1384	   record their evolutions.  Finally, merge the collected
1385	   information and set the approximation to the main
1386	   variable.  */
1387	return follow_ssa_edge_in_condition_phi
1388	  (loop, def, halting_phi, evolution_of_loop, limit);
1389
1390      /* When the analyzed phi is the halting_phi, the
1391	 depth-first search is over: we have found a path from
1392	 the halting_phi to itself in the loop.  */
1393      if (def == halting_phi)
1394	return t_true;
1395
1396      /* Otherwise, the evolution of the HALTING_PHI depends
1397	 on the evolution of another loop-phi-node, i.e. the
1398	 evolution function is a higher degree polynomial.  */
1399      if (def_loop == loop)
1400	return t_false;
1401
1402      /* Inner loop.  */
1403      if (flow_loop_nested_p (loop, def_loop))
1404	return follow_ssa_edge_inner_loop_phi
1405	  (loop, def, halting_phi, evolution_of_loop, limit);
1406
1407      /* Outer loop.  */
1408      return t_false;
1409
1410    case MODIFY_EXPR:
1411      return follow_ssa_edge_in_rhs (loop, def,
1412				     TREE_OPERAND (def, 1),
1413				     halting_phi,
1414				     evolution_of_loop, limit);
1415
1416    default:
1417      /* At this level of abstraction, the program is just a set
1418	 of MODIFY_EXPRs and PHI_NODEs.  In principle there is no
1419	 other node to be handled.  */
1420      return t_false;
1421    }
1422}
1423
1424
1425
1426/* Given a LOOP_PHI_NODE, this function determines the evolution
1427   function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop.  */
1428
1429static tree
1430analyze_evolution_in_loop (tree loop_phi_node,
1431			   tree init_cond)
1432{
1433  int i;
1434  tree evolution_function = chrec_not_analyzed_yet;
1435  struct loop *loop = loop_containing_stmt (loop_phi_node);
1436  basic_block bb;
1437
1438  if (dump_file && (dump_flags & TDF_DETAILS))
1439    {
1440      fprintf (dump_file, "(analyze_evolution_in_loop \n");
1441      fprintf (dump_file, "  (loop_phi_node = ");
1442      print_generic_expr (dump_file, loop_phi_node, 0);
1443      fprintf (dump_file, ")\n");
1444    }
1445
1446  for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1447    {
1448      tree arg = PHI_ARG_DEF (loop_phi_node, i);
1449      tree ssa_chain, ev_fn;
1450      t_bool res;
1451
1452      /* Select the edges that enter the loop body.  */
1453      bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1454      if (!flow_bb_inside_loop_p (loop, bb))
1455	continue;
1456
1457      if (TREE_CODE (arg) == SSA_NAME)
1458	{
1459	  ssa_chain = SSA_NAME_DEF_STMT (arg);
1460
1461	  /* Pass in the initial condition to the follow edge function.  */
1462	  ev_fn = init_cond;
1463	  res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1464	}
1465      else
1466	res = t_false;
1467
1468      /* When it is impossible to go back on the same
1469	 loop_phi_node by following the ssa edges, the
1470	 evolution is represented by a peeled chrec, i.e. the
1471	 first iteration, EV_FN has the value INIT_COND, then
1472	 all the other iterations it has the value of ARG.
1473	 For the moment, PEELED_CHREC nodes are not built.  */
1474      if (res != t_true)
1475	ev_fn = chrec_dont_know;
1476
1477      /* When there are multiple back edges of the loop (which in fact never
1478	 happens currently, but nevertheless), merge their evolutions.  */
1479      evolution_function = chrec_merge (evolution_function, ev_fn);
1480    }
1481
1482  if (dump_file && (dump_flags & TDF_DETAILS))
1483    {
1484      fprintf (dump_file, "  (evolution_function = ");
1485      print_generic_expr (dump_file, evolution_function, 0);
1486      fprintf (dump_file, "))\n");
1487    }
1488
1489  return evolution_function;
1490}
1491
1492/* Given a loop-phi-node, return the initial conditions of the
1493   variable on entry of the loop.  When the CCP has propagated
1494   constants into the loop-phi-node, the initial condition is
1495   instantiated, otherwise the initial condition is kept symbolic.
1496   This analyzer does not analyze the evolution outside the current
1497   loop, and leaves this task to the on-demand tree reconstructor.  */
1498
1499static tree
1500analyze_initial_condition (tree loop_phi_node)
1501{
1502  int i;
1503  tree init_cond = chrec_not_analyzed_yet;
1504  struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1505
1506  if (dump_file && (dump_flags & TDF_DETAILS))
1507    {
1508      fprintf (dump_file, "(analyze_initial_condition \n");
1509      fprintf (dump_file, "  (loop_phi_node = \n");
1510      print_generic_expr (dump_file, loop_phi_node, 0);
1511      fprintf (dump_file, ")\n");
1512    }
1513
1514  for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1515    {
1516      tree branch = PHI_ARG_DEF (loop_phi_node, i);
1517      basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1518
1519      /* When the branch is oriented to the loop's body, it does
1520     	 not contribute to the initial condition.  */
1521      if (flow_bb_inside_loop_p (loop, bb))
1522       	continue;
1523
1524      if (init_cond == chrec_not_analyzed_yet)
1525	{
1526	  init_cond = branch;
1527	  continue;
1528	}
1529
1530      if (TREE_CODE (branch) == SSA_NAME)
1531	{
1532	  init_cond = chrec_dont_know;
1533      	  break;
1534	}
1535
1536      init_cond = chrec_merge (init_cond, branch);
1537    }
1538
1539  /* Ooops -- a loop without an entry???  */
1540  if (init_cond == chrec_not_analyzed_yet)
1541    init_cond = chrec_dont_know;
1542
1543  if (dump_file && (dump_flags & TDF_DETAILS))
1544    {
1545      fprintf (dump_file, "  (init_cond = ");
1546      print_generic_expr (dump_file, init_cond, 0);
1547      fprintf (dump_file, "))\n");
1548    }
1549
1550  return init_cond;
1551}
1552
1553/* Analyze the scalar evolution for LOOP_PHI_NODE.  */
1554
1555static tree
1556interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1557{
1558  tree res;
1559  struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1560  tree init_cond;
1561
1562  if (phi_loop != loop)
1563    {
1564      struct loop *subloop;
1565      tree evolution_fn = analyze_scalar_evolution
1566	(phi_loop, PHI_RESULT (loop_phi_node));
1567
1568      /* Dive one level deeper.  */
1569      subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1570
1571      /* Interpret the subloop.  */
1572      res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1573      return res;
