mmu_oea64.c revision 212331
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 212331 2010-09-08 19:28:43Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <sys/kdb.h>
131
132#include <dev/ofw/openfirm.h>
133
134#include <vm/vm.h>
135#include <vm/vm_param.h>
136#include <vm/vm_kern.h>
137#include <vm/vm_page.h>
138#include <vm/vm_map.h>
139#include <vm/vm_object.h>
140#include <vm/vm_extern.h>
141#include <vm/vm_pageout.h>
142#include <vm/vm_pager.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_if.h"
159
160#define	MOEA_DEBUG
161
162#define TODO	panic("%s: not implemented", __func__);
163void moea64_release_vsid(uint64_t vsid);
164uintptr_t moea64_get_unique_vsid(void);
165
166static __inline register_t
167cntlzd(volatile register_t a) {
168	register_t b;
169	__asm ("cntlzd %0, %1" : "=r"(b) : "r"(a));
170	return b;
171}
172
173#define	PTESYNC()	__asm __volatile("ptesync");
174#define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
175#define	SYNC()		__asm __volatile("sync");
176#define	EIEIO()		__asm __volatile("eieio");
177
178/*
179 * The tlbie instruction must be executed in 64-bit mode
180 * so we have to twiddle MSR[SF] around every invocation.
181 * Just to add to the fun, exceptions must be off as well
182 * so that we can't trap in 64-bit mode. What a pain.
183 */
184struct mtx	tlbie_mutex;
185
186static __inline void
187TLBIE(uint64_t vpn) {
188#ifndef __powerpc64__
189	register_t vpn_hi, vpn_lo;
190	register_t msr;
191	register_t scratch;
192#endif
193
194	vpn <<= ADDR_PIDX_SHFT;
195	vpn &= ~(0xffffULL << 48);
196
197	mtx_lock_spin(&tlbie_mutex);
198#ifdef __powerpc64__
199	__asm __volatile("\
200	    ptesync; \
201	    tlbie %0; \
202	    eieio; \
203	    tlbsync; \
204	    ptesync;"
205	:: "r"(vpn) : "memory");
206#else
207	vpn_hi = (uint32_t)(vpn >> 32);
208	vpn_lo = (uint32_t)vpn;
209
210	__asm __volatile("\
211	    mfmsr %0; \
212	    mr %1, %0; \
213	    insrdi %1,%5,1,0; \
214	    mtmsrd %1; \
215	    ptesync; \
216	    \
217	    sld %1,%2,%4; \
218	    or %1,%1,%3; \
219	    tlbie %1; \
220	    \
221	    mtmsrd %0; \
222	    eieio; \
223	    tlbsync; \
224	    ptesync;"
225	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
226	    : "memory");
227#endif
228	mtx_unlock_spin(&tlbie_mutex);
229}
230
231#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
232#define ENABLE_TRANS(msr)	mtmsr(msr); isync()
233
234#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
235#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
236#define	VSID_HASH_MASK		0x0000007fffffffffULL
237
238#define	PVO_PTEGIDX_MASK	0x007UL		/* which PTEG slot */
239#define	PVO_PTEGIDX_VALID	0x008UL		/* slot is valid */
240#define	PVO_WIRED		0x010UL		/* PVO entry is wired */
241#define	PVO_MANAGED		0x020UL		/* PVO entry is managed */
242#define	PVO_BOOTSTRAP		0x080UL		/* PVO entry allocated during
243						   bootstrap */
244#define PVO_FAKE		0x100UL		/* fictitious phys page */
245#define PVO_LARGE		0x200UL		/* large page */
246#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
247#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
248#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
249#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
250#define	PVO_PTEGIDX_CLR(pvo)	\
251	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
252#define	PVO_PTEGIDX_SET(pvo, i)	\
253	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
254#define	PVO_VSID(pvo)		((pvo)->pvo_vpn >> 16)
255
256#define	MOEA_PVO_CHECK(pvo)
257
258#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
259#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
260#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
261
262struct ofw_map {
263	cell_t	om_va;
264	cell_t	om_len;
265	cell_t	om_pa_hi;
266	cell_t	om_pa_lo;
267	cell_t	om_mode;
268};
269
270/*
271 * Map of physical memory regions.
272 */
273static struct	mem_region *regions;
274static struct	mem_region *pregions;
275static u_int	phys_avail_count;
276static int	regions_sz, pregions_sz;
277extern int	ofw_real_mode;
278
279extern struct pmap ofw_pmap;
280
281extern void bs_remap_earlyboot(void);
282
283
284/*
285 * Lock for the pteg and pvo tables.
286 */
287struct mtx	moea64_table_mutex;
288struct mtx	moea64_slb_mutex;
289
290/*
291 * PTEG data.
292 */
293static struct	lpteg *moea64_pteg_table;
294u_int		moea64_pteg_count;
295u_int		moea64_pteg_mask;
296
297/*
298 * PVO data.
299 */
300struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
301/* lists of unmanaged pages */
302struct	pvo_head moea64_pvo_kunmanaged =
303    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
304struct	pvo_head moea64_pvo_unmanaged =
305    LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
306
307uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
308uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
309
310#define	BPVO_POOL_SIZE	327680
311static struct	pvo_entry *moea64_bpvo_pool;
312static int	moea64_bpvo_pool_index = 0;
313
314#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
315#ifdef __powerpc64__
316#define	NVSIDS		(NPMAPS * 16)
317#define VSID_HASHMASK	0xffffffffUL
318#else
319#define NVSIDS		NPMAPS
320#define VSID_HASHMASK	0xfffffUL
321#endif
322static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
323
324static boolean_t moea64_initialized = FALSE;
325
326/*
327 * Statistics.
328 */
329u_int	moea64_pte_valid = 0;
330u_int	moea64_pte_overflow = 0;
331u_int	moea64_pvo_entries = 0;
332u_int	moea64_pvo_enter_calls = 0;
333u_int	moea64_pvo_remove_calls = 0;
334SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
335    &moea64_pte_valid, 0, "");
336SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
337    &moea64_pte_overflow, 0, "");
338SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
339    &moea64_pvo_entries, 0, "");
340SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
341    &moea64_pvo_enter_calls, 0, "");
342SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
343    &moea64_pvo_remove_calls, 0, "");
344
345vm_offset_t	moea64_scratchpage_va[2];
346uint64_t	moea64_scratchpage_vpn[2];
347struct	lpte 	*moea64_scratchpage_pte[2];
348struct	mtx	moea64_scratchpage_mtx;
349
350uint64_t 	moea64_large_page_mask = 0;
351int		moea64_large_page_size = 0;
352int		moea64_large_page_shift = 0;
353
354/*
355 * Allocate physical memory for use in moea64_bootstrap.
356 */
357static vm_offset_t	moea64_bootstrap_alloc(vm_size_t, u_int);
358
359/*
360 * PTE calls.
361 */
362static int		moea64_pte_insert(u_int, struct lpte *);
363
364/*
365 * PVO calls.
366 */
367static int	moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
368		    vm_offset_t, vm_offset_t, uint64_t, int);
369static void	moea64_pvo_remove(struct pvo_entry *);
370static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
371static struct	lpte *moea64_pvo_to_pte(const struct pvo_entry *);
372
373/*
374 * Utility routines.
375 */
376static void		moea64_bootstrap(mmu_t mmup,
377			    vm_offset_t kernelstart, vm_offset_t kernelend);
378static void		moea64_cpu_bootstrap(mmu_t, int ap);
379static void		moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
380			    vm_prot_t, boolean_t);
381static boolean_t	moea64_query_bit(vm_page_t, u_int64_t);
382static u_int		moea64_clear_bit(vm_page_t, u_int64_t);
383static void		moea64_kremove(mmu_t, vm_offset_t);
384static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
385			    vm_offset_t pa, vm_size_t sz);
386static void		tlbia(void);
387#ifdef __powerpc64__
388static void		slbia(void);
389#endif
390
391/*
392 * Kernel MMU interface
393 */
394void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
395void moea64_clear_modify(mmu_t, vm_page_t);
396void moea64_clear_reference(mmu_t, vm_page_t);
397void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
398void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
399void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
400    vm_prot_t);
401void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
402vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
403vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
404void moea64_init(mmu_t);
405boolean_t moea64_is_modified(mmu_t, vm_page_t);
406boolean_t moea64_is_referenced(mmu_t, vm_page_t);
407boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
408vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
409boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
410int moea64_page_wired_mappings(mmu_t, vm_page_t);
411void moea64_pinit(mmu_t, pmap_t);
412void moea64_pinit0(mmu_t, pmap_t);
413void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
414void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
415void moea64_qremove(mmu_t, vm_offset_t, int);
416void moea64_release(mmu_t, pmap_t);
417void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
418void moea64_remove_all(mmu_t, vm_page_t);
419void moea64_remove_write(mmu_t, vm_page_t);
420void moea64_zero_page(mmu_t, vm_page_t);
421void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
422void moea64_zero_page_idle(mmu_t, vm_page_t);
423void moea64_activate(mmu_t, struct thread *);
424void moea64_deactivate(mmu_t, struct thread *);
425void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
426void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
427vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
428void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
429boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
430static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
431
432static mmu_method_t moea64_methods[] = {
433	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
434	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
435	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
436	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
437	MMUMETHOD(mmu_enter,		moea64_enter),
438	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
439	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
440	MMUMETHOD(mmu_extract,		moea64_extract),
441	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
442	MMUMETHOD(mmu_init,		moea64_init),
443	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
444	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
445	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
446	MMUMETHOD(mmu_map,     		moea64_map),
447	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
448	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
449	MMUMETHOD(mmu_pinit,		moea64_pinit),
450	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
451	MMUMETHOD(mmu_protect,		moea64_protect),
452	MMUMETHOD(mmu_qenter,		moea64_qenter),
453	MMUMETHOD(mmu_qremove,		moea64_qremove),
454	MMUMETHOD(mmu_release,		moea64_release),
455	MMUMETHOD(mmu_remove,		moea64_remove),
456	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
457	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
458	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
459	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
460	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
461	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
462	MMUMETHOD(mmu_activate,		moea64_activate),
463	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
464
465	/* Internal interfaces */
466	MMUMETHOD(mmu_bootstrap,       	moea64_bootstrap),
467	MMUMETHOD(mmu_cpu_bootstrap,   	moea64_cpu_bootstrap),
468	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
469	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
470	MMUMETHOD(mmu_kextract,		moea64_kextract),
471	MMUMETHOD(mmu_kenter,		moea64_kenter),
472	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
473
474	{ 0, 0 }
475};
476
477static mmu_def_t oea64_mmu = {
478	MMU_TYPE_G5,
479	moea64_methods,
480	0
481};
482MMU_DEF(oea64_mmu);
483
484static __inline u_int
485va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
486{
487	uint64_t hash;
488	int shift;
489
490	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
491	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
492	    shift);
493	return (hash & moea64_pteg_mask);
494}
495
496static __inline struct pvo_head *
497pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
498{
499	struct	vm_page *pg;
500
501	pg = PHYS_TO_VM_PAGE(pa);
502
503	if (pg_p != NULL)
504		*pg_p = pg;
505
506	if (pg == NULL)
507		return (&moea64_pvo_unmanaged);
508
509	return (&pg->md.mdpg_pvoh);
510}
511
512static __inline struct pvo_head *
513vm_page_to_pvoh(vm_page_t m)
514{
515
516	return (&m->md.mdpg_pvoh);
517}
518
519static __inline void
520moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
521{
522
523	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
524	m->md.mdpg_attrs &= ~ptebit;
525}
526
527static __inline u_int64_t
528moea64_attr_fetch(vm_page_t m)
529{
530
531	return (m->md.mdpg_attrs);
532}
533
534static __inline void
535moea64_attr_save(vm_page_t m, u_int64_t ptebit)
536{
537
538	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
539	m->md.mdpg_attrs |= ptebit;
540}
541
542static __inline void
543moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
544    uint64_t pte_lo, int flags)
545{
546
547	ASSERT_TABLE_LOCK();
548
549	/*
550	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
551	 * set when the real pte is set in memory.
