mmu_oea64.c revision 222813
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 222813 2011-06-07 08:46:13Z attilio $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/queue.h>
122#include <sys/cpuset.h>
123#include <sys/ktr.h>
124#include <sys/lock.h>
125#include <sys/msgbuf.h>
126#include <sys/mutex.h>
127#include <sys/proc.h>
128#include <sys/sched.h>
129#include <sys/sysctl.h>
130#include <sys/systm.h>
131#include <sys/vmmeter.h>
132
133#include <sys/kdb.h>
134
135#include <dev/ofw/openfirm.h>
136
137#include <vm/vm.h>
138#include <vm/vm_param.h>
139#include <vm/vm_kern.h>
140#include <vm/vm_page.h>
141#include <vm/vm_map.h>
142#include <vm/vm_object.h>
143#include <vm/vm_extern.h>
144#include <vm/vm_pageout.h>
145#include <vm/vm_pager.h>
146#include <vm/uma.h>
147
148#include <machine/_inttypes.h>
149#include <machine/cpu.h>
150#include <machine/platform.h>
151#include <machine/frame.h>
152#include <machine/md_var.h>
153#include <machine/psl.h>
154#include <machine/bat.h>
155#include <machine/hid.h>
156#include <machine/pte.h>
157#include <machine/sr.h>
158#include <machine/trap.h>
159#include <machine/mmuvar.h>
160
161#include "mmu_oea64.h"
162#include "mmu_if.h"
163#include "moea64_if.h"
164
165void moea64_release_vsid(uint64_t vsid);
166uintptr_t moea64_get_unique_vsid(void);
167
168#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
169#define ENABLE_TRANS(msr)	mtmsr(msr)
170
171#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
172#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
173#define	VSID_HASH_MASK		0x0000007fffffffffULL
174
175#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
176#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
177#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
178
179struct ofw_map {
180	cell_t	om_va;
181	cell_t	om_len;
182	cell_t	om_pa_hi;
183	cell_t	om_pa_lo;
184	cell_t	om_mode;
185};
186
187/*
188 * Map of physical memory regions.
189 */
190static struct	mem_region *regions;
191static struct	mem_region *pregions;
192static u_int	phys_avail_count;
193static int	regions_sz, pregions_sz;
194
195extern void bs_remap_earlyboot(void);
196
197/*
198 * Lock for the pteg and pvo tables.
199 */
200struct mtx	moea64_table_mutex;
201struct mtx	moea64_slb_mutex;
202
203/*
204 * PTEG data.
205 */
206u_int		moea64_pteg_count;
207u_int		moea64_pteg_mask;
208
209/*
210 * PVO data.
211 */
212struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
213struct	pvo_head moea64_pvo_kunmanaged =	/* list of unmanaged pages */
214    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
215
216uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
217uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
218
219#define	BPVO_POOL_SIZE	327680
220static struct	pvo_entry *moea64_bpvo_pool;
221static int	moea64_bpvo_pool_index = 0;
222
223#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
224#ifdef __powerpc64__
225#define	NVSIDS		(NPMAPS * 16)
226#define VSID_HASHMASK	0xffffffffUL
227#else
228#define NVSIDS		NPMAPS
229#define VSID_HASHMASK	0xfffffUL
230#endif
231static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
232
233static boolean_t moea64_initialized = FALSE;
234
235/*
236 * Statistics.
237 */
238u_int	moea64_pte_valid = 0;
239u_int	moea64_pte_overflow = 0;
240u_int	moea64_pvo_entries = 0;
241u_int	moea64_pvo_enter_calls = 0;
242u_int	moea64_pvo_remove_calls = 0;
243SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
244    &moea64_pte_valid, 0, "");
245SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
246    &moea64_pte_overflow, 0, "");
247SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
248    &moea64_pvo_entries, 0, "");
249SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
250    &moea64_pvo_enter_calls, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
252    &moea64_pvo_remove_calls, 0, "");
253
254vm_offset_t	moea64_scratchpage_va[2];
255struct pvo_entry *moea64_scratchpage_pvo[2];
256uintptr_t	moea64_scratchpage_pte[2];
257struct	mtx	moea64_scratchpage_mtx;
258
259uint64_t 	moea64_large_page_mask = 0;
260int		moea64_large_page_size = 0;
261int		moea64_large_page_shift = 0;
262
263/*
264 * PVO calls.
265 */
266static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
267		    vm_offset_t, vm_offset_t, uint64_t, int);
268static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
269static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
270
271/*
272 * Utility routines.
273 */
274static void		moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
275			    vm_page_t, vm_prot_t, boolean_t);
276static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
277static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
278static void		moea64_kremove(mmu_t, vm_offset_t);
279static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
280			    vm_offset_t pa, vm_size_t sz);
281
282/*
283 * Kernel MMU interface
284 */
285void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
286void moea64_clear_modify(mmu_t, vm_page_t);
287void moea64_clear_reference(mmu_t, vm_page_t);
288void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
289void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
290void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
291    vm_prot_t);
292void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
293vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
294vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
295void moea64_init(mmu_t);
296boolean_t moea64_is_modified(mmu_t, vm_page_t);
297boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
298boolean_t moea64_is_referenced(mmu_t, vm_page_t);
299boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
300vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
301boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
302int moea64_page_wired_mappings(mmu_t, vm_page_t);
303void moea64_pinit(mmu_t, pmap_t);
304void moea64_pinit0(mmu_t, pmap_t);
305void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
306void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
307void moea64_qremove(mmu_t, vm_offset_t, int);
308void moea64_release(mmu_t, pmap_t);
309void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
310void moea64_remove_all(mmu_t, vm_page_t);
311void moea64_remove_write(mmu_t, vm_page_t);
312void moea64_zero_page(mmu_t, vm_page_t);
313void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
314void moea64_zero_page_idle(mmu_t, vm_page_t);
315void moea64_activate(mmu_t, struct thread *);
316void moea64_deactivate(mmu_t, struct thread *);
317void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
318void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
319void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
321void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
322void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
323void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
324boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
325static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
326
327static mmu_method_t moea64_methods[] = {
328	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
329	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
330	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
331	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
332	MMUMETHOD(mmu_enter,		moea64_enter),
333	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
334	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
335	MMUMETHOD(mmu_extract,		moea64_extract),
336	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
337	MMUMETHOD(mmu_init,		moea64_init),
338	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
339	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
340	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
341	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
342	MMUMETHOD(mmu_map,     		moea64_map),
343	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
344	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
345	MMUMETHOD(mmu_pinit,		moea64_pinit),
346	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
347	MMUMETHOD(mmu_protect,		moea64_protect),
348	MMUMETHOD(mmu_qenter,		moea64_qenter),
349	MMUMETHOD(mmu_qremove,		moea64_qremove),
350	MMUMETHOD(mmu_release,		moea64_release),
351	MMUMETHOD(mmu_remove,		moea64_remove),
352	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
353	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
354	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
355	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
356	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
357	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
358	MMUMETHOD(mmu_activate,		moea64_activate),
359	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
360	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
361
362	/* Internal interfaces */
363	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
364	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
365	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
366	MMUMETHOD(mmu_kextract,		moea64_kextract),
367	MMUMETHOD(mmu_kenter,		moea64_kenter),
368	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
369	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
370
371	{ 0, 0 }
372};
373
374MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
375
376static __inline u_int
377va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
378{
379	uint64_t hash;
380	int shift;
381
382	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
383	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
384	    shift);
385	return (hash & moea64_pteg_mask);
386}
387
388static __inline struct pvo_head *
389vm_page_to_pvoh(vm_page_t m)
390{
391
392	return (&m->md.mdpg_pvoh);
393}
394
395static __inline void
396moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
397{
398
399	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
400	m->md.mdpg_attrs &= ~ptebit;
401}
402
403static __inline u_int64_t
404moea64_attr_fetch(vm_page_t m)
405{
406
407	return (m->md.mdpg_attrs);
408}
409
410static __inline void
411moea64_attr_save(vm_page_t m, u_int64_t ptebit)
412{
413
414	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
415	m->md.mdpg_attrs |= ptebit;
416}
417
418static __inline void
419moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
420    uint64_t pte_lo, int flags)
421{
422
423	ASSERT_TABLE_LOCK();
424
425	/*
426	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
427	 * set when the real pte is set in memory.
428	 *
429	 * Note: Don't set the valid bit for correct operation of tlb update.
