1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD$");
95
96/*
97 * Manages physical address maps.
98 *
99 * Since the information managed by this module is also stored by the
100 * logical address mapping module, this module may throw away valid virtual
101 * to physical mappings at almost any time.  However, invalidations of
102 * mappings must be done as requested.
103 *
104 * In order to cope with hardware architectures which make virtual to
105 * physical map invalidates expensive, this module may delay invalidate
106 * reduced protection operations until such time as they are actually
107 * necessary.  This module is given full information as to which processors
108 * are currently using which maps, and to when physical maps must be made
109 * correct.
110 */
111
112#include "opt_compat.h"
113#include "opt_kstack_pages.h"
114
115#include <sys/param.h>
116#include <sys/kernel.h>
117#include <sys/queue.h>
118#include <sys/cpuset.h>
119#include <sys/ktr.h>
120#include <sys/lock.h>
121#include <sys/msgbuf.h>
122#include <sys/malloc.h>
123#include <sys/mutex.h>
124#include <sys/proc.h>
125#include <sys/rwlock.h>
126#include <sys/sched.h>
127#include <sys/sysctl.h>
128#include <sys/systm.h>
129#include <sys/vmmeter.h>
130
131#include <sys/kdb.h>
132
133#include <dev/ofw/openfirm.h>
134
135#include <vm/vm.h>
136#include <vm/vm_param.h>
137#include <vm/vm_kern.h>
138#include <vm/vm_page.h>
139#include <vm/vm_map.h>
140#include <vm/vm_object.h>
141#include <vm/vm_extern.h>
142#include <vm/vm_pageout.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_oea64.h"
159#include "mmu_if.h"
160#include "moea64_if.h"
161
162void moea64_release_vsid(uint64_t vsid);
163uintptr_t moea64_get_unique_vsid(void);
164
165#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
166#define ENABLE_TRANS(msr)	mtmsr(msr)
167
168#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
169#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
170#define	VSID_HASH_MASK		0x0000007fffffffffULL
171
172/*
173 * Locking semantics:
174 * -- Read lock: if no modifications are being made to either the PVO lists
175 *    or page table or if any modifications being made result in internal
176 *    changes (e.g. wiring, protection) such that the existence of the PVOs
177 *    is unchanged and they remain associated with the same pmap (in which
178 *    case the changes should be protected by the pmap lock)
179 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
180 */
181
182#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
183#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
184#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
185#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
186
187struct ofw_map {
188	cell_t	om_va;
189	cell_t	om_len;
190	cell_t	om_pa_hi;
191	cell_t	om_pa_lo;
192	cell_t	om_mode;
193};
194
195/*
196 * Map of physical memory regions.
197 */
198static struct	mem_region *regions;
199static struct	mem_region *pregions;
200static u_int	phys_avail_count;
201static int	regions_sz, pregions_sz;
202
203extern void bs_remap_earlyboot(void);
204
205/*
206 * Lock for the pteg and pvo tables.
207 */
208struct rwlock	moea64_table_lock;
209struct mtx	moea64_slb_mutex;
210
211/*
212 * PTEG data.
213 */
214u_int		moea64_pteg_count;
215u_int		moea64_pteg_mask;
216
217/*
218 * PVO data.
219 */
220struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
221
222uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
223uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
224
225#define	BPVO_POOL_SIZE	327680
226static struct	pvo_entry *moea64_bpvo_pool;
227static int	moea64_bpvo_pool_index = 0;
228
229#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
230#ifdef __powerpc64__
231#define	NVSIDS		(NPMAPS * 16)
232#define VSID_HASHMASK	0xffffffffUL
233#else
234#define NVSIDS		NPMAPS
235#define VSID_HASHMASK	0xfffffUL
236#endif
237static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
238
239static boolean_t moea64_initialized = FALSE;
240
241/*
242 * Statistics.
243 */
244u_int	moea64_pte_valid = 0;
245u_int	moea64_pte_overflow = 0;
246u_int	moea64_pvo_entries = 0;
247u_int	moea64_pvo_enter_calls = 0;
248u_int	moea64_pvo_remove_calls = 0;
249SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
250    &moea64_pte_valid, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
252    &moea64_pte_overflow, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
254    &moea64_pvo_entries, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
256    &moea64_pvo_enter_calls, 0, "");
257SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
258    &moea64_pvo_remove_calls, 0, "");
259
260vm_offset_t	moea64_scratchpage_va[2];
261struct pvo_entry *moea64_scratchpage_pvo[2];
262uintptr_t	moea64_scratchpage_pte[2];
263struct	mtx	moea64_scratchpage_mtx;
264
265uint64_t 	moea64_large_page_mask = 0;
266uint64_t	moea64_large_page_size = 0;
267int		moea64_large_page_shift = 0;
268
269/*
270 * PVO calls.
271 */
272static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
273		    vm_offset_t, vm_offset_t, uint64_t, int);
274static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
275static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
276
277/*
278 * Utility routines.
279 */
280static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
281static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
282static void		moea64_kremove(mmu_t, vm_offset_t);
283static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
284			    vm_offset_t pa, vm_size_t sz);
285
286/*
287 * Kernel MMU interface
288 */
289void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
290void moea64_clear_modify(mmu_t, vm_page_t);
291void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
292void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
293    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
294void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
295void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
296    vm_prot_t);
297void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
298vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
299vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
300void moea64_init(mmu_t);
301boolean_t moea64_is_modified(mmu_t, vm_page_t);
302boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
303boolean_t moea64_is_referenced(mmu_t, vm_page_t);
304int moea64_ts_referenced(mmu_t, vm_page_t);
305vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
306boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
307int moea64_page_wired_mappings(mmu_t, vm_page_t);
308void moea64_pinit(mmu_t, pmap_t);
309void moea64_pinit0(mmu_t, pmap_t);
310void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
311void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
312void moea64_qremove(mmu_t, vm_offset_t, int);
313void moea64_release(mmu_t, pmap_t);
314void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
315void moea64_remove_pages(mmu_t, pmap_t);
316void moea64_remove_all(mmu_t, vm_page_t);
317void moea64_remove_write(mmu_t, vm_page_t);
318void moea64_zero_page(mmu_t, vm_page_t);
319void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
320void moea64_zero_page_idle(mmu_t, vm_page_t);
321void moea64_activate(mmu_t, struct thread *);
322void moea64_deactivate(mmu_t, struct thread *);
323void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
327void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
328void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
329void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
330boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332
333static mmu_method_t moea64_methods[] = {
334	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
335	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
337	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
338	MMUMETHOD(mmu_enter,		moea64_enter),
339	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341	MMUMETHOD(mmu_extract,		moea64_extract),
342	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343	MMUMETHOD(mmu_init,		moea64_init),
344	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348	MMUMETHOD(mmu_map,     		moea64_map),
349	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351	MMUMETHOD(mmu_pinit,		moea64_pinit),
352	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353	MMUMETHOD(mmu_protect,		moea64_protect),
354	MMUMETHOD(mmu_qenter,		moea64_qenter),
355	MMUMETHOD(mmu_qremove,		moea64_qremove),
356	MMUMETHOD(mmu_release,		moea64_release),
357	MMUMETHOD(mmu_remove,		moea64_remove),
358	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
363	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
364	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
365	MMUMETHOD(mmu_activate,		moea64_activate),
366	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
367	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
368
369	/* Internal interfaces */
370	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
371	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
372	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
373	MMUMETHOD(mmu_kextract,		moea64_kextract),
374	MMUMETHOD(mmu_kenter,		moea64_kenter),
375	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
376	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
377
378	{ 0, 0 }
379};
380
381MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
382
383static __inline u_int
384va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
385{
386	uint64_t hash;
387	int shift;
388
389	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
390	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
391	    shift);
392	return (hash & moea64_pteg_mask);
393}
394
395static __inline struct pvo_head *
396vm_page_to_pvoh(vm_page_t m)
397{
398
399	return (&m->md.mdpg_pvoh);
400}
401
402static __inline void
403moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
404    uint64_t pte_lo, int flags)
405{
406
407	/*
408	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
409	 * set when the real pte is set in memory.
410	 *
411	 * Note: Don't set the valid bit for correct operation of tlb update.
