1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD$");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/malloc.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/racct.h>
74#include <sys/resourcevar.h>
75#include <sys/rwlock.h>
76#include <sys/sched.h>
77#include <sys/sf_buf.h>
78#include <sys/shm.h>
79#include <sys/vmmeter.h>
80#include <sys/vmem.h>
81#include <sys/sx.h>
82#include <sys/sysctl.h>
83#include <sys/_kstack_cache.h>
84#include <sys/eventhandler.h>
85#include <sys/kernel.h>
86#include <sys/ktr.h>
87#include <sys/unistd.h>
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/pmap.h>
92#include <vm/vm_map.h>
93#include <vm/vm_page.h>
94#include <vm/vm_pageout.h>
95#include <vm/vm_object.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pager.h>
99#include <vm/swap_pager.h>
100
101#ifndef NO_SWAPPING
102static int swapout(struct proc *);
103static void swapclear(struct proc *);
104static void vm_thread_swapin(struct thread *td);
105static void vm_thread_swapout(struct thread *td);
106#endif
107
108/*
109 * MPSAFE
110 *
111 * WARNING!  This code calls vm_map_check_protection() which only checks
112 * the associated vm_map_entry range.  It does not determine whether the
113 * contents of the memory is actually readable or writable.  In most cases
114 * just checking the vm_map_entry is sufficient within the kernel's address
115 * space.
116 */
117int
118kernacc(addr, len, rw)
119	void *addr;
120	int len, rw;
121{
122	boolean_t rv;
123	vm_offset_t saddr, eaddr;
124	vm_prot_t prot;
125
126	KASSERT((rw & ~VM_PROT_ALL) == 0,
127	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
128
129	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
130	    (vm_offset_t)addr + len < (vm_offset_t)addr)
131		return (FALSE);
132
133	prot = rw;
134	saddr = trunc_page((vm_offset_t)addr);
135	eaddr = round_page((vm_offset_t)addr + len);
136	vm_map_lock_read(kernel_map);
137	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
138	vm_map_unlock_read(kernel_map);
139	return (rv == TRUE);
140}
141
142/*
143 * MPSAFE
144 *
145 * WARNING!  This code calls vm_map_check_protection() which only checks
146 * the associated vm_map_entry range.  It does not determine whether the
147 * contents of the memory is actually readable or writable.  vmapbuf(),
148 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
149 * used in conjuction with this call.
150 */
151int
152useracc(addr, len, rw)
153	void *addr;
154	int len, rw;
155{
156	boolean_t rv;
157	vm_prot_t prot;
158	vm_map_t map;
159
160	KASSERT((rw & ~VM_PROT_ALL) == 0,
161	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
162	prot = rw;
163	map = &curproc->p_vmspace->vm_map;
164	if ((vm_offset_t)addr + len > vm_map_max(map) ||
165	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
166		return (FALSE);
167	}
168	vm_map_lock_read(map);
169	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
170	    round_page((vm_offset_t)addr + len), prot);
171	vm_map_unlock_read(map);
172	return (rv == TRUE);
173}
174
175int
176vslock(void *addr, size_t len)
177{
178	vm_offset_t end, last, start;
179	vm_size_t npages;
180	int error;
181
182	last = (vm_offset_t)addr + len;
183	start = trunc_page((vm_offset_t)addr);
184	end = round_page(last);
185	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
186		return (EINVAL);
187	npages = atop(end - start);
188	if (npages > vm_page_max_wired)
189		return (ENOMEM);
190#if 0
191	/*
192	 * XXX - not yet
193	 *
194	 * The limit for transient usage of wired pages should be
195	 * larger than for "permanent" wired pages (mlock()).
196	 *
197	 * Also, the sysctl code, which is the only present user
198	 * of vslock(), does a hard loop on EAGAIN.
199	 */
200	if (npages + cnt.v_wire_count > vm_page_max_wired)
201		return (EAGAIN);
202#endif
203	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
204	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
205	/*
206	 * Return EFAULT on error to match copy{in,out}() behaviour
207	 * rather than returning ENOMEM like mlock() would.
