mmu_oea64.c revision 248508
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 248508 2013-03-19 14:13:12Z kib $");
95
96/*
97 * Manages physical address maps.
98 *
99 * Since the information managed by this module is also stored by the
100 * logical address mapping module, this module may throw away valid virtual
101 * to physical mappings at almost any time.  However, invalidations of
102 * mappings must be done as requested.
103 *
104 * In order to cope with hardware architectures which make virtual to
105 * physical map invalidates expensive, this module may delay invalidate
106 * reduced protection operations until such time as they are actually
107 * necessary.  This module is given full information as to which processors
108 * are currently using which maps, and to when physical maps must be made
109 * correct.
110 */
111
112#include "opt_compat.h"
113#include "opt_kstack_pages.h"
114
115#include <sys/param.h>
116#include <sys/kernel.h>
117#include <sys/queue.h>
118#include <sys/cpuset.h>
119#include <sys/ktr.h>
120#include <sys/lock.h>
121#include <sys/msgbuf.h>
122#include <sys/malloc.h>
123#include <sys/mutex.h>
124#include <sys/proc.h>
125#include <sys/rwlock.h>
126#include <sys/sched.h>
127#include <sys/sysctl.h>
128#include <sys/systm.h>
129#include <sys/vmmeter.h>
130
131#include <sys/kdb.h>
132
133#include <dev/ofw/openfirm.h>
134
135#include <vm/vm.h>
136#include <vm/vm_param.h>
137#include <vm/vm_kern.h>
138#include <vm/vm_page.h>
139#include <vm/vm_map.h>
140#include <vm/vm_object.h>
141#include <vm/vm_extern.h>
142#include <vm/vm_pageout.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_oea64.h"
159#include "mmu_if.h"
160#include "moea64_if.h"
161
162void moea64_release_vsid(uint64_t vsid);
163uintptr_t moea64_get_unique_vsid(void);
164
165#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
166#define ENABLE_TRANS(msr)	mtmsr(msr)
167
168#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
169#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
170#define	VSID_HASH_MASK		0x0000007fffffffffULL
171
172/*
173 * Locking semantics:
174 * -- Read lock: if no modifications are being made to either the PVO lists
175 *    or page table or if any modifications being made result in internal
176 *    changes (e.g. wiring, protection) such that the existence of the PVOs
177 *    is unchanged and they remain associated with the same pmap (in which
178 *    case the changes should be protected by the pmap lock)
179 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
180 */
181
182#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
183#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
184#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
185#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
186
187struct ofw_map {
188	cell_t	om_va;
189	cell_t	om_len;
190	cell_t	om_pa_hi;
191	cell_t	om_pa_lo;
192	cell_t	om_mode;
193};
194
195/*
196 * Map of physical memory regions.
197 */
198static struct	mem_region *regions;
199static struct	mem_region *pregions;
200static u_int	phys_avail_count;
201static int	regions_sz, pregions_sz;
202
203extern void bs_remap_earlyboot(void);
204
205/*
206 * Lock for the pteg and pvo tables.
207 */
208struct rwlock	moea64_table_lock;
209struct mtx	moea64_slb_mutex;
210
211/*
212 * PTEG data.
213 */
214u_int		moea64_pteg_count;
215u_int		moea64_pteg_mask;
216
217/*
218 * PVO data.
219 */
220struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
221
222uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
223uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
224
225#define	BPVO_POOL_SIZE	327680
226static struct	pvo_entry *moea64_bpvo_pool;
227static int	moea64_bpvo_pool_index = 0;
228
229#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
230#ifdef __powerpc64__
231#define	NVSIDS		(NPMAPS * 16)
232#define VSID_HASHMASK	0xffffffffUL
233#else
234#define NVSIDS		NPMAPS
235#define VSID_HASHMASK	0xfffffUL
236#endif
237static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
238
239static boolean_t moea64_initialized = FALSE;
240
241/*
242 * Statistics.
243 */
244u_int	moea64_pte_valid = 0;
245u_int	moea64_pte_overflow = 0;
246u_int	moea64_pvo_entries = 0;
247u_int	moea64_pvo_enter_calls = 0;
248u_int	moea64_pvo_remove_calls = 0;
249SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
250    &moea64_pte_valid, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
252    &moea64_pte_overflow, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
254    &moea64_pvo_entries, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
256    &moea64_pvo_enter_calls, 0, "");
257SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
258    &moea64_pvo_remove_calls, 0, "");
259
260vm_offset_t	moea64_scratchpage_va[2];
261struct pvo_entry *moea64_scratchpage_pvo[2];
262uintptr_t	moea64_scratchpage_pte[2];
263struct	mtx	moea64_scratchpage_mtx;
264
265uint64_t 	moea64_large_page_mask = 0;
266int		moea64_large_page_size = 0;
267int		moea64_large_page_shift = 0;
268
269/*
270 * PVO calls.
271 */
272static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
273		    vm_offset_t, vm_offset_t, uint64_t, int);
274static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
275static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
276
277/*
278 * Utility routines.
279 */
280static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
281static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
282static void		moea64_kremove(mmu_t, vm_offset_t);
283static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
284			    vm_offset_t pa, vm_size_t sz);
285
286/*
287 * Kernel MMU interface
288 */
289void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
290void moea64_clear_modify(mmu_t, vm_page_t);
291void moea64_clear_reference(mmu_t, vm_page_t);
292void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
293void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
294    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
295void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
296void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
297    vm_prot_t);
298void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
299vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
300vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
301void moea64_init(mmu_t);
302boolean_t moea64_is_modified(mmu_t, vm_page_t);
303boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
304boolean_t moea64_is_referenced(mmu_t, vm_page_t);
305int moea64_ts_referenced(mmu_t, vm_page_t);
306vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
307boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
308int moea64_page_wired_mappings(mmu_t, vm_page_t);
309void moea64_pinit(mmu_t, pmap_t);
310void moea64_pinit0(mmu_t, pmap_t);
311void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
312void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
313void moea64_qremove(mmu_t, vm_offset_t, int);
314void moea64_release(mmu_t, pmap_t);
315void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316void moea64_remove_pages(mmu_t, pmap_t);
317void moea64_remove_all(mmu_t, vm_page_t);
318void moea64_remove_write(mmu_t, vm_page_t);
319void moea64_zero_page(mmu_t, vm_page_t);
320void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
321void moea64_zero_page_idle(mmu_t, vm_page_t);
322void moea64_activate(mmu_t, struct thread *);
323void moea64_deactivate(mmu_t, struct thread *);
324void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
325void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
326void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
327vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
328void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
329void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
330void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
331boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
332static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
333
334static mmu_method_t moea64_methods[] = {
335	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
337	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
338	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
339	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
340	MMUMETHOD(mmu_enter,		moea64_enter),
341	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
342	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
343	MMUMETHOD(mmu_extract,		moea64_extract),
344	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
345	MMUMETHOD(mmu_init,		moea64_init),
346	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
347	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
348	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
350	MMUMETHOD(mmu_map,     		moea64_map),
351	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
352	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
353	MMUMETHOD(mmu_pinit,		moea64_pinit),
354	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
355	MMUMETHOD(mmu_protect,		moea64_protect),
356	MMUMETHOD(mmu_qenter,		moea64_qenter),
357	MMUMETHOD(mmu_qremove,		moea64_qremove),
358	MMUMETHOD(mmu_release,		moea64_release),
359	MMUMETHOD(mmu_remove,		moea64_remove),
360	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
361	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
362	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
363	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
364	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
367	MMUMETHOD(mmu_activate,		moea64_activate),
368	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
369	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
370
371	/* Internal interfaces */
372	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
373	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
374	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
375	MMUMETHOD(mmu_kextract,		moea64_kextract),
376	MMUMETHOD(mmu_kenter,		moea64_kenter),
377	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
378	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
379
380	{ 0, 0 }
381};
382
383MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
384
385static __inline u_int
386va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
387{
388	uint64_t hash;
389	int shift;
390
391	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
392	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
393	    shift);
394	return (hash & moea64_pteg_mask);
395}
396
397static __inline struct pvo_head *
398vm_page_to_pvoh(vm_page_t m)
399{
400
401	return (&m->md.mdpg_pvoh);
402}
403
404static __inline void
405moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
406    uint64_t pte_lo, int flags)
407{
408
409	/*
410	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
411	 * set when the real pte is set in memory.
412	 *
413	 * Note: Don't set the valid bit for correct operation of tlb update.
