mmu_oea64.c revision 208504
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 208504 2010-05-24 14:26:57Z alc $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_kstack_pages.h"
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <sys/kdb.h>
131
132#include <dev/ofw/openfirm.h>
133
134#include <vm/vm.h>
135#include <vm/vm_param.h>
136#include <vm/vm_kern.h>
137#include <vm/vm_page.h>
138#include <vm/vm_map.h>
139#include <vm/vm_object.h>
140#include <vm/vm_extern.h>
141#include <vm/vm_pageout.h>
142#include <vm/vm_pager.h>
143#include <vm/uma.h>
144
145#include <machine/cpu.h>
146#include <machine/platform.h>
147#include <machine/frame.h>
148#include <machine/md_var.h>
149#include <machine/psl.h>
150#include <machine/bat.h>
151#include <machine/pte.h>
152#include <machine/sr.h>
153#include <machine/trap.h>
154#include <machine/mmuvar.h>
155
156#include "mmu_if.h"
157
158#define	MOEA_DEBUG
159
160#define TODO	panic("%s: not implemented", __func__);
161
162static __inline u_int32_t
163cntlzw(volatile u_int32_t a) {
164	u_int32_t b;
165	__asm ("cntlzw %0, %1" : "=r"(b) : "r"(a));
166	return b;
167}
168
169static __inline uint64_t
170va_to_vsid(pmap_t pm, vm_offset_t va)
171{
172	return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK);
173}
174
175#define	PTESYNC()	__asm __volatile("ptesync");
176#define	TLBSYNC()	__asm __volatile("tlbsync; ptesync");
177#define	SYNC()		__asm __volatile("sync");
178#define	EIEIO()		__asm __volatile("eieio");
179
180/*
181 * The tlbie instruction must be executed in 64-bit mode
182 * so we have to twiddle MSR[SF] around every invocation.
183 * Just to add to the fun, exceptions must be off as well
184 * so that we can't trap in 64-bit mode. What a pain.
185 */
186struct mtx	tlbie_mutex;
187
188static __inline void
189TLBIE(pmap_t pmap, vm_offset_t va) {
190	uint64_t vpn;
191	register_t vpn_hi, vpn_lo;
192	register_t msr;
193	register_t scratch;
194
195	vpn = (uint64_t)(va & ADDR_PIDX);
196	if (pmap != NULL)
197		vpn |= (va_to_vsid(pmap,va) << 28);
198	vpn &= ~(0xffffULL << 48);
199
200	vpn_hi = (uint32_t)(vpn >> 32);
201	vpn_lo = (uint32_t)vpn;
202
203	mtx_lock_spin(&tlbie_mutex);
204	__asm __volatile("\
205	    mfmsr %0; \
206	    mr %1, %0; \
207	    insrdi %1,%5,1,0; \
208	    mtmsrd %1; \
209	    ptesync; \
210	    \
211	    sld %1,%2,%4; \
212	    or %1,%1,%3; \
213	    tlbie %1; \
214	    \
215	    mtmsrd %0; \
216	    eieio; \
217	    tlbsync; \
218	    ptesync;"
219	: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1)
220	    : "memory");
221	mtx_unlock_spin(&tlbie_mutex);
222}
223
224#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
225#define ENABLE_TRANS(msr)	mtmsr(msr); isync()
226
227#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
228#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
229#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
230#define	VSID_HASH_MASK		0x0000007fffffffffULL
231
232#define	PVO_PTEGIDX_MASK	0x007UL		/* which PTEG slot */
233#define	PVO_PTEGIDX_VALID	0x008UL		/* slot is valid */
234#define	PVO_WIRED		0x010UL		/* PVO entry is wired */
235#define	PVO_MANAGED		0x020UL		/* PVO entry is managed */
236#define	PVO_BOOTSTRAP		0x080UL		/* PVO entry allocated during
237						   bootstrap */
238#define PVO_FAKE		0x100UL		/* fictitious phys page */
239#define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
240#define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
241#define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
242#define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
243#define	PVO_PTEGIDX_CLR(pvo)	\
244	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
245#define	PVO_PTEGIDX_SET(pvo, i)	\
246	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
247
248#define	MOEA_PVO_CHECK(pvo)
249
250#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
251#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
252#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
253
254struct ofw_map {
255	vm_offset_t	om_va;
256	vm_size_t	om_len;
257	vm_offset_t	om_pa_hi;
258	vm_offset_t	om_pa_lo;
259	u_int		om_mode;
260};
261
262/*
263 * Map of physical memory regions.
264 */
265static struct	mem_region *regions;
266static struct	mem_region *pregions;
267extern u_int	phys_avail_count;
268extern int	regions_sz, pregions_sz;
269extern int	ofw_real_mode;
270
271extern struct pmap ofw_pmap;
272
273extern void bs_remap_earlyboot(void);
274
275
276/*
277 * Lock for the pteg and pvo tables.
278 */
279struct mtx	moea64_table_mutex;
280
281/*
282 * PTEG data.
283 */
284static struct	lpteg *moea64_pteg_table;
285u_int		moea64_pteg_count;
286u_int		moea64_pteg_mask;
287
288/*
289 * PVO data.
290 */
291struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
292/* lists of unmanaged pages */
293struct	pvo_head moea64_pvo_kunmanaged =
294    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
295struct	pvo_head moea64_pvo_unmanaged =
296    LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
297
298uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
299uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
300
301#define	BPVO_POOL_SIZE	327680
302static struct	pvo_entry *moea64_bpvo_pool;
303static int	moea64_bpvo_pool_index = 0;
304
305#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
306static u_int	moea64_vsid_bitmap[NPMAPS / VSID_NBPW];
307
308static boolean_t moea64_initialized = FALSE;
309
310/*
311 * Statistics.
