mmu_oea64.c revision 209975
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 209975 2010-07-13 05:32:19Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <sys/kdb.h>
131
132#include <dev/ofw/openfirm.h>
133
134#include <vm/vm.h>
135#include <vm/vm_param.h>
136#include <vm/vm_kern.h>
137#include <vm/vm_page.h>
138#include <vm/vm_map.h>
139#include <vm/vm_object.h>
140#include <vm/vm_extern.h>
141#include <vm/vm_pageout.h>
142#include <vm/vm_pager.h>
143#include <vm/uma.h>
144
145#include <machine/_inttypes.h>
146#include <machine/cpu.h>
147#include <machine/platform.h>
148#include <machine/frame.h>
149#include <machine/md_var.h>
150#include <machine/psl.h>
151#include <machine/bat.h>
152#include <machine/hid.h>
153#include <machine/pte.h>
154#include <machine/sr.h>
155#include <machine/trap.h>
156#include <machine/mmuvar.h>
157
158#include "mmu_if.h"
159
160#define	MOEA_DEBUG
161
162#define TODO	panic("%s: not implemented", __func__);
163void moea64_release_vsid(uint64_t vsid);
164uintptr_t moea64_get_unique_vsid(void);
165
166static __inline register_t
167cntlzd(volatile register_t a) {
168	register_t b;
169	__asm ("cntlzd %0, %1" : "=r"(b) : "r"(a));
170	return b;
171}
172
173#define	PTESYNC()	__asm __volatile("ptesync");
174#define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
175#define	SYNC()		__asm __volatile("sync");
176#define	EIEIO()		__asm __volatile("eieio");
177
178/*
179 * The tlbie instruction must be executed in 64-bit mode
180 * so we have to twiddle MSR[SF] around every invocation.
181 * Just to add to the fun, exceptions must be off as well
182 * so that we can't trap in 64-bit mode. What a pain.
183 */
184struct mtx	tlbie_mutex;
185
186static __inline void
187TLBIE(uint64_t vpn) {
188#ifndef __powerpc64__
189	register_t vpn_hi, vpn_lo;
190	register_t msr;
191	register_t scratch;
192#endif
193
194	vpn <<= ADDR_PIDX_SHFT;
195	vpn &= ~(0xffffULL << 48);
196
197	mtx_lock_spin(&tlbie_mutex);
198#ifdef __powerpc64__
199	__asm __volatile("\
200	    ptesync; \
201	    tlbie %0; \
202	    eieio; \
203	    tlbsync; \
204	    ptesync;"
205	:: "r"(vpn) : "memory");
206#else
207	vpn_hi = (uint32_t)(vpn >> 32);
208	vpn_lo = (uint32_t)vpn;
209
210	__asm __volatile("\
211	    mfmsr %0; \
212	    mr %1, %0; \
213	    insrdi %1,%5,1,0; \
214	    mtmsrd %1; \
215	    ptesync; \
216	    \
217	    sld %1,%2,%4; \
218	    or %1,%1,%3; \
219	    tlbie %1; \
220	    \
221	    mtmsrd %0; \
222	    eieio; \
223	    tlbsync; \
224	    ptesync;"
225	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
226	    : "memory");
227#endif
228	mtx_unlock_spin(&tlbie_mutex);
229}
230
231#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
232#define ENABLE_TRANS(msr)	mtmsr(msr); isync()
233
234#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
235#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
236#define	VSID_HASH_MASK		0x0000007fffffffffULL
237
238#define	PVO_PTEGIDX_MASK	0x007UL		/* which PTEG slot */
239#define	PVO_PTEGIDX_VALID	0x008UL		/* slot is valid */
240#define	PVO_WIRED		0x010UL		/* PVO entry is wired */
241#define	PVO_MANAGED		0x020UL		/* PVO entry is managed */
242#define	PVO_BOOTSTRAP		0x080UL		/* PVO entry allocated during
243						   bootstrap */
244#define PVO_FAKE		0x100UL		/* fictitious phys page */
245#define PVO_LARGE		0x200UL		/* large page */
246#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
247#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
248#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
249#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
250#define	PVO_PTEGIDX_CLR(pvo)	\
251	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
252#define	PVO_PTEGIDX_SET(pvo, i)	\
253	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
254#define	PVO_VSID(pvo)		((pvo)->pvo_vpn >> 16)
255
256#define	MOEA_PVO_CHECK(pvo)
257
258#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
259#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
260#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
261
262struct ofw_map {
263	cell_t	om_va;
264	cell_t	om_len;
265	cell_t	om_pa_hi;
266	cell_t	om_pa_lo;
267	cell_t	om_mode;
268};
269
270/*
271 * Map of physical memory regions.
272 */
273static struct	mem_region *regions;
274static struct	mem_region *pregions;
275static u_int	phys_avail_count;
276static int	regions_sz, pregions_sz;
277extern int	ofw_real_mode;
278
279extern struct pmap ofw_pmap;
280
281extern void bs_remap_earlyboot(void);
282
283
284/*
285 * Lock for the pteg and pvo tables.
286 */
287struct mtx	moea64_table_mutex;
288
289/*
290 * PTEG data.
291 */
292static struct	lpteg *moea64_pteg_table;
293u_int		moea64_pteg_count;
294u_int		moea64_pteg_mask;
295
296/*
297 * PVO data.
298 */
299struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
300/* lists of unmanaged pages */
301struct	pvo_head moea64_pvo_kunmanaged =
302    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
303struct	pvo_head moea64_pvo_unmanaged =
304    LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
305
306uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
307uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
308
309#define	BPVO_POOL_SIZE	327680
310static struct	pvo_entry *moea64_bpvo_pool;
311static int	moea64_bpvo_pool_index = 0;
312
313#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
314#ifdef __powerpc64__
315#define	NVSIDS		(NPMAPS * 16)
316#define VSID_HASHMASK	0xffffffffUL
317#else
318#define NVSIDS		NPMAPS
319#define VSID_HASHMASK	0xfffffUL
320#endif
321static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
322
323static boolean_t moea64_initialized = FALSE;
324
325/*
326 * Statistics.
327 */
328u_int	moea64_pte_valid = 0;
329u_int	moea64_pte_overflow = 0;
330u_int	moea64_pvo_entries = 0;
331u_int	moea64_pvo_enter_calls = 0;
332u_int	moea64_pvo_remove_calls = 0;
333SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
334    &moea64_pte_valid, 0, "");
335SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
336    &moea64_pte_overflow, 0, "");
337SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
338    &moea64_pvo_entries, 0, "");
339SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
340    &moea64_pvo_enter_calls, 0, "");
341SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
342    &moea64_pvo_remove_calls, 0, "");
343
344vm_offset_t	moea64_scratchpage_va[2];
345uint64_t	moea64_scratchpage_vpn[2];
346struct	lpte 	*moea64_scratchpage_pte[2];
347struct	mtx	moea64_scratchpage_mtx;
348
349uint64_t 	moea64_large_page_mask = 0;
350int		moea64_large_page_size = 0;
351int		moea64_large_page_shift = 0;
352
353/*
354 * Allocate physical memory for use in moea64_bootstrap.
355 */
356static vm_offset_t	moea64_bootstrap_alloc(vm_size_t, u_int);
357
358/*
359 * PTE calls.
360 */
361static int		moea64_pte_insert(u_int, struct lpte *);
362
363/*
364 * PVO calls.
365 */
366static int	moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
367		    vm_offset_t, vm_offset_t, uint64_t, int);
368static void	moea64_pvo_remove(struct pvo_entry *);
369static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
370static struct	lpte *moea64_pvo_to_pte(const struct pvo_entry *);
371
372/*
373 * Utility routines.
374 */
375static void		moea64_bootstrap(mmu_t mmup,
376			    vm_offset_t kernelstart, vm_offset_t kernelend);
377static void		moea64_cpu_bootstrap(mmu_t, int ap);
378static void		moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
379			    vm_prot_t, boolean_t);
380static boolean_t	moea64_query_bit(vm_page_t, u_int64_t);
381static u_int		moea64_clear_bit(vm_page_t, u_int64_t);
382static void		moea64_kremove(mmu_t, vm_offset_t);
383static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
384			    vm_offset_t pa, vm_size_t sz);
385static void		tlbia(void);
386#ifdef __powerpc64__
387static void		slbia(void);
388#endif
389
390/*
391 * Kernel MMU interface
392 */
393void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
394void moea64_clear_modify(mmu_t, vm_page_t);
395void moea64_clear_reference(mmu_t, vm_page_t);
396void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
397void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
398void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
399    vm_prot_t);
400void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
401vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
402vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
403void moea64_init(mmu_t);
404boolean_t moea64_is_modified(mmu_t, vm_page_t);
405boolean_t moea64_is_referenced(mmu_t, vm_page_t);
406boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
407vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
408boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
409int moea64_page_wired_mappings(mmu_t, vm_page_t);
410void moea64_pinit(mmu_t, pmap_t);
411void moea64_pinit0(mmu_t, pmap_t);
412void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
413void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
414void moea64_qremove(mmu_t, vm_offset_t, int);
415void moea64_release(mmu_t, pmap_t);
416void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
417void moea64_remove_all(mmu_t, vm_page_t);
418void moea64_remove_write(mmu_t, vm_page_t);
419void moea64_zero_page(mmu_t, vm_page_t);
420void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
421void moea64_zero_page_idle(mmu_t, vm_page_t);
422void moea64_activate(mmu_t, struct thread *);
423void moea64_deactivate(mmu_t, struct thread *);
424void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
425void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
426vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
427void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
428boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
429static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
430
431static mmu_method_t moea64_methods[] = {
432	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
433	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
434	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
435	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
436	MMUMETHOD(mmu_enter,		moea64_enter),
437	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
438	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
439	MMUMETHOD(mmu_extract,		moea64_extract),
440	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
441	MMUMETHOD(mmu_init,		moea64_init),
442	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
443	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
444	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
445	MMUMETHOD(mmu_map,     		moea64_map),
446	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
447	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
448	MMUMETHOD(mmu_pinit,		moea64_pinit),
449	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
450	MMUMETHOD(mmu_protect,		moea64_protect),
451	MMUMETHOD(mmu_qenter,		moea64_qenter),
452	MMUMETHOD(mmu_qremove,		moea64_qremove),
453	MMUMETHOD(mmu_release,		moea64_release),
454	MMUMETHOD(mmu_remove,		moea64_remove),
455	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
456	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
457	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
458	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
459	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
460	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
461	MMUMETHOD(mmu_activate,		moea64_activate),
462	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
463
464	/* Internal interfaces */
465	MMUMETHOD(mmu_bootstrap,       	moea64_bootstrap),
466	MMUMETHOD(mmu_cpu_bootstrap,   	moea64_cpu_bootstrap),
467	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
468	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
469	MMUMETHOD(mmu_kextract,		moea64_kextract),
470	MMUMETHOD(mmu_kenter,		moea64_kenter),
471	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
472
473	{ 0, 0 }
474};
475
476static mmu_def_t oea64_mmu = {
477	MMU_TYPE_G5,
478	moea64_methods,
479	0
480};
481MMU_DEF(oea64_mmu);
482
483static __inline u_int
484va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
485{
486	uint64_t hash;
487	int shift;
488
489	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
490	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
491	    shift);
492	return (hash & moea64_pteg_mask);
493}
494
495static __inline struct pvo_head *
496pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
497{
498	struct	vm_page *pg;
499
500	pg = PHYS_TO_VM_PAGE(pa);
501
502	if (pg_p != NULL)
503		*pg_p = pg;
504
505	if (pg == NULL)
506		return (&moea64_pvo_unmanaged);
507
508	return (&pg->md.mdpg_pvoh);
509}
510
511static __inline struct pvo_head *
512vm_page_to_pvoh(vm_page_t m)
513{
514
515	return (&m->md.mdpg_pvoh);
516}
517
518static __inline void
519moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
520{
521
522	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
523	m->md.mdpg_attrs &= ~ptebit;
524}
525
526static __inline u_int64_t
527moea64_attr_fetch(vm_page_t m)
528{
529
530	return (m->md.mdpg_attrs);
531}
532
533static __inline void
534moea64_attr_save(vm_page_t m, u_int64_t ptebit)
535{
536
537	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
538	m->md.mdpg_attrs |= ptebit;
539}
540
541static __inline void
542moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
543    uint64_t pte_lo, int flags)
544{
545
546	ASSERT_TABLE_LOCK();
547
548	/*
549	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
550	 * set when the real pte is set in memory.
