1/* Definitions for computing resource usage of specific insns.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "toplev.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "hard-reg-set.h"
30#include "function.h"
31#include "regs.h"
32#include "flags.h"
33#include "output.h"
34#include "resource.h"
35#include "except.h"
36#include "insn-attr.h"
37#include "params.h"
38
39/* This structure is used to record liveness information at the targets or
40   fallthrough insns of branches.  We will most likely need the information
41   at targets again, so save them in a hash table rather than recomputing them
42   each time.  */
43
44struct target_info
45{
46  int uid;			/* INSN_UID of target.  */
47  struct target_info *next;	/* Next info for same hash bucket.  */
48  HARD_REG_SET live_regs;	/* Registers live at target.  */
49  int block;			/* Basic block number containing target.  */
50  int bb_tick;			/* Generation count of basic block info.  */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue.  */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end.  */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself.  */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65   block info, which is updated each time we move an insn from the
66   target of a jump.  This is the generation number indexed by block
67   number.  */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
72   mark_target_live_regs.  Also used by update_live_status.  */
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77   Also only used by the next two functions.  */
78
79static HARD_REG_SET pending_dead_regs;
80
81static void update_live_status (rtx, rtx, void *);
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85				       rtx*, int, struct resources,
86				       struct resources);
87
88/* Utility function called from mark_target_live_regs via note_stores.
89   It deadens any CLOBBERed registers and livens any SET registers.  */
90
91static void
92update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
93{
94  int first_regno, last_regno;
95  int i;
96
97  if (!REG_P (dest)
98      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99    return;
100
101  if (GET_CODE (dest) == SUBREG)
102    first_regno = subreg_regno (dest);
103  else
104    first_regno = REGNO (dest);
105
106  last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
107
108  if (GET_CODE (x) == CLOBBER)
109    for (i = first_regno; i < last_regno; i++)
110      CLEAR_HARD_REG_BIT (current_live_regs, i);
111  else
112    for (i = first_regno; i < last_regno; i++)
113      {
114	SET_HARD_REG_BIT (current_live_regs, i);
115	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
116      }
117}
118
119/* Find the number of the basic block with correct live register
120   information that starts closest to INSN.  Return -1 if we couldn't
121   find such a basic block or the beginning is more than
122   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
123   an unlimited search.
124
125   The delay slot filling code destroys the control-flow graph so,
126   instead of finding the basic block containing INSN, we search
127   backwards toward a BARRIER where the live register information is
128   correct.  */
129
130static int
131find_basic_block (rtx insn, int search_limit)
132{
133  basic_block bb;
134
135  /* Scan backwards to the previous BARRIER.  Then see if we can find a
136     label that starts a basic block.  Return the basic block number.  */
137  for (insn = prev_nonnote_insn (insn);
138       insn && !BARRIER_P (insn) && search_limit != 0;
139       insn = prev_nonnote_insn (insn), --search_limit)
140    ;
141
142  /* The closest BARRIER is too far away.  */
143  if (search_limit == 0)
144    return -1;
145
146  /* The start of the function.  */
147  else if (insn == 0)
148    return ENTRY_BLOCK_PTR->next_bb->index;
149
150  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
151     anything other than a CODE_LABEL or note, we can't find this code.  */
152  for (insn = next_nonnote_insn (insn);
153       insn && LABEL_P (insn);
154       insn = next_nonnote_insn (insn))
155    {
156      FOR_EACH_BB (bb)
157	if (insn == BB_HEAD (bb))
158	  return bb->index;
159    }
160
161  return -1;
162}
163
164/* Similar to next_insn, but ignores insns in the delay slots of
165   an annulled branch.  */
166
167static rtx
168next_insn_no_annul (rtx insn)
169{
170  if (insn)
171    {
172      /* If INSN is an annulled branch, skip any insns from the target
173	 of the branch.  */
174      if (INSN_P (insn)
175	  && INSN_ANNULLED_BRANCH_P (insn)
176	  && NEXT_INSN (PREV_INSN (insn)) != insn)
177	{
178	  rtx next = NEXT_INSN (insn);
179	  enum rtx_code code = GET_CODE (next);
180
181	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182		 && INSN_FROM_TARGET_P (next))
183	    {
184	      insn = next;
185	      next = NEXT_INSN (insn);
186	      code = GET_CODE (next);
187	    }
188	}
189
190      insn = NEXT_INSN (insn);
191      if (insn && NONJUMP_INSN_P (insn)