430	 */
431	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
432	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
433
434	if (flags & PVO_LARGE)
435		pt->pte_hi |= LPTE_BIG;
436
437	pt->pte_lo = pte_lo;
438}
439
440static __inline uint64_t
441moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
442{
443	uint64_t pte_lo;
444	int i;
445
446	if (ma != VM_MEMATTR_DEFAULT) {
447		switch (ma) {
448		case VM_MEMATTR_UNCACHEABLE:
449			return (LPTE_I | LPTE_G);
450		case VM_MEMATTR_WRITE_COMBINING:
451		case VM_MEMATTR_WRITE_BACK:
452		case VM_MEMATTR_PREFETCHABLE:
453			return (LPTE_I);
454		case VM_MEMATTR_WRITE_THROUGH:
455			return (LPTE_W | LPTE_M);
456		}
457	}
458
459	/*
460	 * Assume the page is cache inhibited and access is guarded unless
461	 * it's in our available memory array.
462	 */
463	pte_lo = LPTE_I | LPTE_G;
464	for (i = 0; i < pregions_sz; i++) {
465		if ((pa >= pregions[i].mr_start) &&
466		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
467			pte_lo &= ~(LPTE_I | LPTE_G);
468			pte_lo |= LPTE_M;
469			break;
470		}
471	}
472
473	return pte_lo;
474}
475
476/*
477 * Quick sort callout for comparing memory regions.
478 */
479static int	om_cmp(const void *a, const void *b);
480
481static int
482om_cmp(const void *a, const void *b)
483{
484	const struct	ofw_map *mapa;
485	const struct	ofw_map *mapb;
486
487	mapa = a;
488	mapb = b;
489	if (mapa->om_pa_hi < mapb->om_pa_hi)
490		return (-1);
491	else if (mapa->om_pa_hi > mapb->om_pa_hi)
492		return (1);
493	else if (mapa->om_pa_lo < mapb->om_pa_lo)
494		return (-1);
495	else if (mapa->om_pa_lo > mapb->om_pa_lo)
496		return (1);
497	else
498		return (0);
499}
500
501static void
502moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
503{
504	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
505	register_t	msr;
506	vm_offset_t	off;
507	vm_paddr_t	pa_base;
508	int		i;
509
510	bzero(translations, sz);
511	if (OF_getprop(mmu, "translations", translations, sz) == -1)
512		panic("moea64_bootstrap: can't get ofw translations");
513
514	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
515	sz /= sizeof(*translations);
516	qsort(translations, sz, sizeof (*translations), om_cmp);
517
518	for (i = 0; i < sz; i++) {
519		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
520		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
521		    translations[i].om_len);
522
523		if (translations[i].om_pa_lo % PAGE_SIZE)
524			panic("OFW translation not page-aligned!");
525
526		pa_base = translations[i].om_pa_lo;
527
528	      #ifdef __powerpc64__
529		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
530	      #else
531		if (translations[i].om_pa_hi)
532			panic("OFW translations above 32-bit boundary!");
533	      #endif
534
535		/* Now enter the pages for this mapping */
536
537		DISABLE_TRANS(msr);
538		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
539			if (moea64_pvo_find_va(kernel_pmap,
540			    translations[i].om_va + off) != NULL)
541				continue;
542
543			moea64_kenter(mmup, translations[i].om_va + off,
544			    pa_base + off);
545		}
546		ENABLE_TRANS(msr);
547	}
548}
549
550#ifdef __powerpc64__
551static void
552moea64_probe_large_page(void)
553{
554	uint16_t pvr = mfpvr() >> 16;
555
556	switch (pvr) {
557	case IBM970:
558	case IBM970FX:
559	case IBM970MP:
560		powerpc_sync(); isync();
561		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
562		powerpc_sync(); isync();
563
564		/* FALLTHROUGH */
565	case IBMCELLBE:
566		moea64_large_page_size = 0x1000000; /* 16 MB */
567		moea64_large_page_shift = 24;
568		break;
569	default:
570		moea64_large_page_size = 0;
571	}
572
573	moea64_large_page_mask = moea64_large_page_size - 1;
574}
575
576static void
577moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
578{
579	struct slb *cache;
580	struct slb entry;
581	uint64_t esid, slbe;
582	uint64_t i;
583
584	cache = PCPU_GET(slb);
585	esid = va >> ADDR_SR_SHFT;
586	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
587
588	for (i = 0; i < 64; i++) {
589		if (cache[i].slbe == (slbe | i))
590			return;
591	}
592
593	entry.slbe = slbe;
594	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
595	if (large)
596		entry.slbv |= SLBV_L;
597
598	slb_insert_kernel(entry.slbe, entry.slbv);
599}
600#endif
601
602static void
603moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
604    vm_offset_t kernelend)
605{
606	register_t msr;
607	vm_paddr_t pa;
608	vm_offset_t size, off;
609	uint64_t pte_lo;
610	int i;
611
612	if (moea64_large_page_size == 0)
613		hw_direct_map = 0;
614
615	DISABLE_TRANS(msr);
616	if (hw_direct_map) {
617		PMAP_LOCK(kernel_pmap);
618		for (i = 0; i < pregions_sz; i++) {
619		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
620		     pregions[i].mr_size; pa += moea64_large_page_size) {
621			pte_lo = LPTE_M;
622
623			/*
624			 * Set memory access as guarded if prefetch within
625			 * the page could exit the available physmem area.
626			 */
627			if (pa & moea64_large_page_mask) {
628				pa &= moea64_large_page_mask;
629				pte_lo |= LPTE_G;
630			}
631			if (pa + moea64_large_page_size >
632			    pregions[i].mr_start + pregions[i].mr_size)
633				pte_lo |= LPTE_G;
634
635			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
636				    &moea64_pvo_kunmanaged, pa, pa,
637				    pte_lo, PVO_WIRED | PVO_LARGE);
638		  }
639		}
640		PMAP_UNLOCK(kernel_pmap);
641	} else {
642		size = sizeof(struct pvo_head) * moea64_pteg_count;
643		off = (vm_offset_t)(moea64_pvo_table);
644		for (pa = off; pa < off + size; pa += PAGE_SIZE)
645			moea64_kenter(mmup, pa, pa);
646		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
647		off = (vm_offset_t)(moea64_bpvo_pool);
648		for (pa = off; pa < off + size; pa += PAGE_SIZE)
649		moea64_kenter(mmup, pa, pa);
650
651		/*
652		 * Map certain important things, like ourselves.
653		 *
654		 * NOTE: We do not map the exception vector space. That code is
655		 * used only in real mode, and leaving it unmapped allows us to
656		 * catch NULL pointer deferences, instead of making NULL a valid
657		 * address.
658		 */
659
660		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
661		    pa += PAGE_SIZE)
662			moea64_kenter(mmup, pa, pa);
663	}
664	ENABLE_TRANS(msr);
665}
666
667void
668moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
669{
670	int		i, j;
671	vm_size_t	physsz, hwphyssz;
672
673#ifndef __powerpc64__
674	/* We don't have a direct map since there is no BAT */
675	hw_direct_map = 0;
676
677	/* Make sure battable is zero, since we have no BAT */
678	for (i = 0; i < 16; i++) {
679		battable[i].batu = 0;
680		battable[i].batl = 0;
681	}
682#else
683	moea64_probe_large_page();
684
685	/* Use a direct map if we have large page support */
686	if (moea64_large_page_size > 0)
687		hw_direct_map = 1;
688	else
689		hw_direct_map = 0;
690#endif
691
692	/* Get physical memory regions from firmware */
693	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
694	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
695
696	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
697		panic("moea64_bootstrap: phys_avail too small");
698
699	phys_avail_count = 0;
700	physsz = 0;
701	hwphyssz = 0;
702	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
703	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
704		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
705		    regions[i].mr_start + regions[i].mr_size,
706		    regions[i].mr_size);
707		if (hwphyssz != 0 &&
708		    (physsz + regions[i].mr_size) >= hwphyssz) {
709			if (physsz < hwphyssz) {
710				phys_avail[j] = regions[i].mr_start;
711				phys_avail[j + 1] = regions[i].mr_start +
712				    hwphyssz - physsz;
713				physsz = hwphyssz;
714				phys_avail_count++;
715			}
716			break;
717		}
718		phys_avail[j] = regions[i].mr_start;
719		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
720		phys_avail_count++;
721		physsz += regions[i].mr_size;
722	}
723
724	/* Check for overlap with the kernel and exception vectors */
725	for (j = 0; j < 2*phys_avail_count; j+=2) {
726		if (phys_avail[j] < EXC_LAST)
727			phys_avail[j] += EXC_LAST;
728
729		if (kernelstart >= phys_avail[j] &&
730		    kernelstart < phys_avail[j+1]) {
731			if (kernelend < phys_avail[j+1]) {
732				phys_avail[2*phys_avail_count] =
733				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
734				phys_avail[2*phys_avail_count + 1] =
735				    phys_avail[j+1];
736				phys_avail_count++;
737			}
738
739			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
740		}
741
742		if (kernelend >= phys_avail[j] &&
743		    kernelend < phys_avail[j+1]) {
744			if (kernelstart > phys_avail[j]) {
745				phys_avail[2*phys_avail_count] = phys_avail[j];
746				phys_avail[2*phys_avail_count + 1] =
747				    kernelstart & ~PAGE_MASK;
748				phys_avail_count++;
749			}
750
751			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
752		}
753	}
754
755	physmem = btoc(physsz);
756
757#ifdef PTEGCOUNT
758	moea64_pteg_count = PTEGCOUNT;
759#else
760	moea64_pteg_count = 0x1000;
761
762	while (moea64_pteg_count < physmem)
763		moea64_pteg_count <<= 1;
764
765	moea64_pteg_count >>= 1;
766#endif /* PTEGCOUNT */
767}
768
769void
770moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
771{
772	vm_size_t	size;
773	register_t	msr;
774	int		i;
775
776	/*
777	 * Set PTEG mask
778	 */
779	moea64_pteg_mask = moea64_pteg_count - 1;
780
781	/*
782	 * Allocate pv/overflow lists.
