mmu_oea64.c revision 232980
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 232980 2012-03-14 20:19:49Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_compat.h"
118#include "opt_kstack_pages.h"
119
120#include <sys/param.h>
121#include <sys/kernel.h>
122#include <sys/queue.h>
123#include <sys/cpuset.h>
124#include <sys/ktr.h>
125#include <sys/lock.h>
126#include <sys/msgbuf.h>
127#include <sys/mutex.h>
128#include <sys/proc.h>
129#include <sys/sched.h>
130#include <sys/sysctl.h>
131#include <sys/systm.h>
132#include <sys/vmmeter.h>
133
134#include <sys/kdb.h>
135
136#include <dev/ofw/openfirm.h>
137
138#include <vm/vm.h>
139#include <vm/vm_param.h>
140#include <vm/vm_kern.h>
141#include <vm/vm_page.h>
142#include <vm/vm_map.h>
143#include <vm/vm_object.h>
144#include <vm/vm_extern.h>
145#include <vm/vm_pageout.h>
146#include <vm/vm_pager.h>
147#include <vm/uma.h>
148
149#include <machine/_inttypes.h>
150#include <machine/cpu.h>
151#include <machine/platform.h>
152#include <machine/frame.h>
153#include <machine/md_var.h>
154#include <machine/psl.h>
155#include <machine/bat.h>
156#include <machine/hid.h>
157#include <machine/pte.h>
158#include <machine/sr.h>
159#include <machine/trap.h>
160#include <machine/mmuvar.h>
161
162#include "mmu_oea64.h"
163#include "mmu_if.h"
164#include "moea64_if.h"
165
166void moea64_release_vsid(uint64_t vsid);
167uintptr_t moea64_get_unique_vsid(void);
168
169#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
170#define ENABLE_TRANS(msr)	mtmsr(msr)
171
172#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
173#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
174#define	VSID_HASH_MASK		0x0000007fffffffffULL
175
176#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
177#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
178#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	cell_t	om_pa_hi;
184	cell_t	om_pa_lo;
185	cell_t	om_mode;
186};
187
188/*
189 * Map of physical memory regions.
190 */
191static struct	mem_region *regions;
192static struct	mem_region *pregions;
193static u_int	phys_avail_count;
194static int	regions_sz, pregions_sz;
195
196extern void bs_remap_earlyboot(void);
197
198/*
199 * Lock for the pteg and pvo tables.
200 */
201struct mtx	moea64_table_mutex;
202struct mtx	moea64_slb_mutex;
203
204/*
205 * PTEG data.
206 */
207u_int		moea64_pteg_count;
208u_int		moea64_pteg_mask;
209
210/*
211 * PVO data.
212 */
213struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
214struct	pvo_head moea64_pvo_kunmanaged =	/* list of unmanaged pages */
215    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
216
217uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
218uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
219
220#define	BPVO_POOL_SIZE	327680
221static struct	pvo_entry *moea64_bpvo_pool;
222static int	moea64_bpvo_pool_index = 0;
223
224#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
225#ifdef __powerpc64__
226#define	NVSIDS		(NPMAPS * 16)
227#define VSID_HASHMASK	0xffffffffUL
228#else
229#define NVSIDS		NPMAPS
230#define VSID_HASHMASK	0xfffffUL
231#endif
232static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
233
234static boolean_t moea64_initialized = FALSE;
235
236/*
237 * Statistics.
238 */
239u_int	moea64_pte_valid = 0;
240u_int	moea64_pte_overflow = 0;
241u_int	moea64_pvo_entries = 0;
242u_int	moea64_pvo_enter_calls = 0;
243u_int	moea64_pvo_remove_calls = 0;
244SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
245    &moea64_pte_valid, 0, "");
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
247    &moea64_pte_overflow, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
249    &moea64_pvo_entries, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
251    &moea64_pvo_enter_calls, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
253    &moea64_pvo_remove_calls, 0, "");
254
255vm_offset_t	moea64_scratchpage_va[2];
256struct pvo_entry *moea64_scratchpage_pvo[2];
257uintptr_t	moea64_scratchpage_pte[2];
258struct	mtx	moea64_scratchpage_mtx;
259
260uint64_t 	moea64_large_page_mask = 0;
261int		moea64_large_page_size = 0;
262int		moea64_large_page_shift = 0;
263
264/*
265 * PVO calls.
266 */
267static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
268		    vm_offset_t, vm_offset_t, uint64_t, int);
269static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
270static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
271
272/*
273 * Utility routines.
274 */
275static void		moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
276			    vm_page_t, vm_prot_t, boolean_t);
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_clear_reference(mmu_t, vm_page_t);
289void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
290void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
291void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
292    vm_prot_t);
293void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
294vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
295vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
296void moea64_init(mmu_t);
297boolean_t moea64_is_modified(mmu_t, vm_page_t);
298boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
299boolean_t moea64_is_referenced(mmu_t, vm_page_t);
300boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
301vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
302boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
303int moea64_page_wired_mappings(mmu_t, vm_page_t);
304void moea64_pinit(mmu_t, pmap_t);
305void moea64_pinit0(mmu_t, pmap_t);
306void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
307void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
308void moea64_qremove(mmu_t, vm_offset_t, int);
309void moea64_release(mmu_t, pmap_t);
310void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
311void moea64_remove_all(mmu_t, vm_page_t);
312void moea64_remove_write(mmu_t, vm_page_t);
313void moea64_zero_page(mmu_t, vm_page_t);
314void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
315void moea64_zero_page_idle(mmu_t, vm_page_t);
316void moea64_activate(mmu_t, struct thread *);
317void moea64_deactivate(mmu_t, struct thread *);
318void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
319void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
320void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
321vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
322void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
323void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
324void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
325boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
326static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
327
328static mmu_method_t moea64_methods[] = {
329	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
330	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
331	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
332	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
333	MMUMETHOD(mmu_enter,		moea64_enter),
334	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
335	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
336	MMUMETHOD(mmu_extract,		moea64_extract),
337	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
338	MMUMETHOD(mmu_init,		moea64_init),
339	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
340	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
341	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
342	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
343	MMUMETHOD(mmu_map,     		moea64_map),
344	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
345	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
346	MMUMETHOD(mmu_pinit,		moea64_pinit),
347	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
348	MMUMETHOD(mmu_protect,		moea64_protect),
349	MMUMETHOD(mmu_qenter,		moea64_qenter),
350	MMUMETHOD(mmu_qremove,		moea64_qremove),
351	MMUMETHOD(mmu_release,		moea64_release),
352	MMUMETHOD(mmu_remove,		moea64_remove),
353	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
354	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
355	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
356	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
357	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
358	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
359	MMUMETHOD(mmu_activate,		moea64_activate),
360	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
361	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
362
363	/* Internal interfaces */
364	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
365	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
366	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
367	MMUMETHOD(mmu_kextract,		moea64_kextract),
368	MMUMETHOD(mmu_kenter,		moea64_kenter),
369	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
370	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
371
372	{ 0, 0 }
373};
374
375MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
376
377static __inline u_int
378va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
379{
380	uint64_t hash;
381	int shift;
382
383	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
384	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
385	    shift);
386	return (hash & moea64_pteg_mask);
387}
388
389static __inline struct pvo_head *
390vm_page_to_pvoh(vm_page_t m)
391{
392
393	return (&m->md.mdpg_pvoh);
394}
395
396static __inline void
397moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
398{
399
400	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
401	m->md.mdpg_attrs &= ~ptebit;
402}
403
404static __inline u_int64_t
405moea64_attr_fetch(vm_page_t m)
406{
407
408	return (m->md.mdpg_attrs);
409}
410
411static __inline void
412moea64_attr_save(vm_page_t m, u_int64_t ptebit)
413{
414
415	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
416	m->md.mdpg_attrs |= ptebit;
417}
418
419static __inline void
420moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
421    uint64_t pte_lo, int flags)
422{
423
424	ASSERT_TABLE_LOCK();
425
426	/*
427	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
428	 * set when the real pte is set in memory.
429	 *
430	 * Note: Don't set the valid bit for correct operation of tlb update.
431	 */
432	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
433	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
434
435	if (flags & PVO_LARGE)
436		pt->pte_hi |= LPTE_BIG;
437
438	pt->pte_lo = pte_lo;
439}
440
441static __inline uint64_t
442moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
443{
444	uint64_t pte_lo;
445	int i;
446
447	if (ma != VM_MEMATTR_DEFAULT) {
448		switch (ma) {
449		case VM_MEMATTR_UNCACHEABLE:
450			return (LPTE_I | LPTE_G);
451		case VM_MEMATTR_WRITE_COMBINING:
452		case VM_MEMATTR_WRITE_BACK:
453		case VM_MEMATTR_PREFETCHABLE:
454			return (LPTE_I);
455		case VM_MEMATTR_WRITE_THROUGH:
456			return (LPTE_W | LPTE_M);
457		}
458	}
459
460	/*
461	 * Assume the page is cache inhibited and access is guarded unless
462	 * it's in our available memory array.