192	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
193	insn = XVECEXP (PATTERN (insn), 0, 0);
194    }
195
196  return insn;
197}
198
199/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201   is TRUE, resources used by the called routine will be included for
202   CALL_INSNs.  */
203
204void
205mark_referenced_resources (rtx x, struct resources *res,
206			   int include_delayed_effects)
207{
208  enum rtx_code code = GET_CODE (x);
209  int i, j;
210  unsigned int r;
211  const char *format_ptr;
212
213  /* Handle leaf items for which we set resource flags.  Also, special-case
214     CALL, SET and CLOBBER operators.  */
215  switch (code)
216    {
217    case CONST:
218    case CONST_INT:
219    case CONST_DOUBLE:
220    case CONST_VECTOR:
221    case PC:
222    case SYMBOL_REF:
223    case LABEL_REF:
224      return;
225
226    case SUBREG:
227      if (!REG_P (SUBREG_REG (x)))
228	mark_referenced_resources (SUBREG_REG (x), res, 0);
229      else
230	{
231	  unsigned int regno = subreg_regno (x);
232	  unsigned int last_regno
233	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
234
235	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236	  for (r = regno; r < last_regno; r++)
237	    SET_HARD_REG_BIT (res->regs, r);
238	}
239      return;
240
241    case REG:
242	{
243	  unsigned int regno = REGNO (x);
244	  unsigned int last_regno
245	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
246
247	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
248	  for (r = regno; r < last_regno; r++)
249	    SET_HARD_REG_BIT (res->regs, r);
250	}
251      return;
252
253    case MEM:
254      /* If this memory shouldn't change, it really isn't referencing
255	 memory.  */
256      if (MEM_READONLY_P (x))
257	res->unch_memory = 1;
258      else
259	res->memory = 1;
260      res->volatil |= MEM_VOLATILE_P (x);
261
262      /* Mark registers used to access memory.  */
263      mark_referenced_resources (XEXP (x, 0), res, 0);
264      return;
265
266    case CC0:
267      res->cc = 1;
268      return;
269
270    case UNSPEC_VOLATILE:
271    case ASM_INPUT:
272      /* Traditional asm's are always volatile.  */
273      res->volatil = 1;
274      return;
275
276    case TRAP_IF:
277      res->volatil = 1;
278      break;
279
280    case ASM_OPERANDS:
281      res->volatil |= MEM_VOLATILE_P (x);
282
283      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
284	 We can not just fall through here since then we would be confused
285	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
286	 traditional asms unlike their normal usage.  */
287
288      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
289	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
290      return;
291
292    case CALL:
293      /* The first operand will be a (MEM (xxx)) but doesn't really reference
294	 memory.  The second operand may be referenced, though.  */
295      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
296      mark_referenced_resources (XEXP (x, 1), res, 0);
297      return;
298
299    case SET:
300      /* Usually, the first operand of SET is set, not referenced.  But
301	 registers used to access memory are referenced.  SET_DEST is
302	 also referenced if it is a ZERO_EXTRACT.  */
303
304      mark_referenced_resources (SET_SRC (x), res, 0);
305
306      x = SET_DEST (x);
307      if (GET_CODE (x) == ZERO_EXTRACT
308	  || GET_CODE (x) == STRICT_LOW_PART)
309	mark_referenced_resources (x, res, 0);
310      else if (GET_CODE (x) == SUBREG)
311	x = SUBREG_REG (x);
312      if (MEM_P (x))
313	mark_referenced_resources (XEXP (x, 0), res, 0);
314      return;
315
316    case CLOBBER:
317      return;
318
319    case CALL_INSN:
320      if (include_delayed_effects)
321	{
322	  /* A CALL references memory, the frame pointer if it exists, the
323	     stack pointer, any global registers and any registers given in
324	     USE insns immediately in front of the CALL.
325
326	     However, we may have moved some of the parameter loading insns
327	     into the delay slot of this CALL.  If so, the USE's for them
328	     don't count and should be skipped.  */
329	  rtx insn = PREV_INSN (x);
330	  rtx sequence = 0;
331	  int seq_size = 0;
332	  int i;
333
334	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
335	  if (NEXT_INSN (insn) != x)
336	    {
337	      sequence = PATTERN (NEXT_INSN (insn));
338	      seq_size = XVECLEN (sequence, 0);
339	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
340	    }
341
342	  res->memory = 1;
343	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
344	  if (frame_pointer_needed)
345	    {
346	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
347#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
348	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
349#endif
350	    }
351
352	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
353	    if (global_regs[i])
354	      SET_HARD_REG_BIT (res->regs, i);
355
356	  /* Check for a REG_SETJMP.  If it exists, then we must
357	     assume that this call can need any register.