412	 */
413	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
414	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
415
416	if (flags & PVO_LARGE)
417		pt->pte_hi |= LPTE_BIG;
418
419	pt->pte_lo = pte_lo;
420}
421
422static __inline uint64_t
423moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
424{
425	uint64_t pte_lo;
426	int i;
427
428	if (ma != VM_MEMATTR_DEFAULT) {
429		switch (ma) {
430		case VM_MEMATTR_UNCACHEABLE:
431			return (LPTE_I | LPTE_G);
432		case VM_MEMATTR_WRITE_COMBINING:
433		case VM_MEMATTR_WRITE_BACK:
434		case VM_MEMATTR_PREFETCHABLE:
435			return (LPTE_I);
436		case VM_MEMATTR_WRITE_THROUGH:
437			return (LPTE_W | LPTE_M);
438		}
439	}
440
441	/*
442	 * Assume the page is cache inhibited and access is guarded unless
443	 * it's in our available memory array.
444	 */
445	pte_lo = LPTE_I | LPTE_G;
446	for (i = 0; i < pregions_sz; i++) {
447		if ((pa >= pregions[i].mr_start) &&
448		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
449			pte_lo &= ~(LPTE_I | LPTE_G);
450			pte_lo |= LPTE_M;
451			break;
452		}
453	}
454
455	return pte_lo;
456}
457
458/*
459 * Quick sort callout for comparing memory regions.
460 */
461static int	om_cmp(const void *a, const void *b);
462
463static int
464om_cmp(const void *a, const void *b)
465{
466	const struct	ofw_map *mapa;
467	const struct	ofw_map *mapb;
468
469	mapa = a;
470	mapb = b;
471	if (mapa->om_pa_hi < mapb->om_pa_hi)
472		return (-1);
473	else if (mapa->om_pa_hi > mapb->om_pa_hi)
474		return (1);
475	else if (mapa->om_pa_lo < mapb->om_pa_lo)
476		return (-1);
477	else if (mapa->om_pa_lo > mapb->om_pa_lo)
478		return (1);
479	else
480		return (0);
481}
482
483static void
484moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
485{
486	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
487	register_t	msr;
488	vm_offset_t	off;
489	vm_paddr_t	pa_base;
490	int		i;
491
492	bzero(translations, sz);
493	if (OF_getprop(mmu, "translations", translations, sz) == -1)
494		panic("moea64_bootstrap: can't get ofw translations");
495
496	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
497	sz /= sizeof(*translations);
498	qsort(translations, sz, sizeof (*translations), om_cmp);
499
500	for (i = 0; i < sz; i++) {
501		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
502		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
503		    translations[i].om_len);
504
505		if (translations[i].om_pa_lo % PAGE_SIZE)
506			panic("OFW translation not page-aligned!");
507
508		pa_base = translations[i].om_pa_lo;
509
510	      #ifdef __powerpc64__
511		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
512	      #else
513		if (translations[i].om_pa_hi)
514			panic("OFW translations above 32-bit boundary!");
515	      #endif
516
517		/* Now enter the pages for this mapping */
518
519		DISABLE_TRANS(msr);
520		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
521			if (moea64_pvo_find_va(kernel_pmap,
522			    translations[i].om_va + off) != NULL)
523				continue;
524
525			moea64_kenter(mmup, translations[i].om_va + off,
526			    pa_base + off);
527		}
528		ENABLE_TRANS(msr);
529	}
530}
531
532#ifdef __powerpc64__
533static void
534moea64_probe_large_page(void)
535{
536	uint16_t pvr = mfpvr() >> 16;
537
538	switch (pvr) {
539	case IBM970:
540	case IBM970FX:
541	case IBM970MP:
542		powerpc_sync(); isync();
543		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
544		powerpc_sync(); isync();
545
546		/* FALLTHROUGH */
547	default:
548		moea64_large_page_size = 0x1000000; /* 16 MB */
549		moea64_large_page_shift = 24;
550	}
551
552	moea64_large_page_mask = moea64_large_page_size - 1;
553}
554
555static void
556moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
557{
558	struct slb *cache;
559	struct slb entry;
560	uint64_t esid, slbe;
561	uint64_t i;
562
563	cache = PCPU_GET(slb);
564	esid = va >> ADDR_SR_SHFT;
565	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
566
567	for (i = 0; i < 64; i++) {
568		if (cache[i].slbe == (slbe | i))
569			return;
570	}
571
572	entry.slbe = slbe;
573	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
574	if (large)
575		entry.slbv |= SLBV_L;
576
577	slb_insert_kernel(entry.slbe, entry.slbv);
578}
579#endif
580
581static void
582moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
583    vm_offset_t kernelend)
584{
585	register_t msr;
586	vm_paddr_t pa;
587	vm_offset_t size, off;
588	uint64_t pte_lo;
589	int i;
590
591	if (moea64_large_page_size == 0)
592		hw_direct_map = 0;
593
594	DISABLE_TRANS(msr);
595	if (hw_direct_map) {
596		LOCK_TABLE_WR();
597		PMAP_LOCK(kernel_pmap);
598		for (i = 0; i < pregions_sz; i++) {
599		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
600		     pregions[i].mr_size; pa += moea64_large_page_size) {
601			pte_lo = LPTE_M;
602
603			/*
604			 * Set memory access as guarded if prefetch within
605			 * the page could exit the available physmem area.
606			 */
607			if (pa & moea64_large_page_mask) {
608				pa &= moea64_large_page_mask;
609				pte_lo |= LPTE_G;
610			}
611			if (pa + moea64_large_page_size >
612			    pregions[i].mr_start + pregions[i].mr_size)
613				pte_lo |= LPTE_G;
614
615			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
616				    NULL, pa, pa, pte_lo,
617				    PVO_WIRED | PVO_LARGE);
618		  }
619		}
620		PMAP_UNLOCK(kernel_pmap);
621		UNLOCK_TABLE_WR();
622	} else {
623		size = sizeof(struct pvo_head) * moea64_pteg_count;
624		off = (vm_offset_t)(moea64_pvo_table);
625		for (pa = off; pa < off + size; pa += PAGE_SIZE)
626			moea64_kenter(mmup, pa, pa);
627		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
628		off = (vm_offset_t)(moea64_bpvo_pool);
629		for (pa = off; pa < off + size; pa += PAGE_SIZE)
630		moea64_kenter(mmup, pa, pa);
631
632		/*
633		 * Map certain important things, like ourselves.
634		 *
635		 * NOTE: We do not map the exception vector space. That code is
636		 * used only in real mode, and leaving it unmapped allows us to
637		 * catch NULL pointer deferences, instead of making NULL a valid
638		 * address.
639		 */
640
641		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
642		    pa += PAGE_SIZE)
643			moea64_kenter(mmup, pa, pa);
644	}
645	ENABLE_TRANS(msr);
646
647	/*
648	 * Allow user to override unmapped_buf_allowed for testing.
649	 * XXXKIB Only direct map implementation was tested.
650	 */
651	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
652	    &unmapped_buf_allowed))
653		unmapped_buf_allowed = hw_direct_map;
654}
655
656void
657moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
658{
659	int		i, j;
660	vm_size_t	physsz, hwphyssz;
661
662#ifndef __powerpc64__
663	/* We don't have a direct map since there is no BAT */
664	hw_direct_map = 0;
665
666	/* Make sure battable is zero, since we have no BAT */
667	for (i = 0; i < 16; i++) {
668		battable[i].batu = 0;
669		battable[i].batl = 0;
670	}
671#else
672	moea64_probe_large_page();
673
674	/* Use a direct map if we have large page support */
675	if (moea64_large_page_size > 0)
676		hw_direct_map = 1;
677	else
678		hw_direct_map = 0;
679#endif
680
681	/* Get physical memory regions from firmware */
682	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
683	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
684
685	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
686		panic("moea64_bootstrap: phys_avail too small");
687
688	phys_avail_count = 0;
689	physsz = 0;
690	hwphyssz = 0;
691	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
692	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
693		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
694		    regions[i].mr_start + regions[i].mr_size,
695		    regions[i].mr_size);
696		if (hwphyssz != 0 &&
697		    (physsz + regions[i].mr_size) >= hwphyssz) {
698			if (physsz < hwphyssz) {
699				phys_avail[j] = regions[i].mr_start;
700				phys_avail[j + 1] = regions[i].mr_start +
701				    hwphyssz - physsz;
702				physsz = hwphyssz;
703				phys_avail_count++;
704			}
705			break;
706		}
707		phys_avail[j] = regions[i].mr_start;
708		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
709		phys_avail_count++;
710		physsz += regions[i].mr_size;
711	}
712
713	/* Check for overlap with the kernel and exception vectors */
714	for (j = 0; j < 2*phys_avail_count; j+=2) {
715		if (phys_avail[j] < EXC_LAST)
716			phys_avail[j] += EXC_LAST;
717
718		if (kernelstart >= phys_avail[j] &&
719		    kernelstart < phys_avail[j+1]) {
720			if (kernelend < phys_avail[j+1]) {
721				phys_avail[2*phys_avail_count] =
722				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
723				phys_avail[2*phys_avail_count + 1] =
724				    phys_avail[j+1];
725				phys_avail_count++;
726			}
727
728			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
729		}
730
731		if (kernelend >= phys_avail[j] &&
732		    kernelend < phys_avail[j+1]) {
733			if (kernelstart > phys_avail[j]) {
734				phys_avail[2*phys_avail_count] = phys_avail[j];
735				phys_avail[2*phys_avail_count + 1] =
736				    kernelstart & ~PAGE_MASK;
737				phys_avail_count++;
738			}
739
740			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
741		}
742	}
743
744	physmem = btoc(physsz);
745
746#ifdef PTEGCOUNT
747	moea64_pteg_count = PTEGCOUNT;
748#else
749	moea64_pteg_count = 0x1000;
750
751	while (moea64_pteg_count < physmem)
752		moea64_pteg_count <<= 1;
753
754	moea64_pteg_count >>= 1;
755#endif /* PTEGCOUNT */
756}
757
758void
759moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
760{
761	vm_size_t	size;
762	register_t	msr;
763	int		i;
764
765	/*
766	 * Set PTEG mask
767	 */
768	moea64_pteg_mask = moea64_pteg_count - 1;
769
770	/*
771	 * Allocate pv/overflow lists.