463	 */
464	pte_lo = LPTE_I | LPTE_G;
465	for (i = 0; i < pregions_sz; i++) {
466		if ((pa >= pregions[i].mr_start) &&
467		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
468			pte_lo &= ~(LPTE_I | LPTE_G);
469			pte_lo |= LPTE_M;
470			break;
471		}
472	}
473
474	return pte_lo;
475}
476
477/*
478 * Quick sort callout for comparing memory regions.
479 */
480static int	om_cmp(const void *a, const void *b);
481
482static int
483om_cmp(const void *a, const void *b)
484{
485	const struct	ofw_map *mapa;
486	const struct	ofw_map *mapb;
487
488	mapa = a;
489	mapb = b;
490	if (mapa->om_pa_hi < mapb->om_pa_hi)
491		return (-1);
492	else if (mapa->om_pa_hi > mapb->om_pa_hi)
493		return (1);
494	else if (mapa->om_pa_lo < mapb->om_pa_lo)
495		return (-1);
496	else if (mapa->om_pa_lo > mapb->om_pa_lo)
497		return (1);
498	else
499		return (0);
500}
501
502static void
503moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
504{
505	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
506	register_t	msr;
507	vm_offset_t	off;
508	vm_paddr_t	pa_base;
509	int		i;
510
511	bzero(translations, sz);
512	if (OF_getprop(mmu, "translations", translations, sz) == -1)
513		panic("moea64_bootstrap: can't get ofw translations");
514
515	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
516	sz /= sizeof(*translations);
517	qsort(translations, sz, sizeof (*translations), om_cmp);
518
519	for (i = 0; i < sz; i++) {
520		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
521		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
522		    translations[i].om_len);
523
524		if (translations[i].om_pa_lo % PAGE_SIZE)
525			panic("OFW translation not page-aligned!");
526
527		pa_base = translations[i].om_pa_lo;
528
529	      #ifdef __powerpc64__
530		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
531	      #else
532		if (translations[i].om_pa_hi)
533			panic("OFW translations above 32-bit boundary!");
534	      #endif
535
536		/* Now enter the pages for this mapping */
537
538		DISABLE_TRANS(msr);
539		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
540			if (moea64_pvo_find_va(kernel_pmap,
541			    translations[i].om_va + off) != NULL)
542				continue;
543
544			moea64_kenter(mmup, translations[i].om_va + off,
545			    pa_base + off);
546		}
547		ENABLE_TRANS(msr);
548	}
549}
550
551#ifdef __powerpc64__
552static void
553moea64_probe_large_page(void)
554{
555	uint16_t pvr = mfpvr() >> 16;
556
557	switch (pvr) {
558	case IBM970:
559	case IBM970FX:
560	case IBM970MP:
561		powerpc_sync(); isync();
562		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
563		powerpc_sync(); isync();
564
565		/* FALLTHROUGH */
566	case IBMCELLBE:
567		moea64_large_page_size = 0x1000000; /* 16 MB */
568		moea64_large_page_shift = 24;
569		break;
570	default:
571		moea64_large_page_size = 0;
572	}
573
574	moea64_large_page_mask = moea64_large_page_size - 1;
575}
576
577static void
578moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
579{
580	struct slb *cache;
581	struct slb entry;
582	uint64_t esid, slbe;
583	uint64_t i;
584
585	cache = PCPU_GET(slb);
586	esid = va >> ADDR_SR_SHFT;
587	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
588
589	for (i = 0; i < 64; i++) {
590		if (cache[i].slbe == (slbe | i))
591			return;
592	}
593
594	entry.slbe = slbe;
595	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
596	if (large)
597		entry.slbv |= SLBV_L;
598
599	slb_insert_kernel(entry.slbe, entry.slbv);
600}
601#endif
602
603static void
604moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
605    vm_offset_t kernelend)
606{
607	register_t msr;
608	vm_paddr_t pa;
609	vm_offset_t size, off;
610	uint64_t pte_lo;
611	int i;
612
613	if (moea64_large_page_size == 0)
614		hw_direct_map = 0;
615
616	DISABLE_TRANS(msr);
617	if (hw_direct_map) {
618		PMAP_LOCK(kernel_pmap);
619		for (i = 0; i < pregions_sz; i++) {
620		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
621		     pregions[i].mr_size; pa += moea64_large_page_size) {
622			pte_lo = LPTE_M;
623
624			/*
625			 * Set memory access as guarded if prefetch within
626			 * the page could exit the available physmem area.
627			 */
628			if (pa & moea64_large_page_mask) {
629				pa &= moea64_large_page_mask;
630				pte_lo |= LPTE_G;
631			}
632			if (pa + moea64_large_page_size >
633			    pregions[i].mr_start + pregions[i].mr_size)
634				pte_lo |= LPTE_G;
635
636			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
637				    &moea64_pvo_kunmanaged, pa, pa,
638				    pte_lo, PVO_WIRED | PVO_LARGE);
639		  }
640		}
641		PMAP_UNLOCK(kernel_pmap);
642	} else {
643		size = sizeof(struct pvo_head) * moea64_pteg_count;
644		off = (vm_offset_t)(moea64_pvo_table);
645		for (pa = off; pa < off + size; pa += PAGE_SIZE)
646			moea64_kenter(mmup, pa, pa);
647		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
648		off = (vm_offset_t)(moea64_bpvo_pool);
649		for (pa = off; pa < off + size; pa += PAGE_SIZE)
650		moea64_kenter(mmup, pa, pa);
651
652		/*
653		 * Map certain important things, like ourselves.
654		 *
655		 * NOTE: We do not map the exception vector space. That code is
656		 * used only in real mode, and leaving it unmapped allows us to
657		 * catch NULL pointer deferences, instead of making NULL a valid
658		 * address.
659		 */
660
661		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
662		    pa += PAGE_SIZE)
663			moea64_kenter(mmup, pa, pa);
664	}
665	ENABLE_TRANS(msr);
666}
667
668void
669moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
670{
671	int		i, j;
672	vm_size_t	physsz, hwphyssz;
673
674#ifndef __powerpc64__
675	/* We don't have a direct map since there is no BAT */
676	hw_direct_map = 0;
677
678	/* Make sure battable is zero, since we have no BAT */
679	for (i = 0; i < 16; i++) {
680		battable[i].batu = 0;
681		battable[i].batl = 0;
682	}
683#else
684	moea64_probe_large_page();
685
686	/* Use a direct map if we have large page support */
687	if (moea64_large_page_size > 0)
688		hw_direct_map = 1;
689	else
690		hw_direct_map = 0;
691#endif
692
693	/* Get physical memory regions from firmware */
694	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
695	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
696
697	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
698		panic("moea64_bootstrap: phys_avail too small");
699
700	phys_avail_count = 0;
701	physsz = 0;
702	hwphyssz = 0;
703	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
704	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
705		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
706		    regions[i].mr_start + regions[i].mr_size,
707		    regions[i].mr_size);
708		if (hwphyssz != 0 &&
709		    (physsz + regions[i].mr_size) >= hwphyssz) {
710			if (physsz < hwphyssz) {
711				phys_avail[j] = regions[i].mr_start;
712				phys_avail[j + 1] = regions[i].mr_start +
713				    hwphyssz - physsz;
714				physsz = hwphyssz;
715				phys_avail_count++;
716			}
717			break;
718		}
719		phys_avail[j] = regions[i].mr_start;
720		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
721		phys_avail_count++;
722		physsz += regions[i].mr_size;
723	}
724
725	/* Check for overlap with the kernel and exception vectors */
726	for (j = 0; j < 2*phys_avail_count; j+=2) {
727		if (phys_avail[j] < EXC_LAST)
728			phys_avail[j] += EXC_LAST;
729
730		if (kernelstart >= phys_avail[j] &&
731		    kernelstart < phys_avail[j+1]) {
732			if (kernelend < phys_avail[j+1]) {
733				phys_avail[2*phys_avail_count] =
734				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
735				phys_avail[2*phys_avail_count + 1] =
736				    phys_avail[j+1];
737				phys_avail_count++;
738			}
739
740			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
741		}
742
743		if (kernelend >= phys_avail[j] &&
744		    kernelend < phys_avail[j+1]) {
745			if (kernelstart > phys_avail[j]) {
746				phys_avail[2*phys_avail_count] = phys_avail[j];
747				phys_avail[2*phys_avail_count + 1] =
748				    kernelstart & ~PAGE_MASK;
749				phys_avail_count++;
750			}
751
752			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
753		}
754	}
755
756	physmem = btoc(physsz);
757
758#ifdef PTEGCOUNT
759	moea64_pteg_count = PTEGCOUNT;
760#else
761	moea64_pteg_count = 0x1000;
762
763	while (moea64_pteg_count < physmem)
764		moea64_pteg_count <<= 1;
765
766	moea64_pteg_count >>= 1;
767#endif /* PTEGCOUNT */
768}
769
770void
771moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
772{
773	vm_size_t	size;
774	register_t	msr;
775	int		i;
776
777	/*
778	 * Set PTEG mask
779	 */
780	moea64_pteg_mask = moea64_pteg_count - 1;
781
782	/*
783	 * Allocate pv/overflow lists.