414	 */
415	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
416	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
417
418	if (flags & PVO_LARGE)
419		pt->pte_hi |= LPTE_BIG;
420
421	pt->pte_lo = pte_lo;
422}
423
424static __inline uint64_t
425moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
426{
427	uint64_t pte_lo;
428	int i;
429
430	if (ma != VM_MEMATTR_DEFAULT) {
431		switch (ma) {
432		case VM_MEMATTR_UNCACHEABLE:
433			return (LPTE_I | LPTE_G);
434		case VM_MEMATTR_WRITE_COMBINING:
435		case VM_MEMATTR_WRITE_BACK:
436		case VM_MEMATTR_PREFETCHABLE:
437			return (LPTE_I);
438		case VM_MEMATTR_WRITE_THROUGH:
439			return (LPTE_W | LPTE_M);
440		}
441	}
442
443	/*
444	 * Assume the page is cache inhibited and access is guarded unless
445	 * it's in our available memory array.
446	 */
447	pte_lo = LPTE_I | LPTE_G;
448	for (i = 0; i < pregions_sz; i++) {
449		if ((pa >= pregions[i].mr_start) &&
450		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
451			pte_lo &= ~(LPTE_I | LPTE_G);
452			pte_lo |= LPTE_M;
453			break;
454		}
455	}
456
457	return pte_lo;
458}
459
460/*
461 * Quick sort callout for comparing memory regions.
462 */
463static int	om_cmp(const void *a, const void *b);
464
465static int
466om_cmp(const void *a, const void *b)
467{
468	const struct	ofw_map *mapa;
469	const struct	ofw_map *mapb;
470
471	mapa = a;
472	mapb = b;
473	if (mapa->om_pa_hi < mapb->om_pa_hi)
474		return (-1);
475	else if (mapa->om_pa_hi > mapb->om_pa_hi)
476		return (1);
477	else if (mapa->om_pa_lo < mapb->om_pa_lo)
478		return (-1);
479	else if (mapa->om_pa_lo > mapb->om_pa_lo)
480		return (1);
481	else
482		return (0);
483}
484
485static void
486moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
487{
488	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
489	register_t	msr;
490	vm_offset_t	off;
491	vm_paddr_t	pa_base;
492	int		i;
493
494	bzero(translations, sz);
495	if (OF_getprop(mmu, "translations", translations, sz) == -1)
496		panic("moea64_bootstrap: can't get ofw translations");
497
498	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
499	sz /= sizeof(*translations);
500	qsort(translations, sz, sizeof (*translations), om_cmp);
501
502	for (i = 0; i < sz; i++) {
503		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
504		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
505		    translations[i].om_len);
506
507		if (translations[i].om_pa_lo % PAGE_SIZE)
508			panic("OFW translation not page-aligned!");
509
510		pa_base = translations[i].om_pa_lo;
511
512	      #ifdef __powerpc64__
513		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
514	      #else
515		if (translations[i].om_pa_hi)
516			panic("OFW translations above 32-bit boundary!");
517	      #endif
518
519		/* Now enter the pages for this mapping */
520
521		DISABLE_TRANS(msr);
522		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
523			if (moea64_pvo_find_va(kernel_pmap,
524			    translations[i].om_va + off) != NULL)
525				continue;
526
527			moea64_kenter(mmup, translations[i].om_va + off,
528			    pa_base + off);
529		}
530		ENABLE_TRANS(msr);
531	}
532}
533
534#ifdef __powerpc64__
535static void
536moea64_probe_large_page(void)
537{
538	uint16_t pvr = mfpvr() >> 16;
539
540	switch (pvr) {
541	case IBM970:
542	case IBM970FX:
543	case IBM970MP:
544		powerpc_sync(); isync();
545		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
546		powerpc_sync(); isync();
547
548		/* FALLTHROUGH */
549	case IBMCELLBE:
550		moea64_large_page_size = 0x1000000; /* 16 MB */
551		moea64_large_page_shift = 24;
552		break;
553	default:
554		moea64_large_page_size = 0;
555	}
556
557	moea64_large_page_mask = moea64_large_page_size - 1;
558}
559
560static void
561moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
562{
563	struct slb *cache;
564	struct slb entry;
565	uint64_t esid, slbe;
566	uint64_t i;
567
568	cache = PCPU_GET(slb);
569	esid = va >> ADDR_SR_SHFT;
570	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
571
572	for (i = 0; i < 64; i++) {
573		if (cache[i].slbe == (slbe | i))
574			return;
575	}
576
577	entry.slbe = slbe;
578	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
579	if (large)
580		entry.slbv |= SLBV_L;
581
582	slb_insert_kernel(entry.slbe, entry.slbv);
583}
584#endif
585
586static void
587moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
588    vm_offset_t kernelend)
589{
590	register_t msr;
591	vm_paddr_t pa;
592	vm_offset_t size, off;
593	uint64_t pte_lo;
594	int i;
595
596	if (moea64_large_page_size == 0)
597		hw_direct_map = 0;
598
599	DISABLE_TRANS(msr);
600	if (hw_direct_map) {
601		LOCK_TABLE_WR();
602		PMAP_LOCK(kernel_pmap);
603		for (i = 0; i < pregions_sz; i++) {
604		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
605		     pregions[i].mr_size; pa += moea64_large_page_size) {
606			pte_lo = LPTE_M;
607
608			/*
609			 * Set memory access as guarded if prefetch within
610			 * the page could exit the available physmem area.
611			 */
612			if (pa & moea64_large_page_mask) {
613				pa &= moea64_large_page_mask;
614				pte_lo |= LPTE_G;
615			}
616			if (pa + moea64_large_page_size >
617			    pregions[i].mr_start + pregions[i].mr_size)
618				pte_lo |= LPTE_G;
619
620			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
621				    NULL, pa, pa, pte_lo,
622				    PVO_WIRED | PVO_LARGE);
623		  }
624		}
625		PMAP_UNLOCK(kernel_pmap);
626		UNLOCK_TABLE_WR();
627	} else {
628		size = sizeof(struct pvo_head) * moea64_pteg_count;
629		off = (vm_offset_t)(moea64_pvo_table);
630		for (pa = off; pa < off + size; pa += PAGE_SIZE)
631			moea64_kenter(mmup, pa, pa);
632		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
633		off = (vm_offset_t)(moea64_bpvo_pool);
634		for (pa = off; pa < off + size; pa += PAGE_SIZE)
635		moea64_kenter(mmup, pa, pa);
636
637		/*
638		 * Map certain important things, like ourselves.
639		 *
640		 * NOTE: We do not map the exception vector space. That code is
641		 * used only in real mode, and leaving it unmapped allows us to
642		 * catch NULL pointer deferences, instead of making NULL a valid
643		 * address.
644		 */
645
646		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
647		    pa += PAGE_SIZE)
648			moea64_kenter(mmup, pa, pa);
649	}
650	ENABLE_TRANS(msr);
651
652	/*
653	 * Allow user to override unmapped_buf_allowed for testing.
654	 * XXXKIB Only direct map implementation was tested.
655	 */
656	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
657	    &unmapped_buf_allowed))
658		unmapped_buf_allowed = hw_direct_map;
659}
660
661void
662moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
663{
664	int		i, j;
665	vm_size_t	physsz, hwphyssz;
666
667#ifndef __powerpc64__
668	/* We don't have a direct map since there is no BAT */
669	hw_direct_map = 0;
670
671	/* Make sure battable is zero, since we have no BAT */
672	for (i = 0; i < 16; i++) {
673		battable[i].batu = 0;
674		battable[i].batl = 0;
675	}
676#else
677	moea64_probe_large_page();
678
679	/* Use a direct map if we have large page support */
680	if (moea64_large_page_size > 0)
681		hw_direct_map = 1;
682	else
683		hw_direct_map = 0;
684#endif
685
686	/* Get physical memory regions from firmware */
687	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
688	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
689
690	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
691		panic("moea64_bootstrap: phys_avail too small");
692
693	phys_avail_count = 0;
694	physsz = 0;
695	hwphyssz = 0;
696	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
697	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
698		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
699		    regions[i].mr_start + regions[i].mr_size,
700		    regions[i].mr_size);
701		if (hwphyssz != 0 &&
702		    (physsz + regions[i].mr_size) >= hwphyssz) {
703			if (physsz < hwphyssz) {
704				phys_avail[j] = regions[i].mr_start;
705				phys_avail[j + 1] = regions[i].mr_start +
706				    hwphyssz - physsz;
707				physsz = hwphyssz;
708				phys_avail_count++;
709			}
710			break;
711		}
712		phys_avail[j] = regions[i].mr_start;
713		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
714		phys_avail_count++;
715		physsz += regions[i].mr_size;
716	}
717
718	/* Check for overlap with the kernel and exception vectors */
719	for (j = 0; j < 2*phys_avail_count; j+=2) {
720		if (phys_avail[j] < EXC_LAST)
721			phys_avail[j] += EXC_LAST;
722
723		if (kernelstart >= phys_avail[j] &&
724		    kernelstart < phys_avail[j+1]) {
725			if (kernelend < phys_avail[j+1]) {
726				phys_avail[2*phys_avail_count] =
727				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
728				phys_avail[2*phys_avail_count + 1] =
729				    phys_avail[j+1];
730				phys_avail_count++;
731			}
732
733			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
734		}
735
736		if (kernelend >= phys_avail[j] &&
737		    kernelend < phys_avail[j+1]) {
738			if (kernelstart > phys_avail[j]) {
739				phys_avail[2*phys_avail_count] = phys_avail[j];
740				phys_avail[2*phys_avail_count + 1] =
741				    kernelstart & ~PAGE_MASK;
742				phys_avail_count++;
743			}
744
745			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
746		}
747	}
748
749	physmem = btoc(physsz);
750
751#ifdef PTEGCOUNT
752	moea64_pteg_count = PTEGCOUNT;
753#else
754	moea64_pteg_count = 0x1000;
755
756	while (moea64_pteg_count < physmem)
757		moea64_pteg_count <<= 1;
758
759	moea64_pteg_count >>= 1;
760#endif /* PTEGCOUNT */
761}
762
763void
764moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
765{
766	vm_size_t	size;
767	register_t	msr;
768	int		i;
769
770	/*
771	 * Set PTEG mask
772	 */
773	moea64_pteg_mask = moea64_pteg_count - 1;
774
775	/*
776	 * Allocate pv/overflow lists.