551	 *
552	 * Note: Don't set the valid bit for correct operation of tlb update.
553	 */
554	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
555	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
556
557	if (flags & PVO_LARGE)
558		pt->pte_hi |= LPTE_BIG;
559
560	pt->pte_lo = pte_lo;
561}
562
563static __inline void
564moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
565{
566
567	ASSERT_TABLE_LOCK();
568
569	pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
570}
571
572static __inline void
573moea64_pte_clear(struct lpte *pt, uint64_t vpn, u_int64_t ptebit)
574{
575	ASSERT_TABLE_LOCK();
576
577	/*
578	 * As shown in Section 7.6.3.2.3
579	 */
580	pt->pte_lo &= ~ptebit;
581	TLBIE(vpn);
582}
583
584static __inline void
585moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
586{
587
588	ASSERT_TABLE_LOCK();
589	pvo_pt->pte_hi |= LPTE_VALID;
590
591	/*
592	 * Update the PTE as defined in section 7.6.3.1.
593	 * Note that the REF/CHG bits are from pvo_pt and thus should have
594	 * been saved so this routine can restore them (if desired).
595	 */
596	pt->pte_lo = pvo_pt->pte_lo;
597	EIEIO();
598	pt->pte_hi = pvo_pt->pte_hi;
599	PTESYNC();
600	moea64_pte_valid++;
601}
602
603static __inline void
604moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
605{
606	ASSERT_TABLE_LOCK();
607	pvo_pt->pte_hi &= ~LPTE_VALID;
608
609	/*
610	 * Force the reg & chg bits back into the PTEs.
611	 */
612	SYNC();
613
614	/*
615	 * Invalidate the pte.
616	 */
617	pt->pte_hi &= ~LPTE_VALID;
618	TLBIE(vpn);
619
620	/*
621	 * Save the reg & chg bits.
622	 */
623	moea64_pte_synch(pt, pvo_pt);
624	moea64_pte_valid--;
625}
626
627static __inline void
628moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, uint64_t vpn)
629{
630
631	/*
632	 * Invalidate the PTE
633	 */
634	moea64_pte_unset(pt, pvo_pt, vpn);
635	moea64_pte_set(pt, pvo_pt);
636}
637
638static __inline uint64_t
639moea64_calc_wimg(vm_offset_t pa)
640{
641	uint64_t pte_lo;
642	int i;
643
644	/*
645	 * Assume the page is cache inhibited and access is guarded unless
646	 * it's in our available memory array.
647	 */
648	pte_lo = LPTE_I | LPTE_G;
649	for (i = 0; i < pregions_sz; i++) {
650		if ((pa >= pregions[i].mr_start) &&
651		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
652			pte_lo &= ~(LPTE_I | LPTE_G);
653			pte_lo |= LPTE_M;
654			break;
655		}
656	}
657
658	return pte_lo;
659}
660
661/*
662 * Quick sort callout for comparing memory regions.
663 */
664static int	mr_cmp(const void *a, const void *b);
665static int	om_cmp(const void *a, const void *b);
666
667static int
668mr_cmp(const void *a, const void *b)
669{
670	const struct	mem_region *regiona;
671	const struct	mem_region *regionb;
672
673	regiona = a;
674	regionb = b;
675	if (regiona->mr_start < regionb->mr_start)
676		return (-1);
677	else if (regiona->mr_start > regionb->mr_start)
678		return (1);
679	else
680		return (0);
681}
682
683static int
684om_cmp(const void *a, const void *b)
685{
686	const struct	ofw_map *mapa;
687	const struct	ofw_map *mapb;
688
689	mapa = a;
690	mapb = b;
691	if (mapa->om_pa_hi < mapb->om_pa_hi)
692		return (-1);
693	else if (mapa->om_pa_hi > mapb->om_pa_hi)
694		return (1);
695	else if (mapa->om_pa_lo < mapb->om_pa_lo)
696		return (-1);
697	else if (mapa->om_pa_lo > mapb->om_pa_lo)
698		return (1);
699	else
700		return (0);
701}
702
703static void
704moea64_cpu_bootstrap(mmu_t mmup, int ap)
705{
706	int i = 0;
707	#ifdef __powerpc64__
708	struct slb *slb = PCPU_GET(slb);
709	#endif
710
711	/*
712	 * Initialize segment registers and MMU
713	 */
714
715	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
716
717	/*
718	 * Install kernel SLB entries
719	 */
720
721	#ifdef __powerpc64__
722		slbia();
723
724		for (i = 0; i < 64; i++) {
725			if (!(slb[i].slbe & SLBE_VALID))
726				continue;
727
728			__asm __volatile ("slbmte %0, %1" ::
729			    "r"(slb[i].slbv), "r"(slb[i].slbe));
730		}
731	#else
732		for (i = 0; i < 16; i++)
733			mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
734	#endif
735
736	/*
737	 * Install page table
738	 */
739
740	__asm __volatile ("ptesync; mtsdr1 %0; isync"
741	    :: "r"((uintptr_t)moea64_pteg_table
742		     | (64 - cntlzd(moea64_pteg_mask >> 11))));
743	tlbia();
744}
745
746static void
747moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
748{
749	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
750	register_t	msr;
751	vm_offset_t	off;
752	vm_paddr_t	pa_base;
753	int		i, ofw_mappings;
754
755	bzero(translations, sz);
756	if (OF_getprop(mmu, "translations", translations, sz) == -1)
757		panic("moea64_bootstrap: can't get ofw translations");
758
759	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
760	sz /= sizeof(*translations);
761	qsort(translations, sz, sizeof (*translations), om_cmp);
762
763	for (i = 0, ofw_mappings = 0; i < sz; i++) {
764		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
765		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
766		    translations[i].om_len);
767
768		if (translations[i].om_pa_lo % PAGE_SIZE)
769			panic("OFW translation not page-aligned!");
770
771		pa_base = translations[i].om_pa_lo;
772
773	      #ifdef __powerpc64__
774		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
775	      #else
776		if (translations[i].om_pa_hi)
777			panic("OFW translations above 32-bit boundary!");
778	      #endif
779
780		/* Now enter the pages for this mapping */
781
782		DISABLE_TRANS(msr);
783		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
784			if (moea64_pvo_find_va(kernel_pmap,
785			    translations[i].om_va + off) != NULL)
786				continue;
787
788			moea64_kenter(mmup, translations[i].om_va + off,
789			    pa_base + off);
790
791			ofw_mappings++;
792		}
793		ENABLE_TRANS(msr);
794	}
795}
796
797#ifdef __powerpc64__
798static void
799moea64_probe_large_page(void)
800{
801	uint16_t pvr = mfpvr() >> 16;
802
803	switch (pvr) {
804	case IBM970:
805	case IBM970FX:
806	case IBM970MP:
807		powerpc_sync(); isync();
808		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
809		powerpc_sync(); isync();
810
811		/* FALLTHROUGH */
812	case IBMCELLBE:
813		moea64_large_page_size = 0x1000000; /* 16 MB */
814		moea64_large_page_shift = 24;
815		break;
816	default:
817		moea64_large_page_size = 0;
818	}
819
820	moea64_large_page_mask = moea64_large_page_size - 1;
821}
822
823static void
824moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
825{
826	struct slb *cache;
827	struct slb entry;
828	uint64_t esid, slbe;
829	uint64_t i;
830
831	cache = PCPU_GET(slb);
832	esid = va >> ADDR_SR_SHFT;
833	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
834
835	for (i = 0; i < 64; i++) {
836		if (cache[i].slbe == (slbe | i))
837			return;
838	}
839
840	entry.slbe = slbe;
841	entry.slbv = KERNEL_VSID(esid, large) << SLBV_VSID_SHIFT;
842	if (large)
843		entry.slbv |= SLBV_L;
844
845	slb_insert(kernel_pmap, cache, &entry);
846}
847#endif
848
849static void
850moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
851    vm_offset_t kernelend)
852{
853	register_t msr;
854	vm_paddr_t pa;
855	vm_offset_t size, off;
856	uint64_t pte_lo;
857	int i;
858
859	if (moea64_large_page_size == 0)
860		hw_direct_map = 0;
861
862	DISABLE_TRANS(msr);
863	if (hw_direct_map) {
864		PMAP_LOCK(kernel_pmap);
865		for (i = 0; i < pregions_sz; i++) {
866		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
867		     pregions[i].mr_size; pa += moea64_large_page_size) {
868			pte_lo = LPTE_M;
869
870			/*
871			 * Set memory access as guarded if prefetch within
872			 * the page could exit the available physmem area.