358
359	     This is done to be more conservative about how we handle setjmp.
360	     We assume that they both use and set all registers.  Using all
361	     registers ensures that a register will not be considered dead
362	     just because it crosses a setjmp call.  A register should be
363	     considered dead only if the setjmp call returns nonzero.  */
364	  if (find_reg_note (x, REG_SETJMP, NULL))
365	    SET_HARD_REG_SET (res->regs);
366
367	  {
368	    rtx link;
369
370	    for (link = CALL_INSN_FUNCTION_USAGE (x);
371		 link;
372		 link = XEXP (link, 1))
373	      if (GET_CODE (XEXP (link, 0)) == USE)
374		{
375		  for (i = 1; i < seq_size; i++)
376		    {
377		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
378		      if (GET_CODE (slot_pat) == SET
379			  && rtx_equal_p (SET_DEST (slot_pat),
380					  XEXP (XEXP (link, 0), 0)))
381			break;
382		    }
383		  if (i >= seq_size)
384		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
385					       res, 0);
386		}
387	  }
388	}
389
390      /* ... fall through to other INSN processing ...  */
391
392    case INSN:
393    case JUMP_INSN:
394
395#ifdef INSN_REFERENCES_ARE_DELAYED
396      if (! include_delayed_effects
397	  && INSN_REFERENCES_ARE_DELAYED (x))
398	return;
399#endif
400
401      /* No special processing, just speed up.  */
402      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
403      return;
404
405    default:
406      break;
407    }
408
409  /* Process each sub-expression and flag what it needs.  */
410  format_ptr = GET_RTX_FORMAT (code);
411  for (i = 0; i < GET_RTX_LENGTH (code); i++)
412    switch (*format_ptr++)
413      {
414      case 'e':
415	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
416	break;
417
418      case 'E':
419	for (j = 0; j < XVECLEN (x, i); j++)
420	  mark_referenced_resources (XVECEXP (x, i, j), res,
421				     include_delayed_effects);
422	break;
423      }
424}
425
426/* A subroutine of mark_target_live_regs.  Search forward from TARGET
427   looking for registers that are set before they are used.  These are dead.
428   Stop after passing a few conditional jumps, and/or a small
429   number of unconditional branches.  */
430
431static rtx
432find_dead_or_set_registers (rtx target, struct resources *res,
433			    rtx *jump_target, int jump_count,
434			    struct resources set, struct resources needed)
435{
436  HARD_REG_SET scratch;
437  rtx insn, next;
438  rtx jump_insn = 0;
439  int i;
440
441  for (insn = target; insn; insn = next)
442    {
443      rtx this_jump_insn = insn;
444
445      next = NEXT_INSN (insn);
446
447      /* If this instruction can throw an exception, then we don't
448	 know where we might end up next.  That means that we have to
449	 assume that whatever we have already marked as live really is
450	 live.  */
451      if (can_throw_internal (insn))
452	break;
453
454      switch (GET_CODE (insn))
455	{
456	case CODE_LABEL:
457	  /* After a label, any pending dead registers that weren't yet
458	     used can be made dead.  */
459	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
460	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
461	  CLEAR_HARD_REG_SET (pending_dead_regs);
462
463	  continue;
464
465	case BARRIER:
466	case NOTE:
467	  continue;
468
469	case INSN:
470	  if (GET_CODE (PATTERN (insn)) == USE)
471	    {
472	      /* If INSN is a USE made by update_block, we care about the
473		 underlying insn.  Any registers set by the underlying insn
474		 are live since the insn is being done somewhere else.  */
475	      if (INSN_P (XEXP (PATTERN (insn), 0)))
476		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
477				    MARK_SRC_DEST_CALL);
478
479	      /* All other USE insns are to be ignored.  */
480	      continue;
481	    }
482	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
483	    continue;
484	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
485	    {
486	      /* An unconditional jump can be used to fill the delay slot
487		 of a call, so search for a JUMP_INSN in any position.  */
488	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
489		{
490		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
491		  if (JUMP_P (this_jump_insn))
492		    break;
493		}
494	    }
495
496	default:
497	  break;
498	}
499
500      if (JUMP_P (this_jump_insn))
501	{
502	  if (jump_count++ < 10)
503	    {
504	      if (any_uncondjump_p (this_jump_insn)
505		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
506		{
507		  next = JUMP_LABEL (this_jump_insn);
508		  if (jump_insn == 0)
509		    {
510		      jump_insn = insn;
511		      if (jump_target)
512			*jump_target = JUMP_LABEL (this_jump_insn);
513		    }
514		}
515	      else if (any_condjump_p (this_jump_insn))
516		{
517		  struct resources target_set, target_res;
518		  struct resources fallthrough_res;
519
520		  /* We can handle conditional branches here by following
521		     both paths, and then IOR the results of the two paths
522		     together, which will give us registers that are dead
523		     on both paths.  Since this is expensive, we give it
524		     a much higher cost than unconditional branches.  The
525		     cost was chosen so that we will follow at most 1
526		     conditional branch.  */
527
528		  jump_count += 4;
529		  if (jump_count >= 10)
530		    break;
531
532		  mark_referenced_resources (insn, &needed, 1);