312 */
313u_int	moea64_pte_valid = 0;
314u_int	moea64_pte_overflow = 0;
315u_int	moea64_pvo_entries = 0;
316u_int	moea64_pvo_enter_calls = 0;
317u_int	moea64_pvo_remove_calls = 0;
318SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
319    &moea64_pte_valid, 0, "");
320SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
321    &moea64_pte_overflow, 0, "");
322SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
323    &moea64_pvo_entries, 0, "");
324SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
325    &moea64_pvo_enter_calls, 0, "");
326SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
327    &moea64_pvo_remove_calls, 0, "");
328
329vm_offset_t	moea64_scratchpage_va[2];
330struct	lpte 	*moea64_scratchpage_pte[2];
331struct	mtx	moea64_scratchpage_mtx;
332
333/*
334 * Allocate physical memory for use in moea64_bootstrap.
335 */
336static vm_offset_t	moea64_bootstrap_alloc(vm_size_t, u_int);
337
338/*
339 * PTE calls.
340 */
341static int		moea64_pte_insert(u_int, struct lpte *);
342
343/*
344 * PVO calls.
345 */
346static int	moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
347		    vm_offset_t, vm_offset_t, uint64_t, int);
348static void	moea64_pvo_remove(struct pvo_entry *, int);
349static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t, int *);
350static struct	lpte *moea64_pvo_to_pte(const struct pvo_entry *, int);
351
352/*
353 * Utility routines.
354 */
355static void		moea64_bridge_bootstrap(mmu_t mmup,
356			    vm_offset_t kernelstart, vm_offset_t kernelend);
357static void		moea64_bridge_cpu_bootstrap(mmu_t, int ap);
358static void		moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
359			    vm_prot_t, boolean_t);
360static boolean_t	moea64_query_bit(vm_page_t, u_int64_t);
361static u_int		moea64_clear_bit(vm_page_t, u_int64_t, u_int64_t *);
362static void		moea64_kremove(mmu_t, vm_offset_t);
363static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
364			    vm_offset_t pa, vm_size_t sz);
365static void		tlbia(void);
366
367/*
368 * Kernel MMU interface
369 */
370void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
371void moea64_clear_modify(mmu_t, vm_page_t);
372void moea64_clear_reference(mmu_t, vm_page_t);
373void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
374void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
375void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
376    vm_prot_t);
377void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
378vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
379vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
380void moea64_init(mmu_t);
381boolean_t moea64_is_modified(mmu_t, vm_page_t);
382boolean_t moea64_is_referenced(mmu_t, vm_page_t);
383boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
384vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
385boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
386int moea64_page_wired_mappings(mmu_t, vm_page_t);
387void moea64_pinit(mmu_t, pmap_t);
388void moea64_pinit0(mmu_t, pmap_t);
389void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
390void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
391void moea64_qremove(mmu_t, vm_offset_t, int);
392void moea64_release(mmu_t, pmap_t);
393void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
394void moea64_remove_all(mmu_t, vm_page_t);
395void moea64_remove_write(mmu_t, vm_page_t);
396void moea64_zero_page(mmu_t, vm_page_t);
397void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
398void moea64_zero_page_idle(mmu_t, vm_page_t);
399void moea64_activate(mmu_t, struct thread *);
400void moea64_deactivate(mmu_t, struct thread *);
401void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
402void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
403vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
404void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
405boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
406static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
407
408static mmu_method_t moea64_bridge_methods[] = {
409	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
410	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
411	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
412	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
413	MMUMETHOD(mmu_enter,		moea64_enter),
414	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
415	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
416	MMUMETHOD(mmu_extract,		moea64_extract),
417	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
418	MMUMETHOD(mmu_init,		moea64_init),
419	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
420	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
421	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
422	MMUMETHOD(mmu_map,     		moea64_map),
423	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
424	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
425	MMUMETHOD(mmu_pinit,		moea64_pinit),
426	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
427	MMUMETHOD(mmu_protect,		moea64_protect),
428	MMUMETHOD(mmu_qenter,		moea64_qenter),
429	MMUMETHOD(mmu_qremove,		moea64_qremove),
430	MMUMETHOD(mmu_release,		moea64_release),
431	MMUMETHOD(mmu_remove,		moea64_remove),
432	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
433	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
434	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
435	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
436	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
437	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
438	MMUMETHOD(mmu_activate,		moea64_activate),
439	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
440
441	/* Internal interfaces */
442	MMUMETHOD(mmu_bootstrap,       	moea64_bridge_bootstrap),
443	MMUMETHOD(mmu_cpu_bootstrap,   	moea64_bridge_cpu_bootstrap),
444	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
445	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
446	MMUMETHOD(mmu_kextract,		moea64_kextract),
447	MMUMETHOD(mmu_kenter,		moea64_kenter),
448	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
449
450	{ 0, 0 }
451};
452
453static mmu_def_t oea64_bridge_mmu = {
454	MMU_TYPE_G5,
455	moea64_bridge_methods,
456	0
457};
458MMU_DEF(oea64_bridge_mmu);
459
460static __inline u_int
461va_to_pteg(uint64_t vsid, vm_offset_t addr)
462{
463	uint64_t hash;
464
465	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
466	    ADDR_PIDX_SHFT);
467	return (hash & moea64_pteg_mask);
468}
469
470static __inline struct pvo_head *
471pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
472{
473	struct	vm_page *pg;
474
475	pg = PHYS_TO_VM_PAGE(pa);
476
477	if (pg_p != NULL)
478		*pg_p = pg;
479
480	if (pg == NULL)
481		return (&moea64_pvo_unmanaged);
482
483	return (&pg->md.mdpg_pvoh);
484}
485
486static __inline struct pvo_head *
487vm_page_to_pvoh(vm_page_t m)
488{
489
490	return (&m->md.mdpg_pvoh);
491}
492
493static __inline void
494moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
495{
496
497	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
498	m->md.mdpg_attrs &= ~ptebit;
499}
500
501static __inline u_int64_t
502moea64_attr_fetch(vm_page_t m)
503{
504
505	return (m->md.mdpg_attrs);
506}
507
508static __inline void
509moea64_attr_save(vm_page_t m, u_int64_t ptebit)
510{
511
512	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
513	m->md.mdpg_attrs |= ptebit;
514}
515
516static __inline void
517moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
518    uint64_t pte_lo)
519{
520	ASSERT_TABLE_LOCK();
521
522	/*
523	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
524	 * set when the real pte is set in memory.