1574    }
1575
1576  /* Otherwise really interpret the loop phi.  */
1577  init_cond = analyze_initial_condition (loop_phi_node);
1578  res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1579
1580  return res;
1581}
1582
1583/* This function merges the branches of a condition-phi-node,
1584   contained in the outermost loop, and whose arguments are already
1585   analyzed.  */
1586
1587static tree
1588interpret_condition_phi (struct loop *loop, tree condition_phi)
1589{
1590  int i;
1591  tree res = chrec_not_analyzed_yet;
1592
1593  for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1594    {
1595      tree branch_chrec;
1596
1597      if (backedge_phi_arg_p (condition_phi, i))
1598	{
1599	  res = chrec_dont_know;
1600	  break;
1601	}
1602
1603      branch_chrec = analyze_scalar_evolution
1604	(loop, PHI_ARG_DEF (condition_phi, i));
1605
1606      res = chrec_merge (res, branch_chrec);
1607    }
1608
1609  return res;
1610}
1611
1612/* Interpret the right hand side of a modify_expr OPND1.  If we didn't
1613   analyze this node before, follow the definitions until ending
1614   either on an analyzed modify_expr, or on a loop-phi-node.  On the
1615   return path, this function propagates evolutions (ala constant copy
1616   propagation).  OPND1 is not a GIMPLE expression because we could
1617   analyze the effect of an inner loop: see interpret_loop_phi.  */
1618
1619static tree
1620interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1621			   tree opnd1, tree type)
1622{
1623  tree res, opnd10, opnd11, chrec10, chrec11;
1624
1625  if (is_gimple_min_invariant (opnd1))
1626    return chrec_convert (type, opnd1, at_stmt);
1627
1628  switch (TREE_CODE (opnd1))
1629    {
1630    case PLUS_EXPR:
1631      opnd10 = TREE_OPERAND (opnd1, 0);
1632      opnd11 = TREE_OPERAND (opnd1, 1);
1633      chrec10 = analyze_scalar_evolution (loop, opnd10);
1634      chrec11 = analyze_scalar_evolution (loop, opnd11);
1635      chrec10 = chrec_convert (type, chrec10, at_stmt);
1636      chrec11 = chrec_convert (type, chrec11, at_stmt);
1637      res = chrec_fold_plus (type, chrec10, chrec11);
1638      break;
1639
1640    case MINUS_EXPR:
1641      opnd10 = TREE_OPERAND (opnd1, 0);
1642      opnd11 = TREE_OPERAND (opnd1, 1);
1643      chrec10 = analyze_scalar_evolution (loop, opnd10);
1644      chrec11 = analyze_scalar_evolution (loop, opnd11);
1645      chrec10 = chrec_convert (type, chrec10, at_stmt);
1646      chrec11 = chrec_convert (type, chrec11, at_stmt);
1647      res = chrec_fold_minus (type, chrec10, chrec11);
1648      break;
1649
1650    case NEGATE_EXPR:
1651      opnd10 = TREE_OPERAND (opnd1, 0);
1652      chrec10 = analyze_scalar_evolution (loop, opnd10);
1653      chrec10 = chrec_convert (type, chrec10, at_stmt);
1654      /* TYPE may be integer, real or complex, so use fold_convert.  */
1655      res = chrec_fold_multiply (type, chrec10,
1656				 fold_convert (type, integer_minus_one_node));
1657      break;
1658
1659    case MULT_EXPR:
1660      opnd10 = TREE_OPERAND (opnd1, 0);
1661      opnd11 = TREE_OPERAND (opnd1, 1);
1662      chrec10 = analyze_scalar_evolution (loop, opnd10);
1663      chrec11 = analyze_scalar_evolution (loop, opnd11);
1664      chrec10 = chrec_convert (type, chrec10, at_stmt);
1665      chrec11 = chrec_convert (type, chrec11, at_stmt);
1666      res = chrec_fold_multiply (type, chrec10, chrec11);
1667      break;
1668
1669    case SSA_NAME:
1670      res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1671			   at_stmt);
1672      break;
1673
1674    case ASSERT_EXPR:
1675      opnd10 = ASSERT_EXPR_VAR (opnd1);
1676      res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1677			   at_stmt);
1678      break;
1679
1680    case NOP_EXPR:
1681    case CONVERT_EXPR:
1682      opnd10 = TREE_OPERAND (opnd1, 0);
1683      chrec10 = analyze_scalar_evolution (loop, opnd10);
1684      res = chrec_convert (type, chrec10, at_stmt);
1685      break;
1686
1687    default:
1688      res = chrec_dont_know;
1689      break;
1690    }
1691
1692  return res;
1693}
1694
1695
1696
1697/* This section contains all the entry points:
1698   - number_of_iterations_in_loop,
1699   - analyze_scalar_evolution,
1700   - instantiate_parameters.
1701*/
1702
1703/* Compute and return the evolution function in WRTO_LOOP, the nearest
1704   common ancestor of DEF_LOOP and USE_LOOP.  */
1705
1706static tree
1707compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1708				  struct loop *def_loop,
1709				  tree ev)
1710{
1711  tree res;
1712  if (def_loop == wrto_loop)
1713    return ev;
1714
1715  def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1716  res = compute_overall_effect_of_inner_loop (def_loop, ev);
1717
1718  return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1719}
1720
1721/* Folds EXPR, if it is a cast to pointer, assuming that the created
1722   polynomial_chrec does not wrap.  */
1723
1724static tree
1725fold_used_pointer_cast (tree expr)
1726{
1727  tree op;
1728  tree type, inner_type;
1729
1730  if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1731    return expr;
1732
1733  op = TREE_OPERAND (expr, 0);
1734  if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1735    return expr;
1736
1737  type = TREE_TYPE (expr);
1738  inner_type = TREE_TYPE (op);
1739
1740  if (!INTEGRAL_TYPE_P (inner_type)
1741      || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1742    return expr;
1743
1744  return build_polynomial_chrec (CHREC_VARIABLE (op),
1745		chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1746		chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1747}
1748
1749/* Returns true if EXPR is an expression corresponding to offset of pointer
1750   in p + offset.  */
1751
1752static bool
1753pointer_offset_p (tree expr)
1754{
1755  if (TREE_CODE (expr) == INTEGER_CST)
1756    return true;
1757
1758  if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1759      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1760    return true;
1761
1762  return false;
1763}
1764
1765/* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1766   comparison.  This means that it must point to a part of some object in
1767   memory, which enables us to argue about overflows and possibly simplify
1768   the EXPR.  AT_STMT is the statement in which this conversion has to be
1769   performed.  Returns the simplified value.