208	 */
209	return (error == KERN_SUCCESS ? 0 : EFAULT);
210}
211
212void
213vsunlock(void *addr, size_t len)
214{
215
216	/* Rely on the parameter sanity checks performed by vslock(). */
217	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
218	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
219	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220}
221
222/*
223 * Pin the page contained within the given object at the given offset.  If the
224 * page is not resident, allocate and load it using the given object's pager.
225 * Return the pinned page if successful; otherwise, return NULL.
226 */
227static vm_page_t
228vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
229{
230	vm_page_t m, ma[1];
231	vm_pindex_t pindex;
232	int rv;
233
234	VM_OBJECT_WLOCK(object);
235	pindex = OFF_TO_IDX(offset);
236	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
237	if (m->valid != VM_PAGE_BITS_ALL) {
238		ma[0] = m;
239		rv = vm_pager_get_pages(object, ma, 1, 0);
240		m = vm_page_lookup(object, pindex);
241		if (m == NULL)
242			goto out;
243		if (rv != VM_PAGER_OK) {
244			vm_page_lock(m);
245			vm_page_free(m);
246			vm_page_unlock(m);
247			m = NULL;
248			goto out;
249		}
250	}
251	vm_page_xunbusy(m);
252	vm_page_lock(m);
253	vm_page_hold(m);
254	vm_page_unlock(m);
255out:
256	VM_OBJECT_WUNLOCK(object);
257	return (m);
258}
259
260/*
261 * Return a CPU private mapping to the page at the given offset within the
262 * given object.  The page is pinned before it is mapped.
263 */
264struct sf_buf *
265vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
266{
267	vm_page_t m;
268
269	m = vm_imgact_hold_page(object, offset);
270	if (m == NULL)
271		return (NULL);
272	sched_pin();
273	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
274}
275
276/*
277 * Destroy the given CPU private mapping and unpin the page that it mapped.
278 */
279void
280vm_imgact_unmap_page(struct sf_buf *sf)
281{
282	vm_page_t m;
283
284	m = sf_buf_page(sf);
285	sf_buf_free(sf);
286	sched_unpin();
287	vm_page_lock(m);
288	vm_page_unhold(m);
289	vm_page_unlock(m);
290}
291
292void
293vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
294{
295
296	pmap_sync_icache(map->pmap, va, sz);
297}
298
299struct kstack_cache_entry *kstack_cache;
300static int kstack_cache_size = 128;
301static int kstacks;
302static struct mtx kstack_cache_mtx;
303MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
304
305SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
306    "");
307SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
308    "");
309
310#ifndef KSTACK_MAX_PAGES
311#define KSTACK_MAX_PAGES 32
312#endif
313
314/*
315 * Create the kernel stack (including pcb for i386) for a new thread.
316 * This routine directly affects the fork perf for a process and
317 * create performance for a thread.
318 */
319int
320vm_thread_new(struct thread *td, int pages)
321{
322	vm_object_t ksobj;
323	vm_offset_t ks;
324	vm_page_t m, ma[KSTACK_MAX_PAGES];
325	struct kstack_cache_entry *ks_ce;
326	int i;
327
328	/* Bounds check */
329	if (pages <= 1)
330		pages = KSTACK_PAGES;
331	else if (pages > KSTACK_MAX_PAGES)
332		pages = KSTACK_MAX_PAGES;
333
334	if (pages == KSTACK_PAGES) {
335		mtx_lock(&kstack_cache_mtx);
336		if (kstack_cache != NULL) {
337			ks_ce = kstack_cache;
338			kstack_cache = ks_ce->next_ks_entry;
339			mtx_unlock(&kstack_cache_mtx);
340
341			td->td_kstack_obj = ks_ce->ksobj;
342			td->td_kstack = (vm_offset_t)ks_ce;
343			td->td_kstack_pages = KSTACK_PAGES;
344			return (1);
345		}
346		mtx_unlock(&kstack_cache_mtx);
347	}
348
349	/*
350	 * Allocate an object for the kstack.
351	 */
352	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
353
354	/*
355	 * Get a kernel virtual address for this thread's kstack.