784	 */
785	size = sizeof(struct pvo_head) * moea64_pteg_count;
786
787	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
788	    PAGE_SIZE);
789	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
790
791	DISABLE_TRANS(msr);
792	for (i = 0; i < moea64_pteg_count; i++)
793		LIST_INIT(&moea64_pvo_table[i]);
794	ENABLE_TRANS(msr);
795
796	/*
797	 * Initialize the lock that synchronizes access to the pteg and pvo
798	 * tables.
799	 */
800	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
801	    MTX_RECURSE);
802	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
803
804	/*
805	 * Initialise the unmanaged pvo pool.
806	 */
807	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
808		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
809	moea64_bpvo_pool_index = 0;
810
811	/*
812	 * Make sure kernel vsid is allocated as well as VSID 0.
813	 */
814	#ifndef __powerpc64__
815	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
816		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
817	moea64_vsid_bitmap[0] |= 1;
818	#endif
819
820	/*
821	 * Initialize the kernel pmap (which is statically allocated).
822	 */
823	#ifdef __powerpc64__
824	for (i = 0; i < 64; i++) {
825		pcpup->pc_slb[i].slbv = 0;
826		pcpup->pc_slb[i].slbe = 0;
827	}
828	#else
829	for (i = 0; i < 16; i++)
830		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
831	#endif
832
833	kernel_pmap->pmap_phys = kernel_pmap;
834	CPU_FILL(&kernel_pmap->pm_active);
835	LIST_INIT(&kernel_pmap->pmap_pvo);
836
837	PMAP_LOCK_INIT(kernel_pmap);
838
839	/*
840	 * Now map in all the other buffers we allocated earlier
841	 */
842
843	moea64_setup_direct_map(mmup, kernelstart, kernelend);
844}
845
846void
847moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
848{
849	ihandle_t	mmui;
850	phandle_t	chosen;
851	phandle_t	mmu;
852	size_t		sz;
853	int		i;
854	vm_offset_t	pa, va;
855	void		*dpcpu;
856
857	/*
858	 * Set up the Open Firmware pmap and add its mappings if not in real
859	 * mode.
860	 */
861
862	chosen = OF_finddevice("/chosen");
863	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
864	    mmu = OF_instance_to_package(mmui);
865	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
866		sz = 0;
867	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
868		panic("moea64_bootstrap: too many ofw translations");
869
870	    if (sz > 0)
871		moea64_add_ofw_mappings(mmup, mmu, sz);
872	}
873
874	/*
875	 * Calculate the last available physical address.
876	 */
877	for (i = 0; phys_avail[i + 2] != 0; i += 2)
878		;
879	Maxmem = powerpc_btop(phys_avail[i + 1]);
880
881	/*
882	 * Initialize MMU and remap early physical mappings
883	 */
884	MMU_CPU_BOOTSTRAP(mmup,0);
885	mtmsr(mfmsr() | PSL_DR | PSL_IR);
886	pmap_bootstrapped++;
887	bs_remap_earlyboot();
888
889	/*
890	 * Set the start and end of kva.
891	 */
892	virtual_avail = VM_MIN_KERNEL_ADDRESS;
893	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
894
895	/*
896	 * Map the entire KVA range into the SLB. We must not fault there.
897	 */
898	#ifdef __powerpc64__
899	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
900		moea64_bootstrap_slb_prefault(va, 0);
901	#endif
902
903	/*
904	 * Figure out how far we can extend virtual_end into segment 16
905	 * without running into existing mappings. Segment 16 is guaranteed
906	 * to contain neither RAM nor devices (at least on Apple hardware),
907	 * but will generally contain some OFW mappings we should not
908	 * step on.
909	 */
910
911	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
912	PMAP_LOCK(kernel_pmap);
913	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
914	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
915		virtual_end += PAGE_SIZE;
916	PMAP_UNLOCK(kernel_pmap);
917	#endif
918
919	/*
920	 * Allocate a kernel stack with a guard page for thread0 and map it
921	 * into the kernel page map.
922	 */
923	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
924	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
925	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
926	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
927	thread0.td_kstack = va;
928	thread0.td_kstack_pages = KSTACK_PAGES;
929	for (i = 0; i < KSTACK_PAGES; i++) {
930		moea64_kenter(mmup, va, pa);
931		pa += PAGE_SIZE;
932		va += PAGE_SIZE;
933	}
934
935	/*
936	 * Allocate virtual address space for the message buffer.
937	 */
938	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
939	msgbufp = (struct msgbuf *)virtual_avail;
940	va = virtual_avail;
941	virtual_avail += round_page(msgbufsize);
942	while (va < virtual_avail) {
943		moea64_kenter(mmup, va, pa);
944		pa += PAGE_SIZE;
945		va += PAGE_SIZE;
946	}
947
948	/*
949	 * Allocate virtual address space for the dynamic percpu area.
950	 */
951	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
952	dpcpu = (void *)virtual_avail;
953	va = virtual_avail;
954	virtual_avail += DPCPU_SIZE;
955	while (va < virtual_avail) {
956		moea64_kenter(mmup, va, pa);
957		pa += PAGE_SIZE;
958		va += PAGE_SIZE;
959	}
960	dpcpu_init(dpcpu, 0);
961
962	/*
963	 * Allocate some things for page zeroing. We put this directly
964	 * in the page table, marked with LPTE_LOCKED, to avoid any
965	 * of the PVO book-keeping or other parts of the VM system
966	 * from even knowing that this hack exists.
967	 */
968
969	if (!hw_direct_map) {
970		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
971		    MTX_DEF);
972		for (i = 0; i < 2; i++) {
973			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
974			virtual_end -= PAGE_SIZE;
975
976			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
977
978			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
979			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
980			LOCK_TABLE();
981			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
982			    mmup, moea64_scratchpage_pvo[i]);
983			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
984			    |= LPTE_LOCKED;
985			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
986			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
987			    moea64_scratchpage_pvo[i]->pvo_vpn);
988			UNLOCK_TABLE();
989		}
990	}
991}
992
993/*
994 * Activate a user pmap.  The pmap must be activated before its address
995 * space can be accessed in any way.
996 */
997void
998moea64_activate(mmu_t mmu, struct thread *td)
999{
1000	pmap_t	pm;
1001
1002	pm = &td->td_proc->p_vmspace->vm_pmap;
1003	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1004
1005	#ifdef __powerpc64__
1006	PCPU_SET(userslb, pm->pm_slb);
1007	#else
1008	PCPU_SET(curpmap, pm->pmap_phys);
1009	#endif
1010}
1011
1012void
1013moea64_deactivate(mmu_t mmu, struct thread *td)
1014{
1015	pmap_t	pm;
1016
1017	pm = &td->td_proc->p_vmspace->vm_pmap;
1018	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1019	#ifdef __powerpc64__
1020	PCPU_SET(userslb, NULL);
1021	#else
1022	PCPU_SET(curpmap, NULL);
1023	#endif
1024}
1025
1026void
1027moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1028{
1029	struct	pvo_entry *pvo;
1030	uintptr_t pt;
1031	uint64_t vsid;
1032	int	i, ptegidx;
1033
1034	PMAP_LOCK(pm);
1035	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1036
1037	if (pvo != NULL) {
1038		LOCK_TABLE();
1039		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1040
1041		if (wired) {
1042			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1043				pm->pm_stats.wired_count++;
1044			pvo->pvo_vaddr |= PVO_WIRED;
1045			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1046		} else {
1047			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1048				pm->pm_stats.wired_count--;
1049			pvo->pvo_vaddr &= ~PVO_WIRED;
1050			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1051		}
1052
1053		if (pt != -1) {
1054			/* Update wiring flag in page table. */
1055			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1056			    pvo->pvo_vpn);
1057		} else if (wired) {
1058			/*
1059			 * If we are wiring the page, and it wasn't in the
1060			 * page table before, add it.