1770
1771   Currently, for
1772
1773   int i, n;
1774   int *p;
1775
1776   for (i = -n; i < n; i++)
1777     *(p + i) = ...;
1778
1779   We generate the following code (assuming that size of int and size_t is
1780   4 bytes):
1781
1782   for (i = -n; i < n; i++)
1783     {
1784       size_t tmp1, tmp2;
1785       int *tmp3, *tmp4;
1786
1787       tmp1 = (size_t) i;	(1)
1788       tmp2 = 4 * tmp1;		(2)
1789       tmp3 = (int *) tmp2;	(3)
1790       tmp4 = p + tmp3;		(4)
1791
1792       *tmp4 = ...;
1793     }
1794
1795   We in general assume that pointer arithmetics does not overflow (since its
1796   behavior is undefined in that case).  One of the problems is that our
1797   translation does not capture this property very well -- (int *) is
1798   considered unsigned, hence the computation in (4) does overflow if i is
1799   negative.
1800
1801   This impreciseness creates complications in scev analysis.  The scalar
1802   evolution of i is [-n, +, 1].  Since int and size_t have the same precision
1803   (in this example), and size_t is unsigned (so we do not care about
1804   overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1805   and scev of tmp2 is [4 * (size_t) -n, +, 4].  With tmp3, we run into
1806   problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1807   places assume that this is not the case for scevs with pointer type, we
1808   cannot use this scev for tmp3; hence, its scev is
1809   (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1810   p + (int *) [(4 * (size_t) -n), +, 4].  Most of the optimizers are unable to
1811   work with scevs of this shape.
1812
1813   However, since tmp4 is dereferenced, all its values must belong to a single
1814   object, and taking into account that the precision of int * and size_t is
1815   the same, it is impossible for its scev to wrap.  Hence, we can derive that
1816   its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1817   can work with.
1818
1819   ??? Maybe we should use different representation for pointer arithmetics,
1820   however that is a long-term project with a lot of potential for creating
1821   bugs.  */
1822
1823static tree
1824fold_used_pointer (tree expr, tree at_stmt)
1825{
1826  tree op0, op1, new0, new1;
1827  enum tree_code code = TREE_CODE (expr);
1828
1829  if (code == PLUS_EXPR
1830      || code == MINUS_EXPR)
1831    {
1832      op0 = TREE_OPERAND (expr, 0);
1833      op1 = TREE_OPERAND (expr, 1);
1834
1835      if (pointer_offset_p (op1))
1836	{
1837	  new0 = fold_used_pointer (op0, at_stmt);
1838	  new1 = fold_used_pointer_cast (op1);
1839	}
1840      else if (code == PLUS_EXPR && pointer_offset_p (op0))
1841	{
1842	  new0 = fold_used_pointer_cast (op0);
1843	  new1 = fold_used_pointer (op1, at_stmt);
1844	}
1845      else
1846	return expr;
1847
1848      if (new0 == op0 && new1 == op1)
1849	return expr;
1850
1851      new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1852      new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1853
1854      if (code == PLUS_EXPR)
1855	expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1856      else
1857	expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1858
1859      return expr;
1860    }
1861  else
1862    return fold_used_pointer_cast (expr);
1863}
1864
1865/* Returns true if PTR is dereferenced, or used in comparison.  */
1866
1867static bool
1868pointer_used_p (tree ptr)
1869{
1870  use_operand_p use_p;
1871  imm_use_iterator imm_iter;
1872  tree stmt, rhs;
1873  struct ptr_info_def *pi = get_ptr_info (ptr);
1874  var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
1875
1876  /* Check whether the pointer has a memory tag; if it does, it is
1877     (or at least used to be) dereferenced.  */
1878  if ((pi != NULL && pi->name_mem_tag != NULL)
1879      || v_ann->symbol_mem_tag)
1880    return true;
1881
1882  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1883    {
1884      stmt = USE_STMT (use_p);
1885      if (TREE_CODE (stmt) == COND_EXPR)
1886	return true;
1887
1888      if (TREE_CODE (stmt) != MODIFY_EXPR)
1889	continue;
1890
1891      rhs = TREE_OPERAND (stmt, 1);
1892      if (!COMPARISON_CLASS_P (rhs))
1893	continue;
1894
1895      if (TREE_OPERAND (stmt, 0) == ptr
1896	  || TREE_OPERAND (stmt, 1) == ptr)
1897	return true;
1898    }
1899
1900  return false;
1901}
1902
1903/* Helper recursive function.  */
1904
1905static tree
1906analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1907{
1908  tree def, type = TREE_TYPE (var);
1909  basic_block bb;
1910  struct loop *def_loop;
1911
1912  if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1913    return chrec_dont_know;
1914
1915  if (TREE_CODE (var) != SSA_NAME)
1916    return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1917
1918  def = SSA_NAME_DEF_STMT (var);
1919  bb = bb_for_stmt (def);
1920  def_loop = bb ? bb->loop_father : NULL;
1921
1922  if (bb == NULL
1923      || !flow_bb_inside_loop_p (loop, bb))
1924    {
1925      /* Keep the symbolic form.  */
1926      res = var;
1927      goto set_and_end;
1928    }
1929
1930  if (res != chrec_not_analyzed_yet)
1931    {
1932      if (loop != bb->loop_father)
1933	res = compute_scalar_evolution_in_loop
1934	    (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1935
1936      goto set_and_end;
1937    }
1938
1939  if (loop != def_loop)
1940    {
1941      res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1942      res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1943
1944      goto set_and_end;
1945    }
1946
1947  switch (TREE_CODE (def))
1948    {
1949    case MODIFY_EXPR:
1950      res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1951
1952      if (POINTER_TYPE_P (type)
1953	  && !automatically_generated_chrec_p (res)
1954	  && pointer_used_p (var))
1955	res = fold_used_pointer (res, def);
1956      break;
1957
1958    case PHI_NODE:
1959      if (loop_phi_node_p (def))
1960	res = interpret_loop_phi (loop, def);
1961      else
1962	res = interpret_condition_phi (loop, def);
1963      break;
1964
1965    default:
1966      res = chrec_dont_know;
1967      break;
1968    }
1969
1970 set_and_end:
1971
1972  /* Keep the symbolic form.  */
1973  if (res == chrec_dont_know)
1974    res = var;
1975
1976  if (loop == def_loop)
1977    set_scalar_evolution (var, res);
1978
1979  return res;
1980}
1981
1982/* Entry point for the scalar evolution analyzer.