525	 *
526	 * Note: Don't set the valid bit for correct operation of tlb update.
527	 */
528	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
529	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
530
531	pt->pte_lo = pte_lo;
532}
533
534static __inline void
535moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
536{
537
538	ASSERT_TABLE_LOCK();
539
540	pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
541}
542
543static __inline void
544moea64_pte_clear(struct lpte *pt, pmap_t pmap, vm_offset_t va, u_int64_t ptebit)
545{
546	ASSERT_TABLE_LOCK();
547
548	/*
549	 * As shown in Section 7.6.3.2.3
550	 */
551	pt->pte_lo &= ~ptebit;
552	TLBIE(pmap,va);
553}
554
555static __inline void
556moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
557{
558
559	ASSERT_TABLE_LOCK();
560	pvo_pt->pte_hi |= LPTE_VALID;
561
562	/*
563	 * Update the PTE as defined in section 7.6.3.1.
564	 * Note that the REF/CHG bits are from pvo_pt and thus should have
565	 * been saved so this routine can restore them (if desired).
566	 */
567	pt->pte_lo = pvo_pt->pte_lo;
568	EIEIO();
569	pt->pte_hi = pvo_pt->pte_hi;
570	PTESYNC();
571	moea64_pte_valid++;
572}
573
574static __inline void
575moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
576{
577	ASSERT_TABLE_LOCK();
578	pvo_pt->pte_hi &= ~LPTE_VALID;
579
580	/*
581	 * Force the reg & chg bits back into the PTEs.
582	 */
583	SYNC();
584
585	/*
586	 * Invalidate the pte.
587	 */
588	pt->pte_hi &= ~LPTE_VALID;
589	TLBIE(pmap,va);
590
591	/*
592	 * Save the reg & chg bits.
593	 */
594	moea64_pte_synch(pt, pvo_pt);
595	moea64_pte_valid--;
596}
597
598static __inline void
599moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
600{
601
602	/*
603	 * Invalidate the PTE
604	 */
605	moea64_pte_unset(pt, pvo_pt, pmap, va);
606	moea64_pte_set(pt, pvo_pt);
607	if (pmap == kernel_pmap)
608		isync();
609}
610
611static __inline uint64_t
612moea64_calc_wimg(vm_offset_t pa)
613{
614	uint64_t pte_lo;
615	int i;
616
617	/*
618	 * Assume the page is cache inhibited and access is guarded unless
619	 * it's in our available memory array.
620	 */
621	pte_lo = LPTE_I | LPTE_G;
622	for (i = 0; i < pregions_sz; i++) {
623		if ((pa >= pregions[i].mr_start) &&
624		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
625			pte_lo &= ~(LPTE_I | LPTE_G);
626			pte_lo |= LPTE_M;
627			break;
628		}
629	}
630
631	return pte_lo;
632}
633
634/*
635 * Quick sort callout for comparing memory regions.
636 */
637static int	mr_cmp(const void *a, const void *b);
638static int	om_cmp(const void *a, const void *b);
639
640static int
641mr_cmp(const void *a, const void *b)
642{
643	const struct	mem_region *regiona;
644	const struct	mem_region *regionb;
645
646	regiona = a;
647	regionb = b;
648	if (regiona->mr_start < regionb->mr_start)
649		return (-1);
650	else if (regiona->mr_start > regionb->mr_start)
651		return (1);
652	else
653		return (0);
654}
655
656static int
657om_cmp(const void *a, const void *b)
658{
659	const struct	ofw_map *mapa;
660	const struct	ofw_map *mapb;
661
662	mapa = a;
663	mapb = b;
664	if (mapa->om_pa_hi < mapb->om_pa_hi)
665		return (-1);
666	else if (mapa->om_pa_hi > mapb->om_pa_hi)
667		return (1);
668	else if (mapa->om_pa_lo < mapb->om_pa_lo)
669		return (-1);
670	else if (mapa->om_pa_lo > mapb->om_pa_lo)
671		return (1);
672	else
673		return (0);
674}
675
676static void
677moea64_bridge_cpu_bootstrap(mmu_t mmup, int ap)
678{
679	int i = 0;
680
681	/*
682	 * Initialize segment registers and MMU
683	 */
684
685	mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
686	for (i = 0; i < 16; i++) {
687		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
688	}
689	__asm __volatile ("ptesync; mtsdr1 %0; isync"
690	    :: "r"((u_int)moea64_pteg_table
691		     | (32 - cntlzw(moea64_pteg_mask >> 11))));
692	tlbia();
693}
694
695static void
696moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
697{
698	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
699	register_t	msr;
700	vm_offset_t	off;
701	vm_paddr_t	pa_base;
702	int		i, ofw_mappings;
703
704	bzero(translations, sz);
705	if (OF_getprop(mmu, "translations", translations, sz) == -1)
706		panic("moea64_bootstrap: can't get ofw translations");
707
708	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
709	sz /= sizeof(*translations);
710	qsort(translations, sz, sizeof (*translations), om_cmp);
711
712	for (i = 0, ofw_mappings = 0; i < sz; i++) {
713		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
714		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
715		    translations[i].om_len);
716
717		if (translations[i].om_pa_lo % PAGE_SIZE)
718			panic("OFW translation not page-aligned!");
719
720		if (translations[i].om_pa_hi)
721			panic("OFW translations above 32-bit boundary!");
722
723		pa_base = translations[i].om_pa_lo;
724
725		/* Now enter the pages for this mapping */
726
727		DISABLE_TRANS(msr);
728		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
729			moea64_kenter(mmup, translations[i].om_va + off,
730			    pa_base + off);
731
732			ofw_mappings++;
733		}
734		ENABLE_TRANS(msr);
735	}
736}
737
738static void
739moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
740{
741	ihandle_t	mmui;
742	phandle_t	chosen;
743	phandle_t	mmu;
744	size_t		sz;
745	int		i, j;
746	vm_size_t	size, physsz, hwphyssz;
747	vm_offset_t	pa, va, off;
748	register_t	msr;
749	void		*dpcpu;
750
751	/* We don't have a direct map since there is no BAT */
752	hw_direct_map = 0;
753
754	/* Make sure battable is zero, since we have no BAT */
755	for (i = 0; i < 16; i++) {
756		battable[i].batu = 0;
757		battable[i].batl = 0;
758	}
759
760	/* Get physical memory regions from firmware */
761	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
762	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
763
764	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
765	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
766		panic("moea64_bootstrap: phys_avail too small");
767	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
768	phys_avail_count = 0;
769	physsz = 0;
770	hwphyssz = 0;
771	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
772	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
773		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
774		    regions[i].mr_start + regions[i].mr_size,
775		    regions[i].mr_size);
776		if (hwphyssz != 0 &&
777		    (physsz + regions[i].mr_size) >= hwphyssz) {
778			if (physsz < hwphyssz) {
779				phys_avail[j] = regions[i].mr_start;
780				phys_avail[j + 1] = regions[i].mr_start +
781				    hwphyssz - physsz;
782				physsz = hwphyssz;
783				phys_avail_count++;
784			}
785			break;
786		}
787		phys_avail[j] = regions[i].mr_start;
788		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
789		phys_avail_count++;
790		physsz += regions[i].mr_size;
791	}
792	physmem = btoc(physsz);
793
794	/*
795	 * Allocate PTEG table.