777	 */
778	size = sizeof(struct pvo_head) * moea64_pteg_count;
779
780	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
781	    PAGE_SIZE);
782	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
783
784	DISABLE_TRANS(msr);
785	for (i = 0; i < moea64_pteg_count; i++)
786		LIST_INIT(&moea64_pvo_table[i]);
787	ENABLE_TRANS(msr);
788
789	/*
790	 * Initialize the lock that synchronizes access to the pteg and pvo
791	 * tables.
792	 */
793	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
794	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
795
796	/*
797	 * Initialise the unmanaged pvo pool.
798	 */
799	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
800		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
801	moea64_bpvo_pool_index = 0;
802
803	/*
804	 * Make sure kernel vsid is allocated as well as VSID 0.
805	 */
806	#ifndef __powerpc64__
807	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
808		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
809	moea64_vsid_bitmap[0] |= 1;
810	#endif
811
812	/*
813	 * Initialize the kernel pmap (which is statically allocated).
814	 */
815	#ifdef __powerpc64__
816	for (i = 0; i < 64; i++) {
817		pcpup->pc_slb[i].slbv = 0;
818		pcpup->pc_slb[i].slbe = 0;
819	}
820	#else
821	for (i = 0; i < 16; i++)
822		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
823	#endif
824
825	kernel_pmap->pmap_phys = kernel_pmap;
826	CPU_FILL(&kernel_pmap->pm_active);
827	RB_INIT(&kernel_pmap->pmap_pvo);
828
829	PMAP_LOCK_INIT(kernel_pmap);
830
831	/*
832	 * Now map in all the other buffers we allocated earlier
833	 */
834
835	moea64_setup_direct_map(mmup, kernelstart, kernelend);
836}
837
838void
839moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
840{
841	ihandle_t	mmui;
842	phandle_t	chosen;
843	phandle_t	mmu;
844	size_t		sz;
845	int		i;
846	vm_offset_t	pa, va;
847	void		*dpcpu;
848
849	/*
850	 * Set up the Open Firmware pmap and add its mappings if not in real
851	 * mode.
852	 */
853
854	chosen = OF_finddevice("/chosen");
855	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
856	    mmu = OF_instance_to_package(mmui);
857	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
858		sz = 0;
859	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
860		panic("moea64_bootstrap: too many ofw translations");
861
862	    if (sz > 0)
863		moea64_add_ofw_mappings(mmup, mmu, sz);
864	}
865
866	/*
867	 * Calculate the last available physical address.
868	 */
869	for (i = 0; phys_avail[i + 2] != 0; i += 2)
870		;
871	Maxmem = powerpc_btop(phys_avail[i + 1]);
872
873	/*
874	 * Initialize MMU and remap early physical mappings
875	 */
876	MMU_CPU_BOOTSTRAP(mmup,0);
877	mtmsr(mfmsr() | PSL_DR | PSL_IR);
878	pmap_bootstrapped++;
879	bs_remap_earlyboot();
880
881	/*
882	 * Set the start and end of kva.
883	 */
884	virtual_avail = VM_MIN_KERNEL_ADDRESS;
885	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
886
887	/*
888	 * Map the entire KVA range into the SLB. We must not fault there.
889	 */
890	#ifdef __powerpc64__
891	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
892		moea64_bootstrap_slb_prefault(va, 0);
893	#endif
894
895	/*
896	 * Figure out how far we can extend virtual_end into segment 16
897	 * without running into existing mappings. Segment 16 is guaranteed
898	 * to contain neither RAM nor devices (at least on Apple hardware),
899	 * but will generally contain some OFW mappings we should not
900	 * step on.
901	 */
902
903	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
904	PMAP_LOCK(kernel_pmap);
905	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
906	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
907		virtual_end += PAGE_SIZE;
908	PMAP_UNLOCK(kernel_pmap);
909	#endif
910
911	/*
912	 * Allocate a kernel stack with a guard page for thread0 and map it
913	 * into the kernel page map.
914	 */
915	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
916	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
917	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
918	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
919	thread0.td_kstack = va;
920	thread0.td_kstack_pages = KSTACK_PAGES;
921	for (i = 0; i < KSTACK_PAGES; i++) {
922		moea64_kenter(mmup, va, pa);
923		pa += PAGE_SIZE;
924		va += PAGE_SIZE;
925	}
926
927	/*
928	 * Allocate virtual address space for the message buffer.
929	 */
930	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
931	msgbufp = (struct msgbuf *)virtual_avail;
932	va = virtual_avail;
933	virtual_avail += round_page(msgbufsize);
934	while (va < virtual_avail) {
935		moea64_kenter(mmup, va, pa);
936		pa += PAGE_SIZE;
937		va += PAGE_SIZE;
938	}
939
940	/*
941	 * Allocate virtual address space for the dynamic percpu area.
942	 */
943	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
944	dpcpu = (void *)virtual_avail;
945	va = virtual_avail;
946	virtual_avail += DPCPU_SIZE;
947	while (va < virtual_avail) {
948		moea64_kenter(mmup, va, pa);
949		pa += PAGE_SIZE;
950		va += PAGE_SIZE;
951	}
952	dpcpu_init(dpcpu, 0);
953
954	/*
955	 * Allocate some things for page zeroing. We put this directly
956	 * in the page table, marked with LPTE_LOCKED, to avoid any
957	 * of the PVO book-keeping or other parts of the VM system
958	 * from even knowing that this hack exists.
959	 */
960
961	if (!hw_direct_map) {
962		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
963		    MTX_DEF);
964		for (i = 0; i < 2; i++) {
965			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
966			virtual_end -= PAGE_SIZE;
967
968			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
969
970			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
971			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
972			LOCK_TABLE_RD();
973			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
974			    mmup, moea64_scratchpage_pvo[i]);
975			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
976			    |= LPTE_LOCKED;
977			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
978			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
979			    moea64_scratchpage_pvo[i]->pvo_vpn);
980			UNLOCK_TABLE_RD();
981		}
982	}
983}
984
985/*
986 * Activate a user pmap.  The pmap must be activated before its address
987 * space can be accessed in any way.
988 */
989void
990moea64_activate(mmu_t mmu, struct thread *td)
991{
992	pmap_t	pm;
993
994	pm = &td->td_proc->p_vmspace->vm_pmap;
995	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
996
997	#ifdef __powerpc64__
998	PCPU_SET(userslb, pm->pm_slb);
999	#else
1000	PCPU_SET(curpmap, pm->pmap_phys);
1001	#endif
1002}
1003
1004void
1005moea64_deactivate(mmu_t mmu, struct thread *td)
1006{
1007	pmap_t	pm;
1008
1009	pm = &td->td_proc->p_vmspace->vm_pmap;
1010	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1011	#ifdef __powerpc64__
1012	PCPU_SET(userslb, NULL);
1013	#else
1014	PCPU_SET(curpmap, NULL);
1015	#endif
1016}
1017
1018void
1019moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1020{
1021	struct	pvo_entry *pvo;
1022	uintptr_t pt;
1023	uint64_t vsid;
1024	int	i, ptegidx;
1025
1026	LOCK_TABLE_WR();
1027	PMAP_LOCK(pm);
1028	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1029
1030	if (pvo != NULL) {
1031		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1032
1033		if (wired) {
1034			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1035				pm->pm_stats.wired_count++;
1036			pvo->pvo_vaddr |= PVO_WIRED;
1037			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1038		} else {
1039			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1040				pm->pm_stats.wired_count--;
1041			pvo->pvo_vaddr &= ~PVO_WIRED;
1042			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1043		}
1044
1045		if (pt != -1) {
1046			/* Update wiring flag in page table. */
1047			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1048			    pvo->pvo_vpn);
1049		} else if (wired) {
1050			/*
1051			 * If we are wiring the page, and it wasn't in the
1052			 * page table before, add it.