1983   Analyzes and returns the scalar evolution of the ssa_name VAR.
1984   LOOP_NB is the identifier number of the loop in which the variable
1985   is used.
1986
1987   Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1988   pointer to the statement that uses this variable, in order to
1989   determine the evolution function of the variable, use the following
1990   calls:
1991
1992   unsigned loop_nb = loop_containing_stmt (stmt)->num;
1993   tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1994   tree chrec_instantiated = instantiate_parameters
1995   (loop_nb, chrec_with_symbols);
1996*/
1997
1998tree
1999analyze_scalar_evolution (struct loop *loop, tree var)
2000{
2001  tree res;
2002
2003  if (dump_file && (dump_flags & TDF_DETAILS))
2004    {
2005      fprintf (dump_file, "(analyze_scalar_evolution \n");
2006      fprintf (dump_file, "  (loop_nb = %d)\n", loop->num);
2007      fprintf (dump_file, "  (scalar = ");
2008      print_generic_expr (dump_file, var, 0);
2009      fprintf (dump_file, ")\n");
2010    }
2011
2012  res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
2013
2014  if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
2015    res = var;
2016
2017  if (dump_file && (dump_flags & TDF_DETAILS))
2018    fprintf (dump_file, ")\n");
2019
2020  return res;
2021}
2022
2023/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2024   WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
2025   of VERSION).
2026
2027   FOLDED_CASTS is set to true if resolve_mixers used
2028   chrec_convert_aggressive (TODO -- not really, we are way too conservative
2029   at the moment in order to keep things simple).  */
2030
2031static tree
2032analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2033				  tree version, bool *folded_casts)
2034{
2035  bool val = false;
2036  tree ev = version, tmp;
2037
2038  if (folded_casts)
2039    *folded_casts = false;
2040  while (1)
2041    {
2042      tmp = analyze_scalar_evolution (use_loop, ev);
2043      ev = resolve_mixers (use_loop, tmp);
2044
2045      if (folded_casts && tmp != ev)
2046	*folded_casts = true;
2047
2048      if (use_loop == wrto_loop)
2049	return ev;
2050
2051      /* If the value of the use changes in the inner loop, we cannot express
2052	 its value in the outer loop (we might try to return interval chrec,
2053	 but we do not have a user for it anyway)  */
2054      if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2055	  || !val)
2056	return chrec_dont_know;
2057
2058      use_loop = use_loop->outer;
2059    }
2060}
2061
2062/* Returns instantiated value for VERSION in CACHE.  */
2063
2064static tree
2065get_instantiated_value (htab_t cache, tree version)
2066{
2067  struct scev_info_str *info, pattern;
2068
2069  pattern.var = version;
2070  info = (struct scev_info_str *) htab_find (cache, &pattern);
2071
2072  if (info)
2073    return info->chrec;
2074  else
2075    return NULL_TREE;
2076}
2077
2078/* Sets instantiated value for VERSION to VAL in CACHE.  */
2079
2080static void
2081set_instantiated_value (htab_t cache, tree version, tree val)
2082{
2083  struct scev_info_str *info, pattern;
2084  PTR *slot;
2085
2086  pattern.var = version;
2087  slot = htab_find_slot (cache, &pattern, INSERT);
2088
2089  if (!*slot)
2090    *slot = new_scev_info_str (version);
2091  info = (struct scev_info_str *) *slot;
2092  info->chrec = val;
2093}
2094
2095/* Return the closed_loop_phi node for VAR.  If there is none, return
2096   NULL_TREE.  */
2097
2098static tree
2099loop_closed_phi_def (tree var)
2100{
2101  struct loop *loop;
2102  edge exit;
2103  tree phi;
2104
2105  if (var == NULL_TREE
2106      || TREE_CODE (var) != SSA_NAME)
2107    return NULL_TREE;
2108
2109  loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2110  exit = loop->single_exit;
2111  if (!exit)
2112    return NULL_TREE;
2113
2114  for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2115    if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2116      return PHI_RESULT (phi);
2117
2118  return NULL_TREE;
2119}
2120
2121/* Analyze all the parameters of the chrec that were left under a symbolic form,
2122   with respect to LOOP.  CHREC is the chrec to instantiate.  CACHE is the cache
2123   of already instantiated values.  FLAGS modify the way chrecs are
2124   instantiated.  SIZE_EXPR is used for computing the size of the expression to
2125   be instantiated, and to stop if it exceeds some limit.  */
2126
2127/* Values for FLAGS.  */
2128enum
2129{
2130  INSERT_SUPERLOOP_CHRECS = 1,  /* Loop invariants are replaced with chrecs
2131				   in outer loops.  */
2132  FOLD_CONVERSIONS = 2		/* The conversions that may wrap in
2133				   signed/pointer type are folded, as long as the
2134				   value of the chrec is preserved.  */
2135};
2136
2137static tree
2138instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2139			  int size_expr)
2140{
2141  tree res, op0, op1, op2;
2142  basic_block def_bb;
2143  struct loop *def_loop;
2144  tree type = chrec_type (chrec);
2145
2146  /* Give up if the expression is larger than the MAX that we allow.  */
2147  if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2148    return chrec_dont_know;
2149
2150  if (automatically_generated_chrec_p (chrec)
2151      || is_gimple_min_invariant (chrec))
2152    return chrec;
2153
2154  switch (TREE_CODE (chrec))
2155    {
2156    case SSA_NAME:
2157      def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2158
2159      /* A parameter (or loop invariant and we do not want to include
2160	 evolutions in outer loops), nothing to do.  */
2161      if (!def_bb
2162	  || (!(flags & INSERT_SUPERLOOP_CHRECS)
2163	      && !flow_bb_inside_loop_p (loop, def_bb)))
2164	return chrec;
2165
2166      /* We cache the value of instantiated variable to avoid exponential
2167	 time complexity due to reevaluations.  We also store the convenient
2168	 value in the cache in order to prevent infinite recursion -- we do
2169	 not want to instantiate the SSA_NAME if it is in a mixer
2170	 structure.  This is used for avoiding the instantiation of
2171	 recursively defined functions, such as:
2172
2173	 | a_2 -> {0, +, 1, +, a_2}_1  */
2174
2175      res = get_instantiated_value (cache, chrec);
2176      if (res)
2177	return res;
2178
2179      /* Store the convenient value for chrec in the structure.  If it
2180	 is defined outside of the loop, we may just leave it in symbolic
2181	 form, otherwise we need to admit that we do not know its behavior
2182	 inside the loop.  */
2183      res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2184      set_instantiated_value (cache, chrec, res);
2185
2186      /* To make things even more complicated, instantiate_parameters_1
2187	 calls analyze_scalar_evolution that may call # of iterations
2188	 analysis that may in turn call instantiate_parameters_1 again.