796	 */
797#ifdef PTEGCOUNT
798	moea64_pteg_count = PTEGCOUNT;
799#else
800	moea64_pteg_count = 0x1000;
801
802	while (moea64_pteg_count < physmem)
803		moea64_pteg_count <<= 1;
804#endif /* PTEGCOUNT */
805
806	size = moea64_pteg_count * sizeof(struct lpteg);
807	CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
808	    moea64_pteg_count, size);
809
810	/*
811	 * We now need to allocate memory. This memory, to be allocated,
812	 * has to reside in a page table. The page table we are about to
813	 * allocate. We don't have BAT. So drop to data real mode for a minute
814	 * as a measure of last resort. We do this a couple times.
815	 */
816
817	moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
818	DISABLE_TRANS(msr);
819	bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
820	ENABLE_TRANS(msr);
821
822	moea64_pteg_mask = moea64_pteg_count - 1;
823
824	CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
825
826	/*
827	 * Allocate pv/overflow lists.
828	 */
829	size = sizeof(struct pvo_head) * moea64_pteg_count;
830
831	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
832	    PAGE_SIZE);
833	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
834
835	DISABLE_TRANS(msr);
836	for (i = 0; i < moea64_pteg_count; i++)
837		LIST_INIT(&moea64_pvo_table[i]);
838	ENABLE_TRANS(msr);
839
840	/*
841	 * Initialize the lock that synchronizes access to the pteg and pvo
842	 * tables.
843	 */
844	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
845	    MTX_RECURSE);
846
847	/*
848	 * Initialize the TLBIE lock. TLBIE can only be executed by one CPU.
849	 */
850	mtx_init(&tlbie_mutex, "tlbie mutex", NULL, MTX_SPIN);
851
852	/*
853	 * Initialise the unmanaged pvo pool.
854	 */
855	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
856		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
857	moea64_bpvo_pool_index = 0;
858
859	/*
860	 * Make sure kernel vsid is allocated as well as VSID 0.
861	 */
862	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
863		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
864	moea64_vsid_bitmap[0] |= 1;
865
866	/*
867	 * Initialize the kernel pmap (which is statically allocated).
868	 */
869	for (i = 0; i < 16; i++)
870		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
871
872	kernel_pmap->pmap_phys = kernel_pmap;
873	kernel_pmap->pm_active = ~0;
874
875	PMAP_LOCK_INIT(kernel_pmap);
876
877	/*
878	 * Now map in all the other buffers we allocated earlier
879	 */
880
881	DISABLE_TRANS(msr);
882	size = moea64_pteg_count * sizeof(struct lpteg);
883	off = (vm_offset_t)(moea64_pteg_table);
884	for (pa = off; pa < off + size; pa += PAGE_SIZE)
885		moea64_kenter(mmup, pa, pa);
886	size = sizeof(struct pvo_head) * moea64_pteg_count;
887	off = (vm_offset_t)(moea64_pvo_table);
888	for (pa = off; pa < off + size; pa += PAGE_SIZE)
889		moea64_kenter(mmup, pa, pa);
890	size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
891	off = (vm_offset_t)(moea64_bpvo_pool);
892	for (pa = off; pa < off + size; pa += PAGE_SIZE)
893		moea64_kenter(mmup, pa, pa);
894
895	/*
896	 * Map certain important things, like ourselves.
897	 *
898	 * NOTE: We do not map the exception vector space. That code is
899	 * used only in real mode, and leaving it unmapped allows us to
900	 * catch NULL pointer deferences, instead of making NULL a valid
901	 * address.
902	 */
903
904	for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE)
905		moea64_kenter(mmup, pa, pa);
906	ENABLE_TRANS(msr);
907
908	if (!ofw_real_mode) {
909	    /*
910	     * Set up the Open Firmware pmap and add its mappings.
911	     */
912
913	    moea64_pinit(mmup, &ofw_pmap);
914	    for (i = 0; i < 16; i++)
915		ofw_pmap.pm_sr[i] = kernel_pmap->pm_sr[i];
916
917	    if ((chosen = OF_finddevice("/chosen")) == -1)
918		panic("moea64_bootstrap: can't find /chosen");
919	    OF_getprop(chosen, "mmu", &mmui, 4);
920	    if ((mmu = OF_instance_to_package(mmui)) == -1)
921		panic("moea64_bootstrap: can't get mmu package");
922	    if ((sz = OF_getproplen(mmu, "translations")) == -1)
923		panic("moea64_bootstrap: can't get ofw translation count");
924	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
925		panic("moea64_bootstrap: too many ofw translations");
926
927	    moea64_add_ofw_mappings(mmup, mmu, sz);
928	}
929
930#ifdef SMP
931	TLBSYNC();
932#endif
933
934	/*
935	 * Calculate the last available physical address.