552	 *
553	 * Note: Don't set the valid bit for correct operation of tlb update.
554	 */
555	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
556	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
557
558	if (flags & PVO_LARGE)
559		pt->pte_hi |= LPTE_BIG;
560
561	pt->pte_lo = pte_lo;
562}
563
564static __inline void
565moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
566{
567
568	ASSERT_TABLE_LOCK();
569
570	pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
571}
572
573static __inline void
574moea64_pte_clear(struct lpte *pt, uint64_t vpn, u_int64_t ptebit)
575{
576	ASSERT_TABLE_LOCK();
577
578	/*
579	 * As shown in Section 7.6.3.2.3
580	 */
581	pt->pte_lo &= ~ptebit;
582	TLBIE(vpn);
583}
584
585static __inline void
586moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
587{
588
589	ASSERT_TABLE_LOCK();
590	pvo_pt->pte_hi |= LPTE_VALID;
591
592	/*
593	 * Update the PTE as defined in section 7.6.3.1.
594	 * Note that the REF/CHG bits are from pvo_pt and thus should have
595	 * been saved so this routine can restore them (if desired).
596	 */
597	pt->pte_lo = pvo_pt->pte_lo;
598	EIEIO();
599	pt->pte_hi = pvo_pt->pte_hi;
600	PTESYNC();
601	moea64_pte_valid++;
602}
603
604static __inline void
605moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
606{
607	ASSERT_TABLE_LOCK();
608	pvo_pt->pte_hi &= ~LPTE_VALID;
609
610	/*
611	 * Force the reg & chg bits back into the PTEs.
612	 */
613	SYNC();
614
615	/*
616	 * Invalidate the pte.
617	 */
618	pt->pte_hi &= ~LPTE_VALID;
619	TLBIE(vpn);
620
621	/*
622	 * Save the reg & chg bits.
623	 */
624	moea64_pte_synch(pt, pvo_pt);
625	moea64_pte_valid--;
626}
627
628static __inline void
629moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
630{
631
632	/*
633	 * Invalidate the PTE
634	 */
635	moea64_pte_unset(pt, pvo_pt, vpn);
636	moea64_pte_set(pt, pvo_pt);
637}
638
639static __inline uint64_t
640moea64_calc_wimg(vm_offset_t pa)
641{
642	uint64_t pte_lo;
643	int i;
644
645	/*
646	 * Assume the page is cache inhibited and access is guarded unless
647	 * it's in our available memory array.
648	 */
649	pte_lo = LPTE_I | LPTE_G;
650	for (i = 0; i < pregions_sz; i++) {
651		if ((pa >= pregions[i].mr_start) &&
652		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
653			pte_lo &= ~(LPTE_I | LPTE_G);
654			pte_lo |= LPTE_M;
655			break;
656		}
657	}
658
659	return pte_lo;
660}
661
662/*
663 * Quick sort callout for comparing memory regions.
664 */
665static int	mr_cmp(const void *a, const void *b);
666static int	om_cmp(const void *a, const void *b);
667
668static int
669mr_cmp(const void *a, const void *b)
670{
671	const struct	mem_region *regiona;
672	const struct	mem_region *regionb;
673
674	regiona = a;
675	regionb = b;
676	if (regiona->mr_start < regionb->mr_start)
677		return (-1);
678	else if (regiona->mr_start > regionb->mr_start)
679		return (1);
680	else
681		return (0);
682}
683
684static int
685om_cmp(const void *a, const void *b)
686{
687	const struct	ofw_map *mapa;
688	const struct	ofw_map *mapb;
689
690	mapa = a;
691	mapb = b;
692	if (mapa->om_pa_hi < mapb->om_pa_hi)
693		return (-1);
694	else if (mapa->om_pa_hi > mapb->om_pa_hi)
695		return (1);
696	else if (mapa->om_pa_lo < mapb->om_pa_lo)
697		return (-1);
698	else if (mapa->om_pa_lo > mapb->om_pa_lo)
699		return (1);
700	else
701		return (0);
702}
703
704static void
705moea64_cpu_bootstrap(mmu_t mmup, int ap)
706{
707	int i = 0;
708	#ifdef __powerpc64__
709	struct slb *slb = PCPU_GET(slb);
710	#endif
711
712	/*
713	 * Initialize segment registers and MMU
714	 */
715
716	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
717
718	/*
719	 * Install kernel SLB entries
720	 */
721
722	#ifdef __powerpc64__
723		slbia();
724
725		for (i = 0; i < 64; i++) {
726			if (!(slb[i].slbe & SLBE_VALID))
727				continue;
728
729			__asm __volatile ("slbmte %0, %1" ::
730			    "r"(slb[i].slbv), "r"(slb[i].slbe));
731		}
732	#else
733		for (i = 0; i < 16; i++)
734			mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
735	#endif
736
737	/*
738	 * Install page table
739	 */
740
741	__asm __volatile ("ptesync; mtsdr1 %0; isync"
742	    :: "r"((uintptr_t)moea64_pteg_table
743		     | (64 - cntlzd(moea64_pteg_mask >> 11))));
744	tlbia();
745}
746
747static void
748moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
749{
750	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
751	register_t	msr;
752	vm_offset_t	off;
753	vm_paddr_t	pa_base;
754	int		i, ofw_mappings;
755
756	bzero(translations, sz);
757	if (OF_getprop(mmu, "translations", translations, sz) == -1)
758		panic("moea64_bootstrap: can't get ofw translations");
759
760	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
761	sz /= sizeof(*translations);
762	qsort(translations, sz, sizeof (*translations), om_cmp);
763
764	for (i = 0, ofw_mappings = 0; i < sz; i++) {
765		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
766		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
767		    translations[i].om_len);
768
769		if (translations[i].om_pa_lo % PAGE_SIZE)
770			panic("OFW translation not page-aligned!");
771
772		pa_base = translations[i].om_pa_lo;
773
774	      #ifdef __powerpc64__
775		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
776	      #else
777		if (translations[i].om_pa_hi)
778			panic("OFW translations above 32-bit boundary!");
779	      #endif
780
781		/* Now enter the pages for this mapping */
782
783		DISABLE_TRANS(msr);
784		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
785			if (moea64_pvo_find_va(kernel_pmap,
786			    translations[i].om_va + off) != NULL)
787				continue;
788
789			moea64_kenter(mmup, translations[i].om_va + off,
790			    pa_base + off);
791
792			ofw_mappings++;
793		}
794		ENABLE_TRANS(msr);
795	}
796}
797
798#ifdef __powerpc64__
799static void
800moea64_probe_large_page(void)
801{
802	uint16_t pvr = mfpvr() >> 16;
803
804	switch (pvr) {
805	case IBM970:
806	case IBM970FX:
807	case IBM970MP:
808		powerpc_sync(); isync();
809		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
810		powerpc_sync(); isync();
811
812		/* FALLTHROUGH */
813	case IBMCELLBE:
814		moea64_large_page_size = 0x1000000; /* 16 MB */
815		moea64_large_page_shift = 24;
816		break;
817	default:
818		moea64_large_page_size = 0;
819	}
820
821	moea64_large_page_mask = moea64_large_page_size - 1;
822}
823
824static void
825moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
826{
827	struct slb *cache;
828	struct slb entry;
829	uint64_t esid, slbe;
830	uint64_t i;
831
832	cache = PCPU_GET(slb);
833	esid = va >> ADDR_SR_SHFT;
834	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
835
836	for (i = 0; i < 64; i++) {
837		if (cache[i].slbe == (slbe | i))
838			return;
839	}
840
841	entry.slbe = slbe;
842	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
843	if (large)
844		entry.slbv |= SLBV_L;
845
846	slb_insert(kernel_pmap, cache, &entry);
847}
848#endif
849
850static void
851moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
852    vm_offset_t kernelend)
853{
854	register_t msr;
855	vm_paddr_t pa;
856	vm_offset_t size, off;
857	uint64_t pte_lo;
858	int i;
859
860	if (moea64_large_page_size == 0)
861		hw_direct_map = 0;
862
863	DISABLE_TRANS(msr);
864	if (hw_direct_map) {
865		PMAP_LOCK(kernel_pmap);
866		for (i = 0; i < pregions_sz; i++) {
867		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
868		     pregions[i].mr_size; pa += moea64_large_page_size) {
869			pte_lo = LPTE_M;
870
871			/*
872			 * Set memory access as guarded if prefetch within
873			 * the page could exit the available physmem area.
