1/* Generic symbol-table support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2007
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23/*
24SECTION
25	Symbols
26
27	BFD tries to maintain as much symbol information as it can when
28	it moves information from file to file. BFD passes information
29	to applications though the <<asymbol>> structure. When the
30	application requests the symbol table, BFD reads the table in
31	the native form and translates parts of it into the internal
32	format. To maintain more than the information passed to
33	applications, some targets keep some information ``behind the
34	scenes'' in a structure only the particular back end knows
35	about. For example, the coff back end keeps the original
36	symbol table structure as well as the canonical structure when
37	a BFD is read in. On output, the coff back end can reconstruct
38	the output symbol table so that no information is lost, even
39	information unique to coff which BFD doesn't know or
40	understand. If a coff symbol table were read, but were written
41	through an a.out back end, all the coff specific information
42	would be lost. The symbol table of a BFD
43	is not necessarily read in until a canonicalize request is
44	made. Then the BFD back end fills in a table provided by the
45	application with pointers to the canonical information.  To
46	output symbols, the application provides BFD with a table of
47	pointers to pointers to <<asymbol>>s. This allows applications
48	like the linker to output a symbol as it was read, since the ``behind
49	the scenes'' information will be still available.
50@menu
51@* Reading Symbols::
52@* Writing Symbols::
53@* Mini Symbols::
54@* typedef asymbol::
55@* symbol handling functions::
56@end menu
57
58INODE
59Reading Symbols, Writing Symbols, Symbols, Symbols
60SUBSECTION
61	Reading symbols
62
63	There are two stages to reading a symbol table from a BFD:
64	allocating storage, and the actual reading process. This is an
65	excerpt from an application which reads the symbol table:
66
67|	  long storage_needed;
68|	  asymbol **symbol_table;
69|	  long number_of_symbols;
70|	  long i;
71|
72|	  storage_needed = bfd_get_symtab_upper_bound (abfd);
73|
74|         if (storage_needed < 0)
75|           FAIL
76|
77|	  if (storage_needed == 0)
78|	    return;
79|
80|	  symbol_table = xmalloc (storage_needed);
81|	    ...
82|	  number_of_symbols =
83|	     bfd_canonicalize_symtab (abfd, symbol_table);
84|
85|         if (number_of_symbols < 0)
86|           FAIL
87|
88|	  for (i = 0; i < number_of_symbols; i++)
89|	    process_symbol (symbol_table[i]);
90
91	All storage for the symbols themselves is in an objalloc
92	connected to the BFD; it is freed when the BFD is closed.
93
94INODE
95Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96SUBSECTION
97	Writing symbols
98
99	Writing of a symbol table is automatic when a BFD open for
100	writing is closed. The application attaches a vector of
101	pointers to pointers to symbols to the BFD being written, and
102	fills in the symbol count. The close and cleanup code reads
103	through the table provided and performs all the necessary
104	operations. The BFD output code must always be provided with an
105	``owned'' symbol: one which has come from another BFD, or one
106	which has been created using <<bfd_make_empty_symbol>>.  Here is an
107	example showing the creation of a symbol table with only one element:
108
109|	#include "bfd.h"
110|	int main (void)
111|	{
112|	  bfd *abfd;
113|	  asymbol *ptrs[2];
114|	  asymbol *new;
115|
116|	  abfd = bfd_openw ("foo","a.out-sunos-big");
117|	  bfd_set_format (abfd, bfd_object);
118|	  new = bfd_make_empty_symbol (abfd);
119|	  new->name = "dummy_symbol";
120|	  new->section = bfd_make_section_old_way (abfd, ".text");
121|	  new->flags = BSF_GLOBAL;
122|	  new->value = 0x12345;
123|
124|	  ptrs[0] = new;
125|	  ptrs[1] = 0;
126|
127|	  bfd_set_symtab (abfd, ptrs, 1);
128|	  bfd_close (abfd);
129|	  return 0;
130|	}
131|
132|	./makesym
133|	nm foo
134|	00012345 A dummy_symbol
135
136	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138	arbitrary number of sections. A symbol pointing to a section
139	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140	be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145	Mini Symbols
146
147	Mini symbols provide read-only access to the symbol table.
148	They use less memory space, but require more time to access.
149	They can be useful for tools like nm or objdump, which may
150	have to handle symbol tables of extremely large executables.
151
152	The <<bfd_read_minisymbols>> function will read the symbols
153	into memory in an internal form.  It will return a <<void *>>
154	pointer to a block of memory, a symbol count, and the size of
155	each symbol.  The pointer is allocated using <<malloc>>, and
156	should be freed by the caller when it is no longer needed.
157
158	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159	to a minisymbol, and a pointer to a structure returned by
160	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161	The return value may or may not be the same as the value from
162	<<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174	typedef asymbol
175
176	An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct bfd_symbol
185.{
186.  {* A pointer to the BFD which owns the symbol. This information
187.     is necessary so that a back end can work out what additional
188.     information (invisible to the application writer) is carried
189.     with the symbol.
190.
191.     This field is *almost* redundant, since you can use section->owner
192.     instead, except that some symbols point to the global sections
193.     bfd_{abs,com,und}_section.  This could be fixed by making
194.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196.