1053			 */
1054			vsid = PVO_VSID(pvo);
1055			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1056			    pvo->pvo_vaddr & PVO_LARGE);
1057
1058			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1059
1060			if (i >= 0) {
1061				PVO_PTEGIDX_CLR(pvo);
1062				PVO_PTEGIDX_SET(pvo, i);
1063			}
1064		}
1065
1066	}
1067	UNLOCK_TABLE_WR();
1068	PMAP_UNLOCK(pm);
1069}
1070
1071/*
1072 * This goes through and sets the physical address of our
1073 * special scratch PTE to the PA we want to zero or copy. Because
1074 * of locking issues (this can get called in pvo_enter() by
1075 * the UMA allocator), we can't use most other utility functions here
1076 */
1077
1078static __inline
1079void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1080
1081	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1082	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1083
1084	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1085	    ~(LPTE_WIMG | LPTE_RPGN);
1086	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1087	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1088	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1089	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1090	    moea64_scratchpage_pvo[which]->pvo_vpn);
1091	isync();
1092}
1093
1094void
1095moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1096{
1097	vm_offset_t	dst;
1098	vm_offset_t	src;
1099
1100	dst = VM_PAGE_TO_PHYS(mdst);
1101	src = VM_PAGE_TO_PHYS(msrc);
1102
1103	if (hw_direct_map) {
1104		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1105	} else {
1106		mtx_lock(&moea64_scratchpage_mtx);
1107
1108		moea64_set_scratchpage_pa(mmu, 0, src);
1109		moea64_set_scratchpage_pa(mmu, 1, dst);
1110
1111		bcopy((void *)moea64_scratchpage_va[0],
1112		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1113
1114		mtx_unlock(&moea64_scratchpage_mtx);
1115	}
1116}
1117
1118static inline void
1119moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1120    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1121{
1122	void *a_cp, *b_cp;
1123	vm_offset_t a_pg_offset, b_pg_offset;
1124	int cnt;
1125
1126	while (xfersize > 0) {
1127		a_pg_offset = a_offset & PAGE_MASK;
1128		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1129		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1130		    a_pg_offset;
1131		b_pg_offset = b_offset & PAGE_MASK;
1132		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1133		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1134		    b_pg_offset;
1135		bcopy(a_cp, b_cp, cnt);
1136		a_offset += cnt;
1137		b_offset += cnt;
1138		xfersize -= cnt;
1139	}
1140}
1141
1142static inline void
1143moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1144    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1145{
1146	void *a_cp, *b_cp;
1147	vm_offset_t a_pg_offset, b_pg_offset;
1148	int cnt;
1149
1150	mtx_lock(&moea64_scratchpage_mtx);
1151	while (xfersize > 0) {
1152		a_pg_offset = a_offset & PAGE_MASK;
1153		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1154		moea64_set_scratchpage_pa(mmu, 0,
1155		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1156		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1157		b_pg_offset = b_offset & PAGE_MASK;
1158		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1159		moea64_set_scratchpage_pa(mmu, 1,
1160		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1161		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1162		bcopy(a_cp, b_cp, cnt);
1163		a_offset += cnt;
1164		b_offset += cnt;
1165		xfersize -= cnt;
1166	}
1167	mtx_unlock(&moea64_scratchpage_mtx);
1168}
1169
1170void
1171moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1172    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1173{
1174
1175	if (hw_direct_map) {
1176		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1177		    xfersize);
1178	} else {
1179		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1180		    xfersize);
1181	}
1182}
1183
1184void
1185moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1186{
1187	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1188
1189	if (size + off > PAGE_SIZE)
1190		panic("moea64_zero_page: size + off > PAGE_SIZE");
1191
1192	if (hw_direct_map) {
1193		bzero((caddr_t)pa + off, size);
1194	} else {
1195		mtx_lock(&moea64_scratchpage_mtx);
1196		moea64_set_scratchpage_pa(mmu, 0, pa);
1197		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1198		mtx_unlock(&moea64_scratchpage_mtx);
1199	}
1200}
1201
1202/*
1203 * Zero a page of physical memory by temporarily mapping it
1204 */
1205void
1206moea64_zero_page(mmu_t mmu, vm_page_t m)
1207{
1208	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1209	vm_offset_t va, off;
1210
1211	if (!hw_direct_map) {
1212		mtx_lock(&moea64_scratchpage_mtx);
1213
1214		moea64_set_scratchpage_pa(mmu, 0, pa);
1215		va = moea64_scratchpage_va[0];
1216	} else {
1217		va = pa;
1218	}
1219
1220	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1221		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1222
1223	if (!hw_direct_map)
1224		mtx_unlock(&moea64_scratchpage_mtx);
1225}
1226
1227void
1228moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1229{
1230
1231	moea64_zero_page(mmu, m);
1232}
1233
1234/*
1235 * Map the given physical page at the specified virtual address in the
1236 * target pmap with the protection requested.  If specified the page
1237 * will be wired down.
1238 */
1239
1240void
1241moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1242    vm_prot_t prot, boolean_t wired)
1243{
1244	struct		pvo_head *pvo_head;
1245	uma_zone_t	zone;
1246	vm_page_t	pg;
1247	uint64_t	pte_lo;
1248	u_int		pvo_flags;
1249	int		error;
1250
1251	if (!moea64_initialized) {
1252		pvo_head = NULL;
1253		pg = NULL;
1254		zone = moea64_upvo_zone;
1255		pvo_flags = 0;
1256	} else {
1257		pvo_head = vm_page_to_pvoh(m);
1258		pg = m;
1259		zone = moea64_mpvo_zone;
1260		pvo_flags = PVO_MANAGED;
1261	}
1262
1263	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
1264		VM_OBJECT_ASSERT_WLOCKED(m->object);
1265
1266	/* XXX change the pvo head for fake pages */
1267	if ((m->oflags & VPO_UNMANAGED) != 0) {
1268		pvo_flags &= ~PVO_MANAGED;
1269		pvo_head = NULL;
1270		zone = moea64_upvo_zone;
1271	}
1272
1273	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1274
1275	if (prot & VM_PROT_WRITE) {
1276		pte_lo |= LPTE_BW;
1277		if (pmap_bootstrapped &&
1278		    (m->oflags & VPO_UNMANAGED) == 0)
1279			vm_page_aflag_set(m, PGA_WRITEABLE);
1280	} else
1281		pte_lo |= LPTE_BR;
1282
1283	if ((prot & VM_PROT_EXECUTE) == 0)
1284		pte_lo |= LPTE_NOEXEC;
1285
1286	if (wired)
1287		pvo_flags |= PVO_WIRED;
1288
1289	LOCK_TABLE_WR();
1290	PMAP_LOCK(pmap);
1291	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1292	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1293	PMAP_UNLOCK(pmap);
1294	UNLOCK_TABLE_WR();
1295
1296	/*
1297	 * Flush the page from the instruction cache if this page is
1298	 * mapped executable and cacheable.
1299	 */
1300	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1301	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1302		vm_page_aflag_set(m, PGA_EXECUTABLE);
1303		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1304	}
1305}
1306
1307static void
1308moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1309    vm_size_t sz)
1310{
1311
1312	/*
1313	 * This is much trickier than on older systems because
1314	 * we can't sync the icache on physical addresses directly
1315	 * without a direct map. Instead we check a couple of cases
1316	 * where the memory is already mapped in and, failing that,
1317	 * use the same trick we use for page zeroing to create
1318	 * a temporary mapping for this physical address.
1319	 */
1320
1321	if (!pmap_bootstrapped) {
1322		/*
1323		 * If PMAP is not bootstrapped, we are likely to be
1324		 * in real mode.
1325		 */
1326		__syncicache((void *)pa, sz);
1327	} else if (pmap == kernel_pmap) {
1328		__syncicache((void *)va, sz);
1329	} else if (hw_direct_map) {
1330		__syncicache((void *)pa, sz);
1331	} else {
1332		/* Use the scratch page to set up a temp mapping */
1333
1334		mtx_lock(&moea64_scratchpage_mtx);
1335
1336		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1337		__syncicache((void *)(moea64_scratchpage_va[1] +
1338		    (va & ADDR_POFF)), sz);
1339
1340		mtx_unlock(&moea64_scratchpage_mtx);
1341	}
1342}
1343
1344/*
1345 * Maps a sequence of resident pages belonging to the same object.