2189	 To prevent the infinite recursion, keep also the bitmap of
2190	 ssa names that are being instantiated globally.  */
2191      if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2192	return res;
2193
2194      def_loop = find_common_loop (loop, def_bb->loop_father);
2195
2196      /* If the analysis yields a parametric chrec, instantiate the
2197	 result again.  */
2198      bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2199      res = analyze_scalar_evolution (def_loop, chrec);
2200
2201      /* Don't instantiate loop-closed-ssa phi nodes.  */
2202      if (TREE_CODE (res) == SSA_NAME
2203	  && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2204	      || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2205		  > def_loop->depth)))
2206	{
2207	  if (res == chrec)
2208	    res = loop_closed_phi_def (chrec);
2209	  else
2210	    res = chrec;
2211
2212	  if (res == NULL_TREE)
2213	    res = chrec_dont_know;
2214	}
2215
2216      else if (res != chrec_dont_know)
2217	res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2218
2219      bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2220
2221      /* Store the correct value to the cache.  */
2222      set_instantiated_value (cache, chrec, res);
2223      return res;
2224
2225    case POLYNOMIAL_CHREC:
2226      op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2227				      flags, cache, size_expr);
2228      if (op0 == chrec_dont_know)
2229	return chrec_dont_know;
2230
2231      op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2232				      flags, cache, size_expr);
2233      if (op1 == chrec_dont_know)
2234	return chrec_dont_know;
2235
2236      if (CHREC_LEFT (chrec) != op0
2237	  || CHREC_RIGHT (chrec) != op1)
2238	{
2239	  op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2240	  chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2241	}
2242      return chrec;
2243
2244    case PLUS_EXPR:
2245      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2246				      flags, cache, size_expr);
2247      if (op0 == chrec_dont_know)
2248	return chrec_dont_know;
2249
2250      op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2251				      flags, cache, size_expr);
2252      if (op1 == chrec_dont_know)
2253	return chrec_dont_know;
2254
2255      if (TREE_OPERAND (chrec, 0) != op0
2256	  || TREE_OPERAND (chrec, 1) != op1)
2257	{
2258	  op0 = chrec_convert (type, op0, NULL_TREE);
2259	  op1 = chrec_convert (type, op1, NULL_TREE);
2260	  chrec = chrec_fold_plus (type, op0, op1);
2261	}
2262      return chrec;
2263
2264    case MINUS_EXPR:
2265      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2266				      flags, cache, size_expr);
2267      if (op0 == chrec_dont_know)
2268	return chrec_dont_know;
2269
2270      op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2271				      flags, cache, size_expr);
2272      if (op1 == chrec_dont_know)
2273	return chrec_dont_know;
2274
2275      if (TREE_OPERAND (chrec, 0) != op0
2276	  || TREE_OPERAND (chrec, 1) != op1)
2277	{
2278	  op0 = chrec_convert (type, op0, NULL_TREE);
2279	  op1 = chrec_convert (type, op1, NULL_TREE);
2280	  chrec = chrec_fold_minus (type, op0, op1);
2281	}
2282      return chrec;
2283
2284    case MULT_EXPR:
2285      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2286				      flags, cache, size_expr);
2287      if (op0 == chrec_dont_know)
2288	return chrec_dont_know;
2289
2290      op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2291				      flags, cache, size_expr);
2292      if (op1 == chrec_dont_know)
2293	return chrec_dont_know;
2294
2295      if (TREE_OPERAND (chrec, 0) != op0
2296	  || TREE_OPERAND (chrec, 1) != op1)
2297	{
2298	  op0 = chrec_convert (type, op0, NULL_TREE);
2299	  op1 = chrec_convert (type, op1, NULL_TREE);
2300	  chrec = chrec_fold_multiply (type, op0, op1);
2301	}
2302      return chrec;
2303
2304    case NOP_EXPR:
2305    case CONVERT_EXPR:
2306    case NON_LVALUE_EXPR:
2307      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2308				      flags, cache, size_expr);
2309      if (op0 == chrec_dont_know)
2310        return chrec_dont_know;
2311
2312      if (flags & FOLD_CONVERSIONS)
2313	{
2314	  tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2315	  if (tmp)
2316	    return tmp;
2317	}
2318
2319      if (op0 == TREE_OPERAND (chrec, 0))
2320	return chrec;
2321
2322      /* If we used chrec_convert_aggressive, we can no longer assume that
2323	 signed chrecs do not overflow, as chrec_convert does, so avoid
2324         calling it in that case.  */
2325      if (flags & FOLD_CONVERSIONS)
2326	return fold_convert (TREE_TYPE (chrec), op0);
2327
2328      return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2329
2330    case SCEV_NOT_KNOWN:
2331      return chrec_dont_know;
2332
2333    case SCEV_KNOWN:
2334      return chrec_known;
2335
2336    default:
2337      break;
2338    }
2339
2340  switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2341    {
2342    case 3:
2343      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2344				      flags, cache, size_expr);
2345      if (op0 == chrec_dont_know)
2346	return chrec_dont_know;
2347
2348      op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2349				      flags, cache, size_expr);
2350      if (op1 == chrec_dont_know)
2351	return chrec_dont_know;
2352
2353      op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2354				      flags, cache, size_expr);
2355      if (op2 == chrec_dont_know)
2356        return chrec_dont_know;
2357
2358      if (op0 == TREE_OPERAND (chrec, 0)
2359	  && op1 == TREE_OPERAND (chrec, 1)
2360	  && op2 == TREE_OPERAND (chrec, 2))
2361	return chrec;
2362
2363      return fold_build3 (TREE_CODE (chrec),
2364			  TREE_TYPE (chrec), op0, op1, op2);
2365
2366    case 2:
2367      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2368				      flags, cache, size_expr);
2369      if (op0 == chrec_dont_know)
2370	return chrec_dont_know;
2371
2372      op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2373				      flags, cache, size_expr);
2374      if (op1 == chrec_dont_know)
2375        return chrec_dont_know;
2376
2377      if (op0 == TREE_OPERAND (chrec, 0)
2378	  && op1 == TREE_OPERAND (chrec, 1))
2379	return chrec;
2380      return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2381
2382    case 1:
2383      op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2384				      flags, cache, size_expr);
2385      if (op0 == chrec_dont_know)
2386        return chrec_dont_know;
2387      if (op0 == TREE_OPERAND (chrec, 0))
2388	return chrec;
2389      return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2390
2391    case 0:
2392      return chrec;
2393
2394    default:
2395      break;
2396    }
2397
2398  /* Too complicated to handle.  */
2399  return chrec_dont_know;
2400}
2401
2402/* Analyze all the parameters of the chrec that were left under a
2403   symbolic form.  LOOP is the loop in which symbolic names have to
2404   be analyzed and instantiated.  */
2405
2406tree
2407instantiate_parameters (struct loop *loop,
2408			tree chrec)
2409{
2410  tree res;
2411  htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2412
2413  if (dump_file && (dump_flags & TDF_DETAILS))
2414    {
2415      fprintf (dump_file, "(instantiate_parameters \n");
2416      fprintf (dump_file, "  (loop_nb = %d)\n", loop->num);