197.  {* The text of the symbol. The name is left alone, and not copied; the
198.     application may not alter it.  *}
199.  const char *name;
200.
201.  {* The value of the symbol.  This really should be a union of a
202.     numeric value with a pointer, since some flags indicate that
203.     a pointer to another symbol is stored here.  *}
204.  symvalue value;
205.
206.  {* Attributes of a symbol.  *}
207.#define BSF_NO_FLAGS    0x00
208.
209.  {* The symbol has local scope; <<static>> in <<C>>. The value
210.     is the offset into the section of the data.  *}
211.#define BSF_LOCAL	0x01
212.
213.  {* The symbol has global scope; initialized data in <<C>>. The
214.     value is the offset into the section of the data.  *}
215.#define BSF_GLOBAL	0x02
216.
217.  {* The symbol has global scope and is exported. The value is
218.     the offset into the section of the data.  *}
219.#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220.
221.  {* A normal C symbol would be one of:
222.     <<BSF_LOCAL>>, <<BSF_FORT_COMM>>,  <<BSF_UNDEFINED>> or
223.     <<BSF_GLOBAL>>.  *}
224.
225.  {* The symbol is a debugging record. The value has an arbitrary
226.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
227.#define BSF_DEBUGGING	0x08
228.
229.  {* The symbol denotes a function entry point.  Used in ELF,
230.     perhaps others someday.  *}
231.#define BSF_FUNCTION    0x10
232.
233.  {* Used by the linker.  *}
234.#define BSF_KEEP        0x20
235.#define BSF_KEEP_G      0x40
236.
237.  {* A weak global symbol, overridable without warnings by
238.     a regular global symbol of the same name.  *}
239.#define BSF_WEAK        0x80
240.
241.  {* This symbol was created to point to a section, e.g. ELF's
242.     STT_SECTION symbols.  *}
243.#define BSF_SECTION_SYM 0x100
244.
245.  {* The symbol used to be a common symbol, but now it is
246.     allocated.  *}
247.#define BSF_OLD_COMMON  0x200
248.
249.  {* The default value for common data.  *}
250.#define BFD_FORT_COMM_DEFAULT_VALUE 0
251.
252.  {* In some files the type of a symbol sometimes alters its
253.     location in an output file - ie in coff a <<ISFCN>> symbol
254.     which is also <<C_EXT>> symbol appears where it was
255.     declared and not at the end of a section.  This bit is set
256.     by the target BFD part to convey this information.  *}
257.#define BSF_NOT_AT_END    0x400
258.
259.  {* Signal that the symbol is the label of constructor section.  *}
260.#define BSF_CONSTRUCTOR   0x800
261.
262.  {* Signal that the symbol is a warning symbol.  The name is a
263.     warning.  The name of the next symbol is the one to warn about;
264.     if a reference is made to a symbol with the same name as the next
265.     symbol, a warning is issued by the linker.  *}
266.#define BSF_WARNING       0x1000
267.
268.  {* Signal that the symbol is indirect.  This symbol is an indirect
269.     pointer to the symbol with the same name as the next symbol.  *}
270.#define BSF_INDIRECT      0x2000
271.
272.  {* BSF_FILE marks symbols that contain a file name.  This is used
273.     for ELF STT_FILE symbols.  *}
274.#define BSF_FILE          0x4000
275.
276.  {* Symbol is from dynamic linking information.  *}
277.#define BSF_DYNAMIC	   0x8000
278.
279.  {* The symbol denotes a data object.  Used in ELF, and perhaps
280.     others someday.  *}
281.#define BSF_OBJECT	   0x10000
282.
283.  {* This symbol is a debugging symbol.  The value is the offset
284.     into the section of the data.  BSF_DEBUGGING should be set
285.     as well.  *}
286.#define BSF_DEBUGGING_RELOC 0x20000
287.
288.  {* This symbol is thread local.  Used in ELF.  *}
289.#define BSF_THREAD_LOCAL  0x40000
290.
291.  {* This symbol represents a complex relocation expression,
292.     with the expression tree serialized in the symbol name.  *}
293.#define BSF_RELC 0x80000
294.
295.  {* This symbol represents a signed complex relocation expression,
296.     with the expression tree serialized in the symbol name.  *}
297.#define BSF_SRELC 0x100000
298.
299.  flagword flags;
300.
301.  {* A pointer to the section to which this symbol is
302.     relative.  This will always be non NULL, there are special
303.     sections for undefined and absolute symbols.  *}
304.  struct bfd_section *section;
305.
306.  {* Back end special data.  *}
307.  union
308.    {
309.      void *p;
310.      bfd_vma i;
311.    }
312.  udata;
313.}
314.asymbol;
315.
316*/
317
318#include "sysdep.h"
319#include "bfd.h"
320#include "libbfd.h"
321#include "safe-ctype.h"
322#include "bfdlink.h"
323#include "aout/stab_gnu.h"
324
325/*
326DOCDD
327INODE
328symbol handling functions,  , typedef asymbol, Symbols
329SUBSECTION
330	Symbol handling functions
331*/
332
333/*
334FUNCTION
335	bfd_get_symtab_upper_bound
336
337DESCRIPTION
338	Return the number of bytes required to store a vector of pointers
339	to <<asymbols>> for all the symbols in the BFD @var{abfd},
340	including a terminal NULL pointer. If there are no symbols in
341	the BFD, then return 0.  If an error occurs, return -1.