783	 */
784	size = sizeof(struct pvo_head) * moea64_pteg_count;
785
786	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
787	    PAGE_SIZE);
788	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
789
790	DISABLE_TRANS(msr);
791	for (i = 0; i < moea64_pteg_count; i++)
792		LIST_INIT(&moea64_pvo_table[i]);
793	ENABLE_TRANS(msr);
794
795	/*
796	 * Initialize the lock that synchronizes access to the pteg and pvo
797	 * tables.
798	 */
799	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
800	    MTX_RECURSE);
801	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
802
803	/*
804	 * Initialise the unmanaged pvo pool.
805	 */
806	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
807		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
808	moea64_bpvo_pool_index = 0;
809
810	/*
811	 * Make sure kernel vsid is allocated as well as VSID 0.
812	 */
813	#ifndef __powerpc64__
814	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
815		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
816	moea64_vsid_bitmap[0] |= 1;
817	#endif
818
819	/*
820	 * Initialize the kernel pmap (which is statically allocated).
821	 */
822	#ifdef __powerpc64__
823	for (i = 0; i < 64; i++) {
824		pcpup->pc_slb[i].slbv = 0;
825		pcpup->pc_slb[i].slbe = 0;
826	}
827	#else
828	for (i = 0; i < 16; i++)
829		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
830	#endif
831
832	kernel_pmap->pmap_phys = kernel_pmap;
833	CPU_FILL(&kernel_pmap->pm_active);
834
835	PMAP_LOCK_INIT(kernel_pmap);
836
837	/*
838	 * Now map in all the other buffers we allocated earlier
839	 */
840
841	moea64_setup_direct_map(mmup, kernelstart, kernelend);
842}
843
844void
845moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
846{
847	ihandle_t	mmui;
848	phandle_t	chosen;
849	phandle_t	mmu;
850	size_t		sz;
851	int		i;
852	vm_offset_t	pa, va;
853	void		*dpcpu;
854
855	/*
856	 * Set up the Open Firmware pmap and add its mappings if not in real
857	 * mode.
858	 */
859
860	chosen = OF_finddevice("/chosen");
861	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
862	    mmu = OF_instance_to_package(mmui);
863	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
864		sz = 0;
865	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
866		panic("moea64_bootstrap: too many ofw translations");
867
868	    if (sz > 0)
869		moea64_add_ofw_mappings(mmup, mmu, sz);
870	}
871
872	/*
873	 * Calculate the last available physical address.
874	 */
875	for (i = 0; phys_avail[i + 2] != 0; i += 2)
876		;
877	Maxmem = powerpc_btop(phys_avail[i + 1]);
878
879	/*
880	 * Initialize MMU and remap early physical mappings
881	 */
882	MMU_CPU_BOOTSTRAP(mmup,0);
883	mtmsr(mfmsr() | PSL_DR | PSL_IR);
884	pmap_bootstrapped++;
885	bs_remap_earlyboot();
886
887	/*
888	 * Set the start and end of kva.
889	 */
890	virtual_avail = VM_MIN_KERNEL_ADDRESS;
891	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
892
893	/*
894	 * Map the entire KVA range into the SLB. We must not fault there.
895	 */
896	#ifdef __powerpc64__
897	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
898		moea64_bootstrap_slb_prefault(va, 0);
899	#endif
900
901	/*
902	 * Figure out how far we can extend virtual_end into segment 16
903	 * without running into existing mappings. Segment 16 is guaranteed
904	 * to contain neither RAM nor devices (at least on Apple hardware),
905	 * but will generally contain some OFW mappings we should not
906	 * step on.
907	 */
908
909	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
910	PMAP_LOCK(kernel_pmap);
911	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
912	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
913		virtual_end += PAGE_SIZE;
914	PMAP_UNLOCK(kernel_pmap);
915	#endif
916
917	/*
918	 * Allocate a kernel stack with a guard page for thread0 and map it
919	 * into the kernel page map.
920	 */
921	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
922	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
923	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
924	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
925	thread0.td_kstack = va;
926	thread0.td_kstack_pages = KSTACK_PAGES;
927	for (i = 0; i < KSTACK_PAGES; i++) {
928		moea64_kenter(mmup, va, pa);
929		pa += PAGE_SIZE;
930		va += PAGE_SIZE;
931	}
932
933	/*
934	 * Allocate virtual address space for the message buffer.
935	 */
936	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
937	msgbufp = (struct msgbuf *)virtual_avail;
938	va = virtual_avail;
939	virtual_avail += round_page(msgbufsize);
940	while (va < virtual_avail) {
941		moea64_kenter(mmup, va, pa);
942		pa += PAGE_SIZE;
943		va += PAGE_SIZE;
944	}
945
946	/*
947	 * Allocate virtual address space for the dynamic percpu area.
948	 */
949	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
950	dpcpu = (void *)virtual_avail;
951	va = virtual_avail;
952	virtual_avail += DPCPU_SIZE;
953	while (va < virtual_avail) {
954		moea64_kenter(mmup, va, pa);
955		pa += PAGE_SIZE;
956		va += PAGE_SIZE;
957	}
958	dpcpu_init(dpcpu, 0);
959
960	/*
961	 * Allocate some things for page zeroing. We put this directly
962	 * in the page table, marked with LPTE_LOCKED, to avoid any
963	 * of the PVO book-keeping or other parts of the VM system
964	 * from even knowing that this hack exists.
965	 */
966
967	if (!hw_direct_map) {
968		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
969		    MTX_DEF);
970		for (i = 0; i < 2; i++) {
971			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
972			virtual_end -= PAGE_SIZE;
973
974			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
975
976			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
977			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
978			LOCK_TABLE();
979			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
980			    mmup, moea64_scratchpage_pvo[i]);
981			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
982			    |= LPTE_LOCKED;
983			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
984			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
985			    moea64_scratchpage_pvo[i]->pvo_vpn);
986			UNLOCK_TABLE();
987		}
988	}
989}
990
991/*
992 * Activate a user pmap.  The pmap must be activated before its address
993 * space can be accessed in any way.
994 */
995void
996moea64_activate(mmu_t mmu, struct thread *td)
997{
998	pmap_t	pm;
999
1000	pm = &td->td_proc->p_vmspace->vm_pmap;
1001	sched_pin();
1002	CPU_OR(&pm->pm_active, PCPU_PTR(cpumask));
1003	sched_unpin();
1004
1005	#ifdef __powerpc64__
1006	PCPU_SET(userslb, pm->pm_slb);
1007	#else
1008	PCPU_SET(curpmap, pm->pmap_phys);
1009	#endif
1010}
1011
1012void
1013moea64_deactivate(mmu_t mmu, struct thread *td)
1014{
1015	pmap_t	pm;
1016
1017	pm = &td->td_proc->p_vmspace->vm_pmap;
1018	sched_pin();
1019	CPU_NAND(&pm->pm_active, PCPU_PTR(cpumask));
1020	sched_unpin();
1021	#ifdef __powerpc64__
1022	PCPU_SET(userslb, NULL);
1023	#else
1024	PCPU_SET(curpmap, NULL);
1025	#endif
1026}
1027
1028void
1029moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1030{
1031	struct	pvo_entry *pvo;
1032	uintptr_t pt;
1033	uint64_t vsid;
1034	int	i, ptegidx;
1035
1036	PMAP_LOCK(pm);
1037	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1038
1039	if (pvo != NULL) {
1040		LOCK_TABLE();
1041		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1042
1043		if (wired) {
1044			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1045				pm->pm_stats.wired_count++;
1046			pvo->pvo_vaddr |= PVO_WIRED;
1047			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1048		} else {
1049			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1050				pm->pm_stats.wired_count--;
1051			pvo->pvo_vaddr &= ~PVO_WIRED;
1052			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1053		}
1054
1055		if (pt != -1) {
1056			/* Update wiring flag in page table. */
1057			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1058			    pvo->pvo_vpn);
1059		} else if (wired) {
1060			/*
1061			 * If we are wiring the page, and it wasn't in the
1062			 * page table before, add it.