874			 */
875			if (pa & moea64_large_page_mask) {
876				pa &= moea64_large_page_mask;
877				pte_lo |= LPTE_G;
878			}
879			if (pa + moea64_large_page_size >
880			    pregions[i].mr_start + pregions[i].mr_size)
881				pte_lo |= LPTE_G;
882
883			moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
884				    &moea64_pvo_kunmanaged, pa, pa,
885				    pte_lo, PVO_WIRED | PVO_LARGE |
886				    VM_PROT_EXECUTE);
887		  }
888		}
889		PMAP_UNLOCK(kernel_pmap);
890	} else {
891		size = moea64_pteg_count * sizeof(struct lpteg);
892		off = (vm_offset_t)(moea64_pteg_table);
893		for (pa = off; pa < off + size; pa += PAGE_SIZE)
894			moea64_kenter(mmup, pa, pa);
895		size = sizeof(struct pvo_head) * moea64_pteg_count;
896		off = (vm_offset_t)(moea64_pvo_table);
897		for (pa = off; pa < off + size; pa += PAGE_SIZE)
898			moea64_kenter(mmup, pa, pa);
899		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
900		off = (vm_offset_t)(moea64_bpvo_pool);
901		for (pa = off; pa < off + size; pa += PAGE_SIZE)
902		moea64_kenter(mmup, pa, pa);
903
904		/*
905		 * Map certain important things, like ourselves.
906		 *
907		 * NOTE: We do not map the exception vector space. That code is
908		 * used only in real mode, and leaving it unmapped allows us to
909		 * catch NULL pointer deferences, instead of making NULL a valid
910		 * address.
911		 */
912
913		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
914		    pa += PAGE_SIZE)
915			moea64_kenter(mmup, pa, pa);
916	}
917	ENABLE_TRANS(msr);
918}
919
920static void
921moea64_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
922{
923	ihandle_t	mmui;
924	phandle_t	chosen;
925	phandle_t	mmu;
926	size_t		sz;
927	int		i, j;
928	vm_size_t	size, physsz, hwphyssz;
929	vm_offset_t	pa, va;
930	register_t	msr;
931	void		*dpcpu;
932
933#ifndef __powerpc64__
934	/* We don't have a direct map since there is no BAT */
935	hw_direct_map = 0;
936
937	/* Make sure battable is zero, since we have no BAT */
938	for (i = 0; i < 16; i++) {
939		battable[i].batu = 0;
940		battable[i].batl = 0;
941	}
942#else
943	moea64_probe_large_page();
944
945	/* Use a direct map if we have large page support */
946	if (moea64_large_page_size > 0)
947		hw_direct_map = 1;
948	else
949		hw_direct_map = 0;
950#endif
951
952	/* Get physical memory regions from firmware */
953	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
954	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
955
956	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
957	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
958		panic("moea64_bootstrap: phys_avail too small");
959	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
960	phys_avail_count = 0;
961	physsz = 0;
962	hwphyssz = 0;
963	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
964	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
965		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
966		    regions[i].mr_start + regions[i].mr_size,
967		    regions[i].mr_size);
968		if (hwphyssz != 0 &&
969		    (physsz + regions[i].mr_size) >= hwphyssz) {
970			if (physsz < hwphyssz) {
971				phys_avail[j] = regions[i].mr_start;
972				phys_avail[j + 1] = regions[i].mr_start +
973				    hwphyssz - physsz;
974				physsz = hwphyssz;
975				phys_avail_count++;
976			}
977			break;
978		}
979		phys_avail[j] = regions[i].mr_start;
980		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
981		phys_avail_count++;
982		physsz += regions[i].mr_size;
983	}
984
985	/* Check for overlap with the kernel and exception vectors */
986	for (j = 0; j < 2*phys_avail_count; j+=2) {
987		if (phys_avail[j] < EXC_LAST)
988			phys_avail[j] += EXC_LAST;
989
990		if (kernelstart >= phys_avail[j] &&
991		    kernelstart < phys_avail[j+1]) {
992			if (kernelend < phys_avail[j+1]) {
993				phys_avail[2*phys_avail_count] =
994				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
995				phys_avail[2*phys_avail_count + 1] =
996				    phys_avail[j+1];
997				phys_avail_count++;
998			}
999
1000			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
1001		}
1002
1003		if (kernelend >= phys_avail[j] &&
1004		    kernelend < phys_avail[j+1]) {
1005			if (kernelstart > phys_avail[j]) {
1006				phys_avail[2*phys_avail_count] = phys_avail[j];
1007				phys_avail[2*phys_avail_count + 1] =
1008				    kernelstart & ~PAGE_MASK;
1009				phys_avail_count++;
1010			}
1011
1012			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
1013		}
1014	}
1015
1016	physmem = btoc(physsz);
1017
1018	/*
1019	 * Allocate PTEG table.
1020	 */
1021#ifdef PTEGCOUNT
1022	moea64_pteg_count = PTEGCOUNT;
1023#else
1024	moea64_pteg_count = 0x1000;
1025
1026	while (moea64_pteg_count < physmem)
1027		moea64_pteg_count <<= 1;
1028
1029	moea64_pteg_count >>= 1;
1030#endif /* PTEGCOUNT */
1031
1032	size = moea64_pteg_count * sizeof(struct lpteg);
1033	CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
1034	    moea64_pteg_count, size);
1035
1036	/*
1037	 * We now need to allocate memory. This memory, to be allocated,
1038	 * has to reside in a page table. The page table we are about to
1039	 * allocate. We don't have BAT. So drop to data real mode for a minute
1040	 * as a measure of last resort. We do this a couple times.
1041	 */
1042
1043	moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
1044	DISABLE_TRANS(msr);
1045	bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
1046	ENABLE_TRANS(msr);
1047
1048	moea64_pteg_mask = moea64_pteg_count - 1;
1049
1050	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
1051
1052	/*
1053	 * Allocate pv/overflow lists.
1054	 */
1055	size = sizeof(struct pvo_head) * moea64_pteg_count;
1056
1057	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
1058	    PAGE_SIZE);
1059	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
1060
1061	DISABLE_TRANS(msr);
1062	for (i = 0; i < moea64_pteg_count; i++)
1063		LIST_INIT(&moea64_pvo_table[i]);
1064	ENABLE_TRANS(msr);
1065
1066	/*
1067	 * Initialize the lock that synchronizes access to the pteg and pvo
1068	 * tables.
1069	 */
1070	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
1071	    MTX_RECURSE);
1072	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1073
1074	/*
1075	 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
1076	 */
1077	mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
1078
1079	/*
1080	 * Initialise the unmanaged pvo pool.
1081	 */
1082	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1083		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
1084	moea64_bpvo_pool_index = 0;
1085
1086	/*
1087	 * Make sure kernel vsid is allocated as well as VSID 0.
1088	 */
1089	#ifndef __powerpc64__
1090	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1091		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1092	moea64_vsid_bitmap[0] |= 1;
1093	#endif
1094
1095	/*
1096	 * Initialize the kernel pmap (which is statically allocated).
1097	 */
1098	#ifdef __powerpc64__
1099	for (i = 0; i < 64; i++) {
1100		pcpup->pc_slb[i].slbv = 0;
1101		pcpup->pc_slb[i].slbe = 0;
1102	}
1103	#else
1104	for (i = 0; i < 16; i++)
1105		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1106	#endif
1107
1108	kernel_pmap->pmap_phys = kernel_pmap;
1109	kernel_pmap->pm_active = ~0;
1110
1111	PMAP_LOCK_INIT(kernel_pmap);
1112
1113	/*
1114	 * Now map in all the other buffers we allocated earlier
1115	 */
1116
1117	moea64_setup_direct_map(mmup, kernelstart, kernelend);
1118
1119	/*
1120	 * Set up the Open Firmware pmap and add its mappings if not in real
1121	 * mode.
1122	 */
1123
1124	if (!ofw_real_mode) {
1125	    #ifndef __powerpc64__
1126	    moea64_pinit(mmup, &ofw_pmap);
1127
1128	    for (i = 0; i < 16; i++)
1129		ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
1130	    #endif
1131
1132	    if ((chosen = OF_finddevice("/chosen")) == -1)
1133		panic("moea64_bootstrap: can't find /chosen");
1134	    OF_getprop(chosen, "mmu", &mmui, 4);
1135
1136	    if ((mmu = OF_instance_to_package(mmui)) == -1)
1137		panic("moea64_bootstrap: can't get mmu package");
1138	    if ((sz = OF_getproplen(mmu, "translations")) == -1)
1139		panic("moea64_bootstrap: can't get ofw translation count");
1140	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1141		panic("moea64_bootstrap: too many ofw translations");
1142
1143	    moea64_add_ofw_mappings(mmup, mmu, sz);
1144	}
1145
1146#ifdef SMP
1147	TLBSYNC();
1148#endif
1149
1150	/*
1151	 * Calculate the last available physical address.
1152	 */
1153	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1154		;
1155	Maxmem = powerpc_btop(phys_avail[i + 1]);
1156
1157	/*
1158	 * Initialize MMU and remap early physical mappings
1159	 */
1160	moea64_cpu_bootstrap(mmup,0);
1161	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
1162	pmap_bootstrapped++;
1163	bs_remap_earlyboot();
1164
1165	/*
1166	 * Set the start and end of kva.
1167	 */
1168	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1169	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1170
1171	/*
1172	 * Map the entire KVA range into the SLB. We must not fault there.
1173	 */
1174	#ifdef __powerpc64__
1175	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1176		moea64_bootstrap_slb_prefault(va, 0);
1177	#endif
1178
1179	/*
1180	 * Figure out how far we can extend virtual_end into segment 16
1181	 * without running into existing mappings. Segment 16 is guaranteed
1182	 * to contain neither RAM nor devices (at least on Apple hardware),
1183	 * but will generally contain some OFW mappings we should not
1184	 * step on.
1185	 */
1186
1187	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1188	PMAP_LOCK(kernel_pmap);
1189	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1190	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1191		virtual_end += PAGE_SIZE;
1192	PMAP_UNLOCK(kernel_pmap);
1193	#endif
1194
1195	/*
1196	 * Allocate some things for page zeroing. We put this directly
1197	 * in the page table, marked with LPTE_LOCKED, to avoid any
1198	 * of the PVO book-keeping or other parts of the VM system
1199	 * from even knowing that this hack exists.