342
343.#define bfd_get_symtab_upper_bound(abfd) \
344.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
345.
346*/
347
348/*
349FUNCTION
350	bfd_is_local_label
351
352SYNOPSIS
353        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
354
355DESCRIPTION
356	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
357	a compiler generated local label, else return FALSE.
358*/
359
360bfd_boolean
361bfd_is_local_label (bfd *abfd, asymbol *sym)
362{
363  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
364     starts with '.' is local.  This would accidentally catch section names
365     if we didn't reject them here.  */
366  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
367    return FALSE;
368  if (sym->name == NULL)
369    return FALSE;
370  return bfd_is_local_label_name (abfd, sym->name);
371}
372
373/*
374FUNCTION
375	bfd_is_local_label_name
376
377SYNOPSIS
378        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
379
380DESCRIPTION
381	Return TRUE if a symbol with the name @var{name} in the BFD
382	@var{abfd} is a compiler generated local label, else return
383	FALSE.  This just checks whether the name has the form of a
384	local label.
385
386.#define bfd_is_local_label_name(abfd, name) \
387.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
388.
389*/
390
391/*
392FUNCTION
393	bfd_is_target_special_symbol
394
395SYNOPSIS
396        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
397
398DESCRIPTION
399	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
400	special to the particular target represented by the BFD.  Such symbols
401	should normally not be mentioned to the user.
402
403.#define bfd_is_target_special_symbol(abfd, sym) \
404.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
405.
406*/
407
408/*
409FUNCTION
410	bfd_canonicalize_symtab
411
412DESCRIPTION
413	Read the symbols from the BFD @var{abfd}, and fills in
414	the vector @var{location} with pointers to the symbols and
415	a trailing NULL.
416	Return the actual number of symbol pointers, not
417	including the NULL.
418
419.#define bfd_canonicalize_symtab(abfd, location) \
420.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
421.
422*/
423
424/*
425FUNCTION
426	bfd_set_symtab
427
428SYNOPSIS
429	bfd_boolean bfd_set_symtab
430	  (bfd *abfd, asymbol **location, unsigned int count);
431
432DESCRIPTION
433	Arrange that when the output BFD @var{abfd} is closed,
434	the table @var{location} of @var{count} pointers to symbols
435	will be written.
436*/
437
438bfd_boolean
439bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
440{
441  if (abfd->format != bfd_object || bfd_read_p (abfd))
442    {
443      bfd_set_error (bfd_error_invalid_operation);
444      return FALSE;
445    }
446
447  bfd_get_outsymbols (abfd) = location;
448  bfd_get_symcount (abfd) = symcount;
449  return TRUE;
450}
451
452/*
453FUNCTION
454	bfd_print_symbol_vandf
455
456SYNOPSIS
457	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
458
459DESCRIPTION
460	Print the value and flags of the @var{symbol} supplied to the
461	stream @var{file}.
462*/
463void
464bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
465{
466  FILE *file = arg;
467
468  flagword type = symbol->flags;
469
470  if (symbol->section != NULL)
471    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
472  else
473    bfd_fprintf_vma (abfd, file, symbol->value);
474
475  /* This presumes that a symbol can not be both BSF_DEBUGGING and
476     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
477     BSF_OBJECT.  */
478  fprintf (file, " %c%c%c%c%c%c%c",
479	   ((type & BSF_LOCAL)
480	    ? (type & BSF_GLOBAL) ? '!' : 'l'
481	    : (type & BSF_GLOBAL) ? 'g' : ' '),
482	   (type & BSF_WEAK) ? 'w' : ' ',
483	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
484	   (type & BSF_WARNING) ? 'W' : ' ',
485	   (type & BSF_INDIRECT) ? 'I' : ' ',
486	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
487	   ((type & BSF_FUNCTION)
488	    ? 'F'
489	    : ((type & BSF_FILE)
490	       ? 'f'
491	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
492}
493
494/*
495FUNCTION
496	bfd_make_empty_symbol
497
498DESCRIPTION
499	Create a new <<asymbol>> structure for the BFD @var{abfd}
500	and return a pointer to it.
501
502	This routine is necessary because each back end has private
503	information surrounding the <<asymbol>>. Building your own
504	<<asymbol>> and pointing to it will not create the private
505	information, and will cause problems later on.
506
507.#define bfd_make_empty_symbol(abfd) \
508.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
509.
510*/
511
512/*
513FUNCTION
514	_bfd_generic_make_empty_symbol
515
516SYNOPSIS
517	asymbol *_bfd_generic_make_empty_symbol (bfd *);
518
519DESCRIPTION
520	Create a new <<asymbol>> structure for the BFD @var{abfd}
521	and return a pointer to it.  Used by core file routines,
522	binary back-end and anywhere else where no private info
523	is needed.