2417      fprintf (dump_file, "  (chrec = ");
2418      print_generic_expr (dump_file, chrec, 0);
2419      fprintf (dump_file, ")\n");
2420    }
2421
2422  res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2423				  0);
2424
2425  if (dump_file && (dump_flags & TDF_DETAILS))
2426    {
2427      fprintf (dump_file, "  (res = ");
2428      print_generic_expr (dump_file, res, 0);
2429      fprintf (dump_file, "))\n");
2430    }
2431
2432  htab_delete (cache);
2433
2434  return res;
2435}
2436
2437/* Similar to instantiate_parameters, but does not introduce the
2438   evolutions in outer loops for LOOP invariants in CHREC, and does not
2439   care about causing overflows, as long as they do not affect value
2440   of an expression.  */
2441
2442static tree
2443resolve_mixers (struct loop *loop, tree chrec)
2444{
2445  htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2446  tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2447  htab_delete (cache);
2448  return ret;
2449}
2450
2451/* Entry point for the analysis of the number of iterations pass.
2452   This function tries to safely approximate the number of iterations
2453   the loop will run.  When this property is not decidable at compile
2454   time, the result is chrec_dont_know.  Otherwise the result is
2455   a scalar or a symbolic parameter.
2456
2457   Example of analysis: suppose that the loop has an exit condition:
2458
2459   "if (b > 49) goto end_loop;"
2460
2461   and that in a previous analysis we have determined that the
2462   variable 'b' has an evolution function:
2463
2464   "EF = {23, +, 5}_2".
2465
2466   When we evaluate the function at the point 5, i.e. the value of the
2467   variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2468   and EF (6) = 53.  In this case the value of 'b' on exit is '53' and
2469   the loop body has been executed 6 times.  */
2470
2471tree
2472number_of_iterations_in_loop (struct loop *loop)
2473{
2474  tree res, type;
2475  edge exit;
2476  struct tree_niter_desc niter_desc;
2477
2478  /* Determine whether the number_of_iterations_in_loop has already
2479     been computed.  */
2480  res = loop->nb_iterations;
2481  if (res)
2482    return res;
2483  res = chrec_dont_know;
2484
2485  if (dump_file && (dump_flags & TDF_DETAILS))
2486    fprintf (dump_file, "(number_of_iterations_in_loop\n");
2487
2488  exit = loop->single_exit;
2489  if (!exit)
2490    goto end;
2491
2492  if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2493    goto end;
2494
2495  type = TREE_TYPE (niter_desc.niter);
2496  if (integer_nonzerop (niter_desc.may_be_zero))
2497    res = build_int_cst (type, 0);
2498  else if (integer_zerop (niter_desc.may_be_zero))
2499    res = niter_desc.niter;
2500  else
2501    res = chrec_dont_know;
2502
2503end:
2504  return set_nb_iterations_in_loop (loop, res);
2505}
2506
2507/* One of the drivers for testing the scalar evolutions analysis.
2508   This function computes the number of iterations for all the loops
2509   from the EXIT_CONDITIONS array.  */
2510
2511static void
2512number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2513{
2514  unsigned int i;
2515  unsigned nb_chrec_dont_know_loops = 0;
2516  unsigned nb_static_loops = 0;
2517  tree cond;
2518
2519  for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2520    {
2521      tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2522      if (chrec_contains_undetermined (res))
2523	nb_chrec_dont_know_loops++;
2524      else
2525	nb_static_loops++;
2526    }
2527
2528  if (dump_file)
2529    {
2530      fprintf (dump_file, "\n(\n");
2531      fprintf (dump_file, "-----------------------------------------\n");
2532      fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2533      fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2534      fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2535      fprintf (dump_file, "-----------------------------------------\n");
2536      fprintf (dump_file, ")\n\n");
2537
2538      print_loop_ir (dump_file);
2539    }
2540}
2541
2542
2543
2544/* Counters for the stats.  */
2545
2546struct chrec_stats
2547{
2548  unsigned nb_chrecs;
2549  unsigned nb_affine;
2550  unsigned nb_affine_multivar;
2551  unsigned nb_higher_poly;
2552  unsigned nb_chrec_dont_know;
2553  unsigned nb_undetermined;
2554};
2555
2556/* Reset the counters.  */
2557
2558static inline void
2559reset_chrecs_counters (struct chrec_stats *stats)
2560{
2561  stats->nb_chrecs = 0;
2562  stats->nb_affine = 0;
2563  stats->nb_affine_multivar = 0;
2564  stats->nb_higher_poly = 0;
2565  stats->nb_chrec_dont_know = 0;
2566  stats->nb_undetermined = 0;
2567}
2568
2569/* Dump the contents of a CHREC_STATS structure.  */
2570
2571static void
2572dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2573{
2574  fprintf (file, "\n(\n");
2575  fprintf (file, "-----------------------------------------\n");
2576  fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2577  fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2578  fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2579	   stats->nb_higher_poly);
2580  fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2581  fprintf (file, "-----------------------------------------\n");
2582  fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2583  fprintf (file, "%d\twith undetermined coefficients\n",
2584	   stats->nb_undetermined);
2585  fprintf (file, "-----------------------------------------\n");
2586  fprintf (file, "%d\tchrecs in the scev database\n",
2587	   (int) htab_elements (scalar_evolution_info));
2588  fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2589  fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2590  fprintf (file, "-----------------------------------------\n");
2591  fprintf (file, ")\n\n");
2592}
2593
2594/* Gather statistics about CHREC.  */
2595
2596static void
2597gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2598{
2599  if (dump_file && (dump_flags & TDF_STATS))
2600    {
2601      fprintf (dump_file, "(classify_chrec ");
2602      print_generic_expr (dump_file, chrec, 0);
2603      fprintf (dump_file, "\n");
2604    }
2605
2606  stats->nb_chrecs++;
2607
2608  if (chrec == NULL_TREE)
2609    {
2610      stats->nb_undetermined++;
2611      return;
2612    }
2613
2614  switch (TREE_CODE (chrec))
2615    {
2616    case POLYNOMIAL_CHREC:
2617      if (evolution_function_is_affine_p (chrec))
2618	{
2619	  if (dump_file && (dump_flags & TDF_STATS))
2620	    fprintf (dump_file, "  affine_univariate\n");
2621	  stats->nb_affine++;
2622	}
2623      else if (evolution_function_is_affine_multivariate_p (chrec))
2624	{
2625	  if (dump_file && (dump_flags & TDF_STATS))
2626	    fprintf (dump_file, "  affine_multivariate\n");
2627	  stats->nb_affine_multivar++;
2628	}
2629      else
2630	{
2631	  if (dump_file && (dump_flags & TDF_STATS))
2632	    fprintf (dump_file, "  higher_degree_polynomial\n");
2633	  stats->nb_higher_poly++;
2634	}
2635
2636      break;
2637
2638    default:
2639      break;
2640    }
2641
2642  if (chrec_contains_undetermined (chrec))
2643    {
2644      if (dump_file && (dump_flags & TDF_STATS))
2645	fprintf (dump_file, "  undetermined\n");
2646      stats->nb_undetermined++;
2647    }
2648
2649  if (dump_file && (dump_flags & TDF_STATS))
2650    fprintf (dump_file, ")\n");
2651}
2652
2653/* One of the drivers for testing the scalar evolutions analysis.