772	 */
773	size = sizeof(struct pvo_head) * moea64_pteg_count;
774
775	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
776	    PAGE_SIZE);
777	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
778
779	DISABLE_TRANS(msr);
780	for (i = 0; i < moea64_pteg_count; i++)
781		LIST_INIT(&moea64_pvo_table[i]);
782	ENABLE_TRANS(msr);
783
784	/*
785	 * Initialize the lock that synchronizes access to the pteg and pvo
786	 * tables.
787	 */
788	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
789	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
790
791	/*
792	 * Initialise the unmanaged pvo pool.
793	 */
794	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
795		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
796	moea64_bpvo_pool_index = 0;
797
798	/*
799	 * Make sure kernel vsid is allocated as well as VSID 0.
800	 */
801	#ifndef __powerpc64__
802	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
803		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
804	moea64_vsid_bitmap[0] |= 1;
805	#endif
806
807	/*
808	 * Initialize the kernel pmap (which is statically allocated).
809	 */
810	#ifdef __powerpc64__
811	for (i = 0; i < 64; i++) {
812		pcpup->pc_slb[i].slbv = 0;
813		pcpup->pc_slb[i].slbe = 0;
814	}
815	#else
816	for (i = 0; i < 16; i++)
817		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
818	#endif
819
820	kernel_pmap->pmap_phys = kernel_pmap;
821	CPU_FILL(&kernel_pmap->pm_active);
822	RB_INIT(&kernel_pmap->pmap_pvo);
823
824	PMAP_LOCK_INIT(kernel_pmap);
825
826	/*
827	 * Now map in all the other buffers we allocated earlier
828	 */
829
830	moea64_setup_direct_map(mmup, kernelstart, kernelend);
831}
832
833void
834moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
835{
836	ihandle_t	mmui;
837	phandle_t	chosen;
838	phandle_t	mmu;
839	size_t		sz;
840	int		i;
841	vm_offset_t	pa, va;
842	void		*dpcpu;
843
844	/*
845	 * Set up the Open Firmware pmap and add its mappings if not in real
846	 * mode.
847	 */
848
849	chosen = OF_finddevice("/chosen");
850	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
851	    mmu = OF_instance_to_package(mmui);
852	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
853		sz = 0;
854	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
855		panic("moea64_bootstrap: too many ofw translations");
856
857	    if (sz > 0)
858		moea64_add_ofw_mappings(mmup, mmu, sz);
859	}
860
861	/*
862	 * Calculate the last available physical address.
863	 */
864	for (i = 0; phys_avail[i + 2] != 0; i += 2)
865		;
866	Maxmem = powerpc_btop(phys_avail[i + 1]);
867
868	/*
869	 * Initialize MMU and remap early physical mappings
870	 */
871	MMU_CPU_BOOTSTRAP(mmup,0);
872	mtmsr(mfmsr() | PSL_DR | PSL_IR);
873	pmap_bootstrapped++;
874	bs_remap_earlyboot();
875
876	/*
877	 * Set the start and end of kva.
878	 */
879	virtual_avail = VM_MIN_KERNEL_ADDRESS;
880	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
881
882	/*
883	 * Map the entire KVA range into the SLB. We must not fault there.
884	 */
885	#ifdef __powerpc64__
886	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
887		moea64_bootstrap_slb_prefault(va, 0);
888	#endif
889
890	/*
891	 * Figure out how far we can extend virtual_end into segment 16
892	 * without running into existing mappings. Segment 16 is guaranteed
893	 * to contain neither RAM nor devices (at least on Apple hardware),
894	 * but will generally contain some OFW mappings we should not
895	 * step on.
896	 */
897
898	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
899	PMAP_LOCK(kernel_pmap);
900	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
901	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
902		virtual_end += PAGE_SIZE;
903	PMAP_UNLOCK(kernel_pmap);
904	#endif
905
906	/*
907	 * Allocate a kernel stack with a guard page for thread0 and map it
908	 * into the kernel page map.
909	 */
910	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
911	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
912	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
913	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
914	thread0.td_kstack = va;
915	thread0.td_kstack_pages = KSTACK_PAGES;
916	for (i = 0; i < KSTACK_PAGES; i++) {
917		moea64_kenter(mmup, va, pa);
918		pa += PAGE_SIZE;
919		va += PAGE_SIZE;
920	}
921
922	/*
923	 * Allocate virtual address space for the message buffer.
924	 */
925	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
926	msgbufp = (struct msgbuf *)virtual_avail;
927	va = virtual_avail;
928	virtual_avail += round_page(msgbufsize);
929	while (va < virtual_avail) {
930		moea64_kenter(mmup, va, pa);
931		pa += PAGE_SIZE;
932		va += PAGE_SIZE;
933	}
934
935	/*
936	 * Allocate virtual address space for the dynamic percpu area.
937	 */
938	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
939	dpcpu = (void *)virtual_avail;
940	va = virtual_avail;
941	virtual_avail += DPCPU_SIZE;
942	while (va < virtual_avail) {
943		moea64_kenter(mmup, va, pa);
944		pa += PAGE_SIZE;
945		va += PAGE_SIZE;
946	}
947	dpcpu_init(dpcpu, 0);
948
949	/*
950	 * Allocate some things for page zeroing. We put this directly
951	 * in the page table, marked with LPTE_LOCKED, to avoid any
952	 * of the PVO book-keeping or other parts of the VM system
953	 * from even knowing that this hack exists.
954	 */
955
956	if (!hw_direct_map) {
957		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
958		    MTX_DEF);
959		for (i = 0; i < 2; i++) {
960			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
961			virtual_end -= PAGE_SIZE;
962
963			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
964
965			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
966			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
967			LOCK_TABLE_RD();
968			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
969			    mmup, moea64_scratchpage_pvo[i]);
970			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
971			    |= LPTE_LOCKED;
972			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
973			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
974			    moea64_scratchpage_pvo[i]->pvo_vpn);
975			UNLOCK_TABLE_RD();
976		}
977	}
978}
979
980/*
981 * Activate a user pmap.  The pmap must be activated before its address
982 * space can be accessed in any way.
983 */
984void
985moea64_activate(mmu_t mmu, struct thread *td)
986{
987	pmap_t	pm;
988
989	pm = &td->td_proc->p_vmspace->vm_pmap;
990	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
991
992	#ifdef __powerpc64__
993	PCPU_SET(userslb, pm->pm_slb);
994	#else
995	PCPU_SET(curpmap, pm->pmap_phys);
996	#endif
997}
998
999void
1000moea64_deactivate(mmu_t mmu, struct thread *td)
1001{
1002	pmap_t	pm;
1003
1004	pm = &td->td_proc->p_vmspace->vm_pmap;
1005	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1006	#ifdef __powerpc64__
1007	PCPU_SET(userslb, NULL);
1008	#else
1009	PCPU_SET(curpmap, NULL);
1010	#endif
1011}
1012
1013void
1014moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1015{
1016	struct	pvo_entry *pvo;
1017	uintptr_t pt;
1018	uint64_t vsid;
1019	int	i, ptegidx;
1020
1021	LOCK_TABLE_WR();
1022	PMAP_LOCK(pm);
1023	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1024
1025	if (pvo != NULL) {
1026		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1027
1028		if (wired) {
1029			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1030				pm->pm_stats.wired_count++;
1031			pvo->pvo_vaddr |= PVO_WIRED;
1032			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1033		} else {
1034			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1035				pm->pm_stats.wired_count--;
1036			pvo->pvo_vaddr &= ~PVO_WIRED;
1037			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1038		}
1039
1040		if (pt != -1) {
1041			/* Update wiring flag in page table. */
1042			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1043			    pvo->pvo_vpn);
1044		} else if (wired) {
1045			/*
1046			 * If we are wiring the page, and it wasn't in the
1047			 * page table before, add it.