1346 * The sequence begins with the given page m_start.  This page is
1347 * mapped at the given virtual address start.  Each subsequent page is
1348 * mapped at a virtual address that is offset from start by the same
1349 * amount as the page is offset from m_start within the object.  The
1350 * last page in the sequence is the page with the largest offset from
1351 * m_start that can be mapped at a virtual address less than the given
1352 * virtual address end.  Not every virtual page between start and end
1353 * is mapped; only those for which a resident page exists with the
1354 * corresponding offset from m_start are mapped.
1355 */
1356void
1357moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1358    vm_page_t m_start, vm_prot_t prot)
1359{
1360	vm_page_t m;
1361	vm_pindex_t diff, psize;
1362
1363	psize = atop(end - start);
1364	m = m_start;
1365	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1366		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1367		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1368		m = TAILQ_NEXT(m, listq);
1369	}
1370}
1371
1372void
1373moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1374    vm_prot_t prot)
1375{
1376
1377	moea64_enter(mmu, pm, va, m,
1378	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1379}
1380
1381vm_paddr_t
1382moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1383{
1384	struct	pvo_entry *pvo;
1385	vm_paddr_t pa;
1386
1387	PMAP_LOCK(pm);
1388	pvo = moea64_pvo_find_va(pm, va);
1389	if (pvo == NULL)
1390		pa = 0;
1391	else
1392		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1393		    (va - PVO_VADDR(pvo));
1394	PMAP_UNLOCK(pm);
1395	return (pa);
1396}
1397
1398/*
1399 * Atomically extract and hold the physical page with the given
1400 * pmap and virtual address pair if that mapping permits the given
1401 * protection.
1402 */
1403vm_page_t
1404moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1405{
1406	struct	pvo_entry *pvo;
1407	vm_page_t m;
1408        vm_paddr_t pa;
1409
1410	m = NULL;
1411	pa = 0;
1412	PMAP_LOCK(pmap);
1413retry:
1414	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1415	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1416	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1417	     (prot & VM_PROT_WRITE) == 0)) {
1418		if (vm_page_pa_tryrelock(pmap,
1419			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1420			goto retry;
1421		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1422		vm_page_hold(m);
1423	}
1424	PA_UNLOCK_COND(pa);
1425	PMAP_UNLOCK(pmap);
1426	return (m);
1427}
1428
1429static mmu_t installed_mmu;
1430
1431static void *
1432moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1433{
1434	/*
1435	 * This entire routine is a horrible hack to avoid bothering kmem
1436	 * for new KVA addresses. Because this can get called from inside
1437	 * kmem allocation routines, calling kmem for a new address here
1438	 * can lead to multiply locking non-recursive mutexes.
1439	 */
1440        vm_offset_t va;
1441
1442        vm_page_t m;
1443        int pflags, needed_lock;
1444
1445	*flags = UMA_SLAB_PRIV;
1446	needed_lock = !PMAP_LOCKED(kernel_pmap);
1447	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1448
1449        for (;;) {
1450                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1451                if (m == NULL) {
1452                        if (wait & M_NOWAIT)
1453                                return (NULL);
1454                        VM_WAIT;
1455                } else
1456                        break;
1457        }
1458
1459	va = VM_PAGE_TO_PHYS(m);
1460
1461	LOCK_TABLE_WR();
1462	if (needed_lock)
1463		PMAP_LOCK(kernel_pmap);
1464
1465	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1466	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1467
1468	if (needed_lock)
1469		PMAP_UNLOCK(kernel_pmap);
1470	UNLOCK_TABLE_WR();
1471
1472	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1473                bzero((void *)va, PAGE_SIZE);
1474
1475	return (void *)va;
1476}
1477
1478extern int elf32_nxstack;
1479
1480void
1481moea64_init(mmu_t mmu)
1482{
1483
1484	CTR0(KTR_PMAP, "moea64_init");
1485
1486	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1487	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1488	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1489	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1490	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1491	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1492
1493	if (!hw_direct_map) {
1494		installed_mmu = mmu;
1495		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1496		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1497	}
1498
1499#ifdef COMPAT_FREEBSD32
1500	elf32_nxstack = 1;
1501#endif
1502
1503	moea64_initialized = TRUE;
1504}
1505
1506boolean_t
1507moea64_is_referenced(mmu_t mmu, vm_page_t m)
1508{
1509
1510	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1511	    ("moea64_is_referenced: page %p is not managed", m));
1512	return (moea64_query_bit(mmu, m, PTE_REF));
1513}
1514
1515boolean_t
1516moea64_is_modified(mmu_t mmu, vm_page_t m)
1517{
1518
1519	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1520	    ("moea64_is_modified: page %p is not managed", m));
1521
1522	/*
1523	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1524	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1525	 * is clear, no PTEs can have LPTE_CHG set.
1526	 */
1527	VM_OBJECT_ASSERT_WLOCKED(m->object);
1528	if ((m->oflags & VPO_BUSY) == 0 &&
1529	    (m->aflags & PGA_WRITEABLE) == 0)
1530		return (FALSE);
1531	return (moea64_query_bit(mmu, m, LPTE_CHG));
1532}
1533
1534boolean_t
1535moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1536{
1537	struct pvo_entry *pvo;
1538	boolean_t rv;
1539
1540	PMAP_LOCK(pmap);
1541	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1542	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1543	PMAP_UNLOCK(pmap);
1544	return (rv);
1545}
1546
1547void
1548moea64_clear_reference(mmu_t mmu, vm_page_t m)
1549{
1550
1551	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1552	    ("moea64_clear_reference: page %p is not managed", m));
1553	moea64_clear_bit(mmu, m, LPTE_REF);
1554}
1555
1556void
1557moea64_clear_modify(mmu_t mmu, vm_page_t m)
1558{
1559
1560	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1561	    ("moea64_clear_modify: page %p is not managed", m));
1562	VM_OBJECT_ASSERT_WLOCKED(m->object);
1563	KASSERT((m->oflags & VPO_BUSY) == 0,
1564	    ("moea64_clear_modify: page %p is busy", m));
1565
1566	/*
1567	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1568	 * set.  If the object containing the page is locked and the page is
1569	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1570	 */
1571	if ((m->aflags & PGA_WRITEABLE) == 0)
1572		return;
1573	moea64_clear_bit(mmu, m, LPTE_CHG);
1574}
1575
1576/*
1577 * Clear the write and modified bits in each of the given page's mappings.
1578 */
1579void
1580moea64_remove_write(mmu_t mmu, vm_page_t m)
1581{
1582	struct	pvo_entry *pvo;
1583	uintptr_t pt;
1584	pmap_t	pmap;
1585	uint64_t lo = 0;
1586
1587	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1588	    ("moea64_remove_write: page %p is not managed", m));
1589
1590	/*
1591	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1592	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1593	 * is clear, no page table entries need updating.
1594	 */
1595	VM_OBJECT_ASSERT_WLOCKED(m->object);
1596	if ((m->oflags & VPO_BUSY) == 0 &&
1597	    (m->aflags & PGA_WRITEABLE) == 0)
1598		return;
1599	powerpc_sync();
1600	LOCK_TABLE_RD();
1601	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1602		pmap = pvo->pvo_pmap;
1603		PMAP_LOCK(pmap);
1604		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1605			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1606			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1607			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1608			if (pt != -1) {
1609				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1610				lo |= pvo->pvo_pte.lpte.pte_lo;
1611				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1612				MOEA64_PTE_CHANGE(mmu, pt,
1613				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1614				if (pvo->pvo_pmap == kernel_pmap)
1615					isync();
1616			}
1617		}
1618		if ((lo & LPTE_CHG) != 0)
1619			vm_page_dirty(m);
1620		PMAP_UNLOCK(pmap);
1621	}
1622	UNLOCK_TABLE_RD();
1623	vm_page_aflag_clear(m, PGA_WRITEABLE);
1624}
1625
1626/*
1627 *	moea64_ts_referenced:
1628 *
1629 *	Return a count of reference bits for a page, clearing those bits.
1630 *	It is not necessary for every reference bit to be cleared, but it
1631 *	is necessary that 0 only be returned when there are truly no
1632 *	reference bits set.
1633 *
1634 *	XXX: The exact number of bits to check and clear is a matter that
1635 *	should be tested and standardized at some point in the future for
1636 *	optimal aging of shared pages.