1063			 */
1064			vsid = PVO_VSID(pvo);
1065			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1066			    pvo->pvo_vaddr & PVO_LARGE);
1067
1068			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1069
1070			if (i >= 0) {
1071				PVO_PTEGIDX_CLR(pvo);
1072				PVO_PTEGIDX_SET(pvo, i);
1073			}
1074		}
1075
1076		UNLOCK_TABLE();
1077	}
1078	PMAP_UNLOCK(pm);
1079}
1080
1081/*
1082 * This goes through and sets the physical address of our
1083 * special scratch PTE to the PA we want to zero or copy. Because
1084 * of locking issues (this can get called in pvo_enter() by
1085 * the UMA allocator), we can't use most other utility functions here
1086 */
1087
1088static __inline
1089void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1090
1091	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1092	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1093
1094	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1095	    ~(LPTE_WIMG | LPTE_RPGN);
1096	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1097	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1098	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1099	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1100	    moea64_scratchpage_pvo[which]->pvo_vpn);
1101	isync();
1102}
1103
1104void
1105moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1106{
1107	vm_offset_t	dst;
1108	vm_offset_t	src;
1109
1110	dst = VM_PAGE_TO_PHYS(mdst);
1111	src = VM_PAGE_TO_PHYS(msrc);
1112
1113	if (hw_direct_map) {
1114		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1115	} else {
1116		mtx_lock(&moea64_scratchpage_mtx);
1117
1118		moea64_set_scratchpage_pa(mmu, 0, src);
1119		moea64_set_scratchpage_pa(mmu, 1, dst);
1120
1121		kcopy((void *)moea64_scratchpage_va[0],
1122		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1123
1124		mtx_unlock(&moea64_scratchpage_mtx);
1125	}
1126}
1127
1128void
1129moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1130{
1131	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1132
1133	if (size + off > PAGE_SIZE)
1134		panic("moea64_zero_page: size + off > PAGE_SIZE");
1135
1136	if (hw_direct_map) {
1137		bzero((caddr_t)pa + off, size);
1138	} else {
1139		mtx_lock(&moea64_scratchpage_mtx);
1140		moea64_set_scratchpage_pa(mmu, 0, pa);
1141		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1142		mtx_unlock(&moea64_scratchpage_mtx);
1143	}
1144}
1145
1146/*
1147 * Zero a page of physical memory by temporarily mapping it
1148 */
1149void
1150moea64_zero_page(mmu_t mmu, vm_page_t m)
1151{
1152	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1153	vm_offset_t va, off;
1154
1155	if (!hw_direct_map) {
1156		mtx_lock(&moea64_scratchpage_mtx);
1157
1158		moea64_set_scratchpage_pa(mmu, 0, pa);
1159		va = moea64_scratchpage_va[0];
1160	} else {
1161		va = pa;
1162	}
1163
1164	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1165		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1166
1167	if (!hw_direct_map)
1168		mtx_unlock(&moea64_scratchpage_mtx);
1169}
1170
1171void
1172moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1173{
1174
1175	moea64_zero_page(mmu, m);
1176}
1177
1178/*
1179 * Map the given physical page at the specified virtual address in the
1180 * target pmap with the protection requested.  If specified the page
1181 * will be wired down.
1182 */
1183void
1184moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1185    vm_prot_t prot, boolean_t wired)
1186{
1187
1188	vm_page_lock_queues();
1189	PMAP_LOCK(pmap);
1190	moea64_enter_locked(mmu, pmap, va, m, prot, wired);
1191	vm_page_unlock_queues();
1192	PMAP_UNLOCK(pmap);
1193}
1194
1195/*
1196 * Map the given physical page at the specified virtual address in the
1197 * target pmap with the protection requested.  If specified the page
1198 * will be wired down.
1199 *
1200 * The page queues and pmap must be locked.
1201 */
1202
1203static void
1204moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1205    vm_prot_t prot, boolean_t wired)
1206{
1207	struct		pvo_head *pvo_head;
1208	uma_zone_t	zone;
1209	vm_page_t	pg;
1210	uint64_t	pte_lo;
1211	u_int		pvo_flags;
1212	int		error;
1213
1214	if (!moea64_initialized) {
1215		pvo_head = &moea64_pvo_kunmanaged;
1216		pg = NULL;
1217		zone = moea64_upvo_zone;
1218		pvo_flags = 0;
1219	} else {
1220		pvo_head = vm_page_to_pvoh(m);
1221		pg = m;
1222		zone = moea64_mpvo_zone;
1223		pvo_flags = PVO_MANAGED;
1224	}
1225
1226	if (pmap_bootstrapped)
1227		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1228	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1229	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1230	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1231	    ("moea64_enter_locked: page %p is not busy", m));
1232
1233	/* XXX change the pvo head for fake pages */
1234	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1235		pvo_flags &= ~PVO_MANAGED;
1236		pvo_head = &moea64_pvo_kunmanaged;
1237		zone = moea64_upvo_zone;
1238	}
1239
1240	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1241
1242	if (prot & VM_PROT_WRITE) {
1243		pte_lo |= LPTE_BW;
1244		if (pmap_bootstrapped &&
1245		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1246			vm_page_flag_set(m, PG_WRITEABLE);
1247	} else
1248		pte_lo |= LPTE_BR;
1249
1250	if ((prot & VM_PROT_EXECUTE) == 0)
1251		pte_lo |= LPTE_NOEXEC;
1252
1253	if (wired)
1254		pvo_flags |= PVO_WIRED;
1255
1256	if ((m->flags & PG_FICTITIOUS) != 0)
1257		pvo_flags |= PVO_FAKE;
1258
1259	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1260	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1261
1262	/*
1263	 * Flush the page from the instruction cache if this page is
1264	 * mapped executable and cacheable.
1265	 */
1266	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
1267		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1268}
1269
1270static void
1271moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1272    vm_size_t sz)
1273{
1274
1275	/*
1276	 * This is much trickier than on older systems because
1277	 * we can't sync the icache on physical addresses directly
1278	 * without a direct map. Instead we check a couple of cases
1279	 * where the memory is already mapped in and, failing that,
1280	 * use the same trick we use for page zeroing to create
1281	 * a temporary mapping for this physical address.
1282	 */
1283
1284	if (!pmap_bootstrapped) {
1285		/*
1286		 * If PMAP is not bootstrapped, we are likely to be
1287		 * in real mode.
1288		 */
1289		__syncicache((void *)pa, sz);
1290	} else if (pmap == kernel_pmap) {
1291		__syncicache((void *)va, sz);
1292	} else if (hw_direct_map) {
1293		__syncicache((void *)pa, sz);
1294	} else {
1295		/* Use the scratch page to set up a temp mapping */
1296
1297		mtx_lock(&moea64_scratchpage_mtx);
1298
1299		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1300		__syncicache((void *)(moea64_scratchpage_va[1] +
1301		    (va & ADDR_POFF)), sz);
1302
1303		mtx_unlock(&moea64_scratchpage_mtx);
1304	}
1305}
1306
1307/*
1308 * Maps a sequence of resident pages belonging to the same object.
1309 * The sequence begins with the given page m_start.  This page is
1310 * mapped at the given virtual address start.  Each subsequent page is
1311 * mapped at a virtual address that is offset from start by the same
1312 * amount as the page is offset from m_start within the object.  The
1313 * last page in the sequence is the page with the largest offset from
1314 * m_start that can be mapped at a virtual address less than the given
1315 * virtual address end.  Not every virtual page between start and end
1316 * is mapped; only those for which a resident page exists with the
1317 * corresponding offset from m_start are mapped.