2654   This function analyzes the scalar evolution of all the scalars
2655   defined as loop phi nodes in one of the loops from the
2656   EXIT_CONDITIONS array.
2657
2658   TODO Optimization: A loop is in canonical form if it contains only
2659   a single scalar loop phi node.  All the other scalars that have an
2660   evolution in the loop are rewritten in function of this single
2661   index.  This allows the parallelization of the loop.  */
2662
2663static void
2664analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2665{
2666  unsigned int i;
2667  struct chrec_stats stats;
2668  tree cond;
2669
2670  reset_chrecs_counters (&stats);
2671
2672  for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2673    {
2674      struct loop *loop;
2675      basic_block bb;
2676      tree phi, chrec;
2677
2678      loop = loop_containing_stmt (cond);
2679      bb = loop->header;
2680
2681      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2682	if (is_gimple_reg (PHI_RESULT (phi)))
2683	  {
2684	    chrec = instantiate_parameters
2685	      (loop,
2686	       analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2687
2688	    if (dump_file && (dump_flags & TDF_STATS))
2689	      gather_chrec_stats (chrec, &stats);
2690	  }
2691    }
2692
2693  if (dump_file && (dump_flags & TDF_STATS))
2694    dump_chrecs_stats (dump_file, &stats);
2695}
2696
2697/* Callback for htab_traverse, gathers information on chrecs in the
2698   hashtable.  */
2699
2700static int
2701gather_stats_on_scev_database_1 (void **slot, void *stats)
2702{
2703  struct scev_info_str *entry = (struct scev_info_str *) *slot;
2704
2705  gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2706
2707  return 1;
2708}
2709
2710/* Classify the chrecs of the whole database.  */
2711
2712void
2713gather_stats_on_scev_database (void)
2714{
2715  struct chrec_stats stats;
2716
2717  if (!dump_file)
2718    return;
2719
2720  reset_chrecs_counters (&stats);
2721
2722  htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2723		 &stats);
2724
2725  dump_chrecs_stats (dump_file, &stats);
2726}
2727
2728
2729
2730/* Initializer.  */
2731
2732static void
2733initialize_scalar_evolutions_analyzer (void)
2734{
2735  /* The elements below are unique.  */
2736  if (chrec_dont_know == NULL_TREE)
2737    {
2738      chrec_not_analyzed_yet = NULL_TREE;
2739      chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2740      chrec_known = make_node (SCEV_KNOWN);
2741      TREE_TYPE (chrec_dont_know) = void_type_node;
2742      TREE_TYPE (chrec_known) = void_type_node;
2743    }
2744}
2745
2746/* Initialize the analysis of scalar evolutions for LOOPS.  */
2747
2748void
2749scev_initialize (struct loops *loops)
2750{
2751  unsigned i;
2752  current_loops = loops;
2753
2754  scalar_evolution_info = htab_create (100, hash_scev_info,
2755				       eq_scev_info, del_scev_info);
2756  already_instantiated = BITMAP_ALLOC (NULL);
2757
2758  initialize_scalar_evolutions_analyzer ();
2759
2760  for (i = 1; i < loops->num; i++)
2761    if (loops->parray[i])
2762      loops->parray[i]->nb_iterations = NULL_TREE;
2763}
2764
2765/* Cleans up the information cached by the scalar evolutions analysis.  */
2766
2767void
2768scev_reset (void)
2769{
2770  unsigned i;
2771  struct loop *loop;
2772
2773  if (!scalar_evolution_info || !current_loops)
2774    return;
2775
2776  htab_empty (scalar_evolution_info);
2777  for (i = 1; i < current_loops->num; i++)
2778    {
2779      loop = current_loops->parray[i];
2780      if (loop)
2781	loop->nb_iterations = NULL_TREE;
2782    }
2783}
2784
2785/* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2786   its base and step in IV if possible.  If ALLOW_NONCONSTANT_STEP is true, we
2787   want step to be invariant in LOOP.  Otherwise we require it to be an
2788   integer constant.  IV->no_overflow is set to true if we are sure the iv cannot
2789   overflow (e.g.  because it is computed in signed arithmetics).  */
2790
2791bool
2792simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2793	   bool allow_nonconstant_step)
2794{
2795  basic_block bb = bb_for_stmt (stmt);
2796  tree type, ev;
2797  bool folded_casts;
2798
2799  iv->base = NULL_TREE;
2800  iv->step = NULL_TREE;
2801  iv->no_overflow = false;
2802
2803  type = TREE_TYPE (op);
2804  if (TREE_CODE (type) != INTEGER_TYPE
2805      && TREE_CODE (type) != POINTER_TYPE)
2806    return false;
2807
2808  ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2809					 &folded_casts);
2810  if (chrec_contains_undetermined (ev))
2811    return false;
2812
2813  if (tree_does_not_contain_chrecs (ev)
2814      && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2815    {
2816      iv->base = ev;
2817      iv->no_overflow = true;
2818      return true;
2819    }
2820
2821  if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2822      || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2823    return false;
2824
2825  iv->step = CHREC_RIGHT (ev);
2826  if (allow_nonconstant_step)
2827    {
2828      if (tree_contains_chrecs (iv->step, NULL)
2829	  || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2830	return false;
2831    }
2832  else if (TREE_CODE (iv->step) != INTEGER_CST)
2833    return false;
2834
2835  iv->base = CHREC_LEFT (ev);
2836  if (tree_contains_chrecs (iv->base, NULL)
2837      || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2838    return false;
2839
2840  iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2841
2842  return true;