1061			 */
1062			vsid = PVO_VSID(pvo);
1063			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1064			    pvo->pvo_vaddr & PVO_LARGE);
1065
1066			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1067
1068			if (i >= 0) {
1069				PVO_PTEGIDX_CLR(pvo);
1070				PVO_PTEGIDX_SET(pvo, i);
1071			}
1072		}
1073
1074		UNLOCK_TABLE();
1075	}
1076	PMAP_UNLOCK(pm);
1077}
1078
1079/*
1080 * This goes through and sets the physical address of our
1081 * special scratch PTE to the PA we want to zero or copy. Because
1082 * of locking issues (this can get called in pvo_enter() by
1083 * the UMA allocator), we can't use most other utility functions here
1084 */
1085
1086static __inline
1087void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1088
1089	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1090	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1091
1092	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1093	    ~(LPTE_WIMG | LPTE_RPGN);
1094	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1095	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1096	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1097	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1098	    moea64_scratchpage_pvo[which]->pvo_vpn);
1099	isync();
1100}
1101
1102void
1103moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1104{
1105	vm_offset_t	dst;
1106	vm_offset_t	src;
1107
1108	dst = VM_PAGE_TO_PHYS(mdst);
1109	src = VM_PAGE_TO_PHYS(msrc);
1110
1111	if (hw_direct_map) {
1112		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1113	} else {
1114		mtx_lock(&moea64_scratchpage_mtx);
1115
1116		moea64_set_scratchpage_pa(mmu, 0, src);
1117		moea64_set_scratchpage_pa(mmu, 1, dst);
1118
1119		kcopy((void *)moea64_scratchpage_va[0],
1120		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1121
1122		mtx_unlock(&moea64_scratchpage_mtx);
1123	}
1124}
1125
1126void
1127moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1128{
1129	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1130
1131	if (size + off > PAGE_SIZE)
1132		panic("moea64_zero_page: size + off > PAGE_SIZE");
1133
1134	if (hw_direct_map) {
1135		bzero((caddr_t)pa + off, size);
1136	} else {
1137		mtx_lock(&moea64_scratchpage_mtx);
1138		moea64_set_scratchpage_pa(mmu, 0, pa);
1139		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1140		mtx_unlock(&moea64_scratchpage_mtx);
1141	}
1142}
1143
1144/*
1145 * Zero a page of physical memory by temporarily mapping it
1146 */
1147void
1148moea64_zero_page(mmu_t mmu, vm_page_t m)
1149{
1150	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1151	vm_offset_t va, off;
1152
1153	if (!hw_direct_map) {
1154		mtx_lock(&moea64_scratchpage_mtx);
1155
1156		moea64_set_scratchpage_pa(mmu, 0, pa);
1157		va = moea64_scratchpage_va[0];
1158	} else {
1159		va = pa;
1160	}
1161
1162	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1163		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1164
1165	if (!hw_direct_map)
1166		mtx_unlock(&moea64_scratchpage_mtx);
1167}
1168
1169void
1170moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1171{
1172
1173	moea64_zero_page(mmu, m);
1174}
1175
1176/*
1177 * Map the given physical page at the specified virtual address in the
1178 * target pmap with the protection requested.  If specified the page
1179 * will be wired down.
1180 */
1181void
1182moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1183    vm_prot_t prot, boolean_t wired)
1184{
1185
1186	vm_page_lock_queues();
1187	PMAP_LOCK(pmap);
1188	moea64_enter_locked(mmu, pmap, va, m, prot, wired);
1189	vm_page_unlock_queues();
1190	PMAP_UNLOCK(pmap);
1191}
1192
1193/*
1194 * Map the given physical page at the specified virtual address in the
1195 * target pmap with the protection requested.  If specified the page
1196 * will be wired down.
1197 *
1198 * The page queues and pmap must be locked.
1199 */
1200
1201static void
1202moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1203    vm_prot_t prot, boolean_t wired)
1204{
1205	struct		pvo_head *pvo_head;
1206	uma_zone_t	zone;
1207	vm_page_t	pg;
1208	uint64_t	pte_lo;
1209	u_int		pvo_flags;
1210	int		error;
1211
1212	if (!moea64_initialized) {
1213		pvo_head = &moea64_pvo_kunmanaged;
1214		pg = NULL;
1215		zone = moea64_upvo_zone;
1216		pvo_flags = 0;
1217	} else {
1218		pvo_head = vm_page_to_pvoh(m);
1219		pg = m;
1220		zone = moea64_mpvo_zone;
1221		pvo_flags = PVO_MANAGED;
1222	}
1223
1224	if (pmap_bootstrapped)
1225		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1226	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1227	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1228	    VM_OBJECT_LOCKED(m->object),
1229	    ("moea64_enter_locked: page %p is not busy", m));
1230
1231	/* XXX change the pvo head for fake pages */
1232	if ((m->oflags & VPO_UNMANAGED) != 0) {
1233		pvo_flags &= ~PVO_MANAGED;
1234		pvo_head = &moea64_pvo_kunmanaged;
1235		zone = moea64_upvo_zone;
1236	}
1237
1238	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1239
1240	if (prot & VM_PROT_WRITE) {
1241		pte_lo |= LPTE_BW;
1242		if (pmap_bootstrapped &&
1243		    (m->oflags & VPO_UNMANAGED) == 0)
1244			vm_page_aflag_set(m, PGA_WRITEABLE);
1245	} else
1246		pte_lo |= LPTE_BR;
1247
1248	if ((prot & VM_PROT_EXECUTE) == 0)
1249		pte_lo |= LPTE_NOEXEC;
1250
1251	if (wired)
1252		pvo_flags |= PVO_WIRED;
1253
1254	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1255	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1256
1257	/*
1258	 * Flush the page from the instruction cache if this page is
1259	 * mapped executable and cacheable.
1260	 */
1261	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
1262		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1263}
1264
1265static void
1266moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1267    vm_size_t sz)
1268{
1269
1270	/*
1271	 * This is much trickier than on older systems because
1272	 * we can't sync the icache on physical addresses directly
1273	 * without a direct map. Instead we check a couple of cases
1274	 * where the memory is already mapped in and, failing that,
1275	 * use the same trick we use for page zeroing to create
1276	 * a temporary mapping for this physical address.
1277	 */
1278
1279	if (!pmap_bootstrapped) {
1280		/*
1281		 * If PMAP is not bootstrapped, we are likely to be
1282		 * in real mode.
1283		 */
1284		__syncicache((void *)pa, sz);
1285	} else if (pmap == kernel_pmap) {
1286		__syncicache((void *)va, sz);
1287	} else if (hw_direct_map) {
1288		__syncicache((void *)pa, sz);
1289	} else {
1290		/* Use the scratch page to set up a temp mapping */
1291
1292		mtx_lock(&moea64_scratchpage_mtx);
1293
1294		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1295		__syncicache((void *)(moea64_scratchpage_va[1] +
1296		    (va & ADDR_POFF)), sz);
1297
1298		mtx_unlock(&moea64_scratchpage_mtx);
1299	}
1300}
1301
1302/*
1303 * Maps a sequence of resident pages belonging to the same object.
1304 * The sequence begins with the given page m_start.  This page is
1305 * mapped at the given virtual address start.  Each subsequent page is
1306 * mapped at a virtual address that is offset from start by the same
1307 * amount as the page is offset from m_start within the object.  The
1308 * last page in the sequence is the page with the largest offset from
1309 * m_start that can be mapped at a virtual address less than the given
1310 * virtual address end.  Not every virtual page between start and end
1311 * is mapped; only those for which a resident page exists with the
1312 * corresponding offset from m_start are mapped.
1313 */
1314void
1315moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1316    vm_page_t m_start, vm_prot_t prot)
1317{
1318	vm_page_t m;
1319	vm_pindex_t diff, psize;
1320
1321	psize = atop(end - start);
1322	m = m_start;
1323	vm_page_lock_queues();
1324	PMAP_LOCK(pm);
1325	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1326		moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
1327		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1328		m = TAILQ_NEXT(m, listq);
1329	}
1330	vm_page_unlock_queues();
1331	PMAP_UNLOCK(pm);
1332}
1333
1334void
1335moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1336    vm_prot_t prot)
1337{
1338
1339	vm_page_lock_queues();
1340	PMAP_LOCK(pm);
1341	moea64_enter_locked(mmu, pm, va, m,
1342	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1343	vm_page_unlock_queues();
1344	PMAP_UNLOCK(pm);
1345}
1346
1347vm_paddr_t
1348moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1349{
1350	struct	pvo_entry *pvo;
1351	vm_paddr_t pa;
1352
1353	PMAP_LOCK(pm);
1354	pvo = moea64_pvo_find_va(pm, va);
1355	if (pvo == NULL)
1356		pa = 0;
1357	else
1358		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1359		    (va - PVO_VADDR(pvo));
1360	PMAP_UNLOCK(pm);
1361	return (pa);
1362}
1363
1364/*
1365 * Atomically extract and hold the physical page with the given
1366 * pmap and virtual address pair if that mapping permits the given
1367 * protection.