1048			 */
1049			vsid = PVO_VSID(pvo);
1050			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1051			    pvo->pvo_vaddr & PVO_LARGE);
1052
1053			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1054
1055			if (i >= 0) {
1056				PVO_PTEGIDX_CLR(pvo);
1057				PVO_PTEGIDX_SET(pvo, i);
1058			}
1059		}
1060
1061	}
1062	UNLOCK_TABLE_WR();
1063	PMAP_UNLOCK(pm);
1064}
1065
1066/*
1067 * This goes through and sets the physical address of our
1068 * special scratch PTE to the PA we want to zero or copy. Because
1069 * of locking issues (this can get called in pvo_enter() by
1070 * the UMA allocator), we can't use most other utility functions here
1071 */
1072
1073static __inline
1074void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1075
1076	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1077	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1078
1079	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1080	    ~(LPTE_WIMG | LPTE_RPGN);
1081	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1082	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1083	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1084	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1085	    moea64_scratchpage_pvo[which]->pvo_vpn);
1086	isync();
1087}
1088
1089void
1090moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1091{
1092	vm_offset_t	dst;
1093	vm_offset_t	src;
1094
1095	dst = VM_PAGE_TO_PHYS(mdst);
1096	src = VM_PAGE_TO_PHYS(msrc);
1097
1098	if (hw_direct_map) {
1099		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1100	} else {
1101		mtx_lock(&moea64_scratchpage_mtx);
1102
1103		moea64_set_scratchpage_pa(mmu, 0, src);
1104		moea64_set_scratchpage_pa(mmu, 1, dst);
1105
1106		bcopy((void *)moea64_scratchpage_va[0],
1107		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1108
1109		mtx_unlock(&moea64_scratchpage_mtx);
1110	}
1111}
1112
1113static inline void
1114moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1115    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1116{
1117	void *a_cp, *b_cp;
1118	vm_offset_t a_pg_offset, b_pg_offset;
1119	int cnt;
1120
1121	while (xfersize > 0) {
1122		a_pg_offset = a_offset & PAGE_MASK;
1123		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1124		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1125		    a_pg_offset;
1126		b_pg_offset = b_offset & PAGE_MASK;
1127		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1128		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1129		    b_pg_offset;
1130		bcopy(a_cp, b_cp, cnt);
1131		a_offset += cnt;
1132		b_offset += cnt;
1133		xfersize -= cnt;
1134	}
1135}
1136
1137static inline void
1138moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1139    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1140{
1141	void *a_cp, *b_cp;
1142	vm_offset_t a_pg_offset, b_pg_offset;
1143	int cnt;
1144
1145	mtx_lock(&moea64_scratchpage_mtx);
1146	while (xfersize > 0) {
1147		a_pg_offset = a_offset & PAGE_MASK;
1148		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1149		moea64_set_scratchpage_pa(mmu, 0,
1150		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1151		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1152		b_pg_offset = b_offset & PAGE_MASK;
1153		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1154		moea64_set_scratchpage_pa(mmu, 1,
1155		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1156		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1157		bcopy(a_cp, b_cp, cnt);
1158		a_offset += cnt;
1159		b_offset += cnt;
1160		xfersize -= cnt;
1161	}
1162	mtx_unlock(&moea64_scratchpage_mtx);
1163}
1164
1165void
1166moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1167    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1168{
1169
1170	if (hw_direct_map) {
1171		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1172		    xfersize);
1173	} else {
1174		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1175		    xfersize);
1176	}
1177}
1178
1179void
1180moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1181{
1182	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1183
1184	if (size + off > PAGE_SIZE)
1185		panic("moea64_zero_page: size + off > PAGE_SIZE");
1186
1187	if (hw_direct_map) {
1188		bzero((caddr_t)pa + off, size);
1189	} else {
1190		mtx_lock(&moea64_scratchpage_mtx);
1191		moea64_set_scratchpage_pa(mmu, 0, pa);
1192		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1193		mtx_unlock(&moea64_scratchpage_mtx);
1194	}
1195}
1196
1197/*
1198 * Zero a page of physical memory by temporarily mapping it
1199 */
1200void
1201moea64_zero_page(mmu_t mmu, vm_page_t m)
1202{
1203	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1204	vm_offset_t va, off;
1205
1206	if (!hw_direct_map) {
1207		mtx_lock(&moea64_scratchpage_mtx);
1208
1209		moea64_set_scratchpage_pa(mmu, 0, pa);
1210		va = moea64_scratchpage_va[0];
1211	} else {
1212		va = pa;
1213	}
1214
1215	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1216		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1217
1218	if (!hw_direct_map)
1219		mtx_unlock(&moea64_scratchpage_mtx);
1220}
1221
1222void
1223moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1224{
1225
1226	moea64_zero_page(mmu, m);
1227}
1228
1229/*
1230 * Map the given physical page at the specified virtual address in the
1231 * target pmap with the protection requested.  If specified the page
1232 * will be wired down.
1233 */
1234
1235void
1236moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1237    vm_prot_t prot, boolean_t wired)
1238{
1239	struct		pvo_head *pvo_head;
1240	uma_zone_t	zone;
1241	vm_page_t	pg;
1242	uint64_t	pte_lo;
1243	u_int		pvo_flags;
1244	int		error;
1245
1246	if (!moea64_initialized) {
1247		pvo_head = NULL;
1248		pg = NULL;
1249		zone = moea64_upvo_zone;
1250		pvo_flags = 0;
1251	} else {
1252		pvo_head = vm_page_to_pvoh(m);
1253		pg = m;
1254		zone = moea64_mpvo_zone;
1255		pvo_flags = PVO_MANAGED;
1256	}
1257
1258	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1259		VM_OBJECT_ASSERT_LOCKED(m->object);
1260
1261	/* XXX change the pvo head for fake pages */
1262	if ((m->oflags & VPO_UNMANAGED) != 0) {
1263		pvo_flags &= ~PVO_MANAGED;
1264		pvo_head = NULL;
1265		zone = moea64_upvo_zone;
1266	}
1267
1268	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1269
1270	if (prot & VM_PROT_WRITE) {
1271		pte_lo |= LPTE_BW;
1272		if (pmap_bootstrapped &&
1273		    (m->oflags & VPO_UNMANAGED) == 0)
1274			vm_page_aflag_set(m, PGA_WRITEABLE);
1275	} else
1276		pte_lo |= LPTE_BR;
1277
1278	if ((prot & VM_PROT_EXECUTE) == 0)
1279		pte_lo |= LPTE_NOEXEC;
1280
1281	if (wired)
1282		pvo_flags |= PVO_WIRED;
1283
1284	LOCK_TABLE_WR();
1285	PMAP_LOCK(pmap);
1286	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1287	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1288	PMAP_UNLOCK(pmap);
1289	UNLOCK_TABLE_WR();
1290
1291	/*
1292	 * Flush the page from the instruction cache if this page is
1293	 * mapped executable and cacheable.
1294	 */
1295	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1296	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1297		vm_page_aflag_set(m, PGA_EXECUTABLE);
1298		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1299	}
1300}
1301
1302static void
1303moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1304    vm_size_t sz)
1305{
1306
1307	/*
1308	 * This is much trickier than on older systems because
1309	 * we can't sync the icache on physical addresses directly
1310	 * without a direct map. Instead we check a couple of cases
1311	 * where the memory is already mapped in and, failing that,
1312	 * use the same trick we use for page zeroing to create
1313	 * a temporary mapping for this physical address.
1314	 */
1315
1316	if (!pmap_bootstrapped) {
1317		/*
1318		 * If PMAP is not bootstrapped, we are likely to be
1319		 * in real mode.