533
534		  /* For an annulled branch, mark_set_resources ignores slots
535		     filled by instructions from the target.  This is correct
536		     if the branch is not taken.  Since we are following both
537		     paths from the branch, we must also compute correct info
538		     if the branch is taken.  We do this by inverting all of
539		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
540		     and then inverting the INSN_FROM_TARGET_P bits again.  */
541
542		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
543		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
544		    {
545		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
548
549		      target_set = set;
550		      mark_set_resources (insn, &target_set, 0,
551					  MARK_SRC_DEST_CALL);
552
553		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
554			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
555			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
556
557		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
558		    }
559		  else
560		    {
561		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
562		      target_set = set;
563		    }
564
565		  target_res = *res;
566		  COPY_HARD_REG_SET (scratch, target_set.regs);
567		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
569
570		  fallthrough_res = *res;
571		  COPY_HARD_REG_SET (scratch, set.regs);
572		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
573		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
574
575		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
576					      &target_res, 0, jump_count,
577					      target_set, needed);
578		  find_dead_or_set_registers (next,
579					      &fallthrough_res, 0, jump_count,
580					      set, needed);
581		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583		  break;
584		}
585	      else
586		break;
587	    }
588	  else
589	    {
590	      /* Don't try this optimization if we expired our jump count
591		 above, since that would mean there may be an infinite loop
592		 in the function being compiled.  */
593	      jump_insn = 0;
594	      break;
595	    }
596	}
597
598      mark_referenced_resources (insn, &needed, 1);
599      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
600
601      COPY_HARD_REG_SET (scratch, set.regs);
602      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603      AND_COMPL_HARD_REG_SET (res->regs, scratch);
604    }
605
606  return jump_insn;
607}
608
609/* Given X, a part of an insn, and a pointer to a `struct resource',
610   RES, indicate which resources are modified by the insn. If
611   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
612   set by the called routine.
613
614   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
615   objects are being referenced instead of set.
616
617   We never mark the insn as modifying the condition code unless it explicitly
618   SETs CC0 even though this is not totally correct.  The reason for this is
619   that we require a SET of CC0 to immediately precede the reference to CC0.
620   So if some other insn sets CC0 as a side-effect, we know it cannot affect
621   our computation and thus may be placed in a delay slot.  */
622
623void
624mark_set_resources (rtx x, struct resources *res, int in_dest,
625		    enum mark_resource_type mark_type)
626{
627  enum rtx_code code;
628  int i, j;
629  unsigned int r;
630  const char *format_ptr;
631
632 restart:
633
634  code = GET_CODE (x);
635
636  switch (code)
637    {
638    case NOTE:
639    case BARRIER:
640    case CODE_LABEL:
641    case USE:
642    case CONST_INT:
643    case CONST_DOUBLE:
644    case CONST_VECTOR:
645    case LABEL_REF:
646    case SYMBOL_REF:
647    case CONST:
648    case PC:
649      /* These don't set any resources.  */
650      return;
651
652    case CC0:
653      if (in_dest)
654	res->cc = 1;
655      return;
656
657    case CALL_INSN:
658      /* Called routine modifies the condition code, memory, any registers
659	 that aren't saved across calls, global registers and anything
660	 explicitly CLOBBERed immediately after the CALL_INSN.  */
661
662      if (mark_type == MARK_SRC_DEST_CALL)
663	{
664	  rtx link;
665
666	  res->cc = res->memory = 1;
667	  for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
668	    if (call_used_regs[r] || global_regs[r])
669	      SET_HARD_REG_BIT (res->regs, r);
670
671	  for (link = CALL_INSN_FUNCTION_USAGE (x);
672	       link; link = XEXP (link, 1))
673	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
674	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
675				  MARK_SRC_DEST);
676
677	  /* Check for a REG_SETJMP.  If it exists, then we must
678	     assume that this call can clobber any register.  */
679	  if (find_reg_note (x, REG_SETJMP, NULL))
680	    SET_HARD_REG_SET (res->regs);
681	}
682
683      /* ... and also what its RTL says it modifies, if anything.  */
684
685    case JUMP_INSN:
686    case INSN:
687
688	/* An insn consisting of just a CLOBBER (or USE) is just for flow
689	   and doesn't actually do anything, so we ignore it.  */
690
691#ifdef INSN_SETS_ARE_DELAYED
692      if (mark_type != MARK_SRC_DEST_CALL
693	  && INSN_SETS_ARE_DELAYED (x))
694	return;
695#endif
696
697      x = PATTERN (x);
698      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
699	goto restart;