1368 */
1369vm_page_t
1370moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1371{
1372	struct	pvo_entry *pvo;
1373	vm_page_t m;
1374        vm_paddr_t pa;
1375
1376	m = NULL;
1377	pa = 0;
1378	PMAP_LOCK(pmap);
1379retry:
1380	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1381	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1382	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1383	     (prot & VM_PROT_WRITE) == 0)) {
1384		if (vm_page_pa_tryrelock(pmap,
1385			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1386			goto retry;
1387		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1388		vm_page_hold(m);
1389	}
1390	PA_UNLOCK_COND(pa);
1391	PMAP_UNLOCK(pmap);
1392	return (m);
1393}
1394
1395static mmu_t installed_mmu;
1396
1397static void *
1398moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1399{
1400	/*
1401	 * This entire routine is a horrible hack to avoid bothering kmem
1402	 * for new KVA addresses. Because this can get called from inside
1403	 * kmem allocation routines, calling kmem for a new address here
1404	 * can lead to multiply locking non-recursive mutexes.
1405	 */
1406        vm_offset_t va;
1407
1408        vm_page_t m;
1409        int pflags, needed_lock;
1410
1411	*flags = UMA_SLAB_PRIV;
1412	needed_lock = !PMAP_LOCKED(kernel_pmap);
1413
1414	if (needed_lock)
1415		PMAP_LOCK(kernel_pmap);
1416
1417        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1418                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1419        else
1420                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1421        if (wait & M_ZERO)
1422                pflags |= VM_ALLOC_ZERO;
1423
1424        for (;;) {
1425                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1426                if (m == NULL) {
1427                        if (wait & M_NOWAIT)
1428                                return (NULL);
1429                        VM_WAIT;
1430                } else
1431                        break;
1432        }
1433
1434	va = VM_PAGE_TO_PHYS(m);
1435
1436	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1437	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1438	    PVO_WIRED | PVO_BOOTSTRAP);
1439
1440	if (needed_lock)
1441		PMAP_UNLOCK(kernel_pmap);
1442
1443	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1444                bzero((void *)va, PAGE_SIZE);
1445
1446	return (void *)va;
1447}
1448
1449extern int elf32_nxstack;
1450
1451void
1452moea64_init(mmu_t mmu)
1453{
1454
1455	CTR0(KTR_PMAP, "moea64_init");
1456
1457	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1458	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1459	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1460	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1461	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1462	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1463
1464	if (!hw_direct_map) {
1465		installed_mmu = mmu;
1466		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1467		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1468	}
1469
1470#ifdef COMPAT_FREEBSD32
1471	elf32_nxstack = 1;
1472#endif
1473
1474	moea64_initialized = TRUE;
1475}
1476
1477boolean_t
1478moea64_is_referenced(mmu_t mmu, vm_page_t m)
1479{
1480
1481	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1482	    ("moea64_is_referenced: page %p is not managed", m));
1483	return (moea64_query_bit(mmu, m, PTE_REF));
1484}
1485
1486boolean_t
1487moea64_is_modified(mmu_t mmu, vm_page_t m)
1488{
1489
1490	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1491	    ("moea64_is_modified: page %p is not managed", m));
1492
1493	/*
1494	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1495	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1496	 * is clear, no PTEs can have LPTE_CHG set.
1497	 */
1498	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1499	if ((m->oflags & VPO_BUSY) == 0 &&
1500	    (m->aflags & PGA_WRITEABLE) == 0)
1501		return (FALSE);
1502	return (moea64_query_bit(mmu, m, LPTE_CHG));
1503}
1504
1505boolean_t
1506moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1507{
1508	struct pvo_entry *pvo;
1509	boolean_t rv;
1510
1511	PMAP_LOCK(pmap);
1512	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1513	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1514	PMAP_UNLOCK(pmap);
1515	return (rv);
1516}
1517
1518void
1519moea64_clear_reference(mmu_t mmu, vm_page_t m)
1520{
1521
1522	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1523	    ("moea64_clear_reference: page %p is not managed", m));
1524	moea64_clear_bit(mmu, m, LPTE_REF);
1525}
1526
1527void
1528moea64_clear_modify(mmu_t mmu, vm_page_t m)
1529{
1530
1531	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1532	    ("moea64_clear_modify: page %p is not managed", m));
1533	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1534	KASSERT((m->oflags & VPO_BUSY) == 0,
1535	    ("moea64_clear_modify: page %p is busy", m));
1536
1537	/*
1538	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1539	 * set.  If the object containing the page is locked and the page is
1540	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1541	 */
1542	if ((m->aflags & PGA_WRITEABLE) == 0)
1543		return;
1544	moea64_clear_bit(mmu, m, LPTE_CHG);
1545}
1546
1547/*
1548 * Clear the write and modified bits in each of the given page's mappings.
1549 */
1550void
1551moea64_remove_write(mmu_t mmu, vm_page_t m)
1552{
1553	struct	pvo_entry *pvo;
1554	uintptr_t pt;
1555	pmap_t	pmap;
1556	uint64_t lo;
1557
1558	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1559	    ("moea64_remove_write: page %p is not managed", m));
1560
1561	/*
1562	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1563	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1564	 * is clear, no page table entries need updating.
1565	 */
1566	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1567	if ((m->oflags & VPO_BUSY) == 0 &&
1568	    (m->aflags & PGA_WRITEABLE) == 0)
1569		return;
1570	vm_page_lock_queues();
1571	lo = moea64_attr_fetch(m);
1572	powerpc_sync();
1573	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1574		pmap = pvo->pvo_pmap;
1575		PMAP_LOCK(pmap);
1576		LOCK_TABLE();
1577		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1578			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1579			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1580			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1581			if (pt != -1) {
1582				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1583				lo |= pvo->pvo_pte.lpte.pte_lo;
1584				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1585				MOEA64_PTE_CHANGE(mmu, pt,
1586				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1587				if (pvo->pvo_pmap == kernel_pmap)
1588					isync();
1589			}
1590		}
1591		UNLOCK_TABLE();
1592		PMAP_UNLOCK(pmap);
1593	}
1594	if ((lo & LPTE_CHG) != 0) {
1595		moea64_attr_clear(m, LPTE_CHG);
1596		vm_page_dirty(m);
1597	}
1598	vm_page_aflag_clear(m, PGA_WRITEABLE);
1599	vm_page_unlock_queues();
1600}
1601
1602/*
1603 *	moea64_ts_referenced:
1604 *
1605 *	Return a count of reference bits for a page, clearing those bits.
1606 *	It is not necessary for every reference bit to be cleared, but it
1607 *	is necessary that 0 only be returned when there are truly no
1608 *	reference bits set.
1609 *
1610 *	XXX: The exact number of bits to check and clear is a matter that
1611 *	should be tested and standardized at some point in the future for
1612 *	optimal aging of shared pages.
1613 */
1614boolean_t
1615moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1616{
1617
1618	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1619	    ("moea64_ts_referenced: page %p is not managed", m));
1620	return (moea64_clear_bit(mmu, m, LPTE_REF));
1621}
1622
1623/*
1624 * Modify the WIMG settings of all mappings for a page.
1625 */
1626void
1627moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1628{
1629	struct	pvo_entry *pvo;
1630	struct  pvo_head *pvo_head;
1631	uintptr_t pt;
1632	pmap_t	pmap;
1633	uint64_t lo;
1634
1635	if ((m->oflags & VPO_UNMANAGED) != 0) {
1636		m->md.mdpg_cache_attrs = ma;
1637		return;
1638	}
1639
1640	vm_page_lock_queues();
1641	pvo_head = vm_page_to_pvoh(m);
1642	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1643	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1644		pmap = pvo->pvo_pmap;
1645		PMAP_LOCK(pmap);
1646		LOCK_TABLE();
1647		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1648		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1649		pvo->pvo_pte.lpte.pte_lo |= lo;
1650		if (pt != -1) {
1651			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1652			    pvo->pvo_vpn);
1653			if (pvo->pvo_pmap == kernel_pmap)
1654				isync();
1655		}
1656		UNLOCK_TABLE();
1657		PMAP_UNLOCK(pmap);
1658	}
1659	m->md.mdpg_cache_attrs = ma;
1660	vm_page_unlock_queues();
1661}
1662
1663/*
1664 * Map a wired page into kernel virtual address space.