524*/
525
526asymbol *
527_bfd_generic_make_empty_symbol (bfd *abfd)
528{
529  bfd_size_type amt = sizeof (asymbol);
530  asymbol *new = bfd_zalloc (abfd, amt);
531  if (new)
532    new->the_bfd = abfd;
533  return new;
534}
535
536/*
537FUNCTION
538	bfd_make_debug_symbol
539
540DESCRIPTION
541	Create a new <<asymbol>> structure for the BFD @var{abfd},
542	to be used as a debugging symbol.  Further details of its use have
543	yet to be worked out.
544
545.#define bfd_make_debug_symbol(abfd,ptr,size) \
546.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
547.
548*/
549
550struct section_to_type
551{
552  const char *section;
553  char type;
554};
555
556/* Map section names to POSIX/BSD single-character symbol types.
557   This table is probably incomplete.  It is sorted for convenience of
558   adding entries.  Since it is so short, a linear search is used.  */
559static const struct section_to_type stt[] =
560{
561  {".bss", 'b'},
562  {"code", 't'},		/* MRI .text */
563  {".data", 'd'},
564  {"*DEBUG*", 'N'},
565  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
566  {".drectve", 'i'},            /* MSVC's .drective section */
567  {".edata", 'e'},              /* MSVC's .edata (export) section */
568  {".fini", 't'},		/* ELF fini section */
569  {".idata", 'i'},              /* MSVC's .idata (import) section */
570  {".init", 't'},		/* ELF init section */
571  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
572  {".rdata", 'r'},		/* Read only data.  */
573  {".rodata", 'r'},		/* Read only data.  */
574  {".sbss", 's'},		/* Small BSS (uninitialized data).  */
575  {".scommon", 'c'},		/* Small common.  */
576  {".sdata", 'g'},		/* Small initialized data.  */
577  {".text", 't'},
578  {"vars", 'd'},		/* MRI .data */
579  {"zerovars", 'b'},		/* MRI .bss */
580  {0, 0}
581};
582
583/* Return the single-character symbol type corresponding to
584   section S, or '?' for an unknown COFF section.
585
586   Check for any leading string which matches, so .text5 returns
587   't' as well as .text */
588
589static char
590coff_section_type (const char *s)
591{
592  const struct section_to_type *t;
593
594  for (t = &stt[0]; t->section; t++)
595    if (!strncmp (s, t->section, strlen (t->section)))
596      return t->type;
597
598  return '?';
599}
600
601/* Return the single-character symbol type corresponding to section
602   SECTION, or '?' for an unknown section.  This uses section flags to
603   identify sections.
604
605   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
606   we could perhaps obsolete coff_section_type.  */
607
608static char
609decode_section_type (const struct bfd_section *section)
610{
611  if (section->flags & SEC_CODE)
612    return 't';
613  if (section->flags & SEC_DATA)
614    {
615      if (section->flags & SEC_READONLY)
616	return 'r';
617      else if (section->flags & SEC_SMALL_DATA)
618	return 'g';
619      else
620	return 'd';
621    }
622  if ((section->flags & SEC_HAS_CONTENTS) == 0)
623    {
624      if (section->flags & SEC_SMALL_DATA)
625	return 's';
626      else
627	return 'b';
628    }
629  if (section->flags & SEC_DEBUGGING)
630    return 'N';
631  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
632    return 'n';
633
634  return '?';
635}
636
637/*
638FUNCTION
639	bfd_decode_symclass
640
641DESCRIPTION
642	Return a character corresponding to the symbol
643	class of @var{symbol}, or '?' for an unknown class.
644
645SYNOPSIS
646	int bfd_decode_symclass (asymbol *symbol);
647*/
648int
649bfd_decode_symclass (asymbol *symbol)
650{
651  char c;
652
653  if (bfd_is_com_section (symbol->section))
654    return 'C';
655  if (bfd_is_und_section (symbol->section))
656    {
657      if (symbol->flags & BSF_WEAK)
658	{
659	  /* If weak, determine if it's specifically an object
660	     or non-object weak.  */
661	  if (symbol->flags & BSF_OBJECT)
662	    return 'v';
663	  else
664	    return 'w';
665	}
666      else
667	return 'U';
668    }
669  if (bfd_is_ind_section (symbol->section))
670    return 'I';
671  if (symbol->flags & BSF_WEAK)
672    {
673      /* If weak, determine if it's specifically an object
674	 or non-object weak.  */
675      if (symbol->flags & BSF_OBJECT)
676	return 'V';
677      else
678	return 'W';
679    }
680  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
681    return '?';
682
683  if (bfd_is_abs_section (symbol->section))
684    c = 'a';
685  else if (symbol->section)
686    {
687      c = coff_section_type (symbol->section->name);
688      if (c == '?')
689	c = decode_section_type (symbol->section);
690    }
691  else
692    return '?';
693  if (symbol->flags & BSF_GLOBAL)
694    c = TOUPPER (c);
695  return c;
696
697  /* We don't have to handle these cases just yet, but we will soon:
698     N_SETV: 'v';
699     N_SETA: 'l';
700     N_SETT: 'x';
701     N_SETD: 'z';
702     N_SETB: 's';
703     N_INDR: 'i';
704     */
705}
706
707/*
708FUNCTION
709	bfd_is_undefined_symclass
710
711DESCRIPTION
712	Returns non-zero if the class symbol returned by
713	bfd_decode_symclass represents an undefined symbol.