700      return;
701
702    case SET:
703      /* If the source of a SET is a CALL, this is actually done by
704	 the called routine.  So only include it if we are to include the
705	 effects of the calling routine.  */
706
707      mark_set_resources (SET_DEST (x), res,
708			  (mark_type == MARK_SRC_DEST_CALL
709			   || GET_CODE (SET_SRC (x)) != CALL),
710			  mark_type);
711
712      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
713      return;
714
715    case CLOBBER:
716      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
717      return;
718
719    case SEQUENCE:
720      for (i = 0; i < XVECLEN (x, 0); i++)
721	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
722	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
723	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
724      return;
725
726    case POST_INC:
727    case PRE_INC:
728    case POST_DEC:
729    case PRE_DEC:
730      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
731      return;
732
733    case PRE_MODIFY:
734    case POST_MODIFY:
735      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
736      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
737      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
738      return;
739
740    case SIGN_EXTRACT:
741    case ZERO_EXTRACT:
742      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
743      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
744      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
745      return;
746
747    case MEM:
748      if (in_dest)
749	{
750	  res->memory = 1;
751	  res->unch_memory |= MEM_READONLY_P (x);
752	  res->volatil |= MEM_VOLATILE_P (x);
753	}
754
755      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
756      return;
757
758    case SUBREG:
759      if (in_dest)
760	{
761	  if (!REG_P (SUBREG_REG (x)))
762	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
763	  else
764	    {
765	      unsigned int regno = subreg_regno (x);
766	      unsigned int last_regno
767		= regno + hard_regno_nregs[regno][GET_MODE (x)];
768
769	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770	      for (r = regno; r < last_regno; r++)
771		SET_HARD_REG_BIT (res->regs, r);
772	    }
773	}
774      return;
775
776    case REG:
777      if (in_dest)
778	{
779	  unsigned int regno = REGNO (x);
780	  unsigned int last_regno
781	    = regno + hard_regno_nregs[regno][GET_MODE (x)];
782
783	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
784	  for (r = regno; r < last_regno; r++)
785	    SET_HARD_REG_BIT (res->regs, r);
786	}
787      return;
788
789    case UNSPEC_VOLATILE:
790    case ASM_INPUT:
791      /* Traditional asm's are always volatile.  */
792      res->volatil = 1;
793      return;
794
795    case TRAP_IF:
796      res->volatil = 1;
797      break;
798
799    case ASM_OPERANDS:
800      res->volatil |= MEM_VOLATILE_P (x);
801
802      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
803	 We can not just fall through here since then we would be confused
804	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
805	 traditional asms unlike their normal usage.  */
806
807      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
808	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
809			    MARK_SRC_DEST);
810      return;
811
812    default:
813      break;
814    }
815
816  /* Process each sub-expression and flag what it needs.  */
817  format_ptr = GET_RTX_FORMAT (code);
818  for (i = 0; i < GET_RTX_LENGTH (code); i++)
819    switch (*format_ptr++)
820      {
821      case 'e':
822	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
823	break;
824
825      case 'E':
826	for (j = 0; j < XVECLEN (x, i); j++)
827	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
828	break;
829      }
830}
831
832/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
833
834static bool
835return_insn_p (rtx insn)
836{
837  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
838    return true;
839
840  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
841    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
842
843  return false;
844}
845
846/* Set the resources that are live at TARGET.
847
848   If TARGET is zero, we refer to the end of the current function and can
849   return our precomputed value.
850
851   Otherwise, we try to find out what is live by consulting the basic block
852   information.  This is tricky, because we must consider the actions of
853   reload and jump optimization, which occur after the basic block information
854   has been computed.
855
856   Accordingly, we proceed as follows::
857
858   We find the previous BARRIER and look at all immediately following labels
859   (with no intervening active insns) to see if any of them start a basic
860   block.  If we hit the start of the function first, we use block 0.
861
862   Once we have found a basic block and a corresponding first insns, we can
863   accurately compute the live status from basic_block_live_regs and
864   reg_renumber.  (By starting at a label following a BARRIER, we are immune
865   to actions taken by reload and jump.)  Then we scan all insns between
866   that point and our target.  For each CLOBBER (or for call-clobbered regs
867   when we pass a CALL_INSN), mark the appropriate registers are dead.  For
868   a SET, mark them as live.