1665 */
1666void
1667moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1668{
1669	uint64_t	pte_lo;
1670	int		error;
1671
1672	pte_lo = moea64_calc_wimg(pa, ma);
1673
1674	PMAP_LOCK(kernel_pmap);
1675	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1676	    &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1677
1678	if (error != 0 && error != ENOENT)
1679		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1680		    pa, error);
1681
1682	/*
1683	 * Flush the memory from the instruction cache.
1684	 */
1685	if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
1686		__syncicache((void *)va, PAGE_SIZE);
1687	PMAP_UNLOCK(kernel_pmap);
1688}
1689
1690void
1691moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1692{
1693
1694	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1695}
1696
1697/*
1698 * Extract the physical page address associated with the given kernel virtual
1699 * address.
1700 */
1701vm_offset_t
1702moea64_kextract(mmu_t mmu, vm_offset_t va)
1703{
1704	struct		pvo_entry *pvo;
1705	vm_paddr_t pa;
1706
1707	/*
1708	 * Shortcut the direct-mapped case when applicable.  We never put
1709	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1710	 */
1711	if (va < VM_MIN_KERNEL_ADDRESS)
1712		return (va);
1713
1714	PMAP_LOCK(kernel_pmap);
1715	pvo = moea64_pvo_find_va(kernel_pmap, va);
1716	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1717	    va));
1718	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1719	PMAP_UNLOCK(kernel_pmap);
1720	return (pa);
1721}
1722
1723/*
1724 * Remove a wired page from kernel virtual address space.
1725 */
1726void
1727moea64_kremove(mmu_t mmu, vm_offset_t va)
1728{
1729	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1730}
1731
1732/*
1733 * Map a range of physical addresses into kernel virtual address space.
1734 *
1735 * The value passed in *virt is a suggested virtual address for the mapping.
1736 * Architectures which can support a direct-mapped physical to virtual region
1737 * can return the appropriate address within that region, leaving '*virt'
1738 * unchanged.  We cannot and therefore do not; *virt is updated with the
1739 * first usable address after the mapped region.
1740 */
1741vm_offset_t
1742moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1743    vm_offset_t pa_end, int prot)
1744{
1745	vm_offset_t	sva, va;
1746
1747	sva = *virt;
1748	va = sva;
1749	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1750		moea64_kenter(mmu, va, pa_start);
1751	*virt = va;
1752
1753	return (sva);
1754}
1755
1756/*
1757 * Returns true if the pmap's pv is one of the first
1758 * 16 pvs linked to from this page.  This count may
1759 * be changed upwards or downwards in the future; it
1760 * is only necessary that true be returned for a small
1761 * subset of pmaps for proper page aging.
1762 */
1763boolean_t
1764moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1765{
1766        int loops;
1767	struct pvo_entry *pvo;
1768	boolean_t rv;
1769
1770	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1771	    ("moea64_page_exists_quick: page %p is not managed", m));
1772	loops = 0;
1773	rv = FALSE;
1774	vm_page_lock_queues();
1775	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1776		if (pvo->pvo_pmap == pmap) {
1777			rv = TRUE;
1778			break;
1779		}
1780		if (++loops >= 16)
1781			break;
1782	}
1783	vm_page_unlock_queues();
1784	return (rv);
1785}
1786
1787/*
1788 * Return the number of managed mappings to the given physical page
1789 * that are wired.
1790 */
1791int
1792moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1793{
1794	struct pvo_entry *pvo;
1795	int count;
1796
1797	count = 0;
1798	if ((m->oflags & VPO_UNMANAGED) != 0)
1799		return (count);
1800	vm_page_lock_queues();
1801	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1802		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1803			count++;
1804	vm_page_unlock_queues();
1805	return (count);
1806}
1807
1808static uintptr_t	moea64_vsidcontext;
1809
1810uintptr_t
1811moea64_get_unique_vsid(void) {
1812	u_int entropy;
1813	register_t hash;
1814	uint32_t mask;
1815	int i;
1816
1817	entropy = 0;
1818	__asm __volatile("mftb %0" : "=r"(entropy));
1819
1820	mtx_lock(&moea64_slb_mutex);
1821	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1822		u_int	n;
1823
1824		/*
1825		 * Create a new value by mutiplying by a prime and adding in
1826		 * entropy from the timebase register.  This is to make the
1827		 * VSID more random so that the PT hash function collides
1828		 * less often.  (Note that the prime casues gcc to do shifts
1829		 * instead of a multiply.)
1830		 */
1831		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1832		hash = moea64_vsidcontext & (NVSIDS - 1);
1833		if (hash == 0)		/* 0 is special, avoid it */
1834			continue;
1835		n = hash >> 5;
1836		mask = 1 << (hash & (VSID_NBPW - 1));
1837		hash = (moea64_vsidcontext & VSID_HASHMASK);
1838		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1839			/* anything free in this bucket? */
1840			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1841				entropy = (moea64_vsidcontext >> 20);
1842				continue;
1843			}
1844			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1845			mask = 1 << i;
1846			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1847			hash |= i;
1848		}
1849		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1850		    ("Allocating in-use VSID %#zx\n", hash));
1851		moea64_vsid_bitmap[n] |= mask;
1852		mtx_unlock(&moea64_slb_mutex);
1853		return (hash);
1854	}
1855
1856	mtx_unlock(&moea64_slb_mutex);
1857	panic("%s: out of segments",__func__);
1858}
1859
1860#ifdef __powerpc64__
1861void
1862moea64_pinit(mmu_t mmu, pmap_t pmap)
1863{
1864	PMAP_LOCK_INIT(pmap);
1865	LIST_INIT(&pmap->pmap_pvo);
1866
1867	pmap->pm_slb_tree_root = slb_alloc_tree();
1868	pmap->pm_slb = slb_alloc_user_cache();
1869	pmap->pm_slb_len = 0;
1870}
1871#else
1872void
1873moea64_pinit(mmu_t mmu, pmap_t pmap)
1874{
1875	int	i;
1876	uint32_t hash;
1877
1878	PMAP_LOCK_INIT(pmap);
1879	LIST_INIT(&pmap->pmap_pvo);
1880
1881	if (pmap_bootstrapped)
1882		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1883		    (vm_offset_t)pmap);
1884	else
1885		pmap->pmap_phys = pmap;
1886
1887	/*
1888	 * Allocate some segment registers for this pmap.
1889	 */
1890	hash = moea64_get_unique_vsid();
1891
1892	for (i = 0; i < 16; i++)
1893		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1894
1895	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1896}
1897#endif
1898
1899/*
1900 * Initialize the pmap associated with process 0.
1901 */
1902void
1903moea64_pinit0(mmu_t mmu, pmap_t pm)
1904{
1905	moea64_pinit(mmu, pm);
1906	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1907}
1908
1909/*
1910 * Set the physical protection on the specified range of this map as requested.
1911 */
1912void
1913moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1914    vm_prot_t prot)
1915{
1916	struct	pvo_entry *pvo;
1917	uintptr_t pt;
1918
1919	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1920	    eva, prot);
1921
1922
1923	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1924	    ("moea64_protect: non current pmap"));
1925
1926	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1927		moea64_remove(mmu, pm, sva, eva);
1928		return;
1929	}
1930
1931	vm_page_lock_queues();
1932	PMAP_LOCK(pm);
1933	for (; sva < eva; sva += PAGE_SIZE) {
1934		pvo = moea64_pvo_find_va(pm, sva);
1935		if (pvo == NULL)
1936			continue;
1937
1938		/*
1939		 * Grab the PTE pointer before we diddle with the cached PTE
1940		 * copy.
1941		 */
1942		LOCK_TABLE();
1943		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1944
1945		/*
1946		 * Change the protection of the page.
1947		 */
1948		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1949		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1950		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1951		if ((prot & VM_PROT_EXECUTE) == 0)
1952			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1953
1954		/*
1955		 * If the PVO is in the page table, update that pte as well.
1956		 */
1957		if (pt != -1) {
1958			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1959			    pvo->pvo_vpn);
1960			if ((pvo->pvo_pte.lpte.pte_lo &
1961			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1962				moea64_syncicache(mmu, pm, sva,
1963				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1964				    PAGE_SIZE);
1965			}
1966		}
1967		UNLOCK_TABLE();
1968	}
1969	vm_page_unlock_queues();
1970	PMAP_UNLOCK(pm);
1971}
1972
1973/*
1974 * Map a list of wired pages into kernel virtual address space.  This is
1975 * intended for temporary mappings which do not need page modification or
1976 * references recorded.  Existing mappings in the region are overwritten.