873			 */
874			if (pa & moea64_large_page_mask) {
875				pa &= moea64_large_page_mask;
876				pte_lo |= LPTE_G;
877			}
878			if (pa + moea64_large_page_size >
879			    pregions[i].mr_start + pregions[i].mr_size)
880				pte_lo |= LPTE_G;
881
882			moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
883				    &moea64_pvo_kunmanaged, pa, pa,
884				    pte_lo, PVO_WIRED | PVO_LARGE |
885				    VM_PROT_EXECUTE);
886		  }
887		}
888		PMAP_UNLOCK(kernel_pmap);
889	} else {
890		size = moea64_pteg_count * sizeof(struct lpteg);
891		off = (vm_offset_t)(moea64_pteg_table);
892		for (pa = off; pa < off + size; pa += PAGE_SIZE)
893			moea64_kenter(mmup, pa, pa);
894		size = sizeof(struct pvo_head) * moea64_pteg_count;
895		off = (vm_offset_t)(moea64_pvo_table);
896		for (pa = off; pa < off + size; pa += PAGE_SIZE)
897			moea64_kenter(mmup, pa, pa);
898		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
899		off = (vm_offset_t)(moea64_bpvo_pool);
900		for (pa = off; pa < off + size; pa += PAGE_SIZE)
901		moea64_kenter(mmup, pa, pa);
902
903		/*
904		 * Map certain important things, like ourselves.
905		 *
906		 * NOTE: We do not map the exception vector space. That code is
907		 * used only in real mode, and leaving it unmapped allows us to
908		 * catch NULL pointer deferences, instead of making NULL a valid
909		 * address.
910		 */
911
912		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
913		    pa += PAGE_SIZE)
914			moea64_kenter(mmup, pa, pa);
915	}
916	ENABLE_TRANS(msr);
917}
918
919static void
920moea64_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
921{
922	ihandle_t	mmui;
923	phandle_t	chosen;
924	phandle_t	mmu;
925	size_t		sz;
926	int		i, j;
927	vm_size_t	size, physsz, hwphyssz;
928	vm_offset_t	pa, va;
929	register_t	msr;
930	void		*dpcpu;
931
932#ifndef __powerpc64__
933	/* We don't have a direct map since there is no BAT */
934	hw_direct_map = 0;
935
936	/* Make sure battable is zero, since we have no BAT */
937	for (i = 0; i < 16; i++) {
938		battable[i].batu = 0;
939		battable[i].batl = 0;
940	}
941#else
942	moea64_probe_large_page();
943
944	/* Use a direct map if we have large page support */
945	if (moea64_large_page_size > 0)
946		hw_direct_map = 1;
947	else
948		hw_direct_map = 0;
949#endif
950
951	/* Get physical memory regions from firmware */
952	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
953	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
954
955	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
956	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
957		panic("moea64_bootstrap: phys_avail too small");
958	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
959	phys_avail_count = 0;
960	physsz = 0;
961	hwphyssz = 0;
962	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
963	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
964		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
965		    regions[i].mr_start + regions[i].mr_size,
966		    regions[i].mr_size);
967		if (hwphyssz != 0 &&
968		    (physsz + regions[i].mr_size) >= hwphyssz) {
969			if (physsz < hwphyssz) {
970				phys_avail[j] = regions[i].mr_start;
971				phys_avail[j + 1] = regions[i].mr_start +
972				    hwphyssz - physsz;
973				physsz = hwphyssz;
974				phys_avail_count++;
975			}
976			break;
977		}
978		phys_avail[j] = regions[i].mr_start;
979		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
980		phys_avail_count++;
981		physsz += regions[i].mr_size;
982	}
983
984	/* Check for overlap with the kernel and exception vectors */
985	for (j = 0; j < 2*phys_avail_count; j+=2) {
986		if (phys_avail[j] < EXC_LAST)
987			phys_avail[j] += EXC_LAST;
988
989		if (kernelstart >= phys_avail[j] &&
990		    kernelstart < phys_avail[j+1]) {
991			if (kernelend < phys_avail[j+1]) {
992				phys_avail[2*phys_avail_count] =
993				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
994				phys_avail[2*phys_avail_count + 1] =
995				    phys_avail[j+1];
996				phys_avail_count++;
997			}
998
999			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
1000		}
1001
1002		if (kernelend >= phys_avail[j] &&
1003		    kernelend < phys_avail[j+1]) {
1004			if (kernelstart > phys_avail[j]) {
1005				phys_avail[2*phys_avail_count] = phys_avail[j];
1006				phys_avail[2*phys_avail_count + 1] =
1007				    kernelstart & ~PAGE_MASK;
1008				phys_avail_count++;
1009			}
1010
1011			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
1012		}
1013	}
1014
1015	physmem = btoc(physsz);
1016
1017	/*
1018	 * Allocate PTEG table.
1019	 */
1020#ifdef PTEGCOUNT
1021	moea64_pteg_count = PTEGCOUNT;
1022#else
1023	moea64_pteg_count = 0x1000;
1024
1025	while (moea64_pteg_count < physmem)
1026		moea64_pteg_count <<= 1;
1027
1028	moea64_pteg_count >>= 1;
1029#endif /* PTEGCOUNT */
1030
1031	size = moea64_pteg_count * sizeof(struct lpteg);
1032	CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
1033	    moea64_pteg_count, size);
1034
1035	/*
1036	 * We now need to allocate memory. This memory, to be allocated,
1037	 * has to reside in a page table. The page table we are about to
1038	 * allocate. We don't have BAT. So drop to data real mode for a minute
1039	 * as a measure of last resort. We do this a couple times.
1040	 */
1041
1042	moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
1043	DISABLE_TRANS(msr);
1044	bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
1045	ENABLE_TRANS(msr);
1046
1047	moea64_pteg_mask = moea64_pteg_count - 1;
1048
1049	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
1050
1051	/*
1052	 * Allocate pv/overflow lists.
1053	 */
1054	size = sizeof(struct pvo_head) * moea64_pteg_count;
1055
1056	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
1057	    PAGE_SIZE);
1058	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
1059
1060	DISABLE_TRANS(msr);
1061	for (i = 0; i < moea64_pteg_count; i++)
1062		LIST_INIT(&moea64_pvo_table[i]);
1063	ENABLE_TRANS(msr);
1064
1065	/*
1066	 * Initialize the lock that synchronizes access to the pteg and pvo
1067	 * tables.
1068	 */
1069	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
1070	    MTX_RECURSE);
1071
1072	/*
1073	 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
1074	 */
1075	mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
1076
1077	/*
1078	 * Initialise the unmanaged pvo pool.
1079	 */
1080	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1081		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
1082	moea64_bpvo_pool_index = 0;
1083
1084	/*
1085	 * Make sure kernel vsid is allocated as well as VSID 0.
1086	 */
1087	#ifndef __powerpc64__
1088	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1089		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1090	moea64_vsid_bitmap[0] |= 1;
1091	#endif
1092
1093	/*
1094	 * Initialize the kernel pmap (which is statically allocated).
1095	 */
1096	#ifdef __powerpc64__
1097	for (i = 0; i < 64; i++) {
1098		pcpup->pc_slb[i].slbv = 0;
1099		pcpup->pc_slb[i].slbe = 0;
1100	}
1101	#else
1102	for (i = 0; i < 16; i++)
1103		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1104	#endif
1105
1106	kernel_pmap->pmap_phys = kernel_pmap;
1107	kernel_pmap->pm_active = ~0;
1108
1109	PMAP_LOCK_INIT(kernel_pmap);
1110
1111	/*
1112	 * Now map in all the other buffers we allocated earlier
1113	 */
1114
1115	moea64_setup_direct_map(mmup, kernelstart, kernelend);
1116
1117	/*
1118	 * Set up the Open Firmware pmap and add its mappings if not in real
1119	 * mode.
1120	 */
1121
1122	if (!ofw_real_mode) {
1123	    #ifndef __powerpc64__
1124	    moea64_pinit(mmup, &ofw_pmap);
1125
1126	    for (i = 0; i < 16; i++)
1127		ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
1128	    #endif
1129
1130	    if ((chosen = OF_finddevice("/chosen")) == -1)
1131		panic("moea64_bootstrap: can't find /chosen");
1132	    OF_getprop(chosen, "mmu", &mmui, 4);
1133
1134	    if ((mmu = OF_instance_to_package(mmui)) == -1)
1135		panic("moea64_bootstrap: can't get mmu package");
1136	    if ((sz = OF_getproplen(mmu, "translations")) == -1)
1137		panic("moea64_bootstrap: can't get ofw translation count");
1138	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1139		panic("moea64_bootstrap: too many ofw translations");
1140
1141	    moea64_add_ofw_mappings(mmup, mmu, sz);
1142	}
1143
1144#ifdef SMP
1145	TLBSYNC();
1146#endif
1147
1148	/*
1149	 * Calculate the last available physical address.
1150	 */
1151	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1152		;
1153	Maxmem = powerpc_btop(phys_avail[i + 1]);
1154
1155	/*
1156	 * Initialize MMU and remap early physical mappings
1157	 */
1158	moea64_cpu_bootstrap(mmup,0);
1159	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
1160	pmap_bootstrapped++;
1161	bs_remap_earlyboot();
1162
1163	/*
1164	 * Set the start and end of kva.
1165	 */
1166	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1167	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1168
1169	/*
1170	 * Map the entire KVA range into the SLB. We must not fault there.
1171	 */
1172	#ifdef __powerpc64__
1173	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1174		moea64_bootstrap_slb_prefault(va, 0);
1175	#endif
1176
1177	/*
1178	 * Figure out how far we can extend virtual_end into segment 16
1179	 * without running into existing mappings. Segment 16 is guaranteed
1180	 * to contain neither RAM nor devices (at least on Apple hardware),
1181	 * but will generally contain some OFW mappings we should not
1182	 * step on.
1183	 */
1184
1185	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1186	PMAP_LOCK(kernel_pmap);
1187	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1188	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1189		virtual_end += PAGE_SIZE;
1190	PMAP_UNLOCK(kernel_pmap);
1191	#endif
1192
1193	/*
1194	 * Allocate some things for page zeroing. We put this directly
1195	 * in the page table, marked with LPTE_LOCKED, to avoid any
1196	 * of the PVO book-keeping or other parts of the VM system
1197	 * from even knowing that this hack exists.