356	 */
357#if defined(__mips__)
358	/*
359	 * We need to align the kstack's mapped address to fit within
360	 * a single TLB entry.
361	 */
362	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
363	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
364	    M_BESTFIT | M_NOWAIT, &ks)) {
365		ks = 0;
366	}
367#else
368	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
369#endif
370	if (ks == 0) {
371		printf("vm_thread_new: kstack allocation failed\n");
372		vm_object_deallocate(ksobj);
373		return (0);
374	}
375
376	atomic_add_int(&kstacks, 1);
377	if (KSTACK_GUARD_PAGES != 0) {
378		pmap_qremove(ks, KSTACK_GUARD_PAGES);
379		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
380	}
381	td->td_kstack_obj = ksobj;
382	td->td_kstack = ks;
383	/*
384	 * Knowing the number of pages allocated is useful when you
385	 * want to deallocate them.
386	 */
387	td->td_kstack_pages = pages;
388	/*
389	 * For the length of the stack, link in a real page of ram for each
390	 * page of stack.
391	 */
392	VM_OBJECT_WLOCK(ksobj);
393	for (i = 0; i < pages; i++) {
394		/*
395		 * Get a kernel stack page.
396		 */
397		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
398		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
399		ma[i] = m;
400		m->valid = VM_PAGE_BITS_ALL;
401	}
402	VM_OBJECT_WUNLOCK(ksobj);
403	pmap_qenter(ks, ma, pages);
404	return (1);
405}
406
407static void
408vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
409{
410	vm_page_t m;
411	int i;
412
413	atomic_add_int(&kstacks, -1);
414	pmap_qremove(ks, pages);
415	VM_OBJECT_WLOCK(ksobj);
416	for (i = 0; i < pages; i++) {
417		m = vm_page_lookup(ksobj, i);
418		if (m == NULL)
419			panic("vm_thread_dispose: kstack already missing?");
420		vm_page_lock(m);
421		vm_page_unwire(m, 0);
422		vm_page_free(m);
423		vm_page_unlock(m);
424	}
425	VM_OBJECT_WUNLOCK(ksobj);
426	vm_object_deallocate(ksobj);
427	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
428	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
429}
430
431/*
432 * Dispose of a thread's kernel stack.
433 */
434void
435vm_thread_dispose(struct thread *td)
436{
437	vm_object_t ksobj;
438	vm_offset_t ks;
439	struct kstack_cache_entry *ks_ce;
440	int pages;
441
442	pages = td->td_kstack_pages;
443	ksobj = td->td_kstack_obj;
444	ks = td->td_kstack;
445	td->td_kstack = 0;
446	td->td_kstack_pages = 0;
447	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
448		ks_ce = (struct kstack_cache_entry *)ks;
449		ks_ce->ksobj = ksobj;
450		mtx_lock(&kstack_cache_mtx);
451		ks_ce->next_ks_entry = kstack_cache;
452		kstack_cache = ks_ce;
453		mtx_unlock(&kstack_cache_mtx);
454		return;
455	}
456	vm_thread_stack_dispose(ksobj, ks, pages);
457}
458
459static void
460vm_thread_stack_lowmem(void *nulll)
461{
462	struct kstack_cache_entry *ks_ce, *ks_ce1;
463
464	mtx_lock(&kstack_cache_mtx);
465	ks_ce = kstack_cache;
466	kstack_cache = NULL;
467	mtx_unlock(&kstack_cache_mtx);
468
469	while (ks_ce != NULL) {
470		ks_ce1 = ks_ce;
471		ks_ce = ks_ce->next_ks_entry;
472
473		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
474		    KSTACK_PAGES);
475	}
476}
477
478static void
479kstack_cache_init(void *nulll)
480{
481
482	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
483	    EVENTHANDLER_PRI_ANY);
484}
485
486SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
487
488#ifndef NO_SWAPPING
489/*
490 * Allow a thread's kernel stack to be paged out.