1977 */
1978void
1979moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1980{
1981	while (count-- > 0) {
1982		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1983		va += PAGE_SIZE;
1984		m++;
1985	}
1986}
1987
1988/*
1989 * Remove page mappings from kernel virtual address space.  Intended for
1990 * temporary mappings entered by moea64_qenter.
1991 */
1992void
1993moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1994{
1995	while (count-- > 0) {
1996		moea64_kremove(mmu, va);
1997		va += PAGE_SIZE;
1998	}
1999}
2000
2001void
2002moea64_release_vsid(uint64_t vsid)
2003{
2004	int idx, mask;
2005
2006	mtx_lock(&moea64_slb_mutex);
2007	idx = vsid & (NVSIDS-1);
2008	mask = 1 << (idx % VSID_NBPW);
2009	idx /= VSID_NBPW;
2010	KASSERT(moea64_vsid_bitmap[idx] & mask,
2011	    ("Freeing unallocated VSID %#jx", vsid));
2012	moea64_vsid_bitmap[idx] &= ~mask;
2013	mtx_unlock(&moea64_slb_mutex);
2014}
2015
2016
2017void
2018moea64_release(mmu_t mmu, pmap_t pmap)
2019{
2020
2021	/*
2022	 * Free segment registers' VSIDs
2023	 */
2024    #ifdef __powerpc64__
2025	slb_free_tree(pmap);
2026	slb_free_user_cache(pmap->pm_slb);
2027    #else
2028	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2029
2030	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2031    #endif
2032
2033	PMAP_LOCK_DESTROY(pmap);
2034}
2035
2036/*
2037 * Remove the given range of addresses from the specified map.
2038 */
2039void
2040moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2041{
2042	struct	pvo_entry *pvo, *tpvo;
2043
2044	vm_page_lock_queues();
2045	PMAP_LOCK(pm);
2046	if ((eva - sva)/PAGE_SIZE < 10) {
2047		for (; sva < eva; sva += PAGE_SIZE) {
2048			pvo = moea64_pvo_find_va(pm, sva);
2049			if (pvo != NULL)
2050				moea64_pvo_remove(mmu, pvo);
2051		}
2052	} else {
2053		LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
2054			if (PVO_VADDR(pvo) < sva || PVO_VADDR(pvo) >= eva)
2055				continue;
2056			moea64_pvo_remove(mmu, pvo);
2057		}
2058	}
2059	vm_page_unlock_queues();
2060	PMAP_UNLOCK(pm);
2061}
2062
2063/*
2064 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2065 * will reflect changes in pte's back to the vm_page.
2066 */
2067void
2068moea64_remove_all(mmu_t mmu, vm_page_t m)
2069{
2070	struct  pvo_head *pvo_head;
2071	struct	pvo_entry *pvo, *next_pvo;
2072	pmap_t	pmap;
2073
2074	vm_page_lock_queues();
2075	pvo_head = vm_page_to_pvoh(m);
2076	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2077		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2078
2079		pmap = pvo->pvo_pmap;
2080		PMAP_LOCK(pmap);
2081		moea64_pvo_remove(mmu, pvo);
2082		PMAP_UNLOCK(pmap);
2083	}
2084	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m)) {
2085		moea64_attr_clear(m, LPTE_CHG);
2086		vm_page_dirty(m);
2087	}
2088	vm_page_aflag_clear(m, PGA_WRITEABLE);
2089	vm_page_unlock_queues();
2090}
2091
2092/*
2093 * Allocate a physical page of memory directly from the phys_avail map.
2094 * Can only be called from moea64_bootstrap before avail start and end are
2095 * calculated.
2096 */
2097vm_offset_t
2098moea64_bootstrap_alloc(vm_size_t size, u_int align)
2099{
2100	vm_offset_t	s, e;
2101	int		i, j;
2102
2103	size = round_page(size);
2104	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2105		if (align != 0)
2106			s = (phys_avail[i] + align - 1) & ~(align - 1);
2107		else
2108			s = phys_avail[i];
2109		e = s + size;
2110
2111		if (s < phys_avail[i] || e > phys_avail[i + 1])
2112			continue;
2113
2114		if (s + size > platform_real_maxaddr())
2115			continue;
2116
2117		if (s == phys_avail[i]) {
2118			phys_avail[i] += size;
2119		} else if (e == phys_avail[i + 1]) {
2120			phys_avail[i + 1] -= size;
2121		} else {
2122			for (j = phys_avail_count * 2; j > i; j -= 2) {
2123				phys_avail[j] = phys_avail[j - 2];
2124				phys_avail[j + 1] = phys_avail[j - 1];
2125			}
2126
2127			phys_avail[i + 3] = phys_avail[i + 1];
2128			phys_avail[i + 1] = s;
2129			phys_avail[i + 2] = e;
2130			phys_avail_count++;
2131		}
2132
2133		return (s);
2134	}
2135	panic("moea64_bootstrap_alloc: could not allocate memory");
2136}
2137
2138static int
2139moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2140    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2141    uint64_t pte_lo, int flags)
2142{
2143	struct	 pvo_entry *pvo;
2144	uint64_t vsid;
2145	int	 first;
2146	u_int	 ptegidx;
2147	int	 i;
2148	int      bootstrap;
2149
2150	/*
2151	 * One nasty thing that can happen here is that the UMA calls to
2152	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2153	 * which calls UMA...
2154	 *
2155	 * We break the loop by detecting recursion and allocating out of
2156	 * the bootstrap pool.
2157	 */
2158
2159	first = 0;
2160	bootstrap = (flags & PVO_BOOTSTRAP);
2161
2162	if (!moea64_initialized)
2163		bootstrap = 1;
2164
2165	/*
2166	 * Compute the PTE Group index.
2167	 */
2168	va &= ~ADDR_POFF;
2169	vsid = va_to_vsid(pm, va);
2170	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2171
2172	/*
2173	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2174	 * there is a mapping.
2175	 */
2176	LOCK_TABLE();
2177
2178	moea64_pvo_enter_calls++;
2179
2180	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2181		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2182			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2183			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2184			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2185			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2186					/* Re-insert if spilled */
2187					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2188					    &pvo->pvo_pte.lpte);
2189					if (i >= 0)
2190						PVO_PTEGIDX_SET(pvo, i);
2191					moea64_pte_overflow--;
2192				}
2193				UNLOCK_TABLE();
2194				return (0);
2195			}
2196			moea64_pvo_remove(mmu, pvo);
2197			break;
2198		}
2199	}
2200
2201	/*
2202	 * If we aren't overwriting a mapping, try to allocate.
2203	 */
2204	if (bootstrap) {
2205		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2206			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2207			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2208			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2209		}
2210		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2211		moea64_bpvo_pool_index++;
2212		bootstrap = 1;
2213	} else {
2214		/*
2215		 * Note: drop the table lock around the UMA allocation in
2216		 * case the UMA allocator needs to manipulate the page
2217		 * table. The mapping we are working with is already
2218		 * protected by the PMAP lock.
2219		 */
2220		UNLOCK_TABLE();
2221		pvo = uma_zalloc(zone, M_NOWAIT);
2222		LOCK_TABLE();
2223	}
2224
2225	if (pvo == NULL) {
2226		UNLOCK_TABLE();
2227		return (ENOMEM);
2228	}
2229
2230	moea64_pvo_entries++;
2231	pvo->pvo_vaddr = va;
2232	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2233	    | (vsid << 16);
2234	pvo->pvo_pmap = pm;
2235	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2236	pvo->pvo_vaddr &= ~ADDR_POFF;
2237
2238	if (flags & PVO_WIRED)
2239		pvo->pvo_vaddr |= PVO_WIRED;
2240	if (pvo_head != &moea64_pvo_kunmanaged)
2241		pvo->pvo_vaddr |= PVO_MANAGED;
2242	if (bootstrap)
2243		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2244	if (flags & PVO_LARGE)
2245		pvo->pvo_vaddr |= PVO_LARGE;
2246
2247	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2248	    (uint64_t)(pa) | pte_lo, flags);
2249
2250	/*
2251	 * Add to pmap list
2252	 */
2253	LIST_INSERT_HEAD(&pm->pmap_pvo, pvo, pvo_plink);
2254
2255	/*
2256	 * Remember if the list was empty and therefore will be the first
2257	 * item.