1320		 */
1321		__syncicache((void *)pa, sz);
1322	} else if (pmap == kernel_pmap) {
1323		__syncicache((void *)va, sz);
1324	} else if (hw_direct_map) {
1325		__syncicache((void *)pa, sz);
1326	} else {
1327		/* Use the scratch page to set up a temp mapping */
1328
1329		mtx_lock(&moea64_scratchpage_mtx);
1330
1331		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1332		__syncicache((void *)(moea64_scratchpage_va[1] +
1333		    (va & ADDR_POFF)), sz);
1334
1335		mtx_unlock(&moea64_scratchpage_mtx);
1336	}
1337}
1338
1339/*
1340 * Maps a sequence of resident pages belonging to the same object.
1341 * The sequence begins with the given page m_start.  This page is
1342 * mapped at the given virtual address start.  Each subsequent page is
1343 * mapped at a virtual address that is offset from start by the same
1344 * amount as the page is offset from m_start within the object.  The
1345 * last page in the sequence is the page with the largest offset from
1346 * m_start that can be mapped at a virtual address less than the given
1347 * virtual address end.  Not every virtual page between start and end
1348 * is mapped; only those for which a resident page exists with the
1349 * corresponding offset from m_start are mapped.
1350 */
1351void
1352moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1353    vm_page_t m_start, vm_prot_t prot)
1354{
1355	vm_page_t m;
1356	vm_pindex_t diff, psize;
1357
1358	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1359
1360	psize = atop(end - start);
1361	m = m_start;
1362	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1363		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1364		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1365		m = TAILQ_NEXT(m, listq);
1366	}
1367}
1368
1369void
1370moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1371    vm_prot_t prot)
1372{
1373
1374	moea64_enter(mmu, pm, va, m,
1375	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1376}
1377
1378vm_paddr_t
1379moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1380{
1381	struct	pvo_entry *pvo;
1382	vm_paddr_t pa;
1383
1384	PMAP_LOCK(pm);
1385	pvo = moea64_pvo_find_va(pm, va);
1386	if (pvo == NULL)
1387		pa = 0;
1388	else
1389		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1390		    (va - PVO_VADDR(pvo));
1391	PMAP_UNLOCK(pm);
1392	return (pa);
1393}
1394
1395/*
1396 * Atomically extract and hold the physical page with the given
1397 * pmap and virtual address pair if that mapping permits the given
1398 * protection.
1399 */
1400vm_page_t
1401moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1402{
1403	struct	pvo_entry *pvo;
1404	vm_page_t m;
1405        vm_paddr_t pa;
1406
1407	m = NULL;
1408	pa = 0;
1409	PMAP_LOCK(pmap);
1410retry:
1411	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1412	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1413	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1414	     (prot & VM_PROT_WRITE) == 0)) {
1415		if (vm_page_pa_tryrelock(pmap,
1416			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1417			goto retry;
1418		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1419		vm_page_hold(m);
1420	}
1421	PA_UNLOCK_COND(pa);
1422	PMAP_UNLOCK(pmap);
1423	return (m);
1424}
1425
1426static mmu_t installed_mmu;
1427
1428static void *
1429moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1430{
1431	/*
1432	 * This entire routine is a horrible hack to avoid bothering kmem
1433	 * for new KVA addresses. Because this can get called from inside
1434	 * kmem allocation routines, calling kmem for a new address here
1435	 * can lead to multiply locking non-recursive mutexes.
1436	 */
1437        vm_offset_t va;
1438
1439        vm_page_t m;
1440        int pflags, needed_lock;
1441
1442	*flags = UMA_SLAB_PRIV;
1443	needed_lock = !PMAP_LOCKED(kernel_pmap);
1444	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1445
1446        for (;;) {
1447                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1448                if (m == NULL) {
1449                        if (wait & M_NOWAIT)
1450                                return (NULL);
1451                        VM_WAIT;
1452                } else
1453                        break;
1454        }
1455
1456	va = VM_PAGE_TO_PHYS(m);
1457
1458	LOCK_TABLE_WR();
1459	if (needed_lock)
1460		PMAP_LOCK(kernel_pmap);
1461
1462	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1463	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1464
1465	if (needed_lock)
1466		PMAP_UNLOCK(kernel_pmap);
1467	UNLOCK_TABLE_WR();
1468
1469	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1470                bzero((void *)va, PAGE_SIZE);
1471
1472	return (void *)va;
1473}
1474
1475extern int elf32_nxstack;
1476
1477void
1478moea64_init(mmu_t mmu)
1479{
1480
1481	CTR0(KTR_PMAP, "moea64_init");
1482
1483	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1484	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1485	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1486	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1487	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1488	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1489
1490	if (!hw_direct_map) {
1491		installed_mmu = mmu;
1492		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1493		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1494	}
1495
1496#ifdef COMPAT_FREEBSD32
1497	elf32_nxstack = 1;
1498#endif
1499
1500	moea64_initialized = TRUE;
1501}
1502
1503boolean_t
1504moea64_is_referenced(mmu_t mmu, vm_page_t m)
1505{
1506
1507	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1508	    ("moea64_is_referenced: page %p is not managed", m));
1509	return (moea64_query_bit(mmu, m, PTE_REF));
1510}
1511
1512boolean_t
1513moea64_is_modified(mmu_t mmu, vm_page_t m)
1514{
1515
1516	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1517	    ("moea64_is_modified: page %p is not managed", m));
1518
1519	/*
1520	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1521	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1522	 * is clear, no PTEs can have LPTE_CHG set.
1523	 */
1524	VM_OBJECT_ASSERT_LOCKED(m->object);
1525	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1526		return (FALSE);
1527	return (moea64_query_bit(mmu, m, LPTE_CHG));
1528}
1529
1530boolean_t
1531moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1532{
1533	struct pvo_entry *pvo;
1534	boolean_t rv;
1535
1536	PMAP_LOCK(pmap);
1537	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1538	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1539	PMAP_UNLOCK(pmap);
1540	return (rv);
1541}
1542
1543void
1544moea64_clear_modify(mmu_t mmu, vm_page_t m)
1545{
1546
1547	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1548	    ("moea64_clear_modify: page %p is not managed", m));
1549	VM_OBJECT_ASSERT_WLOCKED(m->object);
1550	KASSERT(!vm_page_xbusied(m),
1551	    ("moea64_clear_modify: page %p is exclusive busied", m));
1552
1553	/*
1554	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1555	 * set.  If the object containing the page is locked and the page is
1556	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1557	 */
1558	if ((m->aflags & PGA_WRITEABLE) == 0)
1559		return;
1560	moea64_clear_bit(mmu, m, LPTE_CHG);
1561}
1562
1563/*
1564 * Clear the write and modified bits in each of the given page's mappings.
1565 */
1566void
1567moea64_remove_write(mmu_t mmu, vm_page_t m)
1568{
1569	struct	pvo_entry *pvo;
1570	uintptr_t pt;
1571	pmap_t	pmap;
1572	uint64_t lo = 0;
1573
1574	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1575	    ("moea64_remove_write: page %p is not managed", m));
1576
1577	/*
1578	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1579	 * set by another thread while the object is locked.  Thus,
1580	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1581	 */
1582	VM_OBJECT_ASSERT_WLOCKED(m->object);
1583	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1584		return;
1585	powerpc_sync();
1586	LOCK_TABLE_RD();
1587	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1588		pmap = pvo->pvo_pmap;
1589		PMAP_LOCK(pmap);
1590		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1591			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1592			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1593			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1594			if (pt != -1) {
1595				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1596				lo |= pvo->pvo_pte.lpte.pte_lo;
1597				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1598				MOEA64_PTE_CHANGE(mmu, pt,
1599				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1600				if (pvo->pvo_pmap == kernel_pmap)
1601					isync();
1602			}
1603		}
1604		if ((lo & LPTE_CHG) != 0)
1605			vm_page_dirty(m);
1606		PMAP_UNLOCK(pmap);
1607	}
1608	UNLOCK_TABLE_RD();
1609	vm_page_aflag_clear(m, PGA_WRITEABLE);
1610}
1611
1612/*
1613 *	moea64_ts_referenced:
1614 *
1615 *	Return a count of reference bits for a page, clearing those bits.
1616 *	It is not necessary for every reference bit to be cleared, but it
1617 *	is necessary that 0 only be returned when there are truly no
1618 *	reference bits set.
1619 *
1620 *	XXX: The exact number of bits to check and clear is a matter that
1621 *	should be tested and standardized at some point in the future for
1622 *	optimal aging of shared pages.
1623 */
1624int
1625moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1626{
1627
1628	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1629	    ("moea64_ts_referenced: page %p is not managed", m));
1630	return (moea64_clear_bit(mmu, m, LPTE_REF));
1631}
1632
1633/*
1634 * Modify the WIMG settings of all mappings for a page.