1198	 */
1199
1200	if (!hw_direct_map) {
1201		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1202		    MTX_DEF);
1203		for (i = 0; i < 2; i++) {
1204			struct lpte pt;
1205			uint64_t vsid;
1206			int pteidx, ptegidx;
1207
1208			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1209			virtual_end -= PAGE_SIZE;
1210
1211			LOCK_TABLE();
1212
1213			vsid = va_to_vsid(kernel_pmap,
1214			    moea64_scratchpage_va[i]);
1215			moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
1216			    LPTE_NOEXEC, 0);
1217			pt.pte_hi |= LPTE_LOCKED;
1218
1219			moea64_scratchpage_vpn[i] = (vsid << 16) |
1220			    ((moea64_scratchpage_va[i] & ADDR_PIDX) >>
1221			    ADDR_PIDX_SHFT);
1222			ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i], 0);
1223			pteidx = moea64_pte_insert(ptegidx, &pt);
1224			if (pt.pte_hi & LPTE_HID)
1225				ptegidx ^= moea64_pteg_mask;
1226
1227			moea64_scratchpage_pte[i] =
1228			    &moea64_pteg_table[ptegidx].pt[pteidx];
1229
1230			UNLOCK_TABLE();
1231		}
1232	}
1233
1234	/*
1235	 * Allocate a kernel stack with a guard page for thread0 and map it
1236	 * into the kernel page map.
1237	 */
1238	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1239	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1240	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1241	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1242	thread0.td_kstack = va;
1243	thread0.td_kstack_pages = KSTACK_PAGES;
1244	for (i = 0; i < KSTACK_PAGES; i++) {
1245		moea64_kenter(mmup, va, pa);
1246		pa += PAGE_SIZE;
1247		va += PAGE_SIZE;
1248	}
1249
1250	/*
1251	 * Allocate virtual address space for the message buffer.
1252	 */
1253	pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1254	msgbufp = (struct msgbuf *)virtual_avail;
1255	va = virtual_avail;
1256	virtual_avail += round_page(MSGBUF_SIZE);
1257	while (va < virtual_avail) {
1258		moea64_kenter(mmup, va, pa);
1259		pa += PAGE_SIZE;
1260		va += PAGE_SIZE;
1261	}
1262
1263	/*
1264	 * Allocate virtual address space for the dynamic percpu area.
1265	 */
1266	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1267	dpcpu = (void *)virtual_avail;
1268	va = virtual_avail;
1269	virtual_avail += DPCPU_SIZE;
1270	while (va < virtual_avail) {
1271		moea64_kenter(mmup, va, pa);
1272		pa += PAGE_SIZE;
1273		va += PAGE_SIZE;
1274	}
1275	dpcpu_init(dpcpu, 0);
1276}
1277
1278/*
1279 * Activate a user pmap.  The pmap must be activated before its address
1280 * space can be accessed in any way.
1281 */
1282void
1283moea64_activate(mmu_t mmu, struct thread *td)
1284{
1285	pmap_t	pm;
1286
1287	pm = &td->td_proc->p_vmspace->vm_pmap;
1288	pm->pm_active |= PCPU_GET(cpumask);
1289
1290	#ifdef __powerpc64__
1291	PCPU_SET(userslb, pm->pm_slb);
1292	#else
1293	PCPU_SET(curpmap, pm->pmap_phys);
1294	#endif
1295}
1296
1297void
1298moea64_deactivate(mmu_t mmu, struct thread *td)
1299{
1300	pmap_t	pm;
1301
1302	pm = &td->td_proc->p_vmspace->vm_pmap;
1303	pm->pm_active &= ~(PCPU_GET(cpumask));
1304	#ifdef __powerpc64__
1305	PCPU_SET(userslb, NULL);
1306	#else
1307	PCPU_SET(curpmap, NULL);
1308	#endif
1309}
1310
1311void
1312moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1313{
1314	struct	pvo_entry *pvo;
1315	struct	lpte *pt;
1316	uint64_t vsid;
1317	int	i, ptegidx;
1318
1319	PMAP_LOCK(pm);
1320	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1321
1322	if (pvo != NULL) {
1323		LOCK_TABLE();
1324		pt = moea64_pvo_to_pte(pvo);
1325
1326		if (wired) {
1327			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1328				pm->pm_stats.wired_count++;
1329			pvo->pvo_vaddr |= PVO_WIRED;
1330			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1331		} else {
1332			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1333				pm->pm_stats.wired_count--;
1334			pvo->pvo_vaddr &= ~PVO_WIRED;
1335			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1336		}
1337
1338		if (pt != NULL) {
1339			/* Update wiring flag in page table. */
1340			moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1341			    pvo->pvo_vpn);
1342		} else if (wired) {
1343			/*
1344			 * If we are wiring the page, and it wasn't in the
1345			 * page table before, add it.
1346			 */
1347			vsid = PVO_VSID(pvo);
1348			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1349			    pvo->pvo_vaddr & PVO_LARGE);
1350
1351			i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
1352			if (i >= 0) {
1353				PVO_PTEGIDX_CLR(pvo);
1354				PVO_PTEGIDX_SET(pvo, i);
1355			}
1356		}
1357
1358		UNLOCK_TABLE();
1359	}
1360	PMAP_UNLOCK(pm);
1361}
1362
1363/*
1364 * This goes through and sets the physical address of our
1365 * special scratch PTE to the PA we want to zero or copy. Because
1366 * of locking issues (this can get called in pvo_enter() by
1367 * the UMA allocator), we can't use most other utility functions here
1368 */
1369
1370static __inline
1371void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1372
1373	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1374	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1375
1376	moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1377	TLBIE(moea64_scratchpage_vpn[which]);
1378
1379	moea64_scratchpage_pte[which]->pte_lo &=
1380	    ~(LPTE_WIMG | LPTE_RPGN);
1381	moea64_scratchpage_pte[which]->pte_lo |=
1382	    moea64_calc_wimg(pa) | (uint64_t)pa;
1383	EIEIO();
1384
1385	moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1386	PTESYNC(); isync();
1387}
1388
1389void
1390moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1391{
1392	vm_offset_t	dst;
1393	vm_offset_t	src;
1394
1395	dst = VM_PAGE_TO_PHYS(mdst);
1396	src = VM_PAGE_TO_PHYS(msrc);
1397
1398	if (hw_direct_map) {
1399		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1400	} else {
1401		mtx_lock(&moea64_scratchpage_mtx);
1402
1403		moea64_set_scratchpage_pa(0,src);
1404		moea64_set_scratchpage_pa(1,dst);
1405
1406		kcopy((void *)moea64_scratchpage_va[0],
1407		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1408
1409		mtx_unlock(&moea64_scratchpage_mtx);
1410	}
1411}
1412
1413void
1414moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1415{
1416	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1417
1418	if (!moea64_initialized)
1419		panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1420	if (size + off > PAGE_SIZE)
1421		panic("moea64_zero_page: size + off > PAGE_SIZE");
1422
1423	if (hw_direct_map) {
1424		bzero((caddr_t)pa + off, size);
1425	} else {
1426		mtx_lock(&moea64_scratchpage_mtx);
1427		moea64_set_scratchpage_pa(0,pa);
1428		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1429		mtx_unlock(&moea64_scratchpage_mtx);
1430	}
1431}
1432
1433/*
1434 * Zero a page of physical memory by temporarily mapping it
1435 */
1436void
1437moea64_zero_page(mmu_t mmu, vm_page_t m)
1438{
1439	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1440	vm_offset_t va, off;
1441
1442	if (!moea64_initialized)
1443		panic("moea64_zero_page: can't zero pa %#zx", pa);
1444
1445	if (!hw_direct_map) {
1446		mtx_lock(&moea64_scratchpage_mtx);
1447
1448		moea64_set_scratchpage_pa(0,pa);
1449		va = moea64_scratchpage_va[0];
1450	} else {
1451		va = pa;
1452	}
1453
1454	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1455		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1456
1457	if (!hw_direct_map)
1458		mtx_unlock(&moea64_scratchpage_mtx);
1459}
1460
1461void
1462moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1463{
1464
1465	moea64_zero_page(mmu, m);
1466}
1467
1468/*
1469 * Map the given physical page at the specified virtual address in the
1470 * target pmap with the protection requested.  If specified the page
1471 * will be wired down.
1472 */
1473void
1474moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1475    vm_prot_t prot, boolean_t wired)
1476{
1477
1478	vm_page_lock_queues();
1479	PMAP_LOCK(pmap);
1480	moea64_enter_locked(pmap, va, m, prot, wired);
1481	vm_page_unlock_queues();
1482	PMAP_UNLOCK(pmap);
1483}
1484
1485/*
1486 * Map the given physical page at the specified virtual address in the
1487 * target pmap with the protection requested.  If specified the page
1488 * will be wired down.
1489 *
1490 * The page queues and pmap must be locked.
1491 */
1492
1493static void
1494moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1495    boolean_t wired)
1496{
1497	struct		pvo_head *pvo_head;
1498	uma_zone_t	zone;
1499	vm_page_t	pg;
1500	uint64_t	pte_lo;
1501	u_int		pvo_flags;
1502	int		error;
1503
1504	if (!moea64_initialized) {
1505		pvo_head = &moea64_pvo_kunmanaged;
1506		pg = NULL;
1507		zone = moea64_upvo_zone;
1508		pvo_flags = 0;
1509	} else {
1510		pvo_head = vm_page_to_pvoh(m);
1511		pg = m;
1512		zone = moea64_mpvo_zone;
1513		pvo_flags = PVO_MANAGED;
1514	}
1515
1516	if (pmap_bootstrapped)
1517		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1518	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1519	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1520	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1521	    ("moea64_enter_locked: page %p is not busy", m));
1522
1523	/* XXX change the pvo head for fake pages */
1524	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1525		pvo_flags &= ~PVO_MANAGED;
1526		pvo_head = &moea64_pvo_kunmanaged;
1527		zone = moea64_upvo_zone;
1528	}
1529
1530	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
1531
1532	if (prot & VM_PROT_WRITE) {
1533		pte_lo |= LPTE_BW;
1534		if (pmap_bootstrapped &&
1535		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1536			vm_page_flag_set(m, PG_WRITEABLE);
1537	} else
1538		pte_lo |= LPTE_BR;
1539
1540	if (prot & VM_PROT_EXECUTE)
1541		pvo_flags |= VM_PROT_EXECUTE;
1542
1543	if (wired)
1544		pvo_flags |= PVO_WIRED;
1545
1546	if ((m->flags & PG_FICTITIOUS) != 0)
1547		pvo_flags |= PVO_FAKE;
1548
1549	error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1550	    pte_lo, pvo_flags);
1551
1552	/*
1553	 * Flush the page from the instruction cache if this page is
1554	 * mapped executable and cacheable.