491 */
492static void
493vm_thread_swapout(struct thread *td)
494{
495	vm_object_t ksobj;
496	vm_page_t m;
497	int i, pages;
498
499	cpu_thread_swapout(td);
500	pages = td->td_kstack_pages;
501	ksobj = td->td_kstack_obj;
502	pmap_qremove(td->td_kstack, pages);
503	VM_OBJECT_WLOCK(ksobj);
504	for (i = 0; i < pages; i++) {
505		m = vm_page_lookup(ksobj, i);
506		if (m == NULL)
507			panic("vm_thread_swapout: kstack already missing?");
508		vm_page_dirty(m);
509		vm_page_lock(m);
510		vm_page_unwire(m, 0);
511		vm_page_unlock(m);
512	}
513	VM_OBJECT_WUNLOCK(ksobj);
514}
515
516/*
517 * Bring the kernel stack for a specified thread back in.
518 */
519static void
520vm_thread_swapin(struct thread *td)
521{
522	vm_object_t ksobj;
523	vm_page_t ma[KSTACK_MAX_PAGES];
524	int i, j, k, pages, rv;
525
526	pages = td->td_kstack_pages;
527	ksobj = td->td_kstack_obj;
528	VM_OBJECT_WLOCK(ksobj);
529	for (i = 0; i < pages; i++)
530		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL |
531		    VM_ALLOC_WIRED);
532	for (i = 0; i < pages; i++) {
533		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
534			vm_page_assert_xbusied(ma[i]);
535			vm_object_pip_add(ksobj, 1);
536			for (j = i + 1; j < pages; j++) {
537				if (ma[j]->valid != VM_PAGE_BITS_ALL)
538					vm_page_assert_xbusied(ma[j]);
539				if (ma[j]->valid == VM_PAGE_BITS_ALL)
540					break;
541			}
542			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
543			if (rv != VM_PAGER_OK)
544	panic("vm_thread_swapin: cannot get kstack for proc: %d",
545				    td->td_proc->p_pid);
546			vm_object_pip_wakeup(ksobj);
547			for (k = i; k < j; k++)
548				ma[k] = vm_page_lookup(ksobj, k);
549			vm_page_xunbusy(ma[i]);
550		} else if (vm_page_xbusied(ma[i]))
551			vm_page_xunbusy(ma[i]);
552	}
553	VM_OBJECT_WUNLOCK(ksobj);
554	pmap_qenter(td->td_kstack, ma, pages);
555	cpu_thread_swapin(td);
556}
557#endif /* !NO_SWAPPING */
558
559/*
560 * Implement fork's actions on an address space.
561 * Here we arrange for the address space to be copied or referenced,
562 * allocate a user struct (pcb and kernel stack), then call the
563 * machine-dependent layer to fill those in and make the new process
564 * ready to run.  The new process is set up so that it returns directly
565 * to user mode to avoid stack copying and relocation problems.
566 */
567int
568vm_forkproc(td, p2, td2, vm2, flags)
569	struct thread *td;
570	struct proc *p2;
571	struct thread *td2;
572	struct vmspace *vm2;
573	int flags;
574{
575	struct proc *p1 = td->td_proc;
576	int error;
577
578	if ((flags & RFPROC) == 0) {
579		/*
580		 * Divorce the memory, if it is shared, essentially
581		 * this changes shared memory amongst threads, into
582		 * COW locally.
583		 */
584		if ((flags & RFMEM) == 0) {
585			if (p1->p_vmspace->vm_refcnt > 1) {
586				error = vmspace_unshare(p1);
587				if (error)
588					return (error);
589			}
590		}
591		cpu_fork(td, p2, td2, flags);
592		return (0);
593	}
594
595	if (flags & RFMEM) {
596		p2->p_vmspace = p1->p_vmspace;
597		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
598	}
599
600	while (vm_page_count_severe()) {
601		VM_WAIT;
602	}
603
604	if ((flags & RFMEM) == 0) {
605		p2->p_vmspace = vm2;
606		if (p1->p_vmspace->vm_shm)
607			shmfork(p1, p2);
608	}
609
610	/*
611	 * cpu_fork will copy and update the pcb, set up the kernel stack,
612	 * and make the child ready to run.