1637 */
1638int
1639moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1640{
1641
1642	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1643	    ("moea64_ts_referenced: page %p is not managed", m));
1644	return (moea64_clear_bit(mmu, m, LPTE_REF));
1645}
1646
1647/*
1648 * Modify the WIMG settings of all mappings for a page.
1649 */
1650void
1651moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1652{
1653	struct	pvo_entry *pvo;
1654	struct  pvo_head *pvo_head;
1655	uintptr_t pt;
1656	pmap_t	pmap;
1657	uint64_t lo;
1658
1659	if ((m->oflags & VPO_UNMANAGED) != 0) {
1660		m->md.mdpg_cache_attrs = ma;
1661		return;
1662	}
1663
1664	pvo_head = vm_page_to_pvoh(m);
1665	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1666	LOCK_TABLE_RD();
1667	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1668		pmap = pvo->pvo_pmap;
1669		PMAP_LOCK(pmap);
1670		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1671		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1672		pvo->pvo_pte.lpte.pte_lo |= lo;
1673		if (pt != -1) {
1674			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1675			    pvo->pvo_vpn);
1676			if (pvo->pvo_pmap == kernel_pmap)
1677				isync();
1678		}
1679		PMAP_UNLOCK(pmap);
1680	}
1681	UNLOCK_TABLE_RD();
1682	m->md.mdpg_cache_attrs = ma;
1683}
1684
1685/*
1686 * Map a wired page into kernel virtual address space.
1687 */
1688void
1689moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1690{
1691	uint64_t	pte_lo;
1692	int		error;
1693
1694	pte_lo = moea64_calc_wimg(pa, ma);
1695
1696	LOCK_TABLE_WR();
1697	PMAP_LOCK(kernel_pmap);
1698	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1699	    NULL, va, pa, pte_lo, PVO_WIRED);
1700	PMAP_UNLOCK(kernel_pmap);
1701	UNLOCK_TABLE_WR();
1702
1703	if (error != 0 && error != ENOENT)
1704		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1705		    pa, error);
1706}
1707
1708void
1709moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1710{
1711
1712	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1713}
1714
1715/*
1716 * Extract the physical page address associated with the given kernel virtual
1717 * address.
1718 */
1719vm_paddr_t
1720moea64_kextract(mmu_t mmu, vm_offset_t va)
1721{
1722	struct		pvo_entry *pvo;
1723	vm_paddr_t pa;
1724
1725	/*
1726	 * Shortcut the direct-mapped case when applicable.  We never put
1727	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1728	 */
1729	if (va < VM_MIN_KERNEL_ADDRESS)
1730		return (va);
1731
1732	PMAP_LOCK(kernel_pmap);
1733	pvo = moea64_pvo_find_va(kernel_pmap, va);
1734	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1735	    va));
1736	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1737	PMAP_UNLOCK(kernel_pmap);
1738	return (pa);
1739}
1740
1741/*
1742 * Remove a wired page from kernel virtual address space.
1743 */
1744void
1745moea64_kremove(mmu_t mmu, vm_offset_t va)
1746{
1747	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1748}
1749
1750/*
1751 * Map a range of physical addresses into kernel virtual address space.
1752 *
1753 * The value passed in *virt is a suggested virtual address for the mapping.
1754 * Architectures which can support a direct-mapped physical to virtual region
1755 * can return the appropriate address within that region, leaving '*virt'
1756 * unchanged.  We cannot and therefore do not; *virt is updated with the
1757 * first usable address after the mapped region.
1758 */
1759vm_offset_t
1760moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1761    vm_paddr_t pa_end, int prot)
1762{
1763	vm_offset_t	sva, va;
1764
1765	sva = *virt;
1766	va = sva;
1767	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1768		moea64_kenter(mmu, va, pa_start);
1769	*virt = va;
1770
1771	return (sva);
1772}
1773
1774/*
1775 * Returns true if the pmap's pv is one of the first
1776 * 16 pvs linked to from this page.  This count may
1777 * be changed upwards or downwards in the future; it
1778 * is only necessary that true be returned for a small
1779 * subset of pmaps for proper page aging.
1780 */
1781boolean_t
1782moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1783{
1784        int loops;
1785	struct pvo_entry *pvo;
1786	boolean_t rv;
1787
1788	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1789	    ("moea64_page_exists_quick: page %p is not managed", m));
1790	loops = 0;
1791	rv = FALSE;
1792	LOCK_TABLE_RD();
1793	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1794		if (pvo->pvo_pmap == pmap) {
1795			rv = TRUE;
1796			break;
1797		}
1798		if (++loops >= 16)
1799			break;
1800	}
1801	UNLOCK_TABLE_RD();
1802	return (rv);
1803}
1804
1805/*
1806 * Return the number of managed mappings to the given physical page
1807 * that are wired.
1808 */
1809int
1810moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1811{
1812	struct pvo_entry *pvo;
1813	int count;
1814
1815	count = 0;
1816	if ((m->oflags & VPO_UNMANAGED) != 0)
1817		return (count);
1818	LOCK_TABLE_RD();
1819	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1820		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1821			count++;
1822	UNLOCK_TABLE_RD();
1823	return (count);
1824}
1825
1826static uintptr_t	moea64_vsidcontext;
1827
1828uintptr_t
1829moea64_get_unique_vsid(void) {
1830	u_int entropy;
1831	register_t hash;
1832	uint32_t mask;
1833	int i;
1834
1835	entropy = 0;
1836	__asm __volatile("mftb %0" : "=r"(entropy));
1837
1838	mtx_lock(&moea64_slb_mutex);
1839	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1840		u_int	n;
1841
1842		/*
1843		 * Create a new value by mutiplying by a prime and adding in
1844		 * entropy from the timebase register.  This is to make the
1845		 * VSID more random so that the PT hash function collides
1846		 * less often.  (Note that the prime casues gcc to do shifts
1847		 * instead of a multiply.)
1848		 */
1849		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1850		hash = moea64_vsidcontext & (NVSIDS - 1);
1851		if (hash == 0)		/* 0 is special, avoid it */
1852			continue;
1853		n = hash >> 5;
1854		mask = 1 << (hash & (VSID_NBPW - 1));
1855		hash = (moea64_vsidcontext & VSID_HASHMASK);
1856		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1857			/* anything free in this bucket? */
1858			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1859				entropy = (moea64_vsidcontext >> 20);
1860				continue;
1861			}
1862			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1863			mask = 1 << i;
1864			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1865			hash |= i;
1866		}
1867		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1868		    ("Allocating in-use VSID %#zx\n", hash));
1869		moea64_vsid_bitmap[n] |= mask;
1870		mtx_unlock(&moea64_slb_mutex);
1871		return (hash);
1872	}
1873
1874	mtx_unlock(&moea64_slb_mutex);
1875	panic("%s: out of segments",__func__);
1876}
1877
1878#ifdef __powerpc64__
1879void
1880moea64_pinit(mmu_t mmu, pmap_t pmap)
1881{
1882	PMAP_LOCK_INIT(pmap);
1883	RB_INIT(&pmap->pmap_pvo);
1884
1885	pmap->pm_slb_tree_root = slb_alloc_tree();
1886	pmap->pm_slb = slb_alloc_user_cache();
1887	pmap->pm_slb_len = 0;
1888}
1889#else
1890void
1891moea64_pinit(mmu_t mmu, pmap_t pmap)
1892{
1893	int	i;
1894	uint32_t hash;
1895
1896	PMAP_LOCK_INIT(pmap);
1897	RB_INIT(&pmap->pmap_pvo);
1898
1899	if (pmap_bootstrapped)
1900		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1901		    (vm_offset_t)pmap);
1902	else
1903		pmap->pmap_phys = pmap;
1904
1905	/*
1906	 * Allocate some segment registers for this pmap.
1907	 */
1908	hash = moea64_get_unique_vsid();
1909
1910	for (i = 0; i < 16; i++)
1911		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1912
1913	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1914}
1915#endif
1916
1917/*
1918 * Initialize the pmap associated with process 0.
1919 */
1920void
1921moea64_pinit0(mmu_t mmu, pmap_t pm)
1922{
1923	moea64_pinit(mmu, pm);
1924	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1925}
1926
1927/*
1928 * Set the physical protection on the specified range of this map as requested.
1929 */
1930static void
1931moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1932{
1933	uintptr_t pt;
1934	struct	vm_page *pg;
1935	uint64_t oldlo;
1936
1937	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1938
1939	/*
1940	 * Grab the PTE pointer before we diddle with the cached PTE
1941	 * copy.
1942	 */
1943	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1944
1945	/*
1946	 * Change the protection of the page.
1947	 */
1948	oldlo = pvo->pvo_pte.lpte.pte_lo;
1949	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1950	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1951	if ((prot & VM_PROT_EXECUTE) == 0)
1952		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1953	if (prot & VM_PROT_WRITE)
1954		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1955	else
1956		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1957
1958	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1959
1960	/*
1961	 * If the PVO is in the page table, update that pte as well.