1555	 */
1556	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1557		moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1558	}
1559}
1560
1561static void
1562moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1563{
1564
1565	/*
1566	 * This is much trickier than on older systems because
1567	 * we can't sync the icache on physical addresses directly
1568	 * without a direct map. Instead we check a couple of cases
1569	 * where the memory is already mapped in and, failing that,
1570	 * use the same trick we use for page zeroing to create
1571	 * a temporary mapping for this physical address.
1572	 */
1573
1574	if (!pmap_bootstrapped) {
1575		/*
1576		 * If PMAP is not bootstrapped, we are likely to be
1577		 * in real mode.
1578		 */
1579		__syncicache((void *)pa, sz);
1580	} else if (pmap == kernel_pmap) {
1581		__syncicache((void *)va, sz);
1582	} else if (hw_direct_map) {
1583		__syncicache((void *)pa, sz);
1584	} else {
1585		/* Use the scratch page to set up a temp mapping */
1586
1587		mtx_lock(&moea64_scratchpage_mtx);
1588
1589		moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1590		__syncicache((void *)(moea64_scratchpage_va[1] +
1591		    (va & ADDR_POFF)), sz);
1592
1593		mtx_unlock(&moea64_scratchpage_mtx);
1594	}
1595}
1596
1597/*
1598 * Maps a sequence of resident pages belonging to the same object.
1599 * The sequence begins with the given page m_start.  This page is
1600 * mapped at the given virtual address start.  Each subsequent page is
1601 * mapped at a virtual address that is offset from start by the same
1602 * amount as the page is offset from m_start within the object.  The
1603 * last page in the sequence is the page with the largest offset from
1604 * m_start that can be mapped at a virtual address less than the given
1605 * virtual address end.  Not every virtual page between start and end
1606 * is mapped; only those for which a resident page exists with the
1607 * corresponding offset from m_start are mapped.
1608 */
1609void
1610moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1611    vm_page_t m_start, vm_prot_t prot)
1612{
1613	vm_page_t m;
1614	vm_pindex_t diff, psize;
1615
1616	psize = atop(end - start);
1617	m = m_start;
1618	vm_page_lock_queues();
1619	PMAP_LOCK(pm);
1620	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1621		moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1622		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1623		m = TAILQ_NEXT(m, listq);
1624	}
1625	vm_page_unlock_queues();
1626	PMAP_UNLOCK(pm);
1627}
1628
1629void
1630moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1631    vm_prot_t prot)
1632{
1633
1634	vm_page_lock_queues();
1635	PMAP_LOCK(pm);
1636	moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1637	    FALSE);
1638	vm_page_unlock_queues();
1639	PMAP_UNLOCK(pm);
1640}
1641
1642vm_paddr_t
1643moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1644{
1645	struct	pvo_entry *pvo;
1646	vm_paddr_t pa;
1647
1648	PMAP_LOCK(pm);
1649	pvo = moea64_pvo_find_va(pm, va);
1650	if (pvo == NULL)
1651		pa = 0;
1652	else
1653		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1654		    (va - PVO_VADDR(pvo));
1655	PMAP_UNLOCK(pm);
1656	return (pa);
1657}
1658
1659/*
1660 * Atomically extract and hold the physical page with the given
1661 * pmap and virtual address pair if that mapping permits the given
1662 * protection.
1663 */
1664vm_page_t
1665moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1666{
1667	struct	pvo_entry *pvo;
1668	vm_page_t m;
1669        vm_paddr_t pa;
1670
1671	m = NULL;
1672	pa = 0;
1673	PMAP_LOCK(pmap);
1674retry:
1675	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1676	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1677	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1678	     (prot & VM_PROT_WRITE) == 0)) {
1679		if (vm_page_pa_tryrelock(pmap,
1680			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1681			goto retry;
1682		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1683		vm_page_hold(m);
1684	}
1685	PA_UNLOCK_COND(pa);
1686	PMAP_UNLOCK(pmap);
1687	return (m);
1688}
1689
1690static void *
1691moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1692{
1693	/*
1694	 * This entire routine is a horrible hack to avoid bothering kmem
1695	 * for new KVA addresses. Because this can get called from inside
1696	 * kmem allocation routines, calling kmem for a new address here
1697	 * can lead to multiply locking non-recursive mutexes.
1698	 */
1699	static vm_pindex_t color;
1700        vm_offset_t va;
1701
1702        vm_page_t m;
1703        int pflags, needed_lock;
1704
1705	*flags = UMA_SLAB_PRIV;
1706	needed_lock = !PMAP_LOCKED(kernel_pmap);
1707
1708	if (needed_lock)
1709		PMAP_LOCK(kernel_pmap);
1710
1711        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1712                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1713        else
1714                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1715        if (wait & M_ZERO)
1716                pflags |= VM_ALLOC_ZERO;
1717
1718        for (;;) {
1719                m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1720                if (m == NULL) {
1721                        if (wait & M_NOWAIT)
1722                                return (NULL);
1723                        VM_WAIT;
1724                } else
1725                        break;
1726        }
1727
1728	va = VM_PAGE_TO_PHYS(m);
1729
1730	moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1731	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1732	    PVO_WIRED | PVO_BOOTSTRAP);
1733
1734	if (needed_lock)
1735		PMAP_UNLOCK(kernel_pmap);
1736
1737	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1738                bzero((void *)va, PAGE_SIZE);
1739
1740	return (void *)va;
1741}
1742
1743void
1744moea64_init(mmu_t mmu)
1745{
1746
1747	CTR0(KTR_PMAP, "moea64_init");
1748
1749	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1750	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1751	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1752	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1753	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1754	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1755
1756	if (!hw_direct_map) {
1757		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1758		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1759	}
1760
1761	moea64_initialized = TRUE;
1762}
1763
1764boolean_t
1765moea64_is_referenced(mmu_t mmu, vm_page_t m)
1766{
1767
1768	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1769	    ("moea64_is_referenced: page %p is not managed", m));
1770	return (moea64_query_bit(m, PTE_REF));
1771}
1772
1773boolean_t
1774moea64_is_modified(mmu_t mmu, vm_page_t m)
1775{
1776
1777	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1778	    ("moea64_is_modified: page %p is not managed", m));
1779
1780	/*
1781	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1782	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1783	 * is clear, no PTEs can have LPTE_CHG set.
1784	 */
1785	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1786	if ((m->oflags & VPO_BUSY) == 0 &&
1787	    (m->flags & PG_WRITEABLE) == 0)
1788		return (FALSE);
1789	return (moea64_query_bit(m, LPTE_CHG));
1790}
1791
1792void
1793moea64_clear_reference(mmu_t mmu, vm_page_t m)
1794{
1795
1796	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1797	    ("moea64_clear_reference: page %p is not managed", m));
1798	moea64_clear_bit(m, LPTE_REF);
1799}
1800
1801void
1802moea64_clear_modify(mmu_t mmu, vm_page_t m)
1803{
1804
1805	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1806	    ("moea64_clear_modify: page %p is not managed", m));
1807	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1808	KASSERT((m->oflags & VPO_BUSY) == 0,
1809	    ("moea64_clear_modify: page %p is busy", m));
1810
1811	/*
1812	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1813	 * set.  If the object containing the page is locked and the page is
1814	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1815	 */
1816	if ((m->flags & PG_WRITEABLE) == 0)
1817		return;
1818	moea64_clear_bit(m, LPTE_CHG);
1819}
1820
1821/*
1822 * Clear the write and modified bits in each of the given page's mappings.
1823 */
1824void
1825moea64_remove_write(mmu_t mmu, vm_page_t m)
1826{
1827	struct	pvo_entry *pvo;
1828	struct	lpte *pt;
1829	pmap_t	pmap;
1830	uint64_t lo;
1831
1832	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1833	    ("moea64_remove_write: page %p is not managed", m));
1834
1835	/*
1836	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1837	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1838	 * is clear, no page table entries need updating.
1839	 */
1840	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1841	if ((m->oflags & VPO_BUSY) == 0 &&
1842	    (m->flags & PG_WRITEABLE) == 0)
1843		return;
1844	vm_page_lock_queues();
1845	lo = moea64_attr_fetch(m);
1846	SYNC();
1847	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1848		pmap = pvo->pvo_pmap;
1849		PMAP_LOCK(pmap);
1850		LOCK_TABLE();
1851		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1852			pt = moea64_pvo_to_pte(pvo);
1853			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1854			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1855			if (pt != NULL) {
1856				moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1857				lo |= pvo->pvo_pte.lpte.pte_lo;
1858				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1859				moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1860				    pvo->pvo_vpn);
1861				if (pvo->pvo_pmap == kernel_pmap)
1862					isync();
1863			}
1864		}
1865		UNLOCK_TABLE();
1866		PMAP_UNLOCK(pmap);
1867	}
1868	if ((lo & LPTE_CHG) != 0) {
1869		moea64_attr_clear(m, LPTE_CHG);
1870		vm_page_dirty(m);
1871	}
1872	vm_page_flag_clear(m, PG_WRITEABLE);
1873	vm_page_unlock_queues();
1874}
1875
1876/*
1877 *	moea64_ts_referenced:
1878 *
1879 *	Return a count of reference bits for a page, clearing those bits.
1880 *	It is not necessary for every reference bit to be cleared, but it
1881 *	is necessary that 0 only be returned when there are truly no
1882 *	reference bits set.
1883 *
1884 *	XXX: The exact number of bits to check and clear is a matter that
1885 *	should be tested and standardized at some point in the future for
1886 *	optimal aging of shared pages.
1887 */
1888boolean_t
1889moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1890{
1891
1892	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1893	    ("moea64_ts_referenced: page %p is not managed", m));
1894	return (moea64_clear_bit(m, LPTE_REF));
1895}
1896
1897/*
1898 * Map a wired page into kernel virtual address space.
1899 */
1900void
1901moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1902{
1903	uint64_t	pte_lo;
1904	int		error;
1905
1906#if 0
1907	if (!pmap_bootstrapped) {
1908		if (va >= VM_MIN_KERNEL_ADDRESS && va < virtual_end)
1909			panic("Trying to enter an address in KVA -- %#"
1910			    PRIxPTR "!\n",pa);
1911	}
1912#endif
1913
1914	pte_lo = moea64_calc_wimg(pa);
1915
1916	PMAP_LOCK(kernel_pmap);
1917	error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1918	    &moea64_pvo_kunmanaged, va, pa, pte_lo,
1919	    PVO_WIRED | VM_PROT_EXECUTE);
1920
1921	if (error != 0 && error != ENOENT)
1922		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1923		    pa, error);
1924
1925	/*
1926	 * Flush the memory from the instruction cache.