714	Returns zero otherwise.
715
716SYNOPSIS
717	bfd_boolean bfd_is_undefined_symclass (int symclass);
718*/
719
720bfd_boolean
721bfd_is_undefined_symclass (int symclass)
722{
723  return symclass == 'U' || symclass == 'w' || symclass == 'v';
724}
725
726/*
727FUNCTION
728	bfd_symbol_info
729
730DESCRIPTION
731	Fill in the basic info about symbol that nm needs.
732	Additional info may be added by the back-ends after
733	calling this function.
734
735SYNOPSIS
736	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
737*/
738
739void
740bfd_symbol_info (asymbol *symbol, symbol_info *ret)
741{
742  ret->type = bfd_decode_symclass (symbol);
743
744  if (bfd_is_undefined_symclass (ret->type))
745    ret->value = 0;
746  else
747    ret->value = symbol->value + symbol->section->vma;
748
749  ret->name = symbol->name;
750}
751
752/*
753FUNCTION
754	bfd_copy_private_symbol_data
755
756SYNOPSIS
757	bfd_boolean bfd_copy_private_symbol_data
758	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
759
760DESCRIPTION
761	Copy private symbol information from @var{isym} in the BFD
762	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
763	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
764	returns are:
765
766	o <<bfd_error_no_memory>> -
767	Not enough memory exists to create private data for @var{osec}.
768
769.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
770.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
771.            (ibfd, isymbol, obfd, osymbol))
772.
773*/
774
775/* The generic version of the function which returns mini symbols.
776   This is used when the backend does not provide a more efficient
777   version.  It just uses BFD asymbol structures as mini symbols.  */
778
779long
780_bfd_generic_read_minisymbols (bfd *abfd,
781			       bfd_boolean dynamic,
782			       void **minisymsp,
783			       unsigned int *sizep)
784{
785  long storage;
786  asymbol **syms = NULL;
787  long symcount;
788
789  if (dynamic)
790    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
791  else
792    storage = bfd_get_symtab_upper_bound (abfd);
793  if (storage < 0)
794    goto error_return;
795  if (storage == 0)
796    return 0;
797
798  syms = bfd_malloc (storage);
799  if (syms == NULL)
800    goto error_return;
801
802  if (dynamic)
803    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
804  else
805    symcount = bfd_canonicalize_symtab (abfd, syms);
806  if (symcount < 0)
807    goto error_return;
808
809  *minisymsp = syms;
810  *sizep = sizeof (asymbol *);
811  return symcount;
812
813 error_return:
814  bfd_set_error (bfd_error_no_symbols);
815  if (syms != NULL)
816    free (syms);
817  return -1;
818}
819
820/* The generic version of the function which converts a minisymbol to
821   an asymbol.  We don't worry about the sym argument we are passed;
822   we just return the asymbol the minisymbol points to.  */
823
824asymbol *
825_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
826				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
827				   const void *minisym,
828				   asymbol *sym ATTRIBUTE_UNUSED)
829{
830  return *(asymbol **) minisym;
831}
832
833/* Look through stabs debugging information in .stab and .stabstr
834   sections to find the source file and line closest to a desired
835   location.  This is used by COFF and ELF targets.  It sets *pfound
836   to TRUE if it finds some information.  The *pinfo field is used to
837   pass cached information in and out of this routine; this first time
838   the routine is called for a BFD, *pinfo should be NULL.  The value
839   placed in *pinfo should be saved with the BFD, and passed back each
840   time this function is called.  */
841
842/* We use a cache by default.  */
843
844#define ENABLE_CACHING
845
846/* We keep an array of indexentry structures to record where in the
847   stabs section we should look to find line number information for a
848   particular address.  */
849
850struct indexentry
851{
852  bfd_vma val;
853  bfd_byte *stab;
854  bfd_byte *str;
855  char *directory_name;
856  char *file_name;
857  char *function_name;
858};
859
860/* Compare two indexentry structures.  This is called via qsort.  */
861
862static int
863cmpindexentry (const void *a, const void *b)
864{
865  const struct indexentry *contestantA = a;
866  const struct indexentry *contestantB = b;
867
868  if (contestantA->val < contestantB->val)
869    return -1;
870  else if (contestantA->val > contestantB->val)
871    return 1;
872  else
873    return 0;
874}
875
876/* A pointer to this structure is stored in *pinfo.  */
877
878struct stab_find_info
879{
880  /* The .stab section.  */
881  asection *stabsec;
882  /* The .stabstr section.  */
883  asection *strsec;
884  /* The contents of the .stab section.  */
885  bfd_byte *stabs;
886  /* The contents of the .stabstr section.  */
887  bfd_byte *strs;
888
889  /* A table that indexes stabs by memory address.  */
890  struct indexentry *indextable;
891  /* The number of entries in indextable.  */
892  int indextablesize;
893
894#ifdef ENABLE_CACHING
895  /* Cached values to restart quickly.  */
896  struct indexentry *cached_indexentry;
897  bfd_vma cached_offset;
898  bfd_byte *cached_stab;
899  char *cached_file_name;
900#endif
901
902  /* Saved ptr to malloc'ed filename.  */
903  char *filename;
904};
905
906bfd_boolean
907_bfd_stab_section_find_nearest_line (bfd *abfd,
908				     asymbol **symbols,
909				     asection *section,
910				     bfd_vma offset,
911				     bfd_boolean *pfound,
912				     const char **pfilename,
913				     const char **pfnname,
914				     unsigned int *pline,
915				     void **pinfo)
916{
917  struct stab_find_info *info;
918  bfd_size_type stabsize, strsize;
919  bfd_byte *stab, *str;
920  bfd_byte *last_stab = NULL;
921  bfd_size_type stroff;
922  struct indexentry *indexentry;
923  char *file_name;
924  char *directory_name;
925  int saw_fun;
926  bfd_boolean saw_line, saw_func;
927
928  *pfound = FALSE;
929  *pfilename = bfd_get_filename (abfd);
930  *pfnname = NULL;
931  *pline = 0;
932
933  /* Stabs entries use a 12 byte format:
934       4 byte string table index
935       1 byte stab type
936       1 byte stab other field
937       2 byte stab desc field
938       4 byte stab value
939     FIXME: This will have to change for a 64 bit object format.
940
941     The stabs symbols are divided into compilation units.  For the
942     first entry in each unit, the type of 0, the value is the length
943     of the string table for this unit, and the desc field is the
944     number of stabs symbols for this unit.  */
945
946#define STRDXOFF (0)
947#define TYPEOFF (4)
948#define OTHEROFF (5)
949#define DESCOFF (6)
950#define VALOFF (8)
951#define STABSIZE (12)
952
953  info = *pinfo;
954  if (info != NULL)
955    {
956      if (info->stabsec == NULL || info->strsec == NULL)
957	{
958	  /* No stabs debugging information.  */
959	  return TRUE;
960	}
961
962      stabsize = (info->stabsec->rawsize
963		  ? info->stabsec->rawsize
964		  : info->stabsec->size);
965      strsize = (info->strsec->rawsize
966		 ? info->strsec->rawsize
967		 : info->strsec->size);
968    }
969  else
970    {
971      long reloc_size, reloc_count;
972      arelent **reloc_vector;
973      int i;
974      char *name;
975      char *function_name;
976      bfd_size_type amt = sizeof *info;
977
978      info = bfd_zalloc (abfd, amt);
979      if (info == NULL)
980	return FALSE;
981
982      /* FIXME: When using the linker --split-by-file or
983	 --split-by-reloc options, it is possible for the .stab and
984	 .stabstr sections to be split.  We should handle that.  */
985
986      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
987      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
988
989      if (info->stabsec == NULL || info->strsec == NULL)
990	{
991	  /* No stabs debugging information.  Set *pinfo so that we
992             can return quickly in the info != NULL case above.  */
993	  *pinfo = info;
994	  return TRUE;
995	}
996
997      stabsize = (info->stabsec->rawsize
998		  ? info->stabsec->rawsize
999		  : info->stabsec->size);
1000      strsize = (info->strsec->rawsize
1001		 ? info->strsec->rawsize
1002		 : info->strsec->size);
1003
1004      info->stabs = bfd_alloc (abfd, stabsize);
1005      info->strs = bfd_alloc (abfd, strsize);
1006      if (info->stabs == NULL || info->strs == NULL)
1007	return FALSE;
1008
1009      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1010				      0, stabsize)
1011	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1012					 0, strsize))
1013	return FALSE;
1014
1015      /* If this is a relocatable object file, we have to relocate
1016	 the entries in .stab.  This should always be simple 32 bit
1017	 relocations against symbols defined in this object file, so
1018	 this should be no big deal.  */
1019      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1020      if (reloc_size < 0)
1021	return FALSE;
1022      reloc_vector = bfd_malloc (reloc_size);
1023      if (reloc_vector == NULL && reloc_size != 0)
1024	return FALSE;
1025      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1026					    symbols);
1027      if (reloc_count < 0)
1028	{
1029	  if (reloc_vector != NULL)
1030	    free (reloc_vector);
1031	  return FALSE;
1032	}
1033      if (reloc_count > 0)
1034	{
1035	  arelent **pr;
1036
1037	  for (pr = reloc_vector; *pr != NULL; pr++)
1038	    {
1039	      arelent *r;
1040	      unsigned long val;
1041	      asymbol *sym;
1042
1043	      r = *pr;
1044	      /* Ignore R_*_NONE relocs.  */
1045	      if (r->howto->dst_mask == 0)
1046		continue;
1047
1048	      if (r->howto->rightshift != 0
1049		  || r->howto->size != 2
1050		  || r->howto->bitsize != 32
1051		  || r->howto->pc_relative
1052		  || r->howto->bitpos != 0
1053		  || r->howto->dst_mask != 0xffffffff)
1054		{
1055		  (*_bfd_error_handler)
1056		    (_("Unsupported .stab relocation"));
1057		  bfd_set_error (bfd_error_invalid_operation);
1058		  if (reloc_vector != NULL)
1059		    free (reloc_vector);
1060		  return FALSE;
1061		}
1062
1063	      val = bfd_get_32 (abfd, info->stabs + r->address);
1064	      val &= r->howto->src_mask;
1065	      sym = *r->sym_ptr_ptr;
1066	      val += sym->value + sym->section->vma + r->addend;
1067	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1068	    }
1069	}
1070
1071      if (reloc_vector != NULL)
1072	free (reloc_vector);
1073
1074      /* First time through this function, build a table matching
1075	 function VM addresses to stabs, then sort based on starting
1076	 VM address.  Do this in two passes: once to count how many
1077	 table entries we'll need, and a second to actually build the
1078	 table.  */
1079
1080      info->indextablesize = 0;