1318 */
1319void
1320moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1321    vm_page_t m_start, vm_prot_t prot)
1322{
1323	vm_page_t m;
1324	vm_pindex_t diff, psize;
1325
1326	psize = atop(end - start);
1327	m = m_start;
1328	vm_page_lock_queues();
1329	PMAP_LOCK(pm);
1330	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1331		moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
1332		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1333		m = TAILQ_NEXT(m, listq);
1334	}
1335	vm_page_unlock_queues();
1336	PMAP_UNLOCK(pm);
1337}
1338
1339void
1340moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1341    vm_prot_t prot)
1342{
1343
1344	vm_page_lock_queues();
1345	PMAP_LOCK(pm);
1346	moea64_enter_locked(mmu, pm, va, m,
1347	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1348	vm_page_unlock_queues();
1349	PMAP_UNLOCK(pm);
1350}
1351
1352vm_paddr_t
1353moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1354{
1355	struct	pvo_entry *pvo;
1356	vm_paddr_t pa;
1357
1358	PMAP_LOCK(pm);
1359	pvo = moea64_pvo_find_va(pm, va);
1360	if (pvo == NULL)
1361		pa = 0;
1362	else
1363		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1364		    (va - PVO_VADDR(pvo));
1365	PMAP_UNLOCK(pm);
1366	return (pa);
1367}
1368
1369/*
1370 * Atomically extract and hold the physical page with the given
1371 * pmap and virtual address pair if that mapping permits the given
1372 * protection.
1373 */
1374vm_page_t
1375moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1376{
1377	struct	pvo_entry *pvo;
1378	vm_page_t m;
1379        vm_paddr_t pa;
1380
1381	m = NULL;
1382	pa = 0;
1383	PMAP_LOCK(pmap);
1384retry:
1385	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1386	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1387	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1388	     (prot & VM_PROT_WRITE) == 0)) {
1389		if (vm_page_pa_tryrelock(pmap,
1390			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1391			goto retry;
1392		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1393		vm_page_hold(m);
1394	}
1395	PA_UNLOCK_COND(pa);
1396	PMAP_UNLOCK(pmap);
1397	return (m);
1398}
1399
1400static mmu_t installed_mmu;
1401
1402static void *
1403moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1404{
1405	/*
1406	 * This entire routine is a horrible hack to avoid bothering kmem
1407	 * for new KVA addresses. Because this can get called from inside
1408	 * kmem allocation routines, calling kmem for a new address here
1409	 * can lead to multiply locking non-recursive mutexes.
1410	 */
1411	static vm_pindex_t color;
1412        vm_offset_t va;
1413
1414        vm_page_t m;
1415        int pflags, needed_lock;
1416
1417	*flags = UMA_SLAB_PRIV;
1418	needed_lock = !PMAP_LOCKED(kernel_pmap);
1419
1420	if (needed_lock)
1421		PMAP_LOCK(kernel_pmap);
1422
1423        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1424                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1425        else
1426                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1427        if (wait & M_ZERO)
1428                pflags |= VM_ALLOC_ZERO;
1429
1430        for (;;) {
1431                m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1432                if (m == NULL) {
1433                        if (wait & M_NOWAIT)
1434                                return (NULL);
1435                        VM_WAIT;
1436                } else
1437                        break;
1438        }
1439
1440	va = VM_PAGE_TO_PHYS(m);
1441
1442	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1443	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1444	    PVO_WIRED | PVO_BOOTSTRAP);
1445
1446	if (needed_lock)
1447		PMAP_UNLOCK(kernel_pmap);
1448
1449	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1450                bzero((void *)va, PAGE_SIZE);
1451
1452	return (void *)va;
1453}
1454
1455void
1456moea64_init(mmu_t mmu)
1457{
1458
1459	CTR0(KTR_PMAP, "moea64_init");
1460
1461	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1462	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1463	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1464	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1465	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1466	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1467
1468	if (!hw_direct_map) {
1469		installed_mmu = mmu;
1470		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1471		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1472	}
1473
1474	moea64_initialized = TRUE;
1475}
1476
1477boolean_t
1478moea64_is_referenced(mmu_t mmu, vm_page_t m)
1479{
1480
1481	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1482	    ("moea64_is_referenced: page %p is not managed", m));
1483	return (moea64_query_bit(mmu, m, PTE_REF));
1484}
1485
1486boolean_t
1487moea64_is_modified(mmu_t mmu, vm_page_t m)
1488{
1489
1490	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1491	    ("moea64_is_modified: page %p is not managed", m));
1492
1493	/*
1494	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1495	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1496	 * is clear, no PTEs can have LPTE_CHG set.
1497	 */
1498	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1499	if ((m->oflags & VPO_BUSY) == 0 &&
1500	    (m->flags & PG_WRITEABLE) == 0)
1501		return (FALSE);
1502	return (moea64_query_bit(mmu, m, LPTE_CHG));
1503}
1504
1505boolean_t
1506moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1507{
1508	struct pvo_entry *pvo;
1509	boolean_t rv;
1510
1511	PMAP_LOCK(pmap);
1512	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1513	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1514	PMAP_UNLOCK(pmap);
1515	return (rv);
1516}
1517
1518void
1519moea64_clear_reference(mmu_t mmu, vm_page_t m)
1520{
1521
1522	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1523	    ("moea64_clear_reference: page %p is not managed", m));
1524	moea64_clear_bit(mmu, m, LPTE_REF);
1525}
1526
1527void
1528moea64_clear_modify(mmu_t mmu, vm_page_t m)
1529{
1530
1531	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1532	    ("moea64_clear_modify: page %p is not managed", m));
1533	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1534	KASSERT((m->oflags & VPO_BUSY) == 0,
1535	    ("moea64_clear_modify: page %p is busy", m));
1536
1537	/*
1538	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1539	 * set.  If the object containing the page is locked and the page is
1540	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1541	 */
1542	if ((m->flags & PG_WRITEABLE) == 0)
1543		return;
1544	moea64_clear_bit(mmu, m, LPTE_CHG);
1545}
1546
1547/*
1548 * Clear the write and modified bits in each of the given page's mappings.
1549 */
1550void
1551moea64_remove_write(mmu_t mmu, vm_page_t m)
1552{
1553	struct	pvo_entry *pvo;
1554	uintptr_t pt;
1555	pmap_t	pmap;
1556	uint64_t lo;
1557
1558	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1559	    ("moea64_remove_write: page %p is not managed", m));
1560
1561	/*
1562	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1563	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1564	 * is clear, no page table entries need updating.
1565	 */
1566	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1567	if ((m->oflags & VPO_BUSY) == 0 &&
1568	    (m->flags & PG_WRITEABLE) == 0)
1569		return;
1570	vm_page_lock_queues();
1571	lo = moea64_attr_fetch(m);
1572	powerpc_sync();
1573	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1574		pmap = pvo->pvo_pmap;
1575		PMAP_LOCK(pmap);
1576		LOCK_TABLE();
1577		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1578			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1579			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1580			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1581			if (pt != -1) {
1582				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1583				lo |= pvo->pvo_pte.lpte.pte_lo;
1584				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1585				MOEA64_PTE_CHANGE(mmu, pt,
1586				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1587				if (pvo->pvo_pmap == kernel_pmap)
1588					isync();
1589			}
1590		}
1591		UNLOCK_TABLE();
1592		PMAP_UNLOCK(pmap);
1593	}
1594	if ((lo & LPTE_CHG) != 0) {
1595		moea64_attr_clear(m, LPTE_CHG);
1596		vm_page_dirty(m);
1597	}
1598	vm_page_flag_clear(m, PG_WRITEABLE);
1599	vm_page_unlock_queues();
1600}
1601
1602/*
1603 *	moea64_ts_referenced:
1604 *
1605 *	Return a count of reference bits for a page, clearing those bits.
1606 *	It is not necessary for every reference bit to be cleared, but it
1607 *	is necessary that 0 only be returned when there are truly no
1608 *	reference bits set.
1609 *
1610 *	XXX: The exact number of bits to check and clear is a matter that
1611 *	should be tested and standardized at some point in the future for
1612 *	optimal aging of shared pages.
1613 */
1614boolean_t
1615moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1616{
1617
1618	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1619	    ("moea64_ts_referenced: page %p is not managed", m));
1620	return (moea64_clear_bit(mmu, m, LPTE_REF));
1621}
1622
1623/*
1624 * Modify the WIMG settings of all mappings for a page.