1927	 */
1928	if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1929		__syncicache((void *)va, PAGE_SIZE);
1930	}
1931	PMAP_UNLOCK(kernel_pmap);
1932}
1933
1934/*
1935 * Extract the physical page address associated with the given kernel virtual
1936 * address.
1937 */
1938vm_offset_t
1939moea64_kextract(mmu_t mmu, vm_offset_t va)
1940{
1941	struct		pvo_entry *pvo;
1942	vm_paddr_t pa;
1943
1944	/*
1945	 * Shortcut the direct-mapped case when applicable.  We never put
1946	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1947	 */
1948	if (va < VM_MIN_KERNEL_ADDRESS)
1949		return (va);
1950
1951	PMAP_LOCK(kernel_pmap);
1952	pvo = moea64_pvo_find_va(kernel_pmap, va);
1953	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1954	    va));
1955	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
1956	PMAP_UNLOCK(kernel_pmap);
1957	return (pa);
1958}
1959
1960/*
1961 * Remove a wired page from kernel virtual address space.
1962 */
1963void
1964moea64_kremove(mmu_t mmu, vm_offset_t va)
1965{
1966	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1967}
1968
1969/*
1970 * Map a range of physical addresses into kernel virtual address space.
1971 *
1972 * The value passed in *virt is a suggested virtual address for the mapping.
1973 * Architectures which can support a direct-mapped physical to virtual region
1974 * can return the appropriate address within that region, leaving '*virt'
1975 * unchanged.  We cannot and therefore do not; *virt is updated with the
1976 * first usable address after the mapped region.
1977 */
1978vm_offset_t
1979moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1980    vm_offset_t pa_end, int prot)
1981{
1982	vm_offset_t	sva, va;
1983
1984	sva = *virt;
1985	va = sva;
1986	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1987		moea64_kenter(mmu, va, pa_start);
1988	*virt = va;
1989
1990	return (sva);
1991}
1992
1993/*
1994 * Returns true if the pmap's pv is one of the first
1995 * 16 pvs linked to from this page.  This count may
1996 * be changed upwards or downwards in the future; it
1997 * is only necessary that true be returned for a small
1998 * subset of pmaps for proper page aging.
1999 */
2000boolean_t
2001moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2002{
2003        int loops;
2004	struct pvo_entry *pvo;
2005	boolean_t rv;
2006
2007	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2008	    ("moea64_page_exists_quick: page %p is not managed", m));
2009	loops = 0;
2010	rv = FALSE;
2011	vm_page_lock_queues();
2012	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2013		if (pvo->pvo_pmap == pmap) {
2014			rv = TRUE;
2015			break;
2016		}
2017		if (++loops >= 16)
2018			break;
2019	}
2020	vm_page_unlock_queues();
2021	return (rv);
2022}
2023
2024/*
2025 * Return the number of managed mappings to the given physical page
2026 * that are wired.
2027 */
2028int
2029moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2030{
2031	struct pvo_entry *pvo;
2032	int count;
2033
2034	count = 0;
2035	if ((m->flags & PG_FICTITIOUS) != 0)
2036		return (count);
2037	vm_page_lock_queues();
2038	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2039		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
2040			count++;
2041	vm_page_unlock_queues();
2042	return (count);
2043}
2044
2045static uintptr_t	moea64_vsidcontext;
2046
2047uintptr_t
2048moea64_get_unique_vsid(void) {
2049	u_int entropy;
2050	register_t hash;
2051	uint32_t mask;
2052	int i;
2053
2054	entropy = 0;
2055	__asm __volatile("mftb %0" : "=r"(entropy));
2056
2057	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2058		u_int	n;
2059
2060		/*
2061		 * Create a new value by mutiplying by a prime and adding in
2062		 * entropy from the timebase register.  This is to make the
2063		 * VSID more random so that the PT hash function collides
2064		 * less often.  (Note that the prime casues gcc to do shifts
2065		 * instead of a multiply.)
2066		 */
2067		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2068		hash = moea64_vsidcontext & (NVSIDS - 1);
2069		if (hash == 0)		/* 0 is special, avoid it */
2070			continue;
2071		n = hash >> 5;
2072		mask = 1 << (hash & (VSID_NBPW - 1));
2073		hash = (moea64_vsidcontext & VSID_HASHMASK);
2074		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2075			/* anything free in this bucket? */
2076			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2077				entropy = (moea64_vsidcontext >> 20);
2078				continue;
2079			}
2080			i = ffs(~moea64_vsid_bitmap[i]) - 1;
2081			mask = 1 << i;
2082			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
2083			hash |= i;
2084		}
2085		moea64_vsid_bitmap[n] |= mask;
2086		return (hash);
2087	}
2088
2089	panic("%s: out of segments",__func__);
2090}
2091
2092#ifdef __powerpc64__
2093void
2094moea64_pinit(mmu_t mmu, pmap_t pmap)
2095{
2096	PMAP_LOCK_INIT(pmap);
2097
2098	SPLAY_INIT(&pmap->pm_slbtree);
2099	pmap->pm_slb = slb_alloc_user_cache();
2100}
2101#else
2102void
2103moea64_pinit(mmu_t mmu, pmap_t pmap)
2104{
2105	int	i;
2106	register_t hash;
2107
2108	PMAP_LOCK_INIT(pmap);
2109
2110	if (pmap_bootstrapped)
2111		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2112		    (vm_offset_t)pmap);
2113	else
2114		pmap->pmap_phys = pmap;
2115
2116	/*
2117	 * Allocate some segment registers for this pmap.
2118	 */
2119	hash = moea64_get_unique_vsid();
2120
2121	for (i = 0; i < 16; i++)
2122		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2123}
2124#endif
2125
2126/*
2127 * Initialize the pmap associated with process 0.
2128 */
2129void
2130moea64_pinit0(mmu_t mmu, pmap_t pm)
2131{
2132	moea64_pinit(mmu, pm);
2133	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2134}
2135
2136/*
2137 * Set the physical protection on the specified range of this map as requested.
2138 */
2139void
2140moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2141    vm_prot_t prot)
2142{
2143	struct	pvo_entry *pvo;
2144	struct	lpte *pt;
2145
2146	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
2147	    eva, prot);
2148
2149
2150	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2151	    ("moea64_protect: non current pmap"));
2152
2153	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2154		moea64_remove(mmu, pm, sva, eva);
2155		return;
2156	}
2157
2158	vm_page_lock_queues();
2159	PMAP_LOCK(pm);
2160	for (; sva < eva; sva += PAGE_SIZE) {
2161		pvo = moea64_pvo_find_va(pm, sva);
2162		if (pvo == NULL)
2163			continue;
2164
2165		/*
2166		 * Grab the PTE pointer before we diddle with the cached PTE
2167		 * copy.
2168		 */
2169		LOCK_TABLE();
2170		pt = moea64_pvo_to_pte(pvo);
2171
2172		/*
2173		 * Change the protection of the page.
2174		 */
2175		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
2176		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
2177		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
2178		if ((prot & VM_PROT_EXECUTE) == 0)
2179			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
2180
2181		/*
2182		 * If the PVO is in the page table, update that pte as well.
2183		 */
2184		if (pt != NULL) {
2185			moea64_pte_change(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2186			if ((pvo->pvo_pte.lpte.pte_lo &
2187			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2188				moea64_syncicache(pm, sva,
2189				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
2190				    PAGE_SIZE);
2191			}
2192		}
2193		UNLOCK_TABLE();
2194	}
2195	vm_page_unlock_queues();
2196	PMAP_UNLOCK(pm);
2197}
2198
2199/*
2200 * Map a list of wired pages into kernel virtual address space.  This is
2201 * intended for temporary mappings which do not need page modification or
2202 * references recorded.  Existing mappings in the region are overwritten.
2203 */
2204void
2205moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2206{
2207	while (count-- > 0) {
2208		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2209		va += PAGE_SIZE;
2210		m++;
2211	}
2212}
2213
2214/*
2215 * Remove page mappings from kernel virtual address space.  Intended for
2216 * temporary mappings entered by moea64_qenter.
2217 */
2218void
2219moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2220{
2221	while (count-- > 0) {
2222		moea64_kremove(mmu, va);
2223		va += PAGE_SIZE;
2224	}
2225}
2226
2227void
2228moea64_release_vsid(uint64_t vsid)
2229{
2230        int idx, mask;
2231
2232        idx = vsid & (NVSIDS-1);
2233        mask = 1 << (idx % VSID_NBPW);
2234        idx /= VSID_NBPW;
2235        moea64_vsid_bitmap[idx] &= ~mask;
2236}
2237
2238
2239void
2240moea64_release(mmu_t mmu, pmap_t pmap)
2241{
2242
2243	/*
2244	 * Free segment registers' VSIDs
2245	 */
2246    #ifdef __powerpc64__
2247	free_vsids(pmap);
2248	slb_free_user_cache(pmap->pm_slb);
2249    #else
2250        if (pmap->pm_sr[0] == 0)
2251                panic("moea64_release");
2252
2253	moea64_release_vsid(pmap->pm_sr[0]);
2254    #endif
2255
2256	PMAP_LOCK_DESTROY(pmap);
2257}
2258
2259/*
2260 * Remove the given range of addresses from the specified map.
2261 */
2262void
2263moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2264{
2265	struct	pvo_entry *pvo;
2266
2267	vm_page_lock_queues();
2268	PMAP_LOCK(pm);
2269	for (; sva < eva; sva += PAGE_SIZE) {
2270		pvo = moea64_pvo_find_va(pm, sva);
2271		if (pvo != NULL)
2272			moea64_pvo_remove(pvo);
2273	}
2274	vm_page_unlock_queues();
2275	PMAP_UNLOCK(pm);
2276}
2277
2278/*
2279 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2280 * will reflect changes in pte's back to the vm_page.
2281 */
2282void
2283moea64_remove_all(mmu_t mmu, vm_page_t m)
2284{
2285	struct  pvo_head *pvo_head;
2286	struct	pvo_entry *pvo, *next_pvo;
2287	pmap_t	pmap;
2288
2289	vm_page_lock_queues();
2290	pvo_head = vm_page_to_pvoh(m);
2291	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2292		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2293
2294		MOEA_PVO_CHECK(pvo);	/* sanity check */
2295		pmap = pvo->pvo_pmap;
2296		PMAP_LOCK(pmap);
2297		moea64_pvo_remove(pvo);
2298		PMAP_UNLOCK(pmap);
2299	}
2300	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2301		moea64_attr_clear(m, LPTE_CHG);
2302		vm_page_dirty(m);
2303	}
2304	vm_page_flag_clear(m, PG_WRITEABLE);
2305	vm_page_unlock_queues();
2306}
2307
2308/*
2309 * Allocate a physical page of memory directly from the phys_avail map.