1200	 */
1201
1202	if (!hw_direct_map) {
1203		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1204		    MTX_DEF);
1205		for (i = 0; i < 2; i++) {
1206			struct lpte pt;
1207			uint64_t vsid;
1208			int pteidx, ptegidx;
1209
1210			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1211			virtual_end -= PAGE_SIZE;
1212
1213			LOCK_TABLE();
1214
1215			vsid = va_to_vsid(kernel_pmap,
1216			    moea64_scratchpage_va[i]);
1217			moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
1218			    LPTE_NOEXEC, 0);
1219			pt.pte_hi |= LPTE_LOCKED;
1220
1221			moea64_scratchpage_vpn[i] = (vsid << 16) |
1222			    ((moea64_scratchpage_va[i] & ADDR_PIDX) >>
1223			    ADDR_PIDX_SHFT);
1224			ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i], 0);
1225			pteidx = moea64_pte_insert(ptegidx, &pt);
1226			if (pt.pte_hi & LPTE_HID)
1227				ptegidx ^= moea64_pteg_mask;
1228
1229			moea64_scratchpage_pte[i] =
1230			    &moea64_pteg_table[ptegidx].pt[pteidx];
1231
1232			UNLOCK_TABLE();
1233		}
1234	}
1235
1236	/*
1237	 * Allocate a kernel stack with a guard page for thread0 and map it
1238	 * into the kernel page map.
1239	 */
1240	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1241	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1242	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1243	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1244	thread0.td_kstack = va;
1245	thread0.td_kstack_pages = KSTACK_PAGES;
1246	for (i = 0; i < KSTACK_PAGES; i++) {
1247		moea64_kenter(mmup, va, pa);
1248		pa += PAGE_SIZE;
1249		va += PAGE_SIZE;
1250	}
1251
1252	/*
1253	 * Allocate virtual address space for the message buffer.
1254	 */
1255	pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1256	msgbufp = (struct msgbuf *)virtual_avail;
1257	va = virtual_avail;
1258	virtual_avail += round_page(MSGBUF_SIZE);
1259	while (va < virtual_avail) {
1260		moea64_kenter(mmup, va, pa);
1261		pa += PAGE_SIZE;
1262		va += PAGE_SIZE;
1263	}
1264
1265	/*
1266	 * Allocate virtual address space for the dynamic percpu area.
1267	 */
1268	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1269	dpcpu = (void *)virtual_avail;
1270	va = virtual_avail;
1271	virtual_avail += DPCPU_SIZE;
1272	while (va < virtual_avail) {
1273		moea64_kenter(mmup, va, pa);
1274		pa += PAGE_SIZE;
1275		va += PAGE_SIZE;
1276	}
1277	dpcpu_init(dpcpu, 0);
1278}
1279
1280/*
1281 * Activate a user pmap.  The pmap must be activated before its address
1282 * space can be accessed in any way.
1283 */
1284void
1285moea64_activate(mmu_t mmu, struct thread *td)
1286{
1287	pmap_t	pm;
1288
1289	pm = &td->td_proc->p_vmspace->vm_pmap;
1290	pm->pm_active |= PCPU_GET(cpumask);
1291
1292	#ifdef __powerpc64__
1293	PCPU_SET(userslb, pm->pm_slb);
1294	#else
1295	PCPU_SET(curpmap, pm->pmap_phys);
1296	#endif
1297}
1298
1299void
1300moea64_deactivate(mmu_t mmu, struct thread *td)
1301{
1302	pmap_t	pm;
1303
1304	pm = &td->td_proc->p_vmspace->vm_pmap;
1305	pm->pm_active &= ~(PCPU_GET(cpumask));
1306	#ifdef __powerpc64__
1307	PCPU_SET(userslb, NULL);
1308	#else
1309	PCPU_SET(curpmap, NULL);
1310	#endif
1311}
1312
1313void
1314moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1315{
1316	struct	pvo_entry *pvo;
1317	struct	lpte *pt;
1318	uint64_t vsid;
1319	int	i, ptegidx;
1320
1321	PMAP_LOCK(pm);
1322	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1323
1324	if (pvo != NULL) {
1325		LOCK_TABLE();
1326		pt = moea64_pvo_to_pte(pvo);
1327
1328		if (wired) {
1329			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1330				pm->pm_stats.wired_count++;
1331			pvo->pvo_vaddr |= PVO_WIRED;
1332			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1333		} else {
1334			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1335				pm->pm_stats.wired_count--;
1336			pvo->pvo_vaddr &= ~PVO_WIRED;
1337			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1338		}
1339
1340		if (pt != NULL) {
1341			/* Update wiring flag in page table. */
1342			moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1343			    pvo->pvo_vpn);
1344		} else if (wired) {
1345			/*
1346			 * If we are wiring the page, and it wasn't in the
1347			 * page table before, add it.
1348			 */
1349			vsid = PVO_VSID(pvo);
1350			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1351			    pvo->pvo_vaddr & PVO_LARGE);
1352
1353			i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
1354			if (i >= 0) {
1355				PVO_PTEGIDX_CLR(pvo);
1356				PVO_PTEGIDX_SET(pvo, i);
1357			}
1358		}
1359
1360		UNLOCK_TABLE();
1361	}
1362	PMAP_UNLOCK(pm);
1363}
1364
1365/*
1366 * This goes through and sets the physical address of our
1367 * special scratch PTE to the PA we want to zero or copy. Because
1368 * of locking issues (this can get called in pvo_enter() by
1369 * the UMA allocator), we can't use most other utility functions here
1370 */
1371
1372static __inline
1373void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1374
1375	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1376	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1377
1378	moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1379	TLBIE(moea64_scratchpage_vpn[which]);
1380
1381	moea64_scratchpage_pte[which]->pte_lo &=
1382	    ~(LPTE_WIMG | LPTE_RPGN);
1383	moea64_scratchpage_pte[which]->pte_lo |=
1384	    moea64_calc_wimg(pa) | (uint64_t)pa;
1385	EIEIO();
1386
1387	moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1388	PTESYNC(); isync();
1389}
1390
1391void
1392moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1393{
1394	vm_offset_t	dst;
1395	vm_offset_t	src;
1396
1397	dst = VM_PAGE_TO_PHYS(mdst);
1398	src = VM_PAGE_TO_PHYS(msrc);
1399
1400	if (hw_direct_map) {
1401		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1402	} else {
1403		mtx_lock(&moea64_scratchpage_mtx);
1404
1405		moea64_set_scratchpage_pa(0,src);
1406		moea64_set_scratchpage_pa(1,dst);
1407
1408		kcopy((void *)moea64_scratchpage_va[0],
1409		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1410
1411		mtx_unlock(&moea64_scratchpage_mtx);
1412	}
1413}
1414
1415void
1416moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1417{
1418	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1419
1420	if (!moea64_initialized)
1421		panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1422	if (size + off > PAGE_SIZE)
1423		panic("moea64_zero_page: size + off > PAGE_SIZE");
1424
1425	if (hw_direct_map) {
1426		bzero((caddr_t)pa + off, size);
1427	} else {
1428		mtx_lock(&moea64_scratchpage_mtx);
1429		moea64_set_scratchpage_pa(0,pa);
1430		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1431		mtx_unlock(&moea64_scratchpage_mtx);
1432	}
1433}
1434
1435/*
1436 * Zero a page of physical memory by temporarily mapping it
1437 */
1438void
1439moea64_zero_page(mmu_t mmu, vm_page_t m)
1440{
1441	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1442	vm_offset_t va, off;
1443
1444	if (!moea64_initialized)
1445		panic("moea64_zero_page: can't zero pa %#zx", pa);
1446
1447	if (!hw_direct_map) {
1448		mtx_lock(&moea64_scratchpage_mtx);
1449
1450		moea64_set_scratchpage_pa(0,pa);
1451		va = moea64_scratchpage_va[0];
1452	} else {
1453		va = pa;
1454	}
1455
1456	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1457		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1458
1459	if (!hw_direct_map)
1460		mtx_unlock(&moea64_scratchpage_mtx);
1461}
1462
1463void
1464moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1465{
1466
1467	moea64_zero_page(mmu, m);
1468}
1469
1470/*
1471 * Map the given physical page at the specified virtual address in the
1472 * target pmap with the protection requested.  If specified the page
1473 * will be wired down.
1474 */
1475void
1476moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1477    vm_prot_t prot, boolean_t wired)
1478{
1479
1480	vm_page_lock_queues();
1481	PMAP_LOCK(pmap);
1482	moea64_enter_locked(pmap, va, m, prot, wired);
1483	vm_page_unlock_queues();
1484	PMAP_UNLOCK(pmap);
1485}
1486
1487/*
1488 * Map the given physical page at the specified virtual address in the
1489 * target pmap with the protection requested.  If specified the page
1490 * will be wired down.
1491 *
1492 * The page queues and pmap must be locked.
1493 */
1494
1495static void
1496moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1497    boolean_t wired)
1498{
1499	struct		pvo_head *pvo_head;
1500	uma_zone_t	zone;
1501	vm_page_t	pg;
1502	uint64_t	pte_lo;
1503	u_int		pvo_flags;
1504	int		error;
1505
1506	if (!moea64_initialized) {
1507		pvo_head = &moea64_pvo_kunmanaged;
1508		pg = NULL;
1509		zone = moea64_upvo_zone;
1510		pvo_flags = 0;
1511	} else {
1512		pvo_head = vm_page_to_pvoh(m);
1513		pg = m;
1514		zone = moea64_mpvo_zone;
1515		pvo_flags = PVO_MANAGED;
1516	}
1517
1518	if (pmap_bootstrapped)
1519		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1520	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1521	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1522	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1523	    ("moea64_enter_locked: page %p is not busy", m));
1524
1525	/* XXX change the pvo head for fake pages */
1526	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1527		pvo_flags &= ~PVO_MANAGED;
1528		pvo_head = &moea64_pvo_kunmanaged;
1529		zone = moea64_upvo_zone;
1530	}
1531
1532	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
1533
1534	if (prot & VM_PROT_WRITE) {
1535		pte_lo |= LPTE_BW;
1536		if (pmap_bootstrapped &&
1537		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1538			vm_page_flag_set(m, PG_WRITEABLE);
1539	} else
1540		pte_lo |= LPTE_BR;
1541
1542	if (prot & VM_PROT_EXECUTE)
1543		pvo_flags |= VM_PROT_EXECUTE;
1544
1545	if (wired)
1546		pvo_flags |= PVO_WIRED;
1547
1548	if ((m->flags & PG_FICTITIOUS) != 0)
1549		pvo_flags |= PVO_FAKE;
1550
1551	error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1552	    pte_lo, pvo_flags);
1553
1554	/*
1555	 * Flush the page from the instruction cache if this page is
1556	 * mapped executable and cacheable.
1557	 */
1558	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1559		moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1560	}
1561}
1562
1563static void
1564moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1565{
1566
1567	/*
1568	 * This is much trickier than on older systems because
1569	 * we can't sync the icache on physical addresses directly
1570	 * without a direct map. Instead we check a couple of cases
1571	 * where the memory is already mapped in and, failing that,
1572	 * use the same trick we use for page zeroing to create
1573	 * a temporary mapping for this physical address.