869
870   We have to be careful when using REG_DEAD notes because they are not
871   updated by such things as find_equiv_reg.  So keep track of registers
872   marked as dead that haven't been assigned to, and mark them dead at the
873   next CODE_LABEL since reload and jump won't propagate values across labels.
874
875   If we cannot find the start of a basic block (should be a very rare
876   case, if it can happen at all), mark everything as potentially live.
877
878   Next, scan forward from TARGET looking for things set or clobbered
879   before they are used.  These are not live.
880
881   Because we can be called many times on the same target, save our results
882   in a hash table indexed by INSN_UID.  This is only done if the function
883   init_resource_info () was invoked before we are called.  */
884
885void
886mark_target_live_regs (rtx insns, rtx target, struct resources *res)
887{
888  int b = -1;
889  unsigned int i;
890  struct target_info *tinfo = NULL;
891  rtx insn;
892  rtx jump_insn = 0;
893  rtx jump_target;
894  HARD_REG_SET scratch;
895  struct resources set, needed;
896
897  /* Handle end of function.  */
898  if (target == 0)
899    {
900      *res = end_of_function_needs;
901      return;
902    }
903
904  /* Handle return insn.  */
905  else if (return_insn_p (target))
906    {
907      *res = end_of_function_needs;
908      mark_referenced_resources (target, res, 0);
909      return;
910    }
911
912  /* We have to assume memory is needed, but the CC isn't.  */
913  res->memory = 1;
914  res->volatil = res->unch_memory = 0;
915  res->cc = 0;
916
917  /* See if we have computed this value already.  */
918  if (target_hash_table != NULL)
919    {
920      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
921	   tinfo; tinfo = tinfo->next)
922	if (tinfo->uid == INSN_UID (target))
923	  break;
924
925      /* Start by getting the basic block number.  If we have saved
926	 information, we can get it from there unless the insn at the
927	 start of the basic block has been deleted.  */
928      if (tinfo && tinfo->block != -1
929	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
930	b = tinfo->block;
931    }
932
933  if (b == -1)
934    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
935
936  if (target_hash_table != NULL)
937    {
938      if (tinfo)
939	{
940	  /* If the information is up-to-date, use it.  Otherwise, we will
941	     update it below.  */
942	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
943	    {
944	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
945	      return;
946	    }
947	}
948      else
949	{
950	  /* Allocate a place to put our results and chain it into the
951	     hash table.  */
952	  tinfo = XNEW (struct target_info);
953	  tinfo->uid = INSN_UID (target);
954	  tinfo->block = b;
955	  tinfo->next
956	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
957	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
958	}
959    }
960
961  CLEAR_HARD_REG_SET (pending_dead_regs);
962
963  /* If we found a basic block, get the live registers from it and update
964     them with anything set or killed between its start and the insn before
965     TARGET.  Otherwise, we must assume everything is live.  */
966  if (b != -1)
967    {
968      regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
969      unsigned int j;
970      unsigned int regno;
971      rtx start_insn, stop_insn;
972      reg_set_iterator rsi;
973
974      /* Compute hard regs live at start of block -- this is the real hard regs
975	 marked live, plus live pseudo regs that have been renumbered to
976	 hard regs.  */
977
978      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
979
980      EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
981	{
982	  if (reg_renumber[i] >= 0)
983	    {
984	      regno = reg_renumber[i];
985	      for (j = regno;
986		   j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
987		   j++)
988		SET_HARD_REG_BIT (current_live_regs, j);
989	    }
990	}
991
992      /* Get starting and ending insn, handling the case where each might
993	 be a SEQUENCE.  */
994      start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
995      stop_insn = target;
996
997      if (NONJUMP_INSN_P (start_insn)
998	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
999	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
1000
1001      if (NONJUMP_INSN_P (stop_insn)
1002	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1003	stop_insn = next_insn (PREV_INSN (stop_insn));
1004
1005      for (insn = start_insn; insn != stop_insn;
1006	   insn = next_insn_no_annul (insn))
1007	{
1008	  rtx link;
1009	  rtx real_insn = insn;
1010	  enum rtx_code code = GET_CODE (insn);
1011
1012	  /* If this insn is from the target of a branch, it isn't going to
1013	     be used in the sequel.  If it is used in both cases, this
1014	     test will not be true.  */
1015	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1016	      && INSN_FROM_TARGET_P (insn))
1017	    continue;
1018
1019	  /* If this insn is a USE made by update_block, we care about the