2310 * Can only be called from moea64_bootstrap before avail start and end are
2311 * calculated.
2312 */
2313static vm_offset_t
2314moea64_bootstrap_alloc(vm_size_t size, u_int align)
2315{
2316	vm_offset_t	s, e;
2317	int		i, j;
2318
2319	size = round_page(size);
2320	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2321		if (align != 0)
2322			s = (phys_avail[i] + align - 1) & ~(align - 1);
2323		else
2324			s = phys_avail[i];
2325		e = s + size;
2326
2327		if (s < phys_avail[i] || e > phys_avail[i + 1])
2328			continue;
2329
2330		if (s == phys_avail[i]) {
2331			phys_avail[i] += size;
2332		} else if (e == phys_avail[i + 1]) {
2333			phys_avail[i + 1] -= size;
2334		} else {
2335			for (j = phys_avail_count * 2; j > i; j -= 2) {
2336				phys_avail[j] = phys_avail[j - 2];
2337				phys_avail[j + 1] = phys_avail[j - 1];
2338			}
2339
2340			phys_avail[i + 3] = phys_avail[i + 1];
2341			phys_avail[i + 1] = s;
2342			phys_avail[i + 2] = e;
2343			phys_avail_count++;
2344		}
2345
2346		return (s);
2347	}
2348	panic("moea64_bootstrap_alloc: could not allocate memory");
2349}
2350
2351static void
2352tlbia(void)
2353{
2354	vm_offset_t i;
2355	#ifndef __powerpc64__
2356	register_t msr, scratch;
2357	#endif
2358
2359	TLBSYNC();
2360
2361	for (i = 0; i < 0xFF000; i += 0x00001000) {
2362		#ifdef __powerpc64__
2363		__asm __volatile("tlbiel %0" :: "r"(i));
2364		#else
2365		__asm __volatile("\
2366		    mfmsr %0; \
2367		    mr %1, %0; \
2368		    insrdi %1,%3,1,0; \
2369		    mtmsrd %1; \
2370		    isync; \
2371		    \
2372		    tlbiel %2; \
2373		    \
2374		    mtmsrd %0; \
2375		    isync;"
2376		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2377		#endif
2378	}
2379
2380	EIEIO();
2381	TLBSYNC();
2382}
2383
2384#ifdef __powerpc64__
2385static void
2386slbia(void)
2387{
2388	register_t seg0;
2389
2390	__asm __volatile ("slbia");
2391	__asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0));
2392}
2393#endif
2394
2395static int
2396moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2397    vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2398{
2399	struct	 pvo_entry *pvo;
2400	uint64_t vsid;
2401	int	 first;
2402	u_int	 ptegidx;
2403	int	 i;
2404	int      bootstrap;
2405
2406	/*
2407	 * One nasty thing that can happen here is that the UMA calls to
2408	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2409	 * which calls UMA...
2410	 *
2411	 * We break the loop by detecting recursion and allocating out of
2412	 * the bootstrap pool.
2413	 */
2414
2415	moea64_pvo_enter_calls++;
2416	first = 0;
2417	bootstrap = (flags & PVO_BOOTSTRAP);
2418
2419	if (!moea64_initialized)
2420		bootstrap = 1;
2421
2422	/*
2423	 * Compute the PTE Group index.
2424	 */
2425	va &= ~ADDR_POFF;
2426	vsid = va_to_vsid(pm, va);
2427	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2428
2429	/*
2430	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2431	 * there is a mapping.
2432	 */
2433	LOCK_TABLE();
2434
2435	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2436		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2437			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2438			    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2439			    (pte_lo & LPTE_PP)) {
2440			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2441					/* Re-insert if spilled */
2442					i = moea64_pte_insert(ptegidx,
2443					    &pvo->pvo_pte.lpte);
2444					if (i >= 0)
2445						PVO_PTEGIDX_SET(pvo, i);
2446					moea64_pte_overflow--;
2447				}
2448				UNLOCK_TABLE();
2449				return (0);
2450			}
2451			moea64_pvo_remove(pvo);
2452			break;
2453		}
2454	}
2455
2456	/*
2457	 * If we aren't overwriting a mapping, try to allocate.
2458	 */
2459	if (bootstrap) {
2460		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2461			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2462			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2463			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2464		}
2465		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2466		moea64_bpvo_pool_index++;
2467		bootstrap = 1;
2468	} else {
2469		/*
2470		 * Note: drop the table lock around the UMA allocation in
2471		 * case the UMA allocator needs to manipulate the page
2472		 * table. The mapping we are working with is already
2473		 * protected by the PMAP lock.
2474		 */
2475		UNLOCK_TABLE();
2476		pvo = uma_zalloc(zone, M_NOWAIT);
2477		LOCK_TABLE();
2478	}
2479
2480	if (pvo == NULL) {
2481		UNLOCK_TABLE();
2482		return (ENOMEM);
2483	}
2484
2485	moea64_pvo_entries++;
2486	pvo->pvo_vaddr = va;
2487	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2488	    | (vsid << 16);
2489	pvo->pvo_pmap = pm;
2490	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2491	pvo->pvo_vaddr &= ~ADDR_POFF;
2492
2493	if (!(flags & VM_PROT_EXECUTE))
2494		pte_lo |= LPTE_NOEXEC;
2495	if (flags & PVO_WIRED)
2496		pvo->pvo_vaddr |= PVO_WIRED;
2497	if (pvo_head != &moea64_pvo_kunmanaged)
2498		pvo->pvo_vaddr |= PVO_MANAGED;
2499	if (bootstrap)
2500		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2501	if (flags & PVO_FAKE)
2502		pvo->pvo_vaddr |= PVO_FAKE;
2503	if (flags & PVO_LARGE)
2504		pvo->pvo_vaddr |= PVO_LARGE;
2505
2506	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2507	    (uint64_t)(pa) | pte_lo, flags);
2508
2509	/*
2510	 * Remember if the list was empty and therefore will be the first
2511	 * item.
2512	 */
2513	if (LIST_FIRST(pvo_head) == NULL)
2514		first = 1;
2515	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2516
2517	if (pvo->pvo_vaddr & PVO_WIRED) {
2518		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2519		pm->pm_stats.wired_count++;
2520	}
2521	pm->pm_stats.resident_count++;
2522
2523	/*
2524	 * We hope this succeeds but it isn't required.
2525	 */
2526	i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2527	if (i >= 0) {
2528		PVO_PTEGIDX_SET(pvo, i);
2529	} else {
2530		panic("moea64_pvo_enter: overflow");
2531		moea64_pte_overflow++;
2532	}
2533
2534	if (pm == kernel_pmap)
2535		isync();
2536
2537	UNLOCK_TABLE();
2538
2539#ifdef __powerpc64__
2540	/*
2541	 * Make sure all our bootstrap mappings are in the SLB as soon
2542	 * as virtual memory is switched on.
2543	 */
2544	if (!pmap_bootstrapped)
2545		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2546#endif
2547
2548	return (first ? ENOENT : 0);
2549}
2550
2551static void
2552moea64_pvo_remove(struct pvo_entry *pvo)
2553{
2554	struct	lpte *pt;
2555
2556	/*
2557	 * If there is an active pte entry, we need to deactivate it (and
2558	 * save the ref & cfg bits).
2559	 */
2560	LOCK_TABLE();
2561	pt = moea64_pvo_to_pte(pvo);
2562	if (pt != NULL) {
2563		moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2564		PVO_PTEGIDX_CLR(pvo);
2565	} else {
2566		moea64_pte_overflow--;
2567	}
2568
2569	/*
2570	 * Update our statistics.
2571	 */
2572	pvo->pvo_pmap->pm_stats.resident_count--;
2573	if (pvo->pvo_vaddr & PVO_WIRED)
2574		pvo->pvo_pmap->pm_stats.wired_count--;
2575
2576	/*
2577	 * Save the REF/CHG bits into their cache if the page is managed.
2578	 */
2579	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2580		struct	vm_page *pg;
2581
2582		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2583		if (pg != NULL) {
2584			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2585			    (LPTE_REF | LPTE_CHG));
2586		}
2587	}
2588
2589	/*
2590	 * Remove this PVO from the PV list.
2591	 */
2592	LIST_REMOVE(pvo, pvo_vlink);
2593
2594	/*
2595	 * Remove this from the overflow list and return it to the pool
2596	 * if we aren't going to reuse it.
2597	 */
2598	LIST_REMOVE(pvo, pvo_olink);
2599	UNLOCK_TABLE();
2600
2601	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2602		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2603		    moea64_upvo_zone, pvo);
2604
2605	moea64_pvo_entries--;
2606	moea64_pvo_remove_calls++;
2607}
2608
2609static struct pvo_entry *
2610moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2611{
2612	struct		pvo_entry *pvo;
2613	int		ptegidx;
2614	uint64_t	vsid;
2615	#ifdef __powerpc64__
2616	struct slb	slb;
2617
2618	/* The page is not mapped if the segment isn't */
2619	if (va_to_slb_entry(pm, va, &slb) != 0)
2620		return NULL;
2621
2622	vsid = (slb.slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2623	if (slb.slbv & SLBV_L)
2624		va &= ~moea64_large_page_mask;
2625	else
2626		va &= ~ADDR_POFF;
2627	ptegidx = va_to_pteg(vsid, va, slb.slbv & SLBV_L);
2628	#else
2629	va &= ~ADDR_POFF;
2630	vsid = va_to_vsid(pm, va);
2631	ptegidx = va_to_pteg(vsid, va, 0);
2632	#endif
2633
2634	LOCK_TABLE();
2635	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2636		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2637			break;
2638	}
2639	UNLOCK_TABLE();
2640
2641	return (pvo);
2642}
2643
2644static struct lpte *
2645moea64_pvo_to_pte(const struct pvo_entry *pvo)
2646{
2647	struct lpte 	*pt;
2648	int		pteidx, ptegidx;
2649	uint64_t	vsid;
2650
2651	ASSERT_TABLE_LOCK();
2652
2653	/* If the PTEG index is not set, then there is no page table entry */
2654	if (!PVO_PTEGIDX_ISSET(pvo))
2655		return (NULL);
2656
2657	/*
2658	 * Calculate the ptegidx
2659	 */
2660	vsid = PVO_VSID(pvo);
2661	ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
2662	    pvo->pvo_vaddr & PVO_LARGE);
2663
2664	/*
2665	 * We can find the actual pte entry without searching by grabbing
2666	 * the PTEG index from 3 unused bits in pvo_vaddr and by
2667	 * noticing the HID bit.