1962	 */
1963	if (pt != -1)
1964		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1965		    pvo->pvo_vpn);
1966	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1967	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1968		if ((pg->oflags & VPO_UNMANAGED) == 0)
1969			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1970		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1971		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1972	}
1973
1974	/*
1975	 * Update vm about the REF/CHG bits if the page is managed and we have
1976	 * removed write access.
1977	 */
1978	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1979	    (oldlo & LPTE_PP) != LPTE_BR && !(prot && VM_PROT_WRITE)) {
1980		if (pg != NULL) {
1981			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1982				vm_page_dirty(pg);
1983			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1984				vm_page_aflag_set(pg, PGA_REFERENCED);
1985		}
1986	}
1987}
1988
1989void
1990moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1991    vm_prot_t prot)
1992{
1993	struct	pvo_entry *pvo, *tpvo, key;
1994
1995	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1996	    sva, eva, prot);
1997
1998	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1999	    ("moea64_protect: non current pmap"));
2000
2001	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2002		moea64_remove(mmu, pm, sva, eva);
2003		return;
2004	}
2005
2006	LOCK_TABLE_RD();
2007	PMAP_LOCK(pm);
2008	key.pvo_vaddr = sva;
2009	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2010	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2011		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2012		moea64_pvo_protect(mmu, pm, pvo, prot);
2013	}
2014	UNLOCK_TABLE_RD();
2015	PMAP_UNLOCK(pm);
2016}
2017
2018/*
2019 * Map a list of wired pages into kernel virtual address space.  This is
2020 * intended for temporary mappings which do not need page modification or
2021 * references recorded.  Existing mappings in the region are overwritten.
2022 */
2023void
2024moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2025{
2026	while (count-- > 0) {
2027		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2028		va += PAGE_SIZE;
2029		m++;
2030	}
2031}
2032
2033/*
2034 * Remove page mappings from kernel virtual address space.  Intended for
2035 * temporary mappings entered by moea64_qenter.
2036 */
2037void
2038moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2039{
2040	while (count-- > 0) {
2041		moea64_kremove(mmu, va);
2042		va += PAGE_SIZE;
2043	}
2044}
2045
2046void
2047moea64_release_vsid(uint64_t vsid)
2048{
2049	int idx, mask;
2050
2051	mtx_lock(&moea64_slb_mutex);
2052	idx = vsid & (NVSIDS-1);
2053	mask = 1 << (idx % VSID_NBPW);
2054	idx /= VSID_NBPW;
2055	KASSERT(moea64_vsid_bitmap[idx] & mask,
2056	    ("Freeing unallocated VSID %#jx", vsid));
2057	moea64_vsid_bitmap[idx] &= ~mask;
2058	mtx_unlock(&moea64_slb_mutex);
2059}
2060
2061
2062void
2063moea64_release(mmu_t mmu, pmap_t pmap)
2064{
2065
2066	/*
2067	 * Free segment registers' VSIDs
2068	 */
2069    #ifdef __powerpc64__
2070	slb_free_tree(pmap);
2071	slb_free_user_cache(pmap->pm_slb);
2072    #else
2073	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2074
2075	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2076    #endif
2077
2078	PMAP_LOCK_DESTROY(pmap);
2079}
2080
2081/*
2082 * Remove all pages mapped by the specified pmap
2083 */
2084void
2085moea64_remove_pages(mmu_t mmu, pmap_t pm)
2086{
2087	struct	pvo_entry *pvo, *tpvo;
2088
2089	LOCK_TABLE_WR();
2090	PMAP_LOCK(pm);
2091	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2092		if (!(pvo->pvo_vaddr & PVO_WIRED))
2093			moea64_pvo_remove(mmu, pvo);
2094	}
2095	UNLOCK_TABLE_WR();
2096	PMAP_UNLOCK(pm);
2097}
2098
2099/*
2100 * Remove the given range of addresses from the specified map.
2101 */
2102void
2103moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2104{
2105	struct	pvo_entry *pvo, *tpvo, key;
2106
2107	/*
2108	 * Perform an unsynchronized read.  This is, however, safe.
2109	 */
2110	if (pm->pm_stats.resident_count == 0)
2111		return;
2112
2113	LOCK_TABLE_WR();
2114	PMAP_LOCK(pm);
2115	key.pvo_vaddr = sva;
2116	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2117	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2118		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2119		moea64_pvo_remove(mmu, pvo);
2120	}
2121	UNLOCK_TABLE_WR();
2122	PMAP_UNLOCK(pm);
2123}
2124
2125/*
2126 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2127 * will reflect changes in pte's back to the vm_page.
2128 */
2129void
2130moea64_remove_all(mmu_t mmu, vm_page_t m)
2131{
2132	struct	pvo_entry *pvo, *next_pvo;
2133	pmap_t	pmap;
2134
2135	LOCK_TABLE_WR();
2136	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2137		pmap = pvo->pvo_pmap;
2138		PMAP_LOCK(pmap);
2139		moea64_pvo_remove(mmu, pvo);
2140		PMAP_UNLOCK(pmap);
2141	}
2142	UNLOCK_TABLE_WR();
2143	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2144		vm_page_dirty(m);
2145	vm_page_aflag_clear(m, PGA_WRITEABLE);
2146	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2147}
2148
2149/*
2150 * Allocate a physical page of memory directly from the phys_avail map.
2151 * Can only be called from moea64_bootstrap before avail start and end are
2152 * calculated.
2153 */
2154vm_offset_t
2155moea64_bootstrap_alloc(vm_size_t size, u_int align)
2156{
2157	vm_offset_t	s, e;
2158	int		i, j;
2159
2160	size = round_page(size);
2161	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2162		if (align != 0)
2163			s = (phys_avail[i] + align - 1) & ~(align - 1);
2164		else
2165			s = phys_avail[i];
2166		e = s + size;
2167
2168		if (s < phys_avail[i] || e > phys_avail[i + 1])
2169			continue;
2170
2171		if (s + size > platform_real_maxaddr())
2172			continue;
2173
2174		if (s == phys_avail[i]) {
2175			phys_avail[i] += size;
2176		} else if (e == phys_avail[i + 1]) {
2177			phys_avail[i + 1] -= size;
2178		} else {
2179			for (j = phys_avail_count * 2; j > i; j -= 2) {
2180				phys_avail[j] = phys_avail[j - 2];
2181				phys_avail[j + 1] = phys_avail[j - 1];
2182			}
2183
2184			phys_avail[i + 3] = phys_avail[i + 1];
2185			phys_avail[i + 1] = s;
2186			phys_avail[i + 2] = e;
2187			phys_avail_count++;
2188		}
2189
2190		return (s);
2191	}
2192	panic("moea64_bootstrap_alloc: could not allocate memory");
2193}
2194
2195static int
2196moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2197    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2198    uint64_t pte_lo, int flags)
2199{
2200	struct	 pvo_entry *pvo;
2201	uint64_t vsid;
2202	int	 first;
2203	u_int	 ptegidx;
2204	int	 i;
2205	int      bootstrap;
2206
2207	/*
2208	 * One nasty thing that can happen here is that the UMA calls to
2209	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2210	 * which calls UMA...
2211	 *
2212	 * We break the loop by detecting recursion and allocating out of
2213	 * the bootstrap pool.
2214	 */
2215
2216	first = 0;
2217	bootstrap = (flags & PVO_BOOTSTRAP);
2218
2219	if (!moea64_initialized)
2220		bootstrap = 1;
2221
2222	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2223	rw_assert(&moea64_table_lock, RA_WLOCKED);
2224
2225	/*
2226	 * Compute the PTE Group index.
2227	 */
2228	va &= ~ADDR_POFF;
2229	vsid = va_to_vsid(pm, va);
2230	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2231
2232	/*
2233	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2234	 * there is a mapping.
2235	 */
2236	moea64_pvo_enter_calls++;
2237
2238	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2239		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2240			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2241			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2242			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2243			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2244					/* Re-insert if spilled */
2245					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2246					    &pvo->pvo_pte.lpte);
2247					if (i >= 0)
2248						PVO_PTEGIDX_SET(pvo, i);
2249					moea64_pte_overflow--;
2250				}
2251				return (0);
2252			}
2253			moea64_pvo_remove(mmu, pvo);
2254			break;
2255		}
2256	}
2257
2258	/*
2259	 * If we aren't overwriting a mapping, try to allocate.