1020	     underlying insn.  */
1021	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1022	      && INSN_P (XEXP (PATTERN (insn), 0)))
1023	      real_insn = XEXP (PATTERN (insn), 0);
1024
1025	  if (CALL_P (real_insn))
1026	    {
1027	      /* CALL clobbers all call-used regs that aren't fixed except
1028		 sp, ap, and fp.  Do this before setting the result of the
1029		 call live.  */
1030	      AND_COMPL_HARD_REG_SET (current_live_regs,
1031				      regs_invalidated_by_call);
1032
1033	      /* A CALL_INSN sets any global register live, since it may
1034		 have been modified by the call.  */
1035	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1036		if (global_regs[i])
1037		  SET_HARD_REG_BIT (current_live_regs, i);
1038	    }
1039
1040	  /* Mark anything killed in an insn to be deadened at the next
1041	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1042	     parameters.  But they might be early.  A CALL_INSN will usually
1043	     clobber registers used for parameters.  It isn't worth bothering
1044	     with the unlikely case when it won't.  */
1045	  if ((NONJUMP_INSN_P (real_insn)
1046	       && GET_CODE (PATTERN (real_insn)) != USE
1047	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1048	      || JUMP_P (real_insn)
1049	      || CALL_P (real_insn))
1050	    {
1051	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1052		if (REG_NOTE_KIND (link) == REG_DEAD
1053		    && REG_P (XEXP (link, 0))
1054		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1055		  {
1056		    unsigned int first_regno = REGNO (XEXP (link, 0));
1057		    unsigned int last_regno
1058		      = (first_regno
1059			 + hard_regno_nregs[first_regno]
1060					   [GET_MODE (XEXP (link, 0))]);
1061
1062		    for (i = first_regno; i < last_regno; i++)
1063		      SET_HARD_REG_BIT (pending_dead_regs, i);
1064		  }
1065
1066	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1067
1068	      /* If any registers were unused after this insn, kill them.
1069		 These notes will always be accurate.  */
1070	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1071		if (REG_NOTE_KIND (link) == REG_UNUSED
1072		    && REG_P (XEXP (link, 0))
1073		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1074		  {
1075		    unsigned int first_regno = REGNO (XEXP (link, 0));
1076		    unsigned int last_regno
1077		      = (first_regno
1078			 + hard_regno_nregs[first_regno]
1079					   [GET_MODE (XEXP (link, 0))]);
1080
1081		    for (i = first_regno; i < last_regno; i++)
1082		      CLEAR_HARD_REG_BIT (current_live_regs, i);
1083		  }
1084	    }
1085
1086	  else if (LABEL_P (real_insn))
1087	    {
1088	      /* A label clobbers the pending dead registers since neither
1089		 reload nor jump will propagate a value across a label.  */
1090	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1091	      CLEAR_HARD_REG_SET (pending_dead_regs);
1092	    }
1093
1094	  /* The beginning of the epilogue corresponds to the end of the
1095	     RTL chain when there are no epilogue insns.  Certain resources
1096	     are implicitly required at that point.  */
1097	  else if (NOTE_P (real_insn)
1098		   && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1099	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1100	}
1101
1102      COPY_HARD_REG_SET (res->regs, current_live_regs);
1103      if (tinfo != NULL)
1104	{
1105	  tinfo->block = b;
1106	  tinfo->bb_tick = bb_ticks[b];
1107	}
1108    }
1109  else
1110    /* We didn't find the start of a basic block.  Assume everything
1111       in use.  This should happen only extremely rarely.  */
1112    SET_HARD_REG_SET (res->regs);
1113
1114  CLEAR_RESOURCE (&set);
1115  CLEAR_RESOURCE (&needed);
1116
1117  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1118					  set, needed);
1119
1120  /* If we hit an unconditional branch, we have another way of finding out
1121     what is live: we can see what is live at the branch target and include
1122     anything used but not set before the branch.  We add the live
1123     resources found using the test below to those found until now.  */
1124
1125  if (jump_insn)
1126    {
1127      struct resources new_resources;
1128      rtx stop_insn = next_active_insn (jump_insn);
1129
1130      mark_target_live_regs (insns, next_active_insn (jump_target),
1131			     &new_resources);
1132      CLEAR_RESOURCE (&set);
1133      CLEAR_RESOURCE (&needed);
1134
1135      /* Include JUMP_INSN in the needed registers.  */
1136      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1137	{
1138	  mark_referenced_resources (insn, &needed, 1);
1139
1140	  COPY_HARD_REG_SET (scratch, needed.regs);
1141	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1142	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1143
1144	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1145	}
1146
1147      IOR_HARD_REG_SET (res->regs, new_resources.regs);
1148    }
1149
1150  if (tinfo != NULL)
1151    {
1152      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1153    }
1154}
1155
1156/* Initialize the resources required by mark_target_live_regs ().