1635 */
1636void
1637moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1638{
1639	struct	pvo_entry *pvo;
1640	struct  pvo_head *pvo_head;
1641	uintptr_t pt;
1642	pmap_t	pmap;
1643	uint64_t lo;
1644
1645	if ((m->oflags & VPO_UNMANAGED) != 0) {
1646		m->md.mdpg_cache_attrs = ma;
1647		return;
1648	}
1649
1650	pvo_head = vm_page_to_pvoh(m);
1651	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1652	LOCK_TABLE_RD();
1653	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1654		pmap = pvo->pvo_pmap;
1655		PMAP_LOCK(pmap);
1656		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1657		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1658		pvo->pvo_pte.lpte.pte_lo |= lo;
1659		if (pt != -1) {
1660			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1661			    pvo->pvo_vpn);
1662			if (pvo->pvo_pmap == kernel_pmap)
1663				isync();
1664		}
1665		PMAP_UNLOCK(pmap);
1666	}
1667	UNLOCK_TABLE_RD();
1668	m->md.mdpg_cache_attrs = ma;
1669}
1670
1671/*
1672 * Map a wired page into kernel virtual address space.
1673 */
1674void
1675moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1676{
1677	uint64_t	pte_lo;
1678	int		error;
1679
1680	pte_lo = moea64_calc_wimg(pa, ma);
1681
1682	LOCK_TABLE_WR();
1683	PMAP_LOCK(kernel_pmap);
1684	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1685	    NULL, va, pa, pte_lo, PVO_WIRED);
1686	PMAP_UNLOCK(kernel_pmap);
1687	UNLOCK_TABLE_WR();
1688
1689	if (error != 0 && error != ENOENT)
1690		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1691		    pa, error);
1692}
1693
1694void
1695moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1696{
1697
1698	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1699}
1700
1701/*
1702 * Extract the physical page address associated with the given kernel virtual
1703 * address.
1704 */
1705vm_paddr_t
1706moea64_kextract(mmu_t mmu, vm_offset_t va)
1707{
1708	struct		pvo_entry *pvo;
1709	vm_paddr_t pa;
1710
1711	/*
1712	 * Shortcut the direct-mapped case when applicable.  We never put
1713	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1714	 */
1715	if (va < VM_MIN_KERNEL_ADDRESS)
1716		return (va);
1717
1718	PMAP_LOCK(kernel_pmap);
1719	pvo = moea64_pvo_find_va(kernel_pmap, va);
1720	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1721	    va));
1722	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1723	PMAP_UNLOCK(kernel_pmap);
1724	return (pa);
1725}
1726
1727/*
1728 * Remove a wired page from kernel virtual address space.
1729 */
1730void
1731moea64_kremove(mmu_t mmu, vm_offset_t va)
1732{
1733	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1734}
1735
1736/*
1737 * Map a range of physical addresses into kernel virtual address space.
1738 *
1739 * The value passed in *virt is a suggested virtual address for the mapping.
1740 * Architectures which can support a direct-mapped physical to virtual region
1741 * can return the appropriate address within that region, leaving '*virt'
1742 * unchanged.  We cannot and therefore do not; *virt is updated with the
1743 * first usable address after the mapped region.
1744 */
1745vm_offset_t
1746moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1747    vm_paddr_t pa_end, int prot)
1748{
1749	vm_offset_t	sva, va;
1750
1751	sva = *virt;
1752	va = sva;
1753	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1754		moea64_kenter(mmu, va, pa_start);
1755	*virt = va;
1756
1757	return (sva);
1758}
1759
1760/*
1761 * Returns true if the pmap's pv is one of the first
1762 * 16 pvs linked to from this page.  This count may
1763 * be changed upwards or downwards in the future; it
1764 * is only necessary that true be returned for a small
1765 * subset of pmaps for proper page aging.
1766 */
1767boolean_t
1768moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1769{
1770        int loops;
1771	struct pvo_entry *pvo;
1772	boolean_t rv;
1773
1774	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1775	    ("moea64_page_exists_quick: page %p is not managed", m));
1776	loops = 0;
1777	rv = FALSE;
1778	LOCK_TABLE_RD();
1779	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1780		if (pvo->pvo_pmap == pmap) {
1781			rv = TRUE;
1782			break;
1783		}
1784		if (++loops >= 16)
1785			break;
1786	}
1787	UNLOCK_TABLE_RD();
1788	return (rv);
1789}
1790
1791/*
1792 * Return the number of managed mappings to the given physical page
1793 * that are wired.
1794 */
1795int
1796moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1797{
1798	struct pvo_entry *pvo;
1799	int count;
1800
1801	count = 0;
1802	if ((m->oflags & VPO_UNMANAGED) != 0)
1803		return (count);
1804	LOCK_TABLE_RD();
1805	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1806		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1807			count++;
1808	UNLOCK_TABLE_RD();
1809	return (count);
1810}
1811
1812static uintptr_t	moea64_vsidcontext;
1813
1814uintptr_t
1815moea64_get_unique_vsid(void) {
1816	u_int entropy;
1817	register_t hash;
1818	uint32_t mask;
1819	int i;
1820
1821	entropy = 0;
1822	__asm __volatile("mftb %0" : "=r"(entropy));
1823
1824	mtx_lock(&moea64_slb_mutex);
1825	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1826		u_int	n;
1827
1828		/*
1829		 * Create a new value by mutiplying by a prime and adding in
1830		 * entropy from the timebase register.  This is to make the
1831		 * VSID more random so that the PT hash function collides
1832		 * less often.  (Note that the prime casues gcc to do shifts
1833		 * instead of a multiply.)
1834		 */
1835		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1836		hash = moea64_vsidcontext & (NVSIDS - 1);
1837		if (hash == 0)		/* 0 is special, avoid it */
1838			continue;
1839		n = hash >> 5;
1840		mask = 1 << (hash & (VSID_NBPW - 1));
1841		hash = (moea64_vsidcontext & VSID_HASHMASK);
1842		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1843			/* anything free in this bucket? */
1844			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1845				entropy = (moea64_vsidcontext >> 20);
1846				continue;
1847			}
1848			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1849			mask = 1 << i;
1850			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1851			hash |= i;
1852		}
1853		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1854		    ("Allocating in-use VSID %#zx\n", hash));
1855		moea64_vsid_bitmap[n] |= mask;
1856		mtx_unlock(&moea64_slb_mutex);
1857		return (hash);
1858	}
1859
1860	mtx_unlock(&moea64_slb_mutex);
1861	panic("%s: out of segments",__func__);
1862}
1863
1864#ifdef __powerpc64__
1865void
1866moea64_pinit(mmu_t mmu, pmap_t pmap)
1867{
1868
1869	RB_INIT(&pmap->pmap_pvo);
1870
1871	pmap->pm_slb_tree_root = slb_alloc_tree();
1872	pmap->pm_slb = slb_alloc_user_cache();
1873	pmap->pm_slb_len = 0;
1874}
1875#else
1876void
1877moea64_pinit(mmu_t mmu, pmap_t pmap)
1878{
1879	int	i;
1880	uint32_t hash;
1881
1882	RB_INIT(&pmap->pmap_pvo);
1883
1884	if (pmap_bootstrapped)
1885		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1886		    (vm_offset_t)pmap);
1887	else
1888		pmap->pmap_phys = pmap;
1889
1890	/*
1891	 * Allocate some segment registers for this pmap.
1892	 */
1893	hash = moea64_get_unique_vsid();
1894
1895	for (i = 0; i < 16; i++)
1896		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1897
1898	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1899}
1900#endif
1901
1902/*
1903 * Initialize the pmap associated with process 0.
1904 */
1905void
1906moea64_pinit0(mmu_t mmu, pmap_t pm)
1907{
1908
1909	PMAP_LOCK_INIT(pm);
1910	moea64_pinit(mmu, pm);
1911	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1912}
1913
1914/*
1915 * Set the physical protection on the specified range of this map as requested.
1916 */
1917static void
1918moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1919{
1920	uintptr_t pt;
1921	struct	vm_page *pg;
1922	uint64_t oldlo;
1923
1924	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1925
1926	/*
1927	 * Grab the PTE pointer before we diddle with the cached PTE
1928	 * copy.
1929	 */
1930	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1931
1932	/*
1933	 * Change the protection of the page.
1934	 */
1935	oldlo = pvo->pvo_pte.lpte.pte_lo;
1936	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1937	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1938	if ((prot & VM_PROT_EXECUTE) == 0)
1939		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1940	if (prot & VM_PROT_WRITE)
1941		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1942	else
1943		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1944
1945	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1946
1947	/*
1948	 * If the PVO is in the page table, update that pte as well.