1625 */
1626void
1627moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1628{
1629	struct	pvo_entry *pvo;
1630	struct  pvo_head *pvo_head;
1631	uintptr_t pt;
1632	pmap_t	pmap;
1633	uint64_t lo;
1634
1635	if (m->flags & PG_FICTITIOUS) {
1636		m->md.mdpg_cache_attrs = ma;
1637		return;
1638	}
1639
1640	vm_page_lock_queues();
1641	pvo_head = vm_page_to_pvoh(m);
1642	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1643	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1644		pmap = pvo->pvo_pmap;
1645		PMAP_LOCK(pmap);
1646		LOCK_TABLE();
1647		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1648		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1649		pvo->pvo_pte.lpte.pte_lo |= lo;
1650		if (pt != -1) {
1651			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1652			    pvo->pvo_vpn);
1653			if (pvo->pvo_pmap == kernel_pmap)
1654				isync();
1655		}
1656		UNLOCK_TABLE();
1657		PMAP_UNLOCK(pmap);
1658	}
1659	m->md.mdpg_cache_attrs = ma;
1660	vm_page_unlock_queues();
1661}
1662
1663/*
1664 * Map a wired page into kernel virtual address space.
1665 */
1666void
1667moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1668{
1669	uint64_t	pte_lo;
1670	int		error;
1671
1672	pte_lo = moea64_calc_wimg(pa, ma);
1673
1674	PMAP_LOCK(kernel_pmap);
1675	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1676	    &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1677
1678	if (error != 0 && error != ENOENT)
1679		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1680		    pa, error);
1681
1682	/*
1683	 * Flush the memory from the instruction cache.
1684	 */
1685	if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
1686		__syncicache((void *)va, PAGE_SIZE);
1687	PMAP_UNLOCK(kernel_pmap);
1688}
1689
1690void
1691moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1692{
1693
1694	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1695}
1696
1697/*
1698 * Extract the physical page address associated with the given kernel virtual
1699 * address.
1700 */
1701vm_offset_t
1702moea64_kextract(mmu_t mmu, vm_offset_t va)
1703{
1704	struct		pvo_entry *pvo;
1705	vm_paddr_t pa;
1706
1707	/*
1708	 * Shortcut the direct-mapped case when applicable.  We never put
1709	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1710	 */
1711	if (va < VM_MIN_KERNEL_ADDRESS)
1712		return (va);
1713
1714	PMAP_LOCK(kernel_pmap);
1715	pvo = moea64_pvo_find_va(kernel_pmap, va);
1716	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1717	    va));
1718	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
1719	PMAP_UNLOCK(kernel_pmap);
1720	return (pa);
1721}
1722
1723/*
1724 * Remove a wired page from kernel virtual address space.
1725 */
1726void
1727moea64_kremove(mmu_t mmu, vm_offset_t va)
1728{
1729	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1730}
1731
1732/*
1733 * Map a range of physical addresses into kernel virtual address space.
1734 *
1735 * The value passed in *virt is a suggested virtual address for the mapping.
1736 * Architectures which can support a direct-mapped physical to virtual region
1737 * can return the appropriate address within that region, leaving '*virt'
1738 * unchanged.  We cannot and therefore do not; *virt is updated with the
1739 * first usable address after the mapped region.
1740 */
1741vm_offset_t
1742moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1743    vm_offset_t pa_end, int prot)
1744{
1745	vm_offset_t	sva, va;
1746
1747	sva = *virt;
1748	va = sva;
1749	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1750		moea64_kenter(mmu, va, pa_start);
1751	*virt = va;
1752
1753	return (sva);
1754}
1755
1756/*
1757 * Returns true if the pmap's pv is one of the first
1758 * 16 pvs linked to from this page.  This count may
1759 * be changed upwards or downwards in the future; it
1760 * is only necessary that true be returned for a small
1761 * subset of pmaps for proper page aging.
1762 */
1763boolean_t
1764moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1765{
1766        int loops;
1767	struct pvo_entry *pvo;
1768	boolean_t rv;
1769
1770	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1771	    ("moea64_page_exists_quick: page %p is not managed", m));
1772	loops = 0;
1773	rv = FALSE;
1774	vm_page_lock_queues();
1775	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1776		if (pvo->pvo_pmap == pmap) {
1777			rv = TRUE;
1778			break;
1779		}
1780		if (++loops >= 16)
1781			break;
1782	}
1783	vm_page_unlock_queues();
1784	return (rv);
1785}
1786
1787/*
1788 * Return the number of managed mappings to the given physical page
1789 * that are wired.
1790 */
1791int
1792moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1793{
1794	struct pvo_entry *pvo;
1795	int count;
1796
1797	count = 0;
1798	if ((m->flags & PG_FICTITIOUS) != 0)
1799		return (count);
1800	vm_page_lock_queues();
1801	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1802		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1803			count++;
1804	vm_page_unlock_queues();
1805	return (count);
1806}
1807
1808static uintptr_t	moea64_vsidcontext;
1809
1810uintptr_t
1811moea64_get_unique_vsid(void) {
1812	u_int entropy;
1813	register_t hash;
1814	uint32_t mask;
1815	int i;
1816
1817	entropy = 0;
1818	__asm __volatile("mftb %0" : "=r"(entropy));
1819
1820	mtx_lock(&moea64_slb_mutex);
1821	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1822		u_int	n;
1823
1824		/*
1825		 * Create a new value by mutiplying by a prime and adding in
1826		 * entropy from the timebase register.  This is to make the
1827		 * VSID more random so that the PT hash function collides
1828		 * less often.  (Note that the prime casues gcc to do shifts
1829		 * instead of a multiply.)
1830		 */
1831		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1832		hash = moea64_vsidcontext & (NVSIDS - 1);
1833		if (hash == 0)		/* 0 is special, avoid it */
1834			continue;
1835		n = hash >> 5;
1836		mask = 1 << (hash & (VSID_NBPW - 1));
1837		hash = (moea64_vsidcontext & VSID_HASHMASK);
1838		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1839			/* anything free in this bucket? */
1840			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1841				entropy = (moea64_vsidcontext >> 20);
1842				continue;
1843			}
1844			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1845			mask = 1 << i;
1846			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1847			hash |= i;
1848		}
1849		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1850		    ("Allocating in-use VSID %#zx\n", hash));
1851		moea64_vsid_bitmap[n] |= mask;
1852		mtx_unlock(&moea64_slb_mutex);
1853		return (hash);
1854	}
1855
1856	mtx_unlock(&moea64_slb_mutex);
1857	panic("%s: out of segments",__func__);
1858}
1859
1860#ifdef __powerpc64__
1861void
1862moea64_pinit(mmu_t mmu, pmap_t pmap)
1863{
1864	PMAP_LOCK_INIT(pmap);
1865
1866	pmap->pm_slb_tree_root = slb_alloc_tree();
1867	pmap->pm_slb = slb_alloc_user_cache();
1868	pmap->pm_slb_len = 0;
1869}
1870#else
1871void
1872moea64_pinit(mmu_t mmu, pmap_t pmap)
1873{
1874	int	i;
1875	uint32_t hash;
1876
1877	PMAP_LOCK_INIT(pmap);
1878
1879	if (pmap_bootstrapped)
1880		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1881		    (vm_offset_t)pmap);
1882	else
1883		pmap->pmap_phys = pmap;
1884
1885	/*
1886	 * Allocate some segment registers for this pmap.
1887	 */
1888	hash = moea64_get_unique_vsid();
1889
1890	for (i = 0; i < 16; i++)
1891		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1892
1893	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1894}
1895#endif
1896
1897/*
1898 * Initialize the pmap associated with process 0.
1899 */
1900void
1901moea64_pinit0(mmu_t mmu, pmap_t pm)
1902{
1903	moea64_pinit(mmu, pm);
1904	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1905}
1906
1907/*
1908 * Set the physical protection on the specified range of this map as requested.
1909 */
1910void
1911moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1912    vm_prot_t prot)
1913{
1914	struct	pvo_entry *pvo;
1915	uintptr_t pt;
1916
1917	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1918	    eva, prot);
1919
1920
1921	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1922	    ("moea64_protect: non current pmap"));
1923
1924	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1925		moea64_remove(mmu, pm, sva, eva);
1926		return;
1927	}
1928
1929	vm_page_lock_queues();
1930	PMAP_LOCK(pm);
1931	for (; sva < eva; sva += PAGE_SIZE) {
1932		pvo = moea64_pvo_find_va(pm, sva);
1933		if (pvo == NULL)
1934			continue;
1935
1936		/*
1937		 * Grab the PTE pointer before we diddle with the cached PTE
1938		 * copy.
1939		 */
1940		LOCK_TABLE();
1941		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1942
1943		/*
1944		 * Change the protection of the page.
1945		 */
1946		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1947		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1948		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1949		if ((prot & VM_PROT_EXECUTE) == 0)
1950			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1951
1952		/*
1953		 * If the PVO is in the page table, update that pte as well.