2258	 */
2259	if (LIST_FIRST(pvo_head) == NULL)
2260		first = 1;
2261	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2262
2263	if (pvo->pvo_vaddr & PVO_WIRED) {
2264		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2265		pm->pm_stats.wired_count++;
2266	}
2267	pm->pm_stats.resident_count++;
2268
2269	/*
2270	 * We hope this succeeds but it isn't required.
2271	 */
2272	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2273	if (i >= 0) {
2274		PVO_PTEGIDX_SET(pvo, i);
2275	} else {
2276		panic("moea64_pvo_enter: overflow");
2277		moea64_pte_overflow++;
2278	}
2279
2280	if (pm == kernel_pmap)
2281		isync();
2282
2283	UNLOCK_TABLE();
2284
2285#ifdef __powerpc64__
2286	/*
2287	 * Make sure all our bootstrap mappings are in the SLB as soon
2288	 * as virtual memory is switched on.
2289	 */
2290	if (!pmap_bootstrapped)
2291		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2292#endif
2293
2294	return (first ? ENOENT : 0);
2295}
2296
2297static void
2298moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2299{
2300	uintptr_t pt;
2301
2302	/*
2303	 * If there is an active pte entry, we need to deactivate it (and
2304	 * save the ref & cfg bits).
2305	 */
2306	LOCK_TABLE();
2307	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2308	if (pt != -1) {
2309		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2310		PVO_PTEGIDX_CLR(pvo);
2311	} else {
2312		moea64_pte_overflow--;
2313	}
2314
2315	/*
2316	 * Update our statistics.
2317	 */
2318	pvo->pvo_pmap->pm_stats.resident_count--;
2319	if (pvo->pvo_vaddr & PVO_WIRED)
2320		pvo->pvo_pmap->pm_stats.wired_count--;
2321
2322	/*
2323	 * Save the REF/CHG bits into their cache if the page is managed.
2324	 */
2325	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2326		struct	vm_page *pg;
2327
2328		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2329		if (pg != NULL) {
2330			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2331			    (LPTE_REF | LPTE_CHG));
2332		}
2333	}
2334
2335	/*
2336	 * Remove this PVO from the PV and pmap lists.
2337	 */
2338	LIST_REMOVE(pvo, pvo_vlink);
2339	LIST_REMOVE(pvo, pvo_plink);
2340
2341	/*
2342	 * Remove this from the overflow list and return it to the pool
2343	 * if we aren't going to reuse it.
2344	 */
2345	LIST_REMOVE(pvo, pvo_olink);
2346
2347	moea64_pvo_entries--;
2348	moea64_pvo_remove_calls++;
2349
2350	UNLOCK_TABLE();
2351
2352	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2353		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2354		    moea64_upvo_zone, pvo);
2355}
2356
2357static struct pvo_entry *
2358moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2359{
2360	struct		pvo_entry *pvo;
2361	int		ptegidx;
2362	uint64_t	vsid;
2363	#ifdef __powerpc64__
2364	uint64_t	slbv;
2365
2366	if (pm == kernel_pmap) {
2367		slbv = kernel_va_to_slbv(va);
2368	} else {
2369		struct slb *slb;
2370		slb = user_va_to_slb_entry(pm, va);
2371		/* The page is not mapped if the segment isn't */
2372		if (slb == NULL)
2373			return NULL;
2374		slbv = slb->slbv;
2375	}
2376
2377	vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2378	if (slbv & SLBV_L)
2379		va &= ~moea64_large_page_mask;
2380	else
2381		va &= ~ADDR_POFF;
2382	ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2383	#else
2384	va &= ~ADDR_POFF;
2385	vsid = va_to_vsid(pm, va);
2386	ptegidx = va_to_pteg(vsid, va, 0);
2387	#endif
2388
2389	LOCK_TABLE();
2390	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2391		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2392			break;
2393	}
2394	UNLOCK_TABLE();
2395
2396	return (pvo);
2397}
2398
2399static boolean_t
2400moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2401{
2402	struct	pvo_entry *pvo;
2403	uintptr_t pt;
2404
2405	if (moea64_attr_fetch(m) & ptebit)
2406		return (TRUE);
2407
2408	vm_page_lock_queues();
2409
2410	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2411
2412		/*
2413		 * See if we saved the bit off.  If so, cache it and return
2414		 * success.
2415		 */
2416		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2417			moea64_attr_save(m, ptebit);
2418			vm_page_unlock_queues();
2419			return (TRUE);
2420		}
2421	}
2422
2423	/*
2424	 * No luck, now go through the hard part of looking at the PTEs
2425	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2426	 * the PTEs.
2427	 */
2428	powerpc_sync();
2429	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2430
2431		/*
2432		 * See if this pvo has a valid PTE.  if so, fetch the
2433		 * REF/CHG bits from the valid PTE.  If the appropriate
2434		 * ptebit is set, cache it and return success.
2435		 */
2436		LOCK_TABLE();
2437		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2438		if (pt != -1) {
2439			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2440			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2441				UNLOCK_TABLE();
2442
2443				moea64_attr_save(m, ptebit);
2444				vm_page_unlock_queues();
2445				return (TRUE);
2446			}
2447		}
2448		UNLOCK_TABLE();
2449	}
2450
2451	vm_page_unlock_queues();
2452	return (FALSE);
2453}
2454
2455static u_int
2456moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2457{
2458	u_int	count;
2459	struct	pvo_entry *pvo;
2460	uintptr_t pt;
2461
2462	vm_page_lock_queues();
2463
2464	/*
2465	 * Clear the cached value.
2466	 */
2467	moea64_attr_clear(m, ptebit);
2468
2469	/*
2470	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2471	 * we can reset the right ones).  note that since the pvo entries and
2472	 * list heads are accessed via BAT0 and are never placed in the page
2473	 * table, we don't have to worry about further accesses setting the
2474	 * REF/CHG bits.
2475	 */
2476	powerpc_sync();
2477
2478	/*
2479	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2480	 * valid pte clear the ptebit from the valid pte.
2481	 */
2482	count = 0;
2483	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2484
2485		LOCK_TABLE();
2486		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2487		if (pt != -1) {
2488			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2489			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2490				count++;
2491				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2492				    pvo->pvo_vpn, ptebit);
2493			}
2494		}
2495		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2496		UNLOCK_TABLE();
2497	}
2498
2499	vm_page_unlock_queues();
2500	return (count);
2501}
2502
2503boolean_t
2504moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2505{
2506	struct pvo_entry *pvo;
2507	vm_offset_t ppa;
2508	int error = 0;
2509
2510	PMAP_LOCK(kernel_pmap);
2511	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2512		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2513		if (pvo == NULL ||
2514		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2515			error = EFAULT;
2516			break;
2517		}
2518	}
2519	PMAP_UNLOCK(kernel_pmap);
2520
2521	return (error);
2522}
2523
2524/*
2525 * Map a set of physical memory pages into the kernel virtual
2526 * address space. Return a pointer to where it is mapped. This
2527 * routine is intended to be used for mapping device memory,
2528 * NOT real memory.
2529 */
2530void *
2531moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2532{
2533	vm_offset_t va, tmpva, ppa, offset;
2534
2535	ppa = trunc_page(pa);
2536	offset = pa & PAGE_MASK;
2537	size = roundup(offset + size, PAGE_SIZE);
2538
2539	va = kmem_alloc_nofault(kernel_map, size);
2540
2541	if (!va)
2542		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2543
2544	for (tmpva = va; size > 0;) {
2545		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2546		size -= PAGE_SIZE;
2547		tmpva += PAGE_SIZE;
2548		ppa += PAGE_SIZE;
2549	}
2550
2551	return ((void *)(va + offset));
2552}
2553
2554void *
2555moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2556{
2557
2558	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2559}
2560
2561void
2562moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2563{
2564	vm_offset_t base, offset;
2565
2566	base = trunc_page(va);
2567	offset = va & PAGE_MASK;
2568	size = roundup(offset + size, PAGE_SIZE);
2569
2570	kmem_free(kernel_map, base, size);
2571}
2572
2573void
2574moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2575{
2576	struct pvo_entry *pvo;
2577	vm_offset_t lim;
2578	vm_paddr_t pa;
2579	vm_size_t len;
2580
2581	PMAP_LOCK(pm);
2582	while (sz > 0) {
2583		lim = round_page(va);
2584		len = MIN(lim - va, sz);
2585		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2586		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2587			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2588			    (va & ADDR_POFF);
2589			moea64_syncicache(mmu, pm, va, pa, len);
2590		}
2591		va += len;
2592		sz -= len;
2593	}
2594	PMAP_UNLOCK(pm);
2595}
2596