936	 */
937	for (i = 0; phys_avail[i + 2] != 0; i += 2)
938		;
939	Maxmem = powerpc_btop(phys_avail[i + 1]);
940
941	/*
942	 * Initialize MMU and remap early physical mappings
943	 */
944	moea64_bridge_cpu_bootstrap(mmup,0);
945	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
946	pmap_bootstrapped++;
947	bs_remap_earlyboot();
948
949	/*
950	 * Set the start and end of kva.
951	 */
952	virtual_avail = VM_MIN_KERNEL_ADDRESS;
953	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
954
955	/*
956	 * Figure out how far we can extend virtual_end into segment 16
957	 * without running into existing mappings. Segment 16 is guaranteed
958	 * to contain neither RAM nor devices (at least on Apple hardware),
959	 * but will generally contain some OFW mappings we should not
960	 * step on.
961	 */
962
963	PMAP_LOCK(kernel_pmap);
964	while (moea64_pvo_find_va(kernel_pmap, virtual_end+1, NULL) == NULL)
965		virtual_end += PAGE_SIZE;
966	PMAP_UNLOCK(kernel_pmap);
967
968	/*
969	 * Allocate some things for page zeroing. We put this directly
970	 * in the page table, marked with LPTE_LOCKED, to avoid any
971	 * of the PVO book-keeping or other parts of the VM system
972	 * from even knowing that this hack exists.
973	 */
974
975	mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF);
976	for (i = 0; i < 2; i++) {
977		struct lpte pt;
978		uint64_t vsid;
979		int pteidx, ptegidx;
980
981		moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
982		virtual_end -= PAGE_SIZE;
983
984		LOCK_TABLE();
985
986		vsid = va_to_vsid(kernel_pmap, moea64_scratchpage_va[i]);
987		moea64_pte_create(&pt, vsid, moea64_scratchpage_va[i],
988		    LPTE_NOEXEC);
989		pt.pte_hi |= LPTE_LOCKED;
990
991		ptegidx = va_to_pteg(vsid, moea64_scratchpage_va[i]);
992		pteidx = moea64_pte_insert(ptegidx, &pt);
993		if (pt.pte_hi & LPTE_HID)
994			ptegidx ^= moea64_pteg_mask;
995
996		moea64_scratchpage_pte[i] =
997		    &moea64_pteg_table[ptegidx].pt[pteidx];
998
999		UNLOCK_TABLE();
1000	}
1001
1002	/*
1003	 * Allocate a kernel stack with a guard page for thread0 and map it
1004	 * into the kernel page map.
1005	 */
1006	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
1007	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1008	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
1009	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
1010	thread0.td_kstack = va;
1011	thread0.td_kstack_pages = KSTACK_PAGES;
1012	for (i = 0; i < KSTACK_PAGES; i++) {
1013		moea64_kenter(mmup, va, pa);
1014		pa += PAGE_SIZE;
1015		va += PAGE_SIZE;
1016	}
1017
1018	/*
1019	 * Allocate virtual address space for the message buffer.
1020	 */
1021	pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
1022	msgbufp = (struct msgbuf *)virtual_avail;
1023	va = virtual_avail;
1024	virtual_avail += round_page(MSGBUF_SIZE);
1025	while (va < virtual_avail) {
1026		moea64_kenter(mmup, va, pa);
1027		pa += PAGE_SIZE;
1028		va += PAGE_SIZE;
1029	}
1030
1031	/*
1032	 * Allocate virtual address space for the dynamic percpu area.
1033	 */
1034	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1035	dpcpu = (void *)virtual_avail;
1036	virtual_avail += DPCPU_SIZE;
1037	while (va < virtual_avail) {
1038		moea64_kenter(mmup, va, pa);
1039		pa += PAGE_SIZE;
1040		va += PAGE_SIZE;
1041	}
1042	dpcpu_init(dpcpu, 0);
1043}
1044
1045/*
1046 * Activate a user pmap.  The pmap must be activated before it's address
1047 * space can be accessed in any way.
1048 */
1049void
1050moea64_activate(mmu_t mmu, struct thread *td)
1051{
1052	pmap_t	pm, pmr;
1053
1054	/*
1055	 * Load all the data we need up front to encourage the compiler to
1056	 * not issue any loads while we have interrupts disabled below.