1081      saw_fun = 1;
1082      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1083	{
1084	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1085	    {
1086	      /* N_SO with null name indicates EOF */
1087	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1088		continue;
1089
1090	      /* if we did not see a function def, leave space for one.  */
1091	      if (saw_fun == 0)
1092		++info->indextablesize;
1093
1094	      saw_fun = 0;
1095
1096	      /* two N_SO's in a row is a filename and directory. Skip */
1097	      if (stab + STABSIZE < info->stabs + stabsize
1098		  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1099		{
1100		  stab += STABSIZE;
1101		}
1102	    }
1103	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1104	    {
1105	      saw_fun = 1;
1106	      ++info->indextablesize;
1107	    }
1108	}
1109
1110      if (saw_fun == 0)
1111	++info->indextablesize;
1112
1113      if (info->indextablesize == 0)
1114	return TRUE;
1115      ++info->indextablesize;
1116
1117      amt = info->indextablesize;
1118      amt *= sizeof (struct indexentry);
1119      info->indextable = bfd_alloc (abfd, amt);
1120      if (info->indextable == NULL)
1121	return FALSE;
1122
1123      file_name = NULL;
1124      directory_name = NULL;
1125      saw_fun = 1;
1126
1127      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1128	   i < info->indextablesize && stab < info->stabs + stabsize;
1129	   stab += STABSIZE)
1130	{
1131	  switch (stab[TYPEOFF])
1132	    {
1133	    case 0:
1134	      /* This is the first entry in a compilation unit.  */
1135	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1136		break;
1137	      str += stroff;
1138	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1139	      break;
1140
1141	    case N_SO:
1142	      /* The main file name.  */
1143
1144	      /* The following code creates a new indextable entry with
1145	         a NULL function name if there were no N_FUNs in a file.
1146	         Note that a N_SO without a file name is an EOF and
1147	         there could be 2 N_SO following it with the new filename
1148	         and directory.  */
1149	      if (saw_fun == 0)
1150		{
1151		  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1152		  info->indextable[i].stab = last_stab;
1153		  info->indextable[i].str = str;
1154		  info->indextable[i].directory_name = directory_name;
1155		  info->indextable[i].file_name = file_name;
1156		  info->indextable[i].function_name = NULL;
1157		  ++i;
1158		}
1159	      saw_fun = 0;
1160
1161	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1162	      if (*file_name == '\0')
1163		{
1164		  directory_name = NULL;
1165		  file_name = NULL;
1166		  saw_fun = 1;
1167		}
1168	      else
1169		{
1170		  last_stab = stab;
1171		  if (stab + STABSIZE >= info->stabs + stabsize
1172		      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1173		    {
1174		      directory_name = NULL;
1175		    }
1176		  else
1177		    {
1178		      /* Two consecutive N_SOs are a directory and a
1179			 file name.  */
1180		      stab += STABSIZE;
1181		      directory_name = file_name;
1182		      file_name = ((char *) str
1183				   + bfd_get_32 (abfd, stab + STRDXOFF));
1184		    }
1185		}
1186	      break;
1187
1188	    case N_SOL:
1189	      /* The name of an include file.  */
1190	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1191	      break;
1192
1193	    case N_FUN:
1194	      /* A function name.  */
1195	      saw_fun = 1;
1196	      name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1197
1198	      if (*name == '\0')
1199		name = NULL;
1200
1201	      function_name = name;
1202
1203	      if (name == NULL)
1204		continue;
1205
1206	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1207	      info->indextable[i].stab = stab;
1208	      info->indextable[i].str = str;
1209	      info->indextable[i].directory_name = directory_name;
1210	      info->indextable[i].file_name = file_name;
1211	      info->indextable[i].function_name = function_name;
1212	      ++i;
1213	      break;
1214	    }
1215	}
1216
1217      if (saw_fun == 0)
1218	{
1219	  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1220	  info->indextable[i].stab = last_stab;
1221	  info->indextable[i].str = str;
1222	  info->indextable[i].directory_name = directory_name;
1223	  info->indextable[i].file_name = file_name;
1224	  info->indextable[i].function_name = NULL;
1225	  ++i;
1226	}
1227
1228      info->indextable[i].val = (bfd_vma) -1;
1229      info->indextable[i].stab = info->stabs + stabsize;
1230      info->indextable[i].str = str;
1231      info->indextable[i].directory_name = NULL;
1232      info->indextable[i].file_name = NULL;