1157   This should be invoked before the first call to mark_target_live_regs.  */
1158
1159void
1160init_resource_info (rtx epilogue_insn)
1161{
1162  int i;
1163
1164  /* Indicate what resources are required to be valid at the end of the current
1165     function.  The condition code never is and memory always is.  If the
1166     frame pointer is needed, it is and so is the stack pointer unless
1167     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1168     stack pointer is.  Registers used to return the function value are
1169     needed.  Registers holding global variables are needed.  */
1170
1171  end_of_function_needs.cc = 0;
1172  end_of_function_needs.memory = 1;
1173  end_of_function_needs.unch_memory = 0;
1174  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1175
1176  if (frame_pointer_needed)
1177    {
1178      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1179#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1180      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1181#endif
1182      if (! EXIT_IGNORE_STACK
1183	  || current_function_sp_is_unchanging)
1184	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1185    }
1186  else
1187    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1188
1189  if (current_function_return_rtx != 0)
1190    mark_referenced_resources (current_function_return_rtx,
1191			       &end_of_function_needs, 1);
1192
1193  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1194    if (global_regs[i]
1195#ifdef EPILOGUE_USES
1196	|| EPILOGUE_USES (i)
1197#endif
1198	)
1199      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1200
1201  /* The registers required to be live at the end of the function are
1202     represented in the flow information as being dead just prior to
1203     reaching the end of the function.  For example, the return of a value
1204     might be represented by a USE of the return register immediately
1205     followed by an unconditional jump to the return label where the
1206     return label is the end of the RTL chain.  The end of the RTL chain
1207     is then taken to mean that the return register is live.
1208
1209     This sequence is no longer maintained when epilogue instructions are
1210     added to the RTL chain.  To reconstruct the original meaning, the
1211     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1212     point where these registers become live (start_of_epilogue_needs).
1213     If epilogue instructions are present, the registers set by those
1214     instructions won't have been processed by flow.  Thus, those
1215     registers are additionally required at the end of the RTL chain
1216     (end_of_function_needs).  */
1217
1218  start_of_epilogue_needs = end_of_function_needs;
1219
1220  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1221    {
1222      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1223			  MARK_SRC_DEST_CALL);
1224      if (return_insn_p (epilogue_insn))
1225	break;
1226    }
1227
1228  /* Allocate and initialize the tables used by mark_target_live_regs.  */
1229  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1230  bb_ticks = XCNEWVEC (int, last_basic_block);
1231}
1232
1233/* Free up the resources allocated to mark_target_live_regs ().  This
1234   should be invoked after the last call to mark_target_live_regs ().  */
1235
1236void
1237free_resource_info (void)
1238{
1239  if (target_hash_table != NULL)
1240    {
1241      int i;
1242
1243      for (i = 0; i < TARGET_HASH_PRIME; ++i)
1244	{
1245	  struct target_info *ti = target_hash_table[i];
1246
1247	  while (ti)
1248	    {
1249	      struct target_info *next = ti->next;
1250	      free (ti);
1251	      ti = next;
1252	    }
1253	}
1254
1255      free (target_hash_table);
1256      target_hash_table = NULL;
1257    }
1258
1259  if (bb_ticks != NULL)
1260    {
1261      free (bb_ticks);
1262      bb_ticks = NULL;
1263    }
1264}
1265
1266/* Clear any hashed information that we have stored for INSN.  */
1267
1268void
1269clear_hashed_info_for_insn (rtx insn)
1270{
1271  struct target_info *tinfo;
1272
1273  if (target_hash_table != NULL)
1274    {
1275      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1276	   tinfo; tinfo = tinfo->next)
1277	if (tinfo->uid == INSN_UID (insn))
1278	  break;
1279
1280      if (tinfo)
1281	tinfo->block = -1;
1282    }
1283}
1284
1285/* Increment the tick count for the basic block that contains INSN.  */
1286
1287void
1288incr_ticks_for_insn (rtx insn)
1289{
1290  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1291
1292  if (b != -1)
1293    bb_ticks[b]++;
1294}
1295
1296/* Add TRIAL to the set of resources used at the end of the current
1297   function.  */
1298void
1299mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1300{
1301  mark_referenced_resources (trial, &end_of_function_needs,
1302			     include_delayed_effects);
1303}
1304