1949	 */
1950	if (pt != -1)
1951		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1952		    pvo->pvo_vpn);
1953	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1954	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1955		if ((pg->oflags & VPO_UNMANAGED) == 0)
1956			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1957		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1958		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1959	}
1960
1961	/*
1962	 * Update vm about the REF/CHG bits if the page is managed and we have
1963	 * removed write access.
1964	 */
1965	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1966	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1967		if (pg != NULL) {
1968			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1969				vm_page_dirty(pg);
1970			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1971				vm_page_aflag_set(pg, PGA_REFERENCED);
1972		}
1973	}
1974}
1975
1976void
1977moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1978    vm_prot_t prot)
1979{
1980	struct	pvo_entry *pvo, *tpvo, key;
1981
1982	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1983	    sva, eva, prot);
1984
1985	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1986	    ("moea64_protect: non current pmap"));
1987
1988	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1989		moea64_remove(mmu, pm, sva, eva);
1990		return;
1991	}
1992
1993	LOCK_TABLE_RD();
1994	PMAP_LOCK(pm);
1995	key.pvo_vaddr = sva;
1996	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1997	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1998		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1999		moea64_pvo_protect(mmu, pm, pvo, prot);
2000	}
2001	UNLOCK_TABLE_RD();
2002	PMAP_UNLOCK(pm);
2003}
2004
2005/*
2006 * Map a list of wired pages into kernel virtual address space.  This is
2007 * intended for temporary mappings which do not need page modification or
2008 * references recorded.  Existing mappings in the region are overwritten.
2009 */
2010void
2011moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2012{
2013	while (count-- > 0) {
2014		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2015		va += PAGE_SIZE;
2016		m++;
2017	}
2018}
2019
2020/*
2021 * Remove page mappings from kernel virtual address space.  Intended for
2022 * temporary mappings entered by moea64_qenter.
2023 */
2024void
2025moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2026{
2027	while (count-- > 0) {
2028		moea64_kremove(mmu, va);
2029		va += PAGE_SIZE;
2030	}
2031}
2032
2033void
2034moea64_release_vsid(uint64_t vsid)
2035{
2036	int idx, mask;
2037
2038	mtx_lock(&moea64_slb_mutex);
2039	idx = vsid & (NVSIDS-1);
2040	mask = 1 << (idx % VSID_NBPW);
2041	idx /= VSID_NBPW;
2042	KASSERT(moea64_vsid_bitmap[idx] & mask,
2043	    ("Freeing unallocated VSID %#jx", vsid));
2044	moea64_vsid_bitmap[idx] &= ~mask;
2045	mtx_unlock(&moea64_slb_mutex);
2046}
2047
2048
2049void
2050moea64_release(mmu_t mmu, pmap_t pmap)
2051{
2052
2053	/*
2054	 * Free segment registers' VSIDs
2055	 */
2056    #ifdef __powerpc64__
2057	slb_free_tree(pmap);
2058	slb_free_user_cache(pmap->pm_slb);
2059    #else
2060	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2061
2062	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2063    #endif
2064}
2065
2066/*
2067 * Remove all pages mapped by the specified pmap
2068 */
2069void
2070moea64_remove_pages(mmu_t mmu, pmap_t pm)
2071{
2072	struct	pvo_entry *pvo, *tpvo;
2073
2074	LOCK_TABLE_WR();
2075	PMAP_LOCK(pm);
2076	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2077		if (!(pvo->pvo_vaddr & PVO_WIRED))
2078			moea64_pvo_remove(mmu, pvo);
2079	}
2080	UNLOCK_TABLE_WR();
2081	PMAP_UNLOCK(pm);
2082}
2083
2084/*
2085 * Remove the given range of addresses from the specified map.
2086 */
2087void
2088moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2089{
2090	struct	pvo_entry *pvo, *tpvo, key;
2091
2092	/*
2093	 * Perform an unsynchronized read.  This is, however, safe.
2094	 */
2095	if (pm->pm_stats.resident_count == 0)
2096		return;
2097
2098	LOCK_TABLE_WR();
2099	PMAP_LOCK(pm);
2100	key.pvo_vaddr = sva;
2101	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2102	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2103		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2104		moea64_pvo_remove(mmu, pvo);
2105	}
2106	UNLOCK_TABLE_WR();
2107	PMAP_UNLOCK(pm);
2108}
2109
2110/*
2111 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2112 * will reflect changes in pte's back to the vm_page.
2113 */
2114void
2115moea64_remove_all(mmu_t mmu, vm_page_t m)
2116{
2117	struct	pvo_entry *pvo, *next_pvo;
2118	pmap_t	pmap;
2119
2120	LOCK_TABLE_WR();
2121	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2122		pmap = pvo->pvo_pmap;
2123		PMAP_LOCK(pmap);
2124		moea64_pvo_remove(mmu, pvo);
2125		PMAP_UNLOCK(pmap);
2126	}
2127	UNLOCK_TABLE_WR();
2128	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2129		vm_page_dirty(m);
2130	vm_page_aflag_clear(m, PGA_WRITEABLE);
2131	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2132}
2133
2134/*
2135 * Allocate a physical page of memory directly from the phys_avail map.
2136 * Can only be called from moea64_bootstrap before avail start and end are
2137 * calculated.
2138 */
2139vm_offset_t
2140moea64_bootstrap_alloc(vm_size_t size, u_int align)
2141{
2142	vm_offset_t	s, e;
2143	int		i, j;
2144
2145	size = round_page(size);
2146	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2147		if (align != 0)
2148			s = (phys_avail[i] + align - 1) & ~(align - 1);
2149		else
2150			s = phys_avail[i];
2151		e = s + size;
2152
2153		if (s < phys_avail[i] || e > phys_avail[i + 1])
2154			continue;
2155
2156		if (s + size > platform_real_maxaddr())
2157			continue;
2158
2159		if (s == phys_avail[i]) {
2160			phys_avail[i] += size;
2161		} else if (e == phys_avail[i + 1]) {
2162			phys_avail[i + 1] -= size;
2163		} else {
2164			for (j = phys_avail_count * 2; j > i; j -= 2) {
2165				phys_avail[j] = phys_avail[j - 2];
2166				phys_avail[j + 1] = phys_avail[j - 1];
2167			}
2168
2169			phys_avail[i + 3] = phys_avail[i + 1];
2170			phys_avail[i + 1] = s;
2171			phys_avail[i + 2] = e;
2172			phys_avail_count++;
2173		}
2174
2175		return (s);
2176	}
2177	panic("moea64_bootstrap_alloc: could not allocate memory");
2178}
2179
2180static int
2181moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2182    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2183    uint64_t pte_lo, int flags)
2184{
2185	struct	 pvo_entry *pvo;
2186	uint64_t vsid;
2187	int	 first;
2188	u_int	 ptegidx;
2189	int	 i;
2190	int      bootstrap;
2191
2192	/*
2193	 * One nasty thing that can happen here is that the UMA calls to
2194	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2195	 * which calls UMA...
2196	 *
2197	 * We break the loop by detecting recursion and allocating out of
2198	 * the bootstrap pool.
2199	 */
2200
2201	first = 0;
2202	bootstrap = (flags & PVO_BOOTSTRAP);
2203
2204	if (!moea64_initialized)
2205		bootstrap = 1;
2206
2207	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2208	rw_assert(&moea64_table_lock, RA_WLOCKED);
2209
2210	/*
2211	 * Compute the PTE Group index.
2212	 */
2213	va &= ~ADDR_POFF;
2214	vsid = va_to_vsid(pm, va);
2215	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2216
2217	/*
2218	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2219	 * there is a mapping.
2220	 */
2221	moea64_pvo_enter_calls++;
2222
2223	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2224		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2225			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2226			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2227			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2228			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2229					/* Re-insert if spilled */
2230					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2231					    &pvo->pvo_pte.lpte);
2232					if (i >= 0)
2233						PVO_PTEGIDX_SET(pvo, i);
2234					moea64_pte_overflow--;
2235				}
2236				return (0);
2237			}
2238			moea64_pvo_remove(mmu, pvo);
2239			break;
2240		}
2241	}
2242
2243	/*
2244	 * If we aren't overwriting a mapping, try to allocate.