2668	 */
2669	if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2670		ptegidx ^= moea64_pteg_mask;
2671
2672	pteidx = (ptegidx << 3) | PVO_PTEGIDX_GET(pvo);
2673
2674	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2675	    !PVO_PTEGIDX_ISSET(pvo)) {
2676		panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2677		    "valid pte index", pvo);
2678	}
2679
2680	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2681	    PVO_PTEGIDX_ISSET(pvo)) {
2682		panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2683		    "pvo but no valid pte", pvo);
2684	}
2685
2686	pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2687	if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2688	    LPTE_VALID) {
2689		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2690			panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2691			    "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2692		}
2693
2694		if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2695		    ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2696			panic("moea64_pvo_to_pte: pvo %p pte does not match "
2697			    "pte %p in moea64_pteg_table difference is %#x",
2698			    pvo, pt,
2699			    (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2700		}
2701
2702		return (pt);
2703	}
2704
2705	if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2706		panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2707		    "moea64_pteg_table but valid in pvo", pvo, pt);
2708	}
2709
2710	return (NULL);
2711}
2712
2713static __inline int
2714moea64_pte_spillable_ident(u_int ptegidx)
2715{
2716	struct	lpte *pt;
2717	int	i, j, k;
2718
2719	/* Start at a random slot */
2720	i = mftb() % 8;
2721	k = -1;
2722	for (j = 0; j < 8; j++) {
2723		pt = &moea64_pteg_table[ptegidx].pt[(i + j) % 8];
2724		if (pt->pte_hi & (LPTE_LOCKED | LPTE_WIRED))
2725			continue;
2726
2727		/* This is a candidate, so remember it */
2728		k = (i + j) % 8;
2729
2730		/* Try to get a page that has not been used lately */
2731		if (!(pt->pte_lo & LPTE_REF))
2732			return (k);
2733	}
2734
2735	return (k);
2736}
2737
2738static int
2739moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2740{
2741	struct	lpte *pt;
2742	struct	pvo_entry *pvo;
2743	u_int	pteg_bktidx;
2744	int	i;
2745
2746	ASSERT_TABLE_LOCK();
2747
2748	/*
2749	 * First try primary hash.
2750	 */
2751	pteg_bktidx = ptegidx;
2752	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2753		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2754			pvo_pt->pte_hi &= ~LPTE_HID;
2755			moea64_pte_set(pt, pvo_pt);
2756			return (i);
2757		}
2758	}
2759
2760	/*
2761	 * Now try secondary hash.
2762	 */
2763	pteg_bktidx ^= moea64_pteg_mask;
2764	for (pt = moea64_pteg_table[pteg_bktidx].pt, i = 0; i < 8; i++, pt++) {
2765		if ((pt->pte_hi & (LPTE_VALID | LPTE_LOCKED)) == 0) {
2766			pvo_pt->pte_hi |= LPTE_HID;
2767			moea64_pte_set(pt, pvo_pt);
2768			return (i);
2769		}
2770	}
2771
2772	/*
2773	 * Out of luck. Find a PTE to sacrifice.
2774	 */
2775	pteg_bktidx = ptegidx;
2776	i = moea64_pte_spillable_ident(pteg_bktidx);
2777	if (i < 0) {
2778		pteg_bktidx ^= moea64_pteg_mask;
2779		i = moea64_pte_spillable_ident(pteg_bktidx);
2780	}
2781
2782	if (i < 0) {
2783		/* No freeable slots in either PTEG? We're hosed. */
2784		panic("moea64_pte_insert: overflow");
2785		return (-1);
2786	}
2787
2788	if (pteg_bktidx == ptegidx)
2789		pvo_pt->pte_hi &= ~LPTE_HID;
2790	else
2791		pvo_pt->pte_hi |= LPTE_HID;
2792
2793	/*
2794	 * Synchronize the sacrifice PTE with its PVO, then mark both
2795	 * invalid. The PVO will be reused when/if the VM system comes
2796	 * here after a fault.
2797	 */
2798	pt = &moea64_pteg_table[pteg_bktidx].pt[i];
2799
2800	if (pt->pte_hi & LPTE_HID)
2801		pteg_bktidx ^= moea64_pteg_mask; /* PTEs indexed by primary */
2802
2803	LIST_FOREACH(pvo, &moea64_pvo_table[pteg_bktidx], pvo_olink) {
2804		if (pvo->pvo_pte.lpte.pte_hi == pt->pte_hi) {
2805			KASSERT(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID,
2806			    ("Invalid PVO for valid PTE!"));
2807			moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2808			PVO_PTEGIDX_CLR(pvo);
2809			moea64_pte_overflow++;
2810			break;
2811		}
2812	}
2813
2814	KASSERT(pvo->pvo_pte.lpte.pte_hi == pt->pte_hi,
2815	   ("Unable to find PVO for spilled PTE"));
2816
2817	/*
2818	 * Set the new PTE.
2819	 */
2820	moea64_pte_set(pt, pvo_pt);
2821
2822	return (i);
2823}
2824
2825static boolean_t
2826moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2827{
2828	struct	pvo_entry *pvo;
2829	struct	lpte *pt;
2830
2831	if (moea64_attr_fetch(m) & ptebit)
2832		return (TRUE);
2833
2834	vm_page_lock_queues();
2835
2836	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2837		MOEA_PVO_CHECK(pvo);	/* sanity check */
2838
2839		/*
2840		 * See if we saved the bit off.  If so, cache it and return
2841		 * success.
2842		 */
2843		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2844			moea64_attr_save(m, ptebit);
2845			MOEA_PVO_CHECK(pvo);	/* sanity check */
2846			vm_page_unlock_queues();
2847			return (TRUE);
2848		}
2849	}
2850
2851	/*
2852	 * No luck, now go through the hard part of looking at the PTEs
2853	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2854	 * the PTEs.
2855	 */
2856	SYNC();
2857	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2858		MOEA_PVO_CHECK(pvo);	/* sanity check */
2859
2860		/*
2861		 * See if this pvo has a valid PTE.  if so, fetch the
2862		 * REF/CHG bits from the valid PTE.  If the appropriate
2863		 * ptebit is set, cache it and return success.
2864		 */
2865		LOCK_TABLE();
2866		pt = moea64_pvo_to_pte(pvo);
2867		if (pt != NULL) {
2868			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2869			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2870				UNLOCK_TABLE();
2871
2872				moea64_attr_save(m, ptebit);
2873				MOEA_PVO_CHECK(pvo);	/* sanity check */
2874				vm_page_unlock_queues();
2875				return (TRUE);
2876			}
2877		}
2878		UNLOCK_TABLE();
2879	}
2880
2881	vm_page_unlock_queues();
2882	return (FALSE);
2883}
2884
2885static u_int
2886moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
2887{
2888	u_int	count;
2889	struct	pvo_entry *pvo;
2890	struct	lpte *pt;
2891
2892	vm_page_lock_queues();
2893
2894	/*
2895	 * Clear the cached value.
2896	 */
2897	moea64_attr_clear(m, ptebit);
2898
2899	/*
2900	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2901	 * we can reset the right ones).  note that since the pvo entries and
2902	 * list heads are accessed via BAT0 and are never placed in the page
2903	 * table, we don't have to worry about further accesses setting the
2904	 * REF/CHG bits.
2905	 */
2906	SYNC();
2907
2908	/*
2909	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2910	 * valid pte clear the ptebit from the valid pte.
2911	 */
2912	count = 0;
2913	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2914		MOEA_PVO_CHECK(pvo);	/* sanity check */
2915
2916		LOCK_TABLE();
2917		pt = moea64_pvo_to_pte(pvo);
2918		if (pt != NULL) {
2919			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2920			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2921				count++;
2922				moea64_pte_clear(pt, pvo->pvo_vpn, ptebit);
2923			}
2924		}
2925		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2926		MOEA_PVO_CHECK(pvo);	/* sanity check */
2927		UNLOCK_TABLE();
2928	}
2929
2930	vm_page_unlock_queues();
2931	return (count);
2932}
2933
2934boolean_t
2935moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2936{
2937	struct pvo_entry *pvo;
2938	vm_offset_t ppa;
2939	int error = 0;
2940
2941	PMAP_LOCK(kernel_pmap);
2942	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2943		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2944		if (pvo == NULL ||
2945		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2946			error = EFAULT;
2947			break;
2948		}
2949	}
2950	PMAP_UNLOCK(kernel_pmap);
2951
2952	return (error);
2953}
2954
2955/*
2956 * Map a set of physical memory pages into the kernel virtual
2957 * address space. Return a pointer to where it is mapped. This
2958 * routine is intended to be used for mapping device memory,
2959 * NOT real memory.
2960 */
2961void *
2962moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2963{
2964	vm_offset_t va, tmpva, ppa, offset;
2965
2966	ppa = trunc_page(pa);
2967	offset = pa & PAGE_MASK;
2968	size = roundup(offset + size, PAGE_SIZE);
2969
2970	va = kmem_alloc_nofault(kernel_map, size);
2971
2972	if (!va)
2973		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2974
2975	for (tmpva = va; size > 0;) {
2976		moea64_kenter(mmu, tmpva, ppa);
2977		size -= PAGE_SIZE;
2978		tmpva += PAGE_SIZE;
2979		ppa += PAGE_SIZE;
2980	}
2981
2982	return ((void *)(va + offset));
2983}
2984
2985void
2986moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2987{
2988	vm_offset_t base, offset;
2989
2990	base = trunc_page(va);
2991	offset = va & PAGE_MASK;
2992	size = roundup(offset + size, PAGE_SIZE);
2993
2994	kmem_free(kernel_map, base, size);
2995}
2996
2997static void
2998moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2999{
3000	struct pvo_entry *pvo;
3001	vm_offset_t lim;
3002	vm_paddr_t pa;
3003	vm_size_t len;
3004
3005	PMAP_LOCK(pm);
3006	while (sz > 0) {
3007		lim = round_page(va);
3008		len = MIN(lim - va, sz);
3009		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3010		if (pvo != NULL) {
3011			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
3012			    (va & ADDR_POFF);
3013			moea64_syncicache(pm, va, pa, len);
3014		}
3015		va += len;
3016		sz -= len;
3017	}
3018	PMAP_UNLOCK(pm);
3019}
3020