1954		 */
1955		if (pt != -1) {
1956			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1957			    pvo->pvo_vpn);
1958			if ((pvo->pvo_pte.lpte.pte_lo &
1959			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1960				moea64_syncicache(mmu, pm, sva,
1961				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1962				    PAGE_SIZE);
1963			}
1964		}
1965		UNLOCK_TABLE();
1966	}
1967	vm_page_unlock_queues();
1968	PMAP_UNLOCK(pm);
1969}
1970
1971/*
1972 * Map a list of wired pages into kernel virtual address space.  This is
1973 * intended for temporary mappings which do not need page modification or
1974 * references recorded.  Existing mappings in the region are overwritten.
1975 */
1976void
1977moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1978{
1979	while (count-- > 0) {
1980		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1981		va += PAGE_SIZE;
1982		m++;
1983	}
1984}
1985
1986/*
1987 * Remove page mappings from kernel virtual address space.  Intended for
1988 * temporary mappings entered by moea64_qenter.
1989 */
1990void
1991moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1992{
1993	while (count-- > 0) {
1994		moea64_kremove(mmu, va);
1995		va += PAGE_SIZE;
1996	}
1997}
1998
1999void
2000moea64_release_vsid(uint64_t vsid)
2001{
2002	int idx, mask;
2003
2004	mtx_lock(&moea64_slb_mutex);
2005	idx = vsid & (NVSIDS-1);
2006	mask = 1 << (idx % VSID_NBPW);
2007	idx /= VSID_NBPW;
2008	KASSERT(moea64_vsid_bitmap[idx] & mask,
2009	    ("Freeing unallocated VSID %#jx", vsid));
2010	moea64_vsid_bitmap[idx] &= ~mask;
2011	mtx_unlock(&moea64_slb_mutex);
2012}
2013
2014
2015void
2016moea64_release(mmu_t mmu, pmap_t pmap)
2017{
2018
2019	/*
2020	 * Free segment registers' VSIDs
2021	 */
2022    #ifdef __powerpc64__
2023	slb_free_tree(pmap);
2024	slb_free_user_cache(pmap->pm_slb);
2025    #else
2026	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2027
2028	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2029    #endif
2030
2031	PMAP_LOCK_DESTROY(pmap);
2032}
2033
2034/*
2035 * Remove the given range of addresses from the specified map.
2036 */
2037void
2038moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2039{
2040	struct	pvo_entry *pvo;
2041
2042	vm_page_lock_queues();
2043	PMAP_LOCK(pm);
2044	for (; sva < eva; sva += PAGE_SIZE) {
2045		pvo = moea64_pvo_find_va(pm, sva);
2046		if (pvo != NULL)
2047			moea64_pvo_remove(mmu, pvo);
2048	}
2049	vm_page_unlock_queues();
2050	PMAP_UNLOCK(pm);
2051}
2052
2053/*
2054 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2055 * will reflect changes in pte's back to the vm_page.
2056 */
2057void
2058moea64_remove_all(mmu_t mmu, vm_page_t m)
2059{
2060	struct  pvo_head *pvo_head;
2061	struct	pvo_entry *pvo, *next_pvo;
2062	pmap_t	pmap;
2063
2064	vm_page_lock_queues();
2065	pvo_head = vm_page_to_pvoh(m);
2066	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2067		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2068
2069		pmap = pvo->pvo_pmap;
2070		PMAP_LOCK(pmap);
2071		moea64_pvo_remove(mmu, pvo);
2072		PMAP_UNLOCK(pmap);
2073	}
2074	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2075		moea64_attr_clear(m, LPTE_CHG);
2076		vm_page_dirty(m);
2077	}
2078	vm_page_flag_clear(m, PG_WRITEABLE);
2079	vm_page_unlock_queues();
2080}
2081
2082/*
2083 * Allocate a physical page of memory directly from the phys_avail map.
2084 * Can only be called from moea64_bootstrap before avail start and end are
2085 * calculated.
2086 */
2087vm_offset_t
2088moea64_bootstrap_alloc(vm_size_t size, u_int align)
2089{
2090	vm_offset_t	s, e;
2091	int		i, j;
2092
2093	size = round_page(size);
2094	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2095		if (align != 0)
2096			s = (phys_avail[i] + align - 1) & ~(align - 1);
2097		else
2098			s = phys_avail[i];
2099		e = s + size;
2100
2101		if (s < phys_avail[i] || e > phys_avail[i + 1])
2102			continue;
2103
2104		if (s + size > platform_real_maxaddr())
2105			continue;
2106
2107		if (s == phys_avail[i]) {
2108			phys_avail[i] += size;
2109		} else if (e == phys_avail[i + 1]) {
2110			phys_avail[i + 1] -= size;
2111		} else {
2112			for (j = phys_avail_count * 2; j > i; j -= 2) {
2113				phys_avail[j] = phys_avail[j - 2];
2114				phys_avail[j + 1] = phys_avail[j - 1];
2115			}
2116
2117			phys_avail[i + 3] = phys_avail[i + 1];
2118			phys_avail[i + 1] = s;
2119			phys_avail[i + 2] = e;
2120			phys_avail_count++;
2121		}
2122
2123		return (s);
2124	}
2125	panic("moea64_bootstrap_alloc: could not allocate memory");
2126}
2127
2128static int
2129moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2130    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2131    uint64_t pte_lo, int flags)
2132{
2133	struct	 pvo_entry *pvo;
2134	uint64_t vsid;
2135	int	 first;
2136	u_int	 ptegidx;
2137	int	 i;
2138	int      bootstrap;
2139
2140	/*
2141	 * One nasty thing that can happen here is that the UMA calls to
2142	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2143	 * which calls UMA...
2144	 *
2145	 * We break the loop by detecting recursion and allocating out of
2146	 * the bootstrap pool.
2147	 */
2148
2149	first = 0;
2150	bootstrap = (flags & PVO_BOOTSTRAP);
2151
2152	if (!moea64_initialized)
2153		bootstrap = 1;
2154
2155	/*
2156	 * Compute the PTE Group index.
2157	 */
2158	va &= ~ADDR_POFF;
2159	vsid = va_to_vsid(pm, va);
2160	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2161
2162	/*
2163	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2164	 * there is a mapping.
2165	 */
2166	LOCK_TABLE();
2167
2168	moea64_pvo_enter_calls++;
2169
2170	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2171		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2172			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2173			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2174			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2175			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2176					/* Re-insert if spilled */
2177					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2178					    &pvo->pvo_pte.lpte);
2179					if (i >= 0)
2180						PVO_PTEGIDX_SET(pvo, i);
2181					moea64_pte_overflow--;
2182				}
2183				UNLOCK_TABLE();
2184				return (0);
2185			}
2186			moea64_pvo_remove(mmu, pvo);
2187			break;
2188		}
2189	}
2190
2191	/*
2192	 * If we aren't overwriting a mapping, try to allocate.
2193	 */
2194	if (bootstrap) {
2195		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2196			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2197			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2198			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2199		}
2200		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2201		moea64_bpvo_pool_index++;
2202		bootstrap = 1;
2203	} else {
2204		/*
2205		 * Note: drop the table lock around the UMA allocation in
2206		 * case the UMA allocator needs to manipulate the page
2207		 * table. The mapping we are working with is already
2208		 * protected by the PMAP lock.
2209		 */
2210		UNLOCK_TABLE();
2211		pvo = uma_zalloc(zone, M_NOWAIT);
2212		LOCK_TABLE();
2213	}
2214
2215	if (pvo == NULL) {
2216		UNLOCK_TABLE();
2217		return (ENOMEM);
2218	}
2219
2220	moea64_pvo_entries++;
2221	pvo->pvo_vaddr = va;
2222	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2223	    | (vsid << 16);
2224	pvo->pvo_pmap = pm;
2225	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2226	pvo->pvo_vaddr &= ~ADDR_POFF;
2227
2228	if (flags & PVO_WIRED)
2229		pvo->pvo_vaddr |= PVO_WIRED;
2230	if (pvo_head != &moea64_pvo_kunmanaged)
2231		pvo->pvo_vaddr |= PVO_MANAGED;
2232	if (bootstrap)
2233		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2234	if (flags & PVO_FAKE)
2235		pvo->pvo_vaddr |= PVO_FAKE;
2236	if (flags & PVO_LARGE)
2237		pvo->pvo_vaddr |= PVO_LARGE;
2238
2239	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2240	    (uint64_t)(pa) | pte_lo, flags);
2241
2242	/*
2243	 * Remember if the list was empty and therefore will be the first
2244	 * item.