1057	 */
1058	pm = &td->td_proc->p_vmspace->vm_pmap;
1059	pmr = pm->pmap_phys;
1060
1061	pm->pm_active |= PCPU_GET(cpumask);
1062	PCPU_SET(curpmap, pmr);
1063}
1064
1065void
1066moea64_deactivate(mmu_t mmu, struct thread *td)
1067{
1068	pmap_t	pm;
1069
1070	pm = &td->td_proc->p_vmspace->vm_pmap;
1071	pm->pm_active &= ~(PCPU_GET(cpumask));
1072	PCPU_SET(curpmap, NULL);
1073}
1074
1075void
1076moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1077{
1078	struct	pvo_entry *pvo;
1079
1080	PMAP_LOCK(pm);
1081	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1082
1083	if (pvo != NULL) {
1084		if (wired) {
1085			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1086				pm->pm_stats.wired_count++;
1087			pvo->pvo_vaddr |= PVO_WIRED;
1088		} else {
1089			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1090				pm->pm_stats.wired_count--;
1091			pvo->pvo_vaddr &= ~PVO_WIRED;
1092		}
1093	}
1094	PMAP_UNLOCK(pm);
1095}
1096
1097/*
1098 * This goes through and sets the physical address of our
1099 * special scratch PTE to the PA we want to zero or copy. Because
1100 * of locking issues (this can get called in pvo_enter() by
1101 * the UMA allocator), we can't use most other utility functions here
1102 */
1103
1104static __inline
1105void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
1106
1107	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1108
1109	moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
1110	TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
1111
1112	moea64_scratchpage_pte[which]->pte_lo &=
1113	    ~(LPTE_WIMG | LPTE_RPGN);
1114	moea64_scratchpage_pte[which]->pte_lo |=
1115	    moea64_calc_wimg(pa) | (uint64_t)pa;
1116	EIEIO();
1117
1118	moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
1119	PTESYNC(); isync();
1120}
1121
1122void
1123moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1124{
1125	vm_offset_t	dst;
1126	vm_offset_t	src;
1127
1128	dst = VM_PAGE_TO_PHYS(mdst);
1129	src = VM_PAGE_TO_PHYS(msrc);
1130
1131	mtx_lock(&moea64_scratchpage_mtx);
1132
1133	moea64_set_scratchpage_pa(0,src);
1134	moea64_set_scratchpage_pa(1,dst);
1135
1136	kcopy((void *)moea64_scratchpage_va[0],
1137	    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1138
1139	mtx_unlock(&moea64_scratchpage_mtx);
1140}
1141
1142void
1143moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1144{
1145	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1146
1147	if (!moea64_initialized)
1148		panic("moea64_zero_page: can't zero pa %#x", pa);
1149	if (size + off > PAGE_SIZE)
1150		panic("moea64_zero_page: size + off > PAGE_SIZE");
1151
1152	mtx_lock(&moea64_scratchpage_mtx);
1153
1154	moea64_set_scratchpage_pa(0,pa);
1155	bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1156	mtx_unlock(&moea64_scratchpage_mtx);
1157}
1158
1159/*
1160 * Zero a page of physical memory by temporarily mapping it
1161 */
1162void
1163moea64_zero_page(mmu_t mmu, vm_page_t m)
1164{
1165	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1166	vm_offset_t off;
1167
1168	if (!moea64_initialized)
1169		panic("moea64_zero_page: can't zero pa %#x", pa);
1170
1171	mtx_lock(&moea64_scratchpage_mtx);
1172
1173	moea64_set_scratchpage_pa(0,pa);
1174	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1175		__asm __volatile("dcbz 0,%0" ::
1176		    "r"(moea64_scratchpage_va[0] + off));
1177	mtx_unlock(&moea64_scratchpage_mtx);
1178}
1179
1180void
1181moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1182{
1183
1184	moea64_zero_page(mmu, m);
1185}
1186
1187/*
1188 * Map the given physical page at the specified virtual address in the
1189 * target pmap with the protection requested.  If specified the page
1190 * will be wired down.
1191 */
1192void
1193moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1194    vm_prot_t prot, boolean_t wired)
1195{
1196
1197	vm_page_lock_queues();
1198	PMAP_LOCK(pmap);
1199	moea64_enter_locked(pmap, va, m, prot, wired);
1200	vm_page_unlock_queues();
1201	PMAP_UNLOCK(pmap);
1202}
1203
1204/*
1205 * Map the given physical page at the specified virtual address in the
1206 * target pmap with the protection requested.  If specified the page
1207 * will be wired down.
1208 *
1209 * The page queues and pmap must be locked.
1210 */
1211
1212static void
1213moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1214    boolean_t wired)
1215{
1216	struct		pvo_head *pvo_head;
1217	uma_zone_t	zone;
1218	vm_page_t	pg;
1219	uint64_t	pte_lo;
1220	u_int		pvo_flags;
1221	int		error;
1222
1223	if (!moea64_initialized) {
1224		pvo_head = &moea64_pvo_kunmanaged;
1225		pg = NULL;
1226		zone = moea64_upvo_zone;
1227		pvo_flags = 0;
1228	} else {
1229		pvo_head = vm_page_to_pvoh(m);
1230		pg = m;
1231		zone = moea64_mpvo_zone;
1232		pvo_flags = PVO_MANAGED;
1233	}
1234
1235	if (pmap_bootstrapped)
1236		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1237	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1238	KASSERT((m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1239	    ("moea64_enter_locked: page %p is not busy", m));
1240
1241	/* XXX change the pvo head for fake pages */
1242	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1243		pvo_flags &= ~PVO_MANAGED;
1244		pvo_head = &moea64_pvo_kunmanaged;
1245		zone = moea64_upvo_zone;
1246	}
1247
1248	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
1249
1250	if (prot & VM_PROT_WRITE) {
1251		pte_lo |= LPTE_BW;
1252		if (pmap_bootstrapped)
1253			vm_page_flag_set(m, PG_WRITEABLE);
1254	} else
1255		pte_lo |= LPTE_BR;
1256
1257	if (prot & VM_PROT_EXECUTE)
1258		pvo_flags |= VM_PROT_EXECUTE;
1259
1260	if (wired)
1261		pvo_flags |= PVO_WIRED;
1262
1263	if ((m->flags & PG_FICTITIOUS) != 0)
1264		pvo_flags |= PVO_FAKE;
1265
1266	error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1267	    pte_lo, pvo_flags);
1268
1269	/*
1270	 * Flush the page from the instruction cache if this page is
1271	 * mapped executable and cacheable.
1272	 */
1273	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1274		moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1275	}
1276}
1277
1278static void
1279moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa, vm_size_t sz)
1280{
1281
1282	/*
1283	 * This is much trickier than on older systems because
1284	 * we can't sync the icache on physical addresses directly
1285	 * without a direct map. Instead we check a couple of cases
1286	 * where the memory is already mapped in and, failing that,
1287	 * use the same trick we use for page zeroing to create
1288	 * a temporary mapping for this physical address.
1289	 */
1290
1291	if (!pmap_bootstrapped) {
1292		/*
1293		 * If PMAP is not bootstrapped, we are likely to be
1294		 * in real mode.
1295		 */
1296		__syncicache((void *)pa, sz);
1297	} else if (pmap == kernel_pmap) {
1298		__syncicache((void *)va, sz);
1299	} else {
1300		/* Use the scratch page to set up a temp mapping */
1301
1302		mtx_lock(&moea64_scratchpage_mtx);
1303
1304		moea64_set_scratchpage_pa(1,pa & ~ADDR_POFF);
1305		__syncicache((void *)(moea64_scratchpage_va[1] +
1306		    (va & ADDR_POFF)), sz);
1307
1308		mtx_unlock(&moea64_scratchpage_mtx);
1309	}
1310}
1311
1312/*
1313 * Maps a sequence of resident pages belonging to the same object.