1574	 */
1575
1576	if (!pmap_bootstrapped) {
1577		/*
1578		 * If PMAP is not bootstrapped, we are likely to be
1579		 * in real mode.
1580		 */
1581		__syncicache((void *)pa, sz);
1582	} else if (pmap == kernel_pmap) {
1583		__syncicache((void *)va, sz);
1584	} else if (hw_direct_map) {
1585		__syncicache((void *)pa, sz);
1586	} else {
1587		/* Use the scratch page to set up a temp mapping */
1588
1589		mtx_lock(&moea64_scratchpage_mtx);
1590
1591		moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1592		__syncicache((void *)(moea64_scratchpage_va[1] +
1593		    (va & ADDR_POFF)), sz);
1594
1595		mtx_unlock(&moea64_scratchpage_mtx);
1596	}
1597}
1598
1599/*
1600 * Maps a sequence of resident pages belonging to the same object.
1601 * The sequence begins with the given page m_start.  This page is
1602 * mapped at the given virtual address start.  Each subsequent page is
1603 * mapped at a virtual address that is offset from start by the same
1604 * amount as the page is offset from m_start within the object.  The
1605 * last page in the sequence is the page with the largest offset from
1606 * m_start that can be mapped at a virtual address less than the given
1607 * virtual address end.  Not every virtual page between start and end
1608 * is mapped; only those for which a resident page exists with the
1609 * corresponding offset from m_start are mapped.
1610 */
1611void
1612moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1613    vm_page_t m_start, vm_prot_t prot)
1614{
1615	vm_page_t m;
1616	vm_pindex_t diff, psize;
1617
1618	psize = atop(end - start);
1619	m = m_start;
1620	vm_page_lock_queues();
1621	PMAP_LOCK(pm);
1622	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1623		moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1624		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1625		m = TAILQ_NEXT(m, listq);
1626	}
1627	vm_page_unlock_queues();
1628	PMAP_UNLOCK(pm);
1629}
1630
1631void
1632moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1633    vm_prot_t prot)
1634{
1635
1636	vm_page_lock_queues();
1637	PMAP_LOCK(pm);
1638	moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1639	    FALSE);
1640	vm_page_unlock_queues();
1641	PMAP_UNLOCK(pm);
1642}
1643
1644vm_paddr_t
1645moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1646{
1647	struct	pvo_entry *pvo;
1648	vm_paddr_t pa;
1649
1650	PMAP_LOCK(pm);
1651	pvo = moea64_pvo_find_va(pm, va);
1652	if (pvo == NULL)
1653		pa = 0;
1654	else
1655		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1656		    (va - PVO_VADDR(pvo));
1657	PMAP_UNLOCK(pm);
1658	return (pa);
1659}
1660
1661/*
1662 * Atomically extract and hold the physical page with the given
1663 * pmap and virtual address pair if that mapping permits the given
1664 * protection.
1665 */
1666vm_page_t
1667moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1668{
1669	struct	pvo_entry *pvo;
1670	vm_page_t m;
1671        vm_paddr_t pa;
1672
1673	m = NULL;
1674	pa = 0;
1675	PMAP_LOCK(pmap);
1676retry:
1677	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1678	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1679	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1680	     (prot & VM_PROT_WRITE) == 0)) {
1681		if (vm_page_pa_tryrelock(pmap,
1682			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1683			goto retry;
1684		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1685		vm_page_hold(m);
1686	}
1687	PA_UNLOCK_COND(pa);
1688	PMAP_UNLOCK(pmap);
1689	return (m);
1690}
1691
1692static void *
1693moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1694{
1695	/*
1696	 * This entire routine is a horrible hack to avoid bothering kmem
1697	 * for new KVA addresses. Because this can get called from inside
1698	 * kmem allocation routines, calling kmem for a new address here
1699	 * can lead to multiply locking non-recursive mutexes.
1700	 */
1701	static vm_pindex_t color;
1702        vm_offset_t va;
1703
1704        vm_page_t m;
1705        int pflags, needed_lock;
1706
1707	*flags = UMA_SLAB_PRIV;
1708	needed_lock = !PMAP_LOCKED(kernel_pmap);
1709
1710	if (needed_lock)
1711		PMAP_LOCK(kernel_pmap);
1712
1713        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1714                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1715        else
1716                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1717        if (wait & M_ZERO)
1718                pflags |= VM_ALLOC_ZERO;
1719
1720        for (;;) {
1721                m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1722                if (m == NULL) {
1723                        if (wait & M_NOWAIT)
1724                                return (NULL);
1725                        VM_WAIT;
1726                } else
1727                        break;
1728        }
1729
1730	va = VM_PAGE_TO_PHYS(m);
1731
1732	moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1733	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1734	    PVO_WIRED | PVO_BOOTSTRAP);
1735
1736	if (needed_lock)
1737		PMAP_UNLOCK(kernel_pmap);
1738
1739	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1740                bzero((void *)va, PAGE_SIZE);
1741
1742	return (void *)va;
1743}
1744
1745void
1746moea64_init(mmu_t mmu)
1747{
1748
1749	CTR0(KTR_PMAP, "moea64_init");
1750
1751	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1752	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1753	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1754	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1755	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1756	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1757
1758	if (!hw_direct_map) {
1759		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1760		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1761	}
1762
1763	moea64_initialized = TRUE;
1764}
1765
1766boolean_t
1767moea64_is_referenced(mmu_t mmu, vm_page_t m)
1768{
1769
1770	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1771	    ("moea64_is_referenced: page %p is not managed", m));
1772	return (moea64_query_bit(m, PTE_REF));
1773}
1774
1775boolean_t
1776moea64_is_modified(mmu_t mmu, vm_page_t m)
1777{
1778
1779	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1780	    ("moea64_is_modified: page %p is not managed", m));
1781
1782	/*
1783	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1784	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1785	 * is clear, no PTEs can have LPTE_CHG set.
1786	 */
1787	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1788	if ((m->oflags & VPO_BUSY) == 0 &&
1789	    (m->flags & PG_WRITEABLE) == 0)
1790		return (FALSE);
1791	return (moea64_query_bit(m, LPTE_CHG));
1792}
1793
1794void
1795moea64_clear_reference(mmu_t mmu, vm_page_t m)
1796{
1797
1798	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1799	    ("moea64_clear_reference: page %p is not managed", m));
1800	moea64_clear_bit(m, LPTE_REF);
1801}
1802
1803void
1804moea64_clear_modify(mmu_t mmu, vm_page_t m)
1805{
1806
1807	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1808	    ("moea64_clear_modify: page %p is not managed", m));
1809	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1810	KASSERT((m->oflags & VPO_BUSY) == 0,
1811	    ("moea64_clear_modify: page %p is busy", m));
1812
1813	/*
1814	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1815	 * set.  If the object containing the page is locked and the page is
1816	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1817	 */
1818	if ((m->flags & PG_WRITEABLE) == 0)
1819		return;
1820	moea64_clear_bit(m, LPTE_CHG);
1821}
1822
1823/*
1824 * Clear the write and modified bits in each of the given page's mappings.
1825 */
1826void
1827moea64_remove_write(mmu_t mmu, vm_page_t m)
1828{
1829	struct	pvo_entry *pvo;
1830	struct	lpte *pt;
1831	pmap_t	pmap;
1832	uint64_t lo;
1833
1834	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1835	    ("moea64_remove_write: page %p is not managed", m));
1836
1837	/*
1838	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1839	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1840	 * is clear, no page table entries need updating.
1841	 */
1842	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1843	if ((m->oflags & VPO_BUSY) == 0 &&
1844	    (m->flags & PG_WRITEABLE) == 0)
1845		return;
1846	vm_page_lock_queues();
1847	lo = moea64_attr_fetch(m);
1848	SYNC();
1849	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1850		pmap = pvo->pvo_pmap;
1851		PMAP_LOCK(pmap);
1852		LOCK_TABLE();
1853		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1854			pt = moea64_pvo_to_pte(pvo);
1855			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1856			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1857			if (pt != NULL) {
1858				moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1859				lo |= pvo->pvo_pte.lpte.pte_lo;
1860				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1861				moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1862				    pvo->pvo_vpn);
1863				if (pvo->pvo_pmap == kernel_pmap)
1864					isync();
1865			}
1866		}
1867		UNLOCK_TABLE();
1868		PMAP_UNLOCK(pmap);
1869	}
1870	if ((lo & LPTE_CHG) != 0) {
1871		moea64_attr_clear(m, LPTE_CHG);
1872		vm_page_dirty(m);
1873	}
1874	vm_page_flag_clear(m, PG_WRITEABLE);
1875	vm_page_unlock_queues();
1876}
1877
1878/*
1879 *	moea64_ts_referenced:
1880 *
1881 *	Return a count of reference bits for a page, clearing those bits.
1882 *	It is not necessary for every reference bit to be cleared, but it
1883 *	is necessary that 0 only be returned when there are truly no
1884 *	reference bits set.
1885 *
1886 *	XXX: The exact number of bits to check and clear is a matter that
1887 *	should be tested and standardized at some point in the future for
1888 *	optimal aging of shared pages.
1889 */
1890boolean_t
1891moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1892{
1893
1894	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1895	    ("moea64_ts_referenced: page %p is not managed", m));
1896	return (moea64_clear_bit(m, LPTE_REF));
1897}
1898
1899/*
1900 * Map a wired page into kernel virtual address space.
1901 */
1902void
1903moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1904{
1905	uint64_t	pte_lo;
1906	int		error;
1907
1908#if 0
1909	if (!pmap_bootstrapped) {
1910		if (va >= VM_MIN_KERNEL_ADDRESS && va < virtual_end)
1911			panic("Trying to enter an address in KVA -- %#"
1912			    PRIxPTR "!\n",pa);
1913	}
1914#endif
1915
1916	pte_lo = moea64_calc_wimg(pa);
1917
1918	PMAP_LOCK(kernel_pmap);
1919	error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1920	    &moea64_pvo_kunmanaged, va, pa, pte_lo,
1921	    PVO_WIRED | VM_PROT_EXECUTE);
1922
1923	if (error != 0 && error != ENOENT)
1924		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1925		    pa, error);
1926
1927	/*
1928	 * Flush the memory from the instruction cache.
1929	 */
1930	if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1931		__syncicache((void *)va, PAGE_SIZE);
1932	}
1933	PMAP_UNLOCK(kernel_pmap);
1934}
1935
1936/*
1937 * Extract the physical page address associated with the given kernel virtual
1938 * address.