2245	 */
2246	if (LIST_FIRST(pvo_head) == NULL)
2247		first = 1;
2248	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2249
2250	if (pvo->pvo_vaddr & PVO_WIRED) {
2251		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2252		pm->pm_stats.wired_count++;
2253	}
2254	pm->pm_stats.resident_count++;
2255
2256	/*
2257	 * We hope this succeeds but it isn't required.
2258	 */
2259	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2260	if (i >= 0) {
2261		PVO_PTEGIDX_SET(pvo, i);
2262	} else {
2263		panic("moea64_pvo_enter: overflow");
2264		moea64_pte_overflow++;
2265	}
2266
2267	if (pm == kernel_pmap)
2268		isync();
2269
2270	UNLOCK_TABLE();
2271
2272#ifdef __powerpc64__
2273	/*
2274	 * Make sure all our bootstrap mappings are in the SLB as soon
2275	 * as virtual memory is switched on.
2276	 */
2277	if (!pmap_bootstrapped)
2278		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2279#endif
2280
2281	return (first ? ENOENT : 0);
2282}
2283
2284static void
2285moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2286{
2287	uintptr_t pt;
2288
2289	/*
2290	 * If there is an active pte entry, we need to deactivate it (and
2291	 * save the ref & cfg bits).
2292	 */
2293	LOCK_TABLE();
2294	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2295	if (pt != -1) {
2296		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2297		PVO_PTEGIDX_CLR(pvo);
2298	} else {
2299		moea64_pte_overflow--;
2300	}
2301
2302	/*
2303	 * Update our statistics.
2304	 */
2305	pvo->pvo_pmap->pm_stats.resident_count--;
2306	if (pvo->pvo_vaddr & PVO_WIRED)
2307		pvo->pvo_pmap->pm_stats.wired_count--;
2308
2309	/*
2310	 * Save the REF/CHG bits into their cache if the page is managed.
2311	 */
2312	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2313		struct	vm_page *pg;
2314
2315		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2316		if (pg != NULL) {
2317			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2318			    (LPTE_REF | LPTE_CHG));
2319		}
2320	}
2321
2322	/*
2323	 * Remove this PVO from the PV list.
2324	 */
2325	LIST_REMOVE(pvo, pvo_vlink);
2326
2327	/*
2328	 * Remove this from the overflow list and return it to the pool
2329	 * if we aren't going to reuse it.
2330	 */
2331	LIST_REMOVE(pvo, pvo_olink);
2332
2333	moea64_pvo_entries--;
2334	moea64_pvo_remove_calls++;
2335
2336	UNLOCK_TABLE();
2337
2338	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2339		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2340		    moea64_upvo_zone, pvo);
2341}
2342
2343static struct pvo_entry *
2344moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2345{
2346	struct		pvo_entry *pvo;
2347	int		ptegidx;
2348	uint64_t	vsid;
2349	#ifdef __powerpc64__
2350	uint64_t	slbv;
2351
2352	if (pm == kernel_pmap) {
2353		slbv = kernel_va_to_slbv(va);
2354	} else {
2355		struct slb *slb;
2356		slb = user_va_to_slb_entry(pm, va);
2357		/* The page is not mapped if the segment isn't */
2358		if (slb == NULL)
2359			return NULL;
2360		slbv = slb->slbv;
2361	}
2362
2363	vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2364	if (slbv & SLBV_L)
2365		va &= ~moea64_large_page_mask;
2366	else
2367		va &= ~ADDR_POFF;
2368	ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2369	#else
2370	va &= ~ADDR_POFF;
2371	vsid = va_to_vsid(pm, va);
2372	ptegidx = va_to_pteg(vsid, va, 0);
2373	#endif
2374
2375	LOCK_TABLE();
2376	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2377		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2378			break;
2379	}
2380	UNLOCK_TABLE();
2381
2382	return (pvo);
2383}
2384
2385static boolean_t
2386moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2387{
2388	struct	pvo_entry *pvo;
2389	uintptr_t pt;
2390
2391	if (moea64_attr_fetch(m) & ptebit)
2392		return (TRUE);
2393
2394	vm_page_lock_queues();
2395
2396	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2397
2398		/*
2399		 * See if we saved the bit off.  If so, cache it and return
2400		 * success.
2401		 */
2402		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2403			moea64_attr_save(m, ptebit);
2404			vm_page_unlock_queues();
2405			return (TRUE);
2406		}
2407	}
2408
2409	/*
2410	 * No luck, now go through the hard part of looking at the PTEs
2411	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2412	 * the PTEs.
2413	 */
2414	powerpc_sync();
2415	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2416
2417		/*
2418		 * See if this pvo has a valid PTE.  if so, fetch the
2419		 * REF/CHG bits from the valid PTE.  If the appropriate
2420		 * ptebit is set, cache it and return success.
2421		 */
2422		LOCK_TABLE();
2423		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2424		if (pt != -1) {
2425			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2426			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2427				UNLOCK_TABLE();
2428
2429				moea64_attr_save(m, ptebit);
2430				vm_page_unlock_queues();
2431				return (TRUE);
2432			}
2433		}
2434		UNLOCK_TABLE();
2435	}
2436
2437	vm_page_unlock_queues();
2438	return (FALSE);
2439}
2440
2441static u_int
2442moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2443{
2444	u_int	count;
2445	struct	pvo_entry *pvo;
2446	uintptr_t pt;
2447
2448	vm_page_lock_queues();
2449
2450	/*
2451	 * Clear the cached value.
2452	 */
2453	moea64_attr_clear(m, ptebit);
2454
2455	/*
2456	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2457	 * we can reset the right ones).  note that since the pvo entries and
2458	 * list heads are accessed via BAT0 and are never placed in the page
2459	 * table, we don't have to worry about further accesses setting the
2460	 * REF/CHG bits.
2461	 */
2462	powerpc_sync();
2463
2464	/*
2465	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2466	 * valid pte clear the ptebit from the valid pte.
2467	 */
2468	count = 0;
2469	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2470
2471		LOCK_TABLE();
2472		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2473		if (pt != -1) {
2474			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2475			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2476				count++;
2477				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2478				    pvo->pvo_vpn, ptebit);
2479			}
2480		}
2481		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2482		UNLOCK_TABLE();
2483	}
2484
2485	vm_page_unlock_queues();
2486	return (count);
2487}
2488
2489boolean_t
2490moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2491{
2492	struct pvo_entry *pvo;
2493	vm_offset_t ppa;
2494	int error = 0;
2495
2496	PMAP_LOCK(kernel_pmap);
2497	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2498		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2499		if (pvo == NULL ||
2500		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2501			error = EFAULT;
2502			break;
2503		}
2504	}
2505	PMAP_UNLOCK(kernel_pmap);
2506
2507	return (error);
2508}
2509
2510/*
2511 * Map a set of physical memory pages into the kernel virtual
2512 * address space. Return a pointer to where it is mapped. This
2513 * routine is intended to be used for mapping device memory,
2514 * NOT real memory.
2515 */
2516void *
2517moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2518{
2519	vm_offset_t va, tmpva, ppa, offset;
2520
2521	ppa = trunc_page(pa);
2522	offset = pa & PAGE_MASK;
2523	size = roundup(offset + size, PAGE_SIZE);
2524
2525	va = kmem_alloc_nofault(kernel_map, size);
2526
2527	if (!va)
2528		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2529
2530	for (tmpva = va; size > 0;) {
2531		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2532		size -= PAGE_SIZE;
2533		tmpva += PAGE_SIZE;
2534		ppa += PAGE_SIZE;
2535	}
2536
2537	return ((void *)(va + offset));
2538}
2539
2540void *
2541moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2542{
2543
2544	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2545}
2546
2547void
2548moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2549{
2550	vm_offset_t base, offset;
2551
2552	base = trunc_page(va);
2553	offset = va & PAGE_MASK;
2554	size = roundup(offset + size, PAGE_SIZE);
2555
2556	kmem_free(kernel_map, base, size);
2557}
2558
2559void
2560moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2561{
2562	struct pvo_entry *pvo;
2563	vm_offset_t lim;
2564	vm_paddr_t pa;
2565	vm_size_t len;
2566
2567	PMAP_LOCK(pm);
2568	while (sz > 0) {
2569		lim = round_page(va);
2570		len = MIN(lim - va, sz);
2571		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2572		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2573			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2574			    (va & ADDR_POFF);
2575			moea64_syncicache(mmu, pm, va, pa, len);
2576		}
2577		va += len;
2578		sz -= len;
2579	}
2580	PMAP_UNLOCK(pm);
2581}
2582