613	 */
614	cpu_fork(td, p2, td2, flags);
615	return (0);
616}
617
618/*
619 * Called after process has been wait(2)'ed apon and is being reaped.
620 * The idea is to reclaim resources that we could not reclaim while
621 * the process was still executing.
622 */
623void
624vm_waitproc(p)
625	struct proc *p;
626{
627
628	vmspace_exitfree(p);		/* and clean-out the vmspace */
629}
630
631void
632faultin(p)
633	struct proc *p;
634{
635#ifdef NO_SWAPPING
636
637	PROC_LOCK_ASSERT(p, MA_OWNED);
638	if ((p->p_flag & P_INMEM) == 0)
639		panic("faultin: proc swapped out with NO_SWAPPING!");
640#else /* !NO_SWAPPING */
641	struct thread *td;
642
643	PROC_LOCK_ASSERT(p, MA_OWNED);
644	/*
645	 * If another process is swapping in this process,
646	 * just wait until it finishes.
647	 */
648	if (p->p_flag & P_SWAPPINGIN) {
649		while (p->p_flag & P_SWAPPINGIN)
650			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
651		return;
652	}
653	if ((p->p_flag & P_INMEM) == 0) {
654		/*
655		 * Don't let another thread swap process p out while we are
656		 * busy swapping it in.
657		 */
658		++p->p_lock;
659		p->p_flag |= P_SWAPPINGIN;
660		PROC_UNLOCK(p);
661
662		/*
663		 * We hold no lock here because the list of threads
664		 * can not change while all threads in the process are
665		 * swapped out.
666		 */
667		FOREACH_THREAD_IN_PROC(p, td)
668			vm_thread_swapin(td);
669		PROC_LOCK(p);
670		swapclear(p);
671		p->p_swtick = ticks;
672
673		wakeup(&p->p_flag);
674
675		/* Allow other threads to swap p out now. */
676		--p->p_lock;
677	}
678#endif /* NO_SWAPPING */
679}
680
681/*
682 * This swapin algorithm attempts to swap-in processes only if there
683 * is enough space for them.  Of course, if a process waits for a long
684 * time, it will be swapped in anyway.
685 *
686 * Giant is held on entry.
687 */
688void
689swapper(void)
690{
691	struct proc *p;
692	struct thread *td;
693	struct proc *pp;
694	int slptime;
695	int swtime;
696	int ppri;
697	int pri;
698
699loop:
700	if (vm_page_count_min()) {
701		VM_WAIT;
702		goto loop;
703	}
704
705	pp = NULL;
706	ppri = INT_MIN;
707	sx_slock(&allproc_lock);
708	FOREACH_PROC_IN_SYSTEM(p) {
709		PROC_LOCK(p);
710		if (p->p_state == PRS_NEW ||
711		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
712			PROC_UNLOCK(p);
713			continue;
714		}
715		swtime = (ticks - p->p_swtick) / hz;
716		FOREACH_THREAD_IN_PROC(p, td) {
717			/*
718			 * An otherwise runnable thread of a process
719			 * swapped out has only the TDI_SWAPPED bit set.
720			 *
721			 */
722			thread_lock(td);
723			if (td->td_inhibitors == TDI_SWAPPED) {
724				slptime = (ticks - td->td_slptick) / hz;
725				pri = swtime + slptime;
726				if ((td->td_flags & TDF_SWAPINREQ) == 0)
727					pri -= p->p_nice * 8;
728				/*
729				 * if this thread is higher priority
730				 * and there is enough space, then select
731				 * this process instead of the previous
732				 * selection.
733				 */
734				if (pri > ppri) {
735					pp = p;
736					ppri = pri;
737				}
738			}
739			thread_unlock(td);
740		}
741		PROC_UNLOCK(p);
742	}
743	sx_sunlock(&allproc_lock);
744
745	/*
746	 * Nothing to do, back to sleep.
747	 */
748	if ((p = pp) == NULL) {
749		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
750		goto loop;
751	}
752	PROC_LOCK(p);
753
754	/*
755	 * Another process may be bringing or may have already
756	 * brought this process in while we traverse all threads.
757	 * Or, this process may even be being swapped out again.