1939 */
1940vm_offset_t
1941moea64_kextract(mmu_t mmu, vm_offset_t va)
1942{
1943	struct		pvo_entry *pvo;
1944	vm_paddr_t pa;
1945
1946	/*
1947	 * Shortcut the direct-mapped case when applicable.  We never put
1948	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1949	 */
1950	if (va < VM_MIN_KERNEL_ADDRESS)
1951		return (va);
1952
1953	PMAP_LOCK(kernel_pmap);
1954	pvo = moea64_pvo_find_va(kernel_pmap, va);
1955	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1956	    va));
1957	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
1958	PMAP_UNLOCK(kernel_pmap);
1959	return (pa);
1960}
1961
1962/*
1963 * Remove a wired page from kernel virtual address space.
1964 */
1965void
1966moea64_kremove(mmu_t mmu, vm_offset_t va)
1967{
1968	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1969}
1970
1971/*
1972 * Map a range of physical addresses into kernel virtual address space.
1973 *
1974 * The value passed in *virt is a suggested virtual address for the mapping.
1975 * Architectures which can support a direct-mapped physical to virtual region
1976 * can return the appropriate address within that region, leaving '*virt'
1977 * unchanged.  We cannot and therefore do not; *virt is updated with the
1978 * first usable address after the mapped region.
1979 */
1980vm_offset_t
1981moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1982    vm_offset_t pa_end, int prot)
1983{
1984	vm_offset_t	sva, va;
1985
1986	sva = *virt;
1987	va = sva;
1988	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1989		moea64_kenter(mmu, va, pa_start);
1990	*virt = va;
1991
1992	return (sva);
1993}
1994
1995/*
1996 * Returns true if the pmap's pv is one of the first
1997 * 16 pvs linked to from this page.  This count may
1998 * be changed upwards or downwards in the future; it
1999 * is only necessary that true be returned for a small
2000 * subset of pmaps for proper page aging.
2001 */
2002boolean_t
2003moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2004{
2005        int loops;
2006	struct pvo_entry *pvo;
2007	boolean_t rv;
2008
2009	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2010	    ("moea64_page_exists_quick: page %p is not managed", m));
2011	loops = 0;
2012	rv = FALSE;
2013	vm_page_lock_queues();
2014	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2015		if (pvo->pvo_pmap == pmap) {
2016			rv = TRUE;
2017			break;
2018		}
2019		if (++loops >= 16)
2020			break;
2021	}
2022	vm_page_unlock_queues();
2023	return (rv);
2024}
2025
2026/*
2027 * Return the number of managed mappings to the given physical page
2028 * that are wired.
2029 */
2030int
2031moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2032{
2033	struct pvo_entry *pvo;
2034	int count;
2035
2036	count = 0;
2037	if ((m->flags & PG_FICTITIOUS) != 0)
2038		return (count);
2039	vm_page_lock_queues();
2040	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2041		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
2042			count++;
2043	vm_page_unlock_queues();
2044	return (count);
2045}
2046
2047static uintptr_t	moea64_vsidcontext;
2048
2049uintptr_t
2050moea64_get_unique_vsid(void) {
2051	u_int entropy;
2052	register_t hash;
2053	uint32_t mask;
2054	int i;
2055
2056	entropy = 0;
2057	__asm __volatile("mftb %0" : "=r"(entropy));
2058
2059	mtx_lock(&moea64_slb_mutex);
2060	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2061		u_int	n;
2062
2063		/*
2064		 * Create a new value by mutiplying by a prime and adding in
2065		 * entropy from the timebase register.  This is to make the
2066		 * VSID more random so that the PT hash function collides
2067		 * less often.  (Note that the prime casues gcc to do shifts
2068		 * instead of a multiply.)
2069		 */
2070		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2071		hash = moea64_vsidcontext & (NVSIDS - 1);
2072		if (hash == 0)		/* 0 is special, avoid it */
2073			continue;
2074		n = hash >> 5;
2075		mask = 1 << (hash & (VSID_NBPW - 1));
2076		hash = (moea64_vsidcontext & VSID_HASHMASK);
2077		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2078			/* anything free in this bucket? */
2079			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2080				entropy = (moea64_vsidcontext >> 20);
2081				continue;
2082			}
2083			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2084			mask = 1 << i;
2085			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
2086			hash |= i;
2087		}
2088		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2089		    ("Allocating in-use VSID %#zx\n", hash));
2090		moea64_vsid_bitmap[n] |= mask;
2091		mtx_unlock(&moea64_slb_mutex);
2092		return (hash);
2093	}
2094
2095	mtx_unlock(&moea64_slb_mutex);
2096	panic("%s: out of segments",__func__);
2097}
2098
2099#ifdef __powerpc64__
2100void
2101moea64_pinit(mmu_t mmu, pmap_t pmap)
2102{
2103	PMAP_LOCK_INIT(pmap);
2104
2105	SPLAY_INIT(&pmap->pm_slbtree);
2106	pmap->pm_slb = slb_alloc_user_cache();
2107}
2108#else
2109void
2110moea64_pinit(mmu_t mmu, pmap_t pmap)
2111{
2112	int	i;
2113	uint32_t hash;
2114
2115	PMAP_LOCK_INIT(pmap);
2116
2117	if (pmap_bootstrapped)
2118		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2119		    (vm_offset_t)pmap);
2120	else
2121		pmap->pmap_phys = pmap;
2122
2123	/*
2124	 * Allocate some segment registers for this pmap.
2125	 */
2126	hash = moea64_get_unique_vsid();
2127
2128	for (i = 0; i < 16; i++)
2129		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2130
2131	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2132}
2133#endif
2134
2135/*
2136 * Initialize the pmap associated with process 0.
2137 */
2138void
2139moea64_pinit0(mmu_t mmu, pmap_t pm)
2140{
2141	moea64_pinit(mmu, pm);
2142	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2143}
2144
2145/*
2146 * Set the physical protection on the specified range of this map as requested.
2147 */
2148void
2149moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2150    vm_prot_t prot)
2151{
2152	struct	pvo_entry *pvo;
2153	struct	lpte *pt;
2154
2155	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
2156	    eva, prot);
2157
2158
2159	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2160	    ("moea64_protect: non current pmap"));
2161
2162	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2163		moea64_remove(mmu, pm, sva, eva);
2164		return;
2165	}
2166
2167	vm_page_lock_queues();
2168	PMAP_LOCK(pm);
2169	for (; sva < eva; sva += PAGE_SIZE) {
2170		pvo = moea64_pvo_find_va(pm, sva);
2171		if (pvo == NULL)
2172			continue;
2173
2174		/*
2175		 * Grab the PTE pointer before we diddle with the cached PTE
2176		 * copy.
2177		 */
2178		LOCK_TABLE();
2179		pt = moea64_pvo_to_pte(pvo);
2180
2181		/*
2182		 * Change the protection of the page.
2183		 */
2184		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
2185		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
2186		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
2187		if ((prot & VM_PROT_EXECUTE) == 0)
2188			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
2189
2190		/*
2191		 * If the PVO is in the page table, update that pte as well.
2192		 */
2193		if (pt != NULL) {
2194			moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2195			if ((pvo->pvo_pte.lpte.pte_lo &
2196			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2197				moea64_syncicache(pm, sva,
2198				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
2199				    PAGE_SIZE);
2200			}
2201		}
2202		UNLOCK_TABLE();
2203	}
2204	vm_page_unlock_queues();
2205	PMAP_UNLOCK(pm);
2206}
2207
2208/*
2209 * Map a list of wired pages into kernel virtual address space.  This is
2210 * intended for temporary mappings which do not need page modification or
2211 * references recorded.  Existing mappings in the region are overwritten.
2212 */
2213void
2214moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2215{
2216	while (count-- > 0) {
2217		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2218		va += PAGE_SIZE;
2219		m++;
2220	}
2221}
2222
2223/*
2224 * Remove page mappings from kernel virtual address space.  Intended for
2225 * temporary mappings entered by moea64_qenter.
2226 */
2227void
2228moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2229{
2230	while (count-- > 0) {
2231		moea64_kremove(mmu, va);
2232		va += PAGE_SIZE;
2233	}
2234}
2235
2236void
2237moea64_release_vsid(uint64_t vsid)
2238{
2239	int idx, mask;
2240
2241	mtx_lock(&moea64_slb_mutex);
2242	idx = vsid & (NVSIDS-1);
2243	mask = 1 << (idx % VSID_NBPW);
2244	idx /= VSID_NBPW;
2245	KASSERT(moea64_vsid_bitmap[idx] & mask,
2246	    ("Freeing unallocated VSID %#jx", vsid));
2247	moea64_vsid_bitmap[idx] &= ~mask;
2248	mtx_unlock(&moea64_slb_mutex);
2249}
2250
2251
2252void
2253moea64_release(mmu_t mmu, pmap_t pmap)
2254{
2255
2256	/*
2257	 * Free segment registers' VSIDs
2258	 */
2259    #ifdef __powerpc64__
2260	free_vsids(pmap);
2261	slb_free_user_cache(pmap->pm_slb);
2262    #else
2263	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2264
2265	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2266    #endif
2267
2268	PMAP_LOCK_DESTROY(pmap);
2269}
2270
2271/*
2272 * Remove the given range of addresses from the specified map.
2273 */
2274void
2275moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2276{
2277	struct	pvo_entry *pvo;
2278
2279	vm_page_lock_queues();
2280	PMAP_LOCK(pm);
2281	for (; sva < eva; sva += PAGE_SIZE) {
2282		pvo = moea64_pvo_find_va(pm, sva);
2283		if (pvo != NULL)
2284			moea64_pvo_remove(pvo);
2285	}
2286	vm_page_unlock_queues();
2287	PMAP_UNLOCK(pm);
2288}
2289
2290/*
2291 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2292 * will reflect changes in pte's back to the vm_page.
2293 */
2294void
2295moea64_remove_all(mmu_t mmu, vm_page_t m)
2296{
2297	struct  pvo_head *pvo_head;
2298	struct	pvo_entry *pvo, *next_pvo;
2299	pmap_t	pmap;
2300
2301	vm_page_lock_queues();
2302	pvo_head = vm_page_to_pvoh(m);
2303	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2304		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2305
2306		MOEA_PVO_CHECK(pvo);	/* sanity check */
2307		pmap = pvo->pvo_pmap;
2308		PMAP_LOCK(pmap);
2309		moea64_pvo_remove(pvo);
2310		PMAP_UNLOCK(pmap);
2311	}
2312	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2313		moea64_attr_clear(m, LPTE_CHG);
2314		vm_page_dirty(m);
2315	}
2316	vm_page_flag_clear(m, PG_WRITEABLE);
2317	vm_page_unlock_queues();
2318}
2319
2320/*
2321 * Allocate a physical page of memory directly from the phys_avail map.