1314 * The sequence begins with the given page m_start.  This page is
1315 * mapped at the given virtual address start.  Each subsequent page is
1316 * mapped at a virtual address that is offset from start by the same
1317 * amount as the page is offset from m_start within the object.  The
1318 * last page in the sequence is the page with the largest offset from
1319 * m_start that can be mapped at a virtual address less than the given
1320 * virtual address end.  Not every virtual page between start and end
1321 * is mapped; only those for which a resident page exists with the
1322 * corresponding offset from m_start are mapped.
1323 */
1324void
1325moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1326    vm_page_t m_start, vm_prot_t prot)
1327{
1328	vm_page_t m;
1329	vm_pindex_t diff, psize;
1330
1331	psize = atop(end - start);
1332	m = m_start;
1333	PMAP_LOCK(pm);
1334	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1335		moea64_enter_locked(pm, start + ptoa(diff), m, prot &
1336		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1337		m = TAILQ_NEXT(m, listq);
1338	}
1339	PMAP_UNLOCK(pm);
1340}
1341
1342void
1343moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1344    vm_prot_t prot)
1345{
1346
1347	vm_page_lock_queues();
1348	PMAP_LOCK(pm);
1349	moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1350	    FALSE);
1351	vm_page_unlock_queues();
1352	PMAP_UNLOCK(pm);
1353}
1354
1355vm_paddr_t
1356moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1357{
1358	struct	pvo_entry *pvo;
1359	vm_paddr_t pa;
1360
1361	PMAP_LOCK(pm);
1362	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1363	if (pvo == NULL)
1364		pa = 0;
1365	else
1366		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
1367	PMAP_UNLOCK(pm);
1368	return (pa);
1369}
1370
1371/*
1372 * Atomically extract and hold the physical page with the given
1373 * pmap and virtual address pair if that mapping permits the given
1374 * protection.
1375 */
1376vm_page_t
1377moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1378{
1379	struct	pvo_entry *pvo;
1380	vm_page_t m;
1381        vm_paddr_t pa;
1382
1383	m = NULL;
1384	pa = 0;
1385	PMAP_LOCK(pmap);
1386retry:
1387	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1388	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1389	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1390	     (prot & VM_PROT_WRITE) == 0)) {
1391		if (vm_page_pa_tryrelock(pmap,
1392			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1393			goto retry;
1394		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1395		vm_page_hold(m);
1396	}
1397	PA_UNLOCK_COND(pa);
1398	PMAP_UNLOCK(pmap);
1399	return (m);
1400}
1401
1402static void *
1403moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1404{
1405	/*
1406	 * This entire routine is a horrible hack to avoid bothering kmem
1407	 * for new KVA addresses. Because this can get called from inside
1408	 * kmem allocation routines, calling kmem for a new address here
1409	 * can lead to multiply locking non-recursive mutexes.
1410	 */
1411	static vm_pindex_t color;
1412        vm_offset_t va;
1413
1414        vm_page_t m;
1415        int pflags, needed_lock;
1416
1417	*flags = UMA_SLAB_PRIV;
1418	needed_lock = !PMAP_LOCKED(kernel_pmap);
1419
1420	if (needed_lock)
1421		PMAP_LOCK(kernel_pmap);
1422
1423        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1424                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1425        else
1426                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1427        if (wait & M_ZERO)
1428                pflags |= VM_ALLOC_ZERO;
1429
1430        for (;;) {
1431                m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1432                if (m == NULL) {
1433                        if (wait & M_NOWAIT)
1434                                return (NULL);
1435                        VM_WAIT;
1436                } else
1437                        break;
1438        }
1439
1440	va = VM_PAGE_TO_PHYS(m);
1441
1442	moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1443	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1444	    PVO_WIRED | PVO_BOOTSTRAP);
1445
1446	if (needed_lock)
1447		PMAP_UNLOCK(kernel_pmap);
1448
1449	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1450                bzero((void *)va, PAGE_SIZE);
1451
1452	return (void *)va;
1453}
1454
1455void
1456moea64_init(mmu_t mmu)
1457{
1458
1459	CTR0(KTR_PMAP, "moea64_init");
1460
1461	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1462	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1463	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1464	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1465	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1466	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1467
1468	if (!hw_direct_map) {
1469		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1470		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1471	}
1472
1473	moea64_initialized = TRUE;
1474}
1475
1476boolean_t
1477moea64_is_referenced(mmu_t mmu, vm_page_t m)
1478{
1479
1480	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1481		return (FALSE);
1482	return (moea64_query_bit(m, PTE_REF));
1483}
1484
1485boolean_t
1486moea64_is_modified(mmu_t mmu, vm_page_t m)
1487{
1488	boolean_t rv;
1489
1490	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1491	    ("moea64_is_modified: page %p is not managed", m));
1492
1493	/*
1494	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1495	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1496	 * is clear, no PTEs can have LPTE_CHG set.
1497	 */
1498	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1499	if ((m->oflags & VPO_BUSY) == 0 &&
1500	    (m->flags & PG_WRITEABLE) == 0)
1501		return (FALSE);
1502	vm_page_lock_queues();
1503	rv = moea64_query_bit(m, LPTE_CHG);
1504	vm_page_unlock_queues();
1505	return (rv);
1506}
1507
1508void
1509moea64_clear_reference(mmu_t mmu, vm_page_t m)
1510{
1511
1512	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1513	    ("moea64_clear_reference: page %p is not managed", m));
1514	vm_page_lock_queues();
1515	moea64_clear_bit(m, LPTE_REF, NULL);
1516	vm_page_unlock_queues();
1517}
1518
1519void
1520moea64_clear_modify(mmu_t mmu, vm_page_t m)
1521{
1522
1523	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1524	    ("moea64_clear_modify: page %p is not managed", m));
1525	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1526	KASSERT((m->oflags & VPO_BUSY) == 0,
1527	    ("moea64_clear_modify: page %p is busy", m));
1528
1529	/*
1530	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1531	 * set.  If the object containing the page is locked and the page is
1532	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1533	 */
1534	if ((m->flags & PG_WRITEABLE) == 0)
1535		return;
1536	vm_page_lock_queues();
1537	moea64_clear_bit(m, LPTE_CHG, NULL);
1538	vm_page_unlock_queues();
1539}
1540
1541/*
1542 * Clear the write and modified bits in each of the given page's mappings.