2843}
2844
2845/* Runs the analysis of scalar evolutions.  */
2846
2847void
2848scev_analysis (void)
2849{
2850  VEC(tree,heap) *exit_conditions;
2851
2852  exit_conditions = VEC_alloc (tree, heap, 37);
2853  select_loops_exit_conditions (current_loops, &exit_conditions);
2854
2855  if (dump_file && (dump_flags & TDF_STATS))
2856    analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2857
2858  number_of_iterations_for_all_loops (&exit_conditions);
2859  VEC_free (tree, heap, exit_conditions);
2860}
2861
2862/* Finalize the scalar evolution analysis.  */
2863
2864void
2865scev_finalize (void)
2866{
2867  htab_delete (scalar_evolution_info);
2868  BITMAP_FREE (already_instantiated);
2869}
2870
2871/* Returns true if EXPR looks expensive.  */
2872
2873static bool
2874expression_expensive_p (tree expr)
2875{
2876  return force_expr_to_var_cost (expr) >= target_spill_cost;
2877}
2878
2879/* Replace ssa names for that scev can prove they are constant by the
2880   appropriate constants.  Also perform final value replacement in loops,
2881   in case the replacement expressions are cheap.
2882
2883   We only consider SSA names defined by phi nodes; rest is left to the
2884   ordinary constant propagation pass.  */
2885
2886unsigned int
2887scev_const_prop (void)
2888{
2889  basic_block bb;
2890  tree name, phi, next_phi, type, ev;
2891  struct loop *loop, *ex_loop;
2892  bitmap ssa_names_to_remove = NULL;
2893  unsigned i;
2894
2895  if (!current_loops)
2896    return 0;
2897
2898  FOR_EACH_BB (bb)
2899    {
2900      loop = bb->loop_father;
2901
2902      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2903	{
2904	  name = PHI_RESULT (phi);
2905
2906	  if (!is_gimple_reg (name))
2907	    continue;
2908
2909	  type = TREE_TYPE (name);
2910
2911	  if (!POINTER_TYPE_P (type)
2912	      && !INTEGRAL_TYPE_P (type))
2913	    continue;
2914
2915	  ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2916	  if (!is_gimple_min_invariant (ev)
2917	      || !may_propagate_copy (name, ev))
2918	    continue;
2919
2920	  /* Replace the uses of the name.  */
2921	  if (name != ev)
2922	    replace_uses_by (name, ev);
2923
2924	  if (!ssa_names_to_remove)
2925	    ssa_names_to_remove = BITMAP_ALLOC (NULL);
2926	  bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2927	}
2928    }
2929
2930  /* Remove the ssa names that were replaced by constants.  We do not remove them
2931     directly in the previous cycle, since this invalidates scev cache.  */
2932  if (ssa_names_to_remove)
2933    {
2934      bitmap_iterator bi;
2935      unsigned i;
2936
2937      EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2938	{
2939	  name = ssa_name (i);
2940	  phi = SSA_NAME_DEF_STMT (name);
2941
2942	  gcc_assert (TREE_CODE (phi) == PHI_NODE);
2943	  remove_phi_node (phi, NULL);
2944	}
2945
2946      BITMAP_FREE (ssa_names_to_remove);
2947      scev_reset ();
2948    }
2949
2950  /* Now the regular final value replacement.  */
2951  for (i = current_loops->num - 1; i > 0; i--)
2952    {
2953      edge exit;
2954      tree def, rslt, ass, niter;
2955      block_stmt_iterator bsi;
2956
2957      loop = current_loops->parray[i];
2958      if (!loop)
2959	continue;
2960
2961      /* If we do not know exact number of iterations of the loop, we cannot
2962	 replace the final value.  */
2963      exit = loop->single_exit;
2964      if (!exit)
2965	continue;
2966
2967      niter = number_of_iterations_in_loop (loop);
2968      if (niter == chrec_dont_know
2969	  /* If computing the number of iterations is expensive, it may be
2970	     better not to introduce computations involving it.  */
2971	  || expression_expensive_p (niter))
2972	continue;
2973
2974      /* Ensure that it is possible to insert new statements somewhere.  */
2975      if (!single_pred_p (exit->dest))
2976	split_loop_exit_edge (exit);
2977      tree_block_label (exit->dest);
2978      bsi = bsi_after_labels (exit->dest);
2979
2980      ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2981
2982      for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2983	{
2984	  next_phi = PHI_CHAIN (phi);
2985	  rslt = PHI_RESULT (phi);
2986	  def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2987	  if (!is_gimple_reg (def))
2988	    continue;
2989
2990	  if (!POINTER_TYPE_P (TREE_TYPE (def))
2991	      && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2992	    continue;
2993
2994	  def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2995	  def = compute_overall_effect_of_inner_loop (ex_loop, def);
2996	  if (!tree_does_not_contain_chrecs (def)
2997	      || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2998	      /* Moving the computation from the loop may prolong life range
2999		 of some ssa names, which may cause problems if they appear
3000		 on abnormal edges.  */
3001	      || contains_abnormal_ssa_name_p (def))
3002	    continue;
3003
3004	  /* Eliminate the phi node and replace it by a computation outside
3005	     the loop.  */
3006	  def = unshare_expr (def);
3007	  SET_PHI_RESULT (phi, NULL_TREE);
3008	  remove_phi_node (phi, NULL_TREE);
3009
3010	  ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
3011	  SSA_NAME_DEF_STMT (rslt) = ass;
3012	  {
3013	    block_stmt_iterator dest = bsi;
3014	    bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3015	    def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3016	  }
3017	  TREE_OPERAND (ass, 1) = def;
3018	  update_stmt (ass);
3019	}
3020    }
3021  return 0;
3022}
3023