2322 * Can only be called from moea64_bootstrap before avail start and end are
2323 * calculated.
2324 */
2325static vm_offset_t
2326moea64_bootstrap_alloc(vm_size_t size, u_int align)
2327{
2328	vm_offset_t	s, e;
2329	int		i, j;
2330
2331	size = round_page(size);
2332	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2333		if (align != 0)
2334			s = (phys_avail[i] + align - 1) & ~(align - 1);
2335		else
2336			s = phys_avail[i];
2337		e = s + size;
2338
2339		if (s < phys_avail[i] || e > phys_avail[i + 1])
2340			continue;
2341
2342		if (s == phys_avail[i]) {
2343			phys_avail[i] += size;
2344		} else if (e == phys_avail[i + 1]) {
2345			phys_avail[i + 1] -= size;
2346		} else {
2347			for (j = phys_avail_count * 2; j > i; j -= 2) {
2348				phys_avail[j] = phys_avail[j - 2];
2349				phys_avail[j + 1] = phys_avail[j - 1];
2350			}
2351
2352			phys_avail[i + 3] = phys_avail[i + 1];
2353			phys_avail[i + 1] = s;
2354			phys_avail[i + 2] = e;
2355			phys_avail_count++;
2356		}
2357
2358		return (s);
2359	}
2360	panic("moea64_bootstrap_alloc: could not allocate memory");
2361}
2362
2363static void
2364tlbia(void)
2365{
2366	vm_offset_t i;
2367	#ifndef __powerpc64__
2368	register_t msr, scratch;
2369	#endif
2370
2371	TLBSYNC();
2372
2373	for (i = 0; i < 0xFF000; i += 0x00001000) {
2374		#ifdef __powerpc64__
2375		__asm __volatile("tlbiel %0" :: "r"(i));
2376		#else
2377		__asm __volatile("\
2378		    mfmsr %0; \
2379		    mr %1, %0; \
2380		    insrdi %1,%3,1,0; \
2381		    mtmsrd %1; \
2382		    isync; \
2383		    \
2384		    tlbiel %2; \
2385		    \
2386		    mtmsrd %0; \
2387		    isync;"
2388		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2389		#endif
2390	}
2391
2392	EIEIO();
2393	TLBSYNC();
2394}
2395
2396#ifdef __powerpc64__
2397static void
2398slbia(void)
2399{
2400	register_t seg0;
2401
2402	__asm __volatile ("slbia");
2403	__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
2404}
2405#endif
2406
2407static int
2408moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2409    vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2410{
2411	struct	 pvo_entry *pvo;
2412	uint64_t vsid;
2413	int	 first;
2414	u_int	 ptegidx;
2415	int	 i;
2416	int      bootstrap;
2417
2418	/*
2419	 * One nasty thing that can happen here is that the UMA calls to
2420	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2421	 * which calls UMA...
2422	 *
2423	 * We break the loop by detecting recursion and allocating out of
2424	 * the bootstrap pool.
2425	 */
2426
2427	moea64_pvo_enter_calls++;
2428	first = 0;
2429	bootstrap = (flags & PVO_BOOTSTRAP);
2430
2431	if (!moea64_initialized)
2432		bootstrap = 1;
2433
2434	/*
2435	 * Compute the PTE Group index.
2436	 */
2437	va &= ~ADDR_POFF;
2438	vsid = va_to_vsid(pm, va);
2439	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2440
2441	/*
2442	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2443	 * there is a mapping.
2444	 */
2445	LOCK_TABLE();
2446
2447	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2448		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2449			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2450			    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2451			    (pte_lo & LPTE_PP)) {
2452			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2453					/* Re-insert if spilled */
2454					i = moea64_pte_insert(ptegidx,
2455					    &pvo->pvo_pte.lpte);
2456					if (i >= 0)
2457						PVO_PTEGIDX_SET(pvo, i);
2458					moea64_pte_overflow--;
2459				}
2460				UNLOCK_TABLE();
2461				return (0);
2462			}
2463			moea64_pvo_remove(pvo);
2464			break;
2465		}
2466	}
2467
2468	/*
2469	 * If we aren't overwriting a mapping, try to allocate.
2470	 */
2471	if (bootstrap) {
2472		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2473			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2474			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2475			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2476		}
2477		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2478		moea64_bpvo_pool_index++;
2479		bootstrap = 1;
2480	} else {
2481		/*
2482		 * Note: drop the table lock around the UMA allocation in
2483		 * case the UMA allocator needs to manipulate the page
2484		 * table. The mapping we are working with is already
2485		 * protected by the PMAP lock.
2486		 */
2487		UNLOCK_TABLE();
2488		pvo = uma_zalloc(zone, M_NOWAIT);
2489		LOCK_TABLE();
2490	}
2491
2492	if (pvo == NULL) {
2493		UNLOCK_TABLE();
2494		return (ENOMEM);
2495	}
2496
2497	moea64_pvo_entries++;
2498	pvo->pvo_vaddr = va;
2499	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2500	    | (vsid << 16);
2501	pvo->pvo_pmap = pm;
2502	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2503	pvo->pvo_vaddr &= ~ADDR_POFF;
2504
2505	if (!(flags & VM_PROT_EXECUTE))
2506		pte_lo |= LPTE_NOEXEC;
2507	if (flags & PVO_WIRED)
2508		pvo->pvo_vaddr |= PVO_WIRED;
2509	if (pvo_head != &moea64_pvo_kunmanaged)
2510		pvo->pvo_vaddr |= PVO_MANAGED;
2511	if (bootstrap)
2512		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2513	if (flags & PVO_FAKE)
2514		pvo->pvo_vaddr |= PVO_FAKE;
2515	if (flags & PVO_LARGE)
2516		pvo->pvo_vaddr |= PVO_LARGE;
2517
2518	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2519	    (uint64_t)(pa) | pte_lo, flags);
2520
2521	/*
2522	 * Remember if the list was empty and therefore will be the first
2523	 * item.
2524	 */
2525	if (LIST_FIRST(pvo_head) == NULL)
2526		first = 1;
2527	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2528
2529	if (pvo->pvo_vaddr & PVO_WIRED) {
2530		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2531		pm->pm_stats.wired_count++;
2532	}
2533	pm->pm_stats.resident_count++;
2534
2535	/*
2536	 * We hope this succeeds but it isn't required.
2537	 */
2538	i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2539	if (i >= 0) {
2540		PVO_PTEGIDX_SET(pvo, i);
2541	} else {
2542		panic("moea64_pvo_enter: overflow");
2543		moea64_pte_overflow++;
2544	}
2545
2546	if (pm == kernel_pmap)
2547		isync();
2548
2549	UNLOCK_TABLE();
2550
2551#ifdef __powerpc64__
2552	/*
2553	 * Make sure all our bootstrap mappings are in the SLB as soon
2554	 * as virtual memory is switched on.
2555	 */
2556	if (!pmap_bootstrapped)
2557		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2558#endif
2559
2560	return (first ? ENOENT : 0);
2561}
2562
2563static void
2564moea64_pvo_remove(struct pvo_entry *pvo)
2565{
2566	struct	lpte *pt;
2567
2568	/*
2569	 * If there is an active pte entry, we need to deactivate it (and
2570	 * save the ref & cfg bits).
2571	 */
2572	LOCK_TABLE();
2573	pt = moea64_pvo_to_pte(pvo);
2574	if (pt != NULL) {
2575		moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2576		PVO_PTEGIDX_CLR(pvo);
2577	} else {
2578		moea64_pte_overflow--;
2579	}
2580
2581	/*
2582	 * Update our statistics.
2583	 */
2584	pvo->pvo_pmap->pm_stats.resident_count--;
2585	if (pvo->pvo_vaddr & PVO_WIRED)
2586		pvo->pvo_pmap->pm_stats.wired_count--;
2587
2588	/*
2589	 * Save the REF/CHG bits into their cache if the page is managed.
2590	 */
2591	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2592		struct	vm_page *pg;
2593
2594		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2595		if (pg != NULL) {
2596			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2597			    (LPTE_REF | LPTE_CHG));
2598		}
2599	}
2600
2601	/*
2602	 * Remove this PVO from the PV list.
2603	 */
2604	LIST_REMOVE(pvo, pvo_vlink);
2605
2606	/*
2607	 * Remove this from the overflow list and return it to the pool
2608	 * if we aren't going to reuse it.
2609	 */
2610	LIST_REMOVE(pvo, pvo_olink);
2611	UNLOCK_TABLE();
2612
2613	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2614		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2615		    moea64_upvo_zone, pvo);
2616
2617	moea64_pvo_entries--;
2618	moea64_pvo_remove_calls++;
2619}
2620
2621static struct pvo_entry *
2622moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2623{
2624	struct		pvo_entry *pvo;
2625	int		ptegidx;
2626	uint64_t	vsid;
2627	#ifdef __powerpc64__
2628	struct slb	slb;
2629
2630	/* The page is not mapped if the segment isn't */
2631	if (va_to_slb_entry(pm, va, &slb) != 0)
2632		return NULL;
2633
2634	vsid = (slb.slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2635	if (slb.slbv & SLBV_L)
2636		va &= ~moea64_large_page_mask;
2637	else
2638		va &= ~ADDR_POFF;
2639	ptegidx = va_to_pteg(vsid, va, slb.slbv & SLBV_L);
2640	#else
2641	va &= ~ADDR_POFF;
2642	vsid = va_to_vsid(pm, va);
2643	ptegidx = va_to_pteg(vsid, va, 0);
2644	#endif
2645
2646	LOCK_TABLE();
2647	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2648		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2649			break;
2650	}
2651	UNLOCK_TABLE();
2652
2653	return (pvo);
2654}
2655
2656static struct lpte *
2657moea64_pvo_to_pte(const struct pvo_entry *pvo)
2658{
2659	struct lpte 	*pt;
2660	int		pteidx, ptegidx;
2661	uint64_t	vsid;
2662
2663	ASSERT_TABLE_LOCK();
2664
2665	/* If the PTEG index is not set, then there is no page table entry */
2666	if (!PVO_PTEGIDX_ISSET(pvo))
2667		return (NULL);
2668
2669	/*
2670	 * Calculate the ptegidx
2671	 */
2672	vsid = PVO_VSID(pvo);
2673	ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
2674	    pvo->pvo_vaddr & PVO_LARGE);
2675
2676	/*
2677	 * We can find the actual pte entry without searching by grabbing
2678	 * the PTEG index from 3 unused bits in pvo_vaddr and by
2679	 * noticing the HID bit.