2260	 */
2261	if (bootstrap) {
2262		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2263			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2264			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2265			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2266		}
2267		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2268		moea64_bpvo_pool_index++;
2269		bootstrap = 1;
2270	} else {
2271		pvo = uma_zalloc(zone, M_NOWAIT);
2272	}
2273
2274	if (pvo == NULL)
2275		return (ENOMEM);
2276
2277	moea64_pvo_entries++;
2278	pvo->pvo_vaddr = va;
2279	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2280	    | (vsid << 16);
2281	pvo->pvo_pmap = pm;
2282	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2283	pvo->pvo_vaddr &= ~ADDR_POFF;
2284
2285	if (flags & PVO_WIRED)
2286		pvo->pvo_vaddr |= PVO_WIRED;
2287	if (pvo_head != NULL)
2288		pvo->pvo_vaddr |= PVO_MANAGED;
2289	if (bootstrap)
2290		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2291	if (flags & PVO_LARGE)
2292		pvo->pvo_vaddr |= PVO_LARGE;
2293
2294	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2295	    (uint64_t)(pa) | pte_lo, flags);
2296
2297	/*
2298	 * Add to pmap list
2299	 */
2300	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2301
2302	/*
2303	 * Remember if the list was empty and therefore will be the first
2304	 * item.
2305	 */
2306	if (pvo_head != NULL) {
2307		if (LIST_FIRST(pvo_head) == NULL)
2308			first = 1;
2309		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2310	}
2311
2312	if (pvo->pvo_vaddr & PVO_WIRED) {
2313		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2314		pm->pm_stats.wired_count++;
2315	}
2316	pm->pm_stats.resident_count++;
2317
2318	/*
2319	 * We hope this succeeds but it isn't required.
2320	 */
2321	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2322	if (i >= 0) {
2323		PVO_PTEGIDX_SET(pvo, i);
2324	} else {
2325		panic("moea64_pvo_enter: overflow");
2326		moea64_pte_overflow++;
2327	}
2328
2329	if (pm == kernel_pmap)
2330		isync();
2331
2332#ifdef __powerpc64__
2333	/*
2334	 * Make sure all our bootstrap mappings are in the SLB as soon
2335	 * as virtual memory is switched on.
2336	 */
2337	if (!pmap_bootstrapped)
2338		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2339#endif
2340
2341	return (first ? ENOENT : 0);
2342}
2343
2344static void
2345moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2346{
2347	struct	vm_page *pg;
2348	uintptr_t pt;
2349
2350	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2351	rw_assert(&moea64_table_lock, RA_WLOCKED);
2352
2353	/*
2354	 * If there is an active pte entry, we need to deactivate it (and
2355	 * save the ref & cfg bits).
2356	 */
2357	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2358	if (pt != -1) {
2359		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2360		PVO_PTEGIDX_CLR(pvo);
2361	} else {
2362		moea64_pte_overflow--;
2363	}
2364
2365	/*
2366	 * Update our statistics.
2367	 */
2368	pvo->pvo_pmap->pm_stats.resident_count--;
2369	if (pvo->pvo_vaddr & PVO_WIRED)
2370		pvo->pvo_pmap->pm_stats.wired_count--;
2371
2372	/*
2373	 * Remove this PVO from the pmap list.
2374	 */
2375	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2376
2377	/*
2378	 * Remove this from the overflow list and return it to the pool
2379	 * if we aren't going to reuse it.
2380	 */
2381	LIST_REMOVE(pvo, pvo_olink);
2382
2383	/*
2384	 * Update vm about the REF/CHG bits if the page is managed.
2385	 */
2386	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2387
2388	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2389		LIST_REMOVE(pvo, pvo_vlink);
2390		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2391			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2392				vm_page_dirty(pg);
2393			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2394				vm_page_aflag_set(pg, PGA_REFERENCED);
2395			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2396				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2397		}
2398		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2399			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2400	}
2401
2402	moea64_pvo_entries--;
2403	moea64_pvo_remove_calls++;
2404
2405	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2406		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2407		    moea64_upvo_zone, pvo);
2408}
2409
2410static struct pvo_entry *
2411moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2412{
2413	struct pvo_entry key;
2414
2415	key.pvo_vaddr = va & ~ADDR_POFF;
2416	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2417}
2418
2419static boolean_t
2420moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2421{
2422	struct	pvo_entry *pvo;
2423	uintptr_t pt;
2424
2425	LOCK_TABLE_RD();
2426	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2427		/*
2428		 * See if we saved the bit off.  If so, return success.
2429		 */
2430		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2431			UNLOCK_TABLE_RD();
2432			return (TRUE);
2433		}
2434	}
2435
2436	/*
2437	 * No luck, now go through the hard part of looking at the PTEs
2438	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2439	 * the PTEs.
2440	 */
2441	powerpc_sync();
2442	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2443
2444		/*
2445		 * See if this pvo has a valid PTE.  if so, fetch the
2446		 * REF/CHG bits from the valid PTE.  If the appropriate
2447		 * ptebit is set, return success.
2448		 */
2449		PMAP_LOCK(pvo->pvo_pmap);
2450		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2451		if (pt != -1) {
2452			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2453			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2454				PMAP_UNLOCK(pvo->pvo_pmap);
2455				UNLOCK_TABLE_RD();
2456				return (TRUE);
2457			}
2458		}
2459		PMAP_UNLOCK(pvo->pvo_pmap);
2460	}
2461
2462	UNLOCK_TABLE_RD();
2463	return (FALSE);
2464}
2465
2466static u_int
2467moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2468{
2469	u_int	count;
2470	struct	pvo_entry *pvo;
2471	uintptr_t pt;
2472
2473	/*
2474	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2475	 * we can reset the right ones).  note that since the pvo entries and
2476	 * list heads are accessed via BAT0 and are never placed in the page
2477	 * table, we don't have to worry about further accesses setting the
2478	 * REF/CHG bits.
2479	 */
2480	powerpc_sync();
2481
2482	/*
2483	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2484	 * valid pte clear the ptebit from the valid pte.
2485	 */
2486	count = 0;
2487	LOCK_TABLE_RD();
2488	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2489		PMAP_LOCK(pvo->pvo_pmap);
2490		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2491		if (pt != -1) {
2492			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2493			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2494				count++;
2495				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2496				    pvo->pvo_vpn, ptebit);
2497			}
2498		}
2499		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2500		PMAP_UNLOCK(pvo->pvo_pmap);
2501	}
2502
2503	UNLOCK_TABLE_RD();
2504	return (count);
2505}
2506
2507boolean_t
2508moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2509{
2510	struct pvo_entry *pvo, key;
2511	vm_offset_t ppa;
2512	int error = 0;
2513
2514	PMAP_LOCK(kernel_pmap);
2515	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2516	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2517	    ppa < pa + size; ppa += PAGE_SIZE,
2518	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2519		if (pvo == NULL ||
2520		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2521			error = EFAULT;
2522			break;
2523		}
2524	}
2525	PMAP_UNLOCK(kernel_pmap);
2526
2527	return (error);
2528}
2529
2530/*
2531 * Map a set of physical memory pages into the kernel virtual
2532 * address space. Return a pointer to where it is mapped. This
2533 * routine is intended to be used for mapping device memory,
2534 * NOT real memory.
2535 */
2536void *
2537moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2538{
2539	vm_offset_t va, tmpva, ppa, offset;
2540
2541	ppa = trunc_page(pa);
2542	offset = pa & PAGE_MASK;
2543	size = roundup2(offset + size, PAGE_SIZE);
2544
2545	va = kmem_alloc_nofault(kernel_map, size);
2546
2547	if (!va)
2548		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2549
2550	for (tmpva = va; size > 0;) {
2551		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2552		size -= PAGE_SIZE;
2553		tmpva += PAGE_SIZE;
2554		ppa += PAGE_SIZE;
2555	}
2556
2557	return ((void *)(va + offset));
2558}
2559
2560void *
2561moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2562{
2563
2564	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2565}
2566
2567void
2568moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2569{
2570	vm_offset_t base, offset;
2571
2572	base = trunc_page(va);
2573	offset = va & PAGE_MASK;
2574	size = roundup2(offset + size, PAGE_SIZE);
2575
2576	kmem_free(kernel_map, base, size);
2577}
2578
2579void
2580moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2581{
2582	struct pvo_entry *pvo;
2583	vm_offset_t lim;
2584	vm_paddr_t pa;
2585	vm_size_t len;
2586
2587	PMAP_LOCK(pm);
2588	while (sz > 0) {
2589		lim = round_page(va);
2590		len = MIN(lim - va, sz);
2591		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2592		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2593			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2594			    (va & ADDR_POFF);
2595			moea64_syncicache(mmu, pm, va, pa, len);
2596		}
2597		va += len;
2598		sz -= len;
2599	}
2600	PMAP_UNLOCK(pm);
2601}
2602