758	 */
759	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
760		PROC_UNLOCK(p);
761		goto loop;
762	}
763
764	/*
765	 * We would like to bring someone in. (only if there is space).
766	 * [What checks the space? ]
767	 */
768	faultin(p);
769	PROC_UNLOCK(p);
770	goto loop;
771}
772
773void
774kick_proc0(void)
775{
776
777	wakeup(&proc0);
778}
779
780#ifndef NO_SWAPPING
781
782/*
783 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
784 */
785static int swap_idle_threshold1 = 2;
786SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
787    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
788
789/*
790 * Swap_idle_threshold2 is the time that a process can be idle before
791 * it will be swapped out, if idle swapping is enabled.
792 */
793static int swap_idle_threshold2 = 10;
794SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
795    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
796
797/*
798 * First, if any processes have been sleeping or stopped for at least
799 * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
800 * no such processes exist, then the longest-sleeping or stopped
801 * process is swapped out.  Finally, and only as a last resort, if
802 * there are no sleeping or stopped processes, the longest-resident
803 * process is swapped out.
804 */
805void
806swapout_procs(action)
807int action;
808{
809	struct proc *p;
810	struct thread *td;
811	int didswap = 0;
812
813retry:
814	sx_slock(&allproc_lock);
815	FOREACH_PROC_IN_SYSTEM(p) {
816		struct vmspace *vm;
817		int minslptime = 100000;
818		int slptime;
819
820		/*
821		 * Watch out for a process in
822		 * creation.  It may have no
823		 * address space or lock yet.
824		 */
825		if (p->p_state == PRS_NEW)
826			continue;
827		/*
828		 * An aio daemon switches its
829		 * address space while running.
830		 * Perform a quick check whether
831		 * a process has P_SYSTEM.
832		 */
833		if ((p->p_flag & P_SYSTEM) != 0)
834			continue;
835		/*
836		 * Do not swapout a process that
837		 * is waiting for VM data
838		 * structures as there is a possible
839		 * deadlock.  Test this first as
840		 * this may block.
841		 *
842		 * Lock the map until swapout
843		 * finishes, or a thread of this
844		 * process may attempt to alter
845		 * the map.
846		 */
847		vm = vmspace_acquire_ref(p);
848		if (vm == NULL)
849			continue;
850		if (!vm_map_trylock(&vm->vm_map))
851			goto nextproc1;
852
853		PROC_LOCK(p);
854		if (p->p_lock != 0 ||
855		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
856		    ) != 0) {
857			goto nextproc;
858		}
859		/*
860		 * only aiod changes vmspace, however it will be
861		 * skipped because of the if statement above checking
862		 * for P_SYSTEM
863		 */
864		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
865			goto nextproc;
866
867		switch (p->p_state) {
868		default:
869			/* Don't swap out processes in any sort
870			 * of 'special' state. */
871			break;
872
873		case PRS_NORMAL:
874			/*
875			 * do not swapout a realtime process
876			 * Check all the thread groups..
877			 */
878			FOREACH_THREAD_IN_PROC(p, td) {
879				thread_lock(td);
880				if (PRI_IS_REALTIME(td->td_pri_class)) {
881					thread_unlock(td);
882					goto nextproc;
883				}
884				slptime = (ticks - td->td_slptick) / hz;
885				/*
886				 * Guarantee swap_idle_threshold1
887				 * time in memory.
888				 */
889				if (slptime < swap_idle_threshold1) {
890					thread_unlock(td);
891					goto nextproc;
892				}
893
894				/*
895				 * Do not swapout a process if it is
896				 * waiting on a critical event of some
897				 * kind or there is a thread whose
898				 * pageable memory may be accessed.
899				 *
900				 * This could be refined to support
901				 * swapping out a thread.
902				 */
903				if (!thread_safetoswapout(td)) {
904					thread_unlock(td);
905					goto nextproc;
906				}
907				/*
908				 * If the system is under memory stress,
909				 * or if we are swapping
910				 * idle processes >= swap_idle_threshold2,
911				 * then swap the process out.