1233      info->indextable[i].function_name = NULL;
1234      ++i;
1235
1236      info->indextablesize = i;
1237      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1238	     cmpindexentry);
1239
1240      *pinfo = info;
1241    }
1242
1243  /* We are passed a section relative offset.  The offsets in the
1244     stabs information are absolute.  */
1245  offset += bfd_get_section_vma (abfd, section);
1246
1247#ifdef ENABLE_CACHING
1248  if (info->cached_indexentry != NULL
1249      && offset >= info->cached_offset
1250      && offset < (info->cached_indexentry + 1)->val)
1251    {
1252      stab = info->cached_stab;
1253      indexentry = info->cached_indexentry;
1254      file_name = info->cached_file_name;
1255    }
1256  else
1257#endif
1258    {
1259      long low, high;
1260      long mid = -1;
1261
1262      /* Cache non-existent or invalid.  Do binary search on
1263         indextable.  */
1264      indexentry = NULL;
1265
1266      low = 0;
1267      high = info->indextablesize - 1;
1268      while (low != high)
1269	{
1270	  mid = (high + low) / 2;
1271	  if (offset >= info->indextable[mid].val
1272	      && offset < info->indextable[mid + 1].val)
1273	    {
1274	      indexentry = &info->indextable[mid];
1275	      break;
1276	    }
1277
1278	  if (info->indextable[mid].val > offset)
1279	    high = mid;
1280	  else
1281	    low = mid + 1;
1282	}
1283
1284      if (indexentry == NULL)
1285	return TRUE;
1286
1287      stab = indexentry->stab + STABSIZE;
1288      file_name = indexentry->file_name;
1289    }
1290
1291  directory_name = indexentry->directory_name;
1292  str = indexentry->str;
1293
1294  saw_line = FALSE;
1295  saw_func = FALSE;
1296  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1297    {
1298      bfd_boolean done;
1299      bfd_vma val;
1300
1301      done = FALSE;
1302
1303      switch (stab[TYPEOFF])
1304	{
1305	case N_SOL:
1306	  /* The name of an include file.  */
1307	  val = bfd_get_32 (abfd, stab + VALOFF);
1308	  if (val <= offset)
1309	    {
1310	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1311	      *pline = 0;
1312	    }
1313	  break;
1314
1315	case N_SLINE:
1316	case N_DSLINE:
1317	case N_BSLINE:
1318	  /* A line number.  If the function was specified, then the value
1319	     is relative to the start of the function.  Otherwise, the
1320	     value is an absolute address.  */
1321	  val = ((indexentry->function_name ? indexentry->val : 0)
1322		 + bfd_get_32 (abfd, stab + VALOFF));
1323	  /* If this line starts before our desired offset, or if it's
1324	     the first line we've been able to find, use it.  The
1325	     !saw_line check works around a bug in GCC 2.95.3, which emits
1326	     the first N_SLINE late.  */
1327	  if (!saw_line || val <= offset)
1328	    {
1329	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1330
1331#ifdef ENABLE_CACHING
1332	      info->cached_stab = stab;
1333	      info->cached_offset = val;
1334	      info->cached_file_name = file_name;
1335	      info->cached_indexentry = indexentry;
1336#endif
1337	    }
1338	  if (val > offset)
1339	    done = TRUE;
1340	  saw_line = TRUE;
1341	  break;
1342
1343	case N_FUN:
1344	case N_SO:
1345	  if (saw_func || saw_line)
1346	    done = TRUE;
1347	  saw_func = TRUE;
1348	  break;
1349	}
1350
1351      if (done)
1352	break;
1353    }
1354
1355  *pfound = TRUE;
1356
1357  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1358      || directory_name == NULL)
1359    *pfilename = file_name;
1360  else
1361    {
1362      size_t dirlen;
1363
1364      dirlen = strlen (directory_name);
1365      if (info->filename == NULL
1366	  || strncmp (info->filename, directory_name, dirlen) != 0
1367	  || strcmp (info->filename + dirlen, file_name) != 0)
1368	{
1369	  size_t len;
1370
1371	  if (info->filename != NULL)
1372	    free (info->filename);
1373	  len = strlen (file_name) + 1;
1374	  info->filename = bfd_malloc (dirlen + len);
1375	  if (info->filename == NULL)
1376	    return FALSE;
1377	  memcpy (info->filename, directory_name, dirlen);
1378	  memcpy (info->filename + dirlen, file_name, len);
1379	}
1380
1381      *pfilename = info->filename;
1382    }
1383
1384  if (indexentry->function_name != NULL)
1385    {
1386      char *s;
1387
1388      /* This will typically be something like main:F(0,1), so we want
1389         to clobber the colon.  It's OK to change the name, since the
1390         string is in our own local storage anyhow.  */
1391      s = strchr (indexentry->function_name, ':');
1392      if (s != NULL)
1393	*s = '\0';
1394
1395      *pfnname = indexentry->function_name;
1396    }
1397
1398  return TRUE;
1399}
1400