2680	 */
2681	if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2682		ptegidx ^= moea64_pteg_mask;
2683
2684	pteidx = (ptegidx << 3) | PVO_PTEGIDX_GET(pvo);
2685
2686	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2687	    !PVO_PTEGIDX_ISSET(pvo)) {
2688		panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2689		    "valid pte index", pvo);
2690	}
2691
2692	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2693	    PVO_PTEGIDX_ISSET(pvo)) {
2694		panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2695		    "pvo but no valid pte", pvo);
2696	}
2697
2698	pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2699	if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2700	    LPTE_VALID) {
2701		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2702			panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2703			    "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2704		}
2705
2706		if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2707		    ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2708			panic("moea64_pvo_to_pte: pvo %p pte does not match "
2709			    "pte %p in moea64_pteg_table difference is %#x",
2710			    pvo, pt,
2711			    (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2712		}
2713
2714		return (pt);
2715	}
2716
2717	if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2718		panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2719		    "moea64_pteg_table but valid in pvo", pvo, pt);
2720	}
2721
2722	return (NULL);
2723}
2724
2725static __inline int
2726moea64_pte_spillable_ident(u_int ptegidx)
2727{
2728	struct	lpte *pt;
2729	int	i, j, k;
2730
2731	/* Start at a random slot */
2732	i = mftb() % 8;
2733	k = -1;
2734	for (j = 0; j < 8; j++) {
2735		pt = &moea64_pteg_table[ptegidx].pt[(i + j) % 8];
2736		if (pt->pte_hi & (LPTE_LOCKED | LPTE_WIRED))
2737			continue;
2738
2739		/* This is a candidate, so remember it */
2740		k = (i + j) % 8;
2741
2742		/* Try to get a page that has not been used lately */
2743		if (!(pt->pte_lo & LPTE_REF))
2744			return (k);
2745	}
2746
2747	return (k);
2748}
2749
2750static int
2751moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2752{
2753	struct	lpte *pt;
2754	struct	pvo_entry *pvo;
2755	u_int	pteg_bktidx;
2756	int	i;
2757
2758	ASSERT_TABLE_LOCK();
2759
2760	/*
2761	 * First try primary hash.
2762	 */
2763	pteg_bktidx = ptegidx;
2764	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2765		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2766			pvo_pt->pte_hi &= ~LPTE_HID;
2767			moea64_pte_set(pt, pvo_pt);
2768			return (i);
2769		}
2770	}
2771
2772	/*
2773	 * Now try secondary hash.
2774	 */
2775	pteg_bktidx ^= moea64_pteg_mask;
2776	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2777		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2778			pvo_pt->pte_hi |= LPTE_HID;
2779			moea64_pte_set(pt, pvo_pt);
2780			return (i);
2781		}
2782	}
2783
2784	/*
2785	 * Out of luck. Find a PTE to sacrifice.
2786	 */
2787	pteg_bktidx = ptegidx;
2788	i = moea64_pte_spillable_ident(pteg_bktidx);
2789	if (i < 0) {
2790		pteg_bktidx ^= moea64_pteg_mask;
2791		i = moea64_pte_spillable_ident(pteg_bktidx);
2792	}
2793
2794	if (i < 0) {
2795		/* No freeable slots in either PTEG? We're hosed. */
2796		panic("moea64_pte_insert: overflow");
2797		return (-1);
2798	}
2799
2800	if (pteg_bktidx == ptegidx)
2801		pvo_pt->pte_hi &= ~LPTE_HID;
2802	else
2803		pvo_pt->pte_hi |= LPTE_HID;
2804
2805	/*
2806	 * Synchronize the sacrifice PTE with its PVO, then mark both
2807	 * invalid. The PVO will be reused when/if the VM system comes
2808	 * here after a fault.
2809	 */
2810	pt = &moea64_pteg_table[pteg_bktidx].pt[i];
2811
2812	if (pt->pte_hi & LPTE_HID)
2813		pteg_bktidx ^= moea64_pteg_mask; /* PTEs indexed by primary */
2814
2815	LIST_FOREACH(pvo, &moea64_pvo_table[pteg_bktidx], pvo_olink) {
2816		if (pvo->pvo_pte.lpte.pte_hi == pt->pte_hi) {
2817			KASSERT(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID,
2818			    ("Invalid PVO for valid PTE!"));
2819			moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2820			PVO_PTEGIDX_CLR(pvo);
2821			moea64_pte_overflow++;
2822			break;
2823		}
2824	}
2825
2826	KASSERT(pvo->pvo_pte.lpte.pte_hi == pt->pte_hi,
2827	   ("Unable to find PVO for spilled PTE"));
2828
2829	/*
2830	 * Set the new PTE.
2831	 */
2832	moea64_pte_set(pt, pvo_pt);
2833
2834	return (i);
2835}
2836
2837static boolean_t
2838moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2839{
2840	struct	pvo_entry *pvo;
2841	struct	lpte *pt;
2842
2843	if (moea64_attr_fetch(m) & ptebit)
2844		return (TRUE);
2845
2846	vm_page_lock_queues();
2847
2848	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2849		MOEA_PVO_CHECK(pvo);	/* sanity check */
2850
2851		/*
2852		 * See if we saved the bit off.  If so, cache it and return
2853		 * success.
2854		 */
2855		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2856			moea64_attr_save(m, ptebit);
2857			MOEA_PVO_CHECK(pvo);	/* sanity check */
2858			vm_page_unlock_queues();
2859			return (TRUE);
2860		}
2861	}
2862
2863	/*
2864	 * No luck, now go through the hard part of looking at the PTEs
2865	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2866	 * the PTEs.
2867	 */
2868	SYNC();
2869	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2870		MOEA_PVO_CHECK(pvo);	/* sanity check */
2871
2872		/*
2873		 * See if this pvo has a valid PTE.  if so, fetch the
2874		 * REF/CHG bits from the valid PTE.  If the appropriate
2875		 * ptebit is set, cache it and return success.
2876		 */
2877		LOCK_TABLE();
2878		pt = moea64_pvo_to_pte(pvo);
2879		if (pt != NULL) {
2880			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2881			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2882				UNLOCK_TABLE();
2883
2884				moea64_attr_save(m, ptebit);
2885				MOEA_PVO_CHECK(pvo);	/* sanity check */
2886				vm_page_unlock_queues();
2887				return (TRUE);
2888			}
2889		}
2890		UNLOCK_TABLE();
2891	}
2892
2893	vm_page_unlock_queues();
2894	return (FALSE);
2895}
2896
2897static u_int
2898moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
2899{
2900	u_int	count;
2901	struct	pvo_entry *pvo;
2902	struct	lpte *pt;
2903
2904	vm_page_lock_queues();
2905
2906	/*
2907	 * Clear the cached value.
2908	 */
2909	moea64_attr_clear(m, ptebit);
2910
2911	/*
2912	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2913	 * we can reset the right ones).  note that since the pvo entries and
2914	 * list heads are accessed via BAT0 and are never placed in the page
2915	 * table, we don't have to worry about further accesses setting the
2916	 * REF/CHG bits.
2917	 */
2918	SYNC();
2919
2920	/*
2921	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2922	 * valid pte clear the ptebit from the valid pte.
2923	 */
2924	count = 0;
2925	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2926		MOEA_PVO_CHECK(pvo);	/* sanity check */
2927
2928		LOCK_TABLE();
2929		pt = moea64_pvo_to_pte(pvo);
2930		if (pt != NULL) {
2931			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2932			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2933				count++;
2934				moea64_pte_clear(pt, pvo->pvo_vpn, ptebit);
2935			}
2936		}
2937		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2938		MOEA_PVO_CHECK(pvo);	/* sanity check */
2939		UNLOCK_TABLE();
2940	}
2941
2942	vm_page_unlock_queues();
2943	return (count);
2944}
2945
2946boolean_t
2947moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2948{
2949	struct pvo_entry *pvo;
2950	vm_offset_t ppa;
2951	int error = 0;
2952
2953	PMAP_LOCK(kernel_pmap);
2954	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2955		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2956		if (pvo == NULL ||
2957		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2958			error = EFAULT;
2959			break;
2960		}
2961	}
2962	PMAP_UNLOCK(kernel_pmap);
2963
2964	return (error);
2965}
2966
2967/*
2968 * Map a set of physical memory pages into the kernel virtual
2969 * address space. Return a pointer to where it is mapped. This
2970 * routine is intended to be used for mapping device memory,
2971 * NOT real memory.
2972 */
2973void *
2974moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2975{
2976	vm_offset_t va, tmpva, ppa, offset;
2977
2978	ppa = trunc_page(pa);
2979	offset = pa & PAGE_MASK;
2980	size = roundup(offset + size, PAGE_SIZE);
2981
2982	va = kmem_alloc_nofault(kernel_map, size);
2983
2984	if (!va)
2985		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2986
2987	for (tmpva = va; size > 0;) {
2988		moea64_kenter(mmu, tmpva, ppa);
2989		size -= PAGE_SIZE;
2990		tmpva += PAGE_SIZE;
2991		ppa += PAGE_SIZE;
2992	}
2993
2994	return ((void *)(va + offset));
2995}
2996
2997void
2998moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2999{
3000	vm_offset_t base, offset;
3001
3002	base = trunc_page(va);
3003	offset = va & PAGE_MASK;
3004	size = roundup(offset + size, PAGE_SIZE);
3005
3006	kmem_free(kernel_map, base, size);
3007}
3008
3009static void
3010moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
3011{
3012	struct pvo_entry *pvo;
3013	vm_offset_t lim;
3014	vm_paddr_t pa;
3015	vm_size_t len;
3016
3017	PMAP_LOCK(pm);
3018	while (sz > 0) {
3019		lim = round_page(va);
3020		len = MIN(lim - va, sz);
3021		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3022		if (pvo != NULL) {
3023			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
3024			    (va & ADDR_POFF);
3025			moea64_syncicache(pm, va, pa, len);
3026		}
3027		va += len;
3028		sz -= len;
3029	}
3030	PMAP_UNLOCK(pm);
3031}
3032