912				 */
913				if (((action & VM_SWAP_NORMAL) == 0) &&
914				    (((action & VM_SWAP_IDLE) == 0) ||
915				    (slptime < swap_idle_threshold2))) {
916					thread_unlock(td);
917					goto nextproc;
918				}
919
920				if (minslptime > slptime)
921					minslptime = slptime;
922				thread_unlock(td);
923			}
924
925			/*
926			 * If the pageout daemon didn't free enough pages,
927			 * or if this process is idle and the system is
928			 * configured to swap proactively, swap it out.
929			 */
930			if ((action & VM_SWAP_NORMAL) ||
931				((action & VM_SWAP_IDLE) &&
932				 (minslptime > swap_idle_threshold2))) {
933				if (swapout(p) == 0)
934					didswap++;
935				PROC_UNLOCK(p);
936				vm_map_unlock(&vm->vm_map);
937				vmspace_free(vm);
938				sx_sunlock(&allproc_lock);
939				goto retry;
940			}
941		}
942nextproc:
943		PROC_UNLOCK(p);
944		vm_map_unlock(&vm->vm_map);
945nextproc1:
946		vmspace_free(vm);
947		continue;
948	}
949	sx_sunlock(&allproc_lock);
950	/*
951	 * If we swapped something out, and another process needed memory,
952	 * then wakeup the sched process.
953	 */
954	if (didswap)
955		wakeup(&proc0);
956}
957
958static void
959swapclear(p)
960	struct proc *p;
961{
962	struct thread *td;
963
964	PROC_LOCK_ASSERT(p, MA_OWNED);
965
966	FOREACH_THREAD_IN_PROC(p, td) {
967		thread_lock(td);
968		td->td_flags |= TDF_INMEM;
969		td->td_flags &= ~TDF_SWAPINREQ;
970		TD_CLR_SWAPPED(td);
971		if (TD_CAN_RUN(td))
972			if (setrunnable(td)) {
973#ifdef INVARIANTS
974				/*
975				 * XXX: We just cleared TDI_SWAPPED
976				 * above and set TDF_INMEM, so this
977				 * should never happen.
978				 */
979				panic("not waking up swapper");
980#endif
981			}
982		thread_unlock(td);
983	}
984	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
985	p->p_flag |= P_INMEM;
986}
987
988static int
989swapout(p)
990	struct proc *p;
991{
992	struct thread *td;
993
994	PROC_LOCK_ASSERT(p, MA_OWNED);
995#if defined(SWAP_DEBUG)
996	printf("swapping out %d\n", p->p_pid);
997#endif
998
999	/*
1000	 * The states of this process and its threads may have changed
1001	 * by now.  Assuming that there is only one pageout daemon thread,
1002	 * this process should still be in memory.
1003	 */
1004	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1005		("swapout: lost a swapout race?"));
1006
1007	/*
1008	 * remember the process resident count
1009	 */
1010	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1011	/*
1012	 * Check and mark all threads before we proceed.
1013	 */
1014	p->p_flag &= ~P_INMEM;
1015	p->p_flag |= P_SWAPPINGOUT;
1016	FOREACH_THREAD_IN_PROC(p, td) {
1017		thread_lock(td);
1018		if (!thread_safetoswapout(td)) {
1019			thread_unlock(td);
1020			swapclear(p);
1021			return (EBUSY);
1022		}
1023		td->td_flags &= ~TDF_INMEM;
1024		TD_SET_SWAPPED(td);
1025		thread_unlock(td);
1026	}
1027	td = FIRST_THREAD_IN_PROC(p);
1028	++td->td_ru.ru_nswap;
1029	PROC_UNLOCK(p);
1030
1031	/*
1032	 * This list is stable because all threads are now prevented from
1033	 * running.  The list is only modified in the context of a running
1034	 * thread in this process.
1035	 */
1036	FOREACH_THREAD_IN_PROC(p, td)
1037		vm_thread_swapout(td);
1038
1039	PROC_LOCK(p);
1040	p->p_flag &= ~P_SWAPPINGOUT;
1041	p->p_swtick = ticks;
1042	return (0);
1043}
1044#endif /* !NO_SWAPPING */
1045