2245	 */
2246	if (bootstrap) {
2247		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2248			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2249			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2250			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2251		}
2252		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2253		moea64_bpvo_pool_index++;
2254		bootstrap = 1;
2255	} else {
2256		pvo = uma_zalloc(zone, M_NOWAIT);
2257	}
2258
2259	if (pvo == NULL)
2260		return (ENOMEM);
2261
2262	moea64_pvo_entries++;
2263	pvo->pvo_vaddr = va;
2264	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2265	    | (vsid << 16);
2266	pvo->pvo_pmap = pm;
2267	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2268	pvo->pvo_vaddr &= ~ADDR_POFF;
2269
2270	if (flags & PVO_WIRED)
2271		pvo->pvo_vaddr |= PVO_WIRED;
2272	if (pvo_head != NULL)
2273		pvo->pvo_vaddr |= PVO_MANAGED;
2274	if (bootstrap)
2275		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2276	if (flags & PVO_LARGE)
2277		pvo->pvo_vaddr |= PVO_LARGE;
2278
2279	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2280	    (uint64_t)(pa) | pte_lo, flags);
2281
2282	/*
2283	 * Add to pmap list
2284	 */
2285	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2286
2287	/*
2288	 * Remember if the list was empty and therefore will be the first
2289	 * item.
2290	 */
2291	if (pvo_head != NULL) {
2292		if (LIST_FIRST(pvo_head) == NULL)
2293			first = 1;
2294		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2295	}
2296
2297	if (pvo->pvo_vaddr & PVO_WIRED) {
2298		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2299		pm->pm_stats.wired_count++;
2300	}
2301	pm->pm_stats.resident_count++;
2302
2303	/*
2304	 * We hope this succeeds but it isn't required.
2305	 */
2306	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2307	if (i >= 0) {
2308		PVO_PTEGIDX_SET(pvo, i);
2309	} else {
2310		panic("moea64_pvo_enter: overflow");
2311		moea64_pte_overflow++;
2312	}
2313
2314	if (pm == kernel_pmap)
2315		isync();
2316
2317#ifdef __powerpc64__
2318	/*
2319	 * Make sure all our bootstrap mappings are in the SLB as soon
2320	 * as virtual memory is switched on.
2321	 */
2322	if (!pmap_bootstrapped)
2323		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2324#endif
2325
2326	return (first ? ENOENT : 0);
2327}
2328
2329static void
2330moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2331{
2332	struct	vm_page *pg;
2333	uintptr_t pt;
2334
2335	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2336	rw_assert(&moea64_table_lock, RA_WLOCKED);
2337
2338	/*
2339	 * If there is an active pte entry, we need to deactivate it (and
2340	 * save the ref & cfg bits).
2341	 */
2342	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2343	if (pt != -1) {
2344		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2345		PVO_PTEGIDX_CLR(pvo);
2346	} else {
2347		moea64_pte_overflow--;
2348	}
2349
2350	/*
2351	 * Update our statistics.
2352	 */
2353	pvo->pvo_pmap->pm_stats.resident_count--;
2354	if (pvo->pvo_vaddr & PVO_WIRED)
2355		pvo->pvo_pmap->pm_stats.wired_count--;
2356
2357	/*
2358	 * Remove this PVO from the pmap list.
2359	 */
2360	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2361
2362	/*
2363	 * Remove this from the overflow list and return it to the pool
2364	 * if we aren't going to reuse it.
2365	 */
2366	LIST_REMOVE(pvo, pvo_olink);
2367
2368	/*
2369	 * Update vm about the REF/CHG bits if the page is managed.
2370	 */
2371	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2372
2373	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2374		LIST_REMOVE(pvo, pvo_vlink);
2375		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2376			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2377				vm_page_dirty(pg);
2378			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2379				vm_page_aflag_set(pg, PGA_REFERENCED);
2380			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2381				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2382		}
2383		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2384			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2385	}
2386
2387	moea64_pvo_entries--;
2388	moea64_pvo_remove_calls++;
2389
2390	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2391		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2392		    moea64_upvo_zone, pvo);
2393}
2394
2395static struct pvo_entry *
2396moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2397{
2398	struct pvo_entry key;
2399
2400	key.pvo_vaddr = va & ~ADDR_POFF;
2401	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2402}
2403
2404static boolean_t
2405moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2406{
2407	struct	pvo_entry *pvo;
2408	uintptr_t pt;
2409
2410	LOCK_TABLE_RD();
2411	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2412		/*
2413		 * See if we saved the bit off.  If so, return success.
2414		 */
2415		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2416			UNLOCK_TABLE_RD();
2417			return (TRUE);
2418		}
2419	}
2420
2421	/*
2422	 * No luck, now go through the hard part of looking at the PTEs
2423	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2424	 * the PTEs.
2425	 */
2426	powerpc_sync();
2427	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2428
2429		/*
2430		 * See if this pvo has a valid PTE.  if so, fetch the
2431		 * REF/CHG bits from the valid PTE.  If the appropriate
2432		 * ptebit is set, return success.
2433		 */
2434		PMAP_LOCK(pvo->pvo_pmap);
2435		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2436		if (pt != -1) {
2437			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2438			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2439				PMAP_UNLOCK(pvo->pvo_pmap);
2440				UNLOCK_TABLE_RD();
2441				return (TRUE);
2442			}
2443		}
2444		PMAP_UNLOCK(pvo->pvo_pmap);
2445	}
2446
2447	UNLOCK_TABLE_RD();
2448	return (FALSE);
2449}
2450
2451static u_int
2452moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2453{
2454	u_int	count;
2455	struct	pvo_entry *pvo;
2456	uintptr_t pt;
2457
2458	/*
2459	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2460	 * we can reset the right ones).  note that since the pvo entries and
2461	 * list heads are accessed via BAT0 and are never placed in the page
2462	 * table, we don't have to worry about further accesses setting the
2463	 * REF/CHG bits.
2464	 */
2465	powerpc_sync();
2466
2467	/*
2468	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2469	 * valid pte clear the ptebit from the valid pte.
2470	 */
2471	count = 0;
2472	LOCK_TABLE_RD();
2473	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2474		PMAP_LOCK(pvo->pvo_pmap);
2475		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2476		if (pt != -1) {
2477			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2478			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2479				count++;
2480				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2481				    pvo->pvo_vpn, ptebit);
2482			}
2483		}
2484		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2485		PMAP_UNLOCK(pvo->pvo_pmap);
2486	}
2487
2488	UNLOCK_TABLE_RD();
2489	return (count);
2490}
2491
2492boolean_t
2493moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2494{
2495	struct pvo_entry *pvo, key;
2496	vm_offset_t ppa;
2497	int error = 0;
2498
2499	PMAP_LOCK(kernel_pmap);
2500	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2501	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2502	    ppa < pa + size; ppa += PAGE_SIZE,
2503	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2504		if (pvo == NULL ||
2505		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2506			error = EFAULT;
2507			break;
2508		}
2509	}
2510	PMAP_UNLOCK(kernel_pmap);
2511
2512	return (error);
2513}
2514
2515/*
2516 * Map a set of physical memory pages into the kernel virtual
2517 * address space. Return a pointer to where it is mapped. This
2518 * routine is intended to be used for mapping device memory,
2519 * NOT real memory.
2520 */
2521void *
2522moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2523{
2524	vm_offset_t va, tmpva, ppa, offset;
2525
2526	ppa = trunc_page(pa);
2527	offset = pa & PAGE_MASK;
2528	size = roundup2(offset + size, PAGE_SIZE);
2529
2530	va = kva_alloc(size);
2531
2532	if (!va)
2533		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2534
2535	for (tmpva = va; size > 0;) {
2536		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2537		size -= PAGE_SIZE;
2538		tmpva += PAGE_SIZE;
2539		ppa += PAGE_SIZE;
2540	}
2541
2542	return ((void *)(va + offset));
2543}
2544
2545void *
2546moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2547{
2548
2549	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2550}
2551
2552void
2553moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2554{
2555	vm_offset_t base, offset;
2556
2557	base = trunc_page(va);
2558	offset = va & PAGE_MASK;
2559	size = roundup2(offset + size, PAGE_SIZE);
2560
2561	kva_free(base, size);
2562}
2563
2564void
2565moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2566{
2567	struct pvo_entry *pvo;
2568	vm_offset_t lim;
2569	vm_paddr_t pa;
2570	vm_size_t len;
2571
2572	PMAP_LOCK(pm);
2573	while (sz > 0) {
2574		lim = round_page(va);
2575		len = MIN(lim - va, sz);
2576		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2577		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2578			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2579			    (va & ADDR_POFF);
2580			moea64_syncicache(mmu, pm, va, pa, len);
2581		}
2582		va += len;
2583		sz -= len;
2584	}
2585	PMAP_UNLOCK(pm);
2586}
2587