1543 */
1544void
1545moea64_remove_write(mmu_t mmu, vm_page_t m)
1546{
1547	struct	pvo_entry *pvo;
1548	struct	lpte *pt;
1549	pmap_t	pmap;
1550	uint64_t lo;
1551
1552	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1553	    ("moea64_remove_write: page %p is not managed", m));
1554
1555	/*
1556	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1557	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1558	 * is clear, no page table entries need updating.
1559	 */
1560	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1561	if ((m->oflags & VPO_BUSY) == 0 &&
1562	    (m->flags & PG_WRITEABLE) == 0)
1563		return;
1564	vm_page_lock_queues();
1565	lo = moea64_attr_fetch(m);
1566	SYNC();
1567	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1568		pmap = pvo->pvo_pmap;
1569		PMAP_LOCK(pmap);
1570		LOCK_TABLE();
1571		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1572			pt = moea64_pvo_to_pte(pvo, -1);
1573			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1574			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1575			if (pt != NULL) {
1576				moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
1577				lo |= pvo->pvo_pte.lpte.pte_lo;
1578				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1579				moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1580				    pvo->pvo_pmap, PVO_VADDR(pvo));
1581			}
1582		}
1583		UNLOCK_TABLE();
1584		PMAP_UNLOCK(pmap);
1585	}
1586	if ((lo & LPTE_CHG) != 0) {
1587		moea64_attr_clear(m, LPTE_CHG);
1588		vm_page_dirty(m);
1589	}
1590	vm_page_flag_clear(m, PG_WRITEABLE);
1591	vm_page_unlock_queues();
1592}
1593
1594/*
1595 *	moea64_ts_referenced:
1596 *
1597 *	Return a count of reference bits for a page, clearing those bits.
1598 *	It is not necessary for every reference bit to be cleared, but it
1599 *	is necessary that 0 only be returned when there are truly no
1600 *	reference bits set.
1601 *
1602 *	XXX: The exact number of bits to check and clear is a matter that
1603 *	should be tested and standardized at some point in the future for
1604 *	optimal aging of shared pages.
1605 */
1606boolean_t
1607moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1608{
1609	int count;
1610
1611	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1612		return (0);
1613
1614	count = moea64_clear_bit(m, LPTE_REF, NULL);
1615
1616	return (count);
1617}
1618
1619/*
1620 * Map a wired page into kernel virtual address space.
1621 */
1622void
1623moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1624{
1625	uint64_t	pte_lo;
1626	int		error;
1627
1628#if 0
1629	if (!pmap_bootstrapped) {
1630		if (va >= VM_MIN_KERNEL_ADDRESS && va < virtual_end)
1631			panic("Trying to enter an address in KVA -- %#x!\n",pa);
1632	}
1633#endif
1634
1635	pte_lo = moea64_calc_wimg(pa);
1636
1637	PMAP_LOCK(kernel_pmap);
1638	error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
1639	    &moea64_pvo_kunmanaged, va, pa, pte_lo,
1640	    PVO_WIRED | VM_PROT_EXECUTE);
1641
1642	if (error != 0 && error != ENOENT)
1643		panic("moea64_kenter: failed to enter va %#x pa %#x: %d", va,
1644		    pa, error);
1645
1646	/*
1647	 * Flush the memory from the instruction cache.
1648	 */
1649	if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
1650		__syncicache((void *)va, PAGE_SIZE);
1651	}
1652	PMAP_UNLOCK(kernel_pmap);
1653}
1654
1655/*
1656 * Extract the physical page address associated with the given kernel virtual
1657 * address.
1658 */
1659vm_offset_t
1660moea64_kextract(mmu_t mmu, vm_offset_t va)
1661{
1662	struct		pvo_entry *pvo;
1663	vm_paddr_t pa;
1664
1665	/*
1666	 * Shortcut the direct-mapped case when applicable.  We never put
1667	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1668	 */
1669	if (va < VM_MIN_KERNEL_ADDRESS)
1670		return (va);
1671
1672	PMAP_LOCK(kernel_pmap);
1673	pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1674	KASSERT(pvo != NULL, ("moea64_kextract: no addr found"));
1675	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
1676	PMAP_UNLOCK(kernel_pmap);
1677	return (pa);
1678}
1679
1680/*
1681 * Remove a wired page from kernel virtual address space.
1682 */
1683void
1684moea64_kremove(mmu_t mmu, vm_offset_t va)
1685{
1686	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1687}
1688
1689/*
1690 * Map a range of physical addresses into kernel virtual address space.
1691 *
1692 * The value passed in *virt is a suggested virtual address for the mapping.
1693 * Architectures which can support a direct-mapped physical to virtual region
1694 * can return the appropriate address within that region, leaving '*virt'
1695 * unchanged.  We cannot and therefore do not; *virt is updated with the
1696 * first usable address after the mapped region.
1697 */
1698vm_offset_t
1699moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1700    vm_offset_t pa_end, int prot)
1701{
1702	vm_offset_t	sva, va;
1703
1704	sva = *virt;
1705	va = sva;
1706	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1707		moea64_kenter(mmu, va, pa_start);
1708	*virt = va;
1709
1710	return (sva);
1711}
1712
1713/*
1714 * Returns true if the pmap's pv is one of the first
1715 * 16 pvs linked to from this page.  This count may
1716 * be changed upwards or downwards in the future; it
1717 * is only necessary that true be returned for a small
1718 * subset of pmaps for proper page aging.
1719 */
1720boolean_t
1721moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1722{
1723        int loops;
1724	struct pvo_entry *pvo;
1725
1726        if (!moea64_initialized || (m->flags & PG_FICTITIOUS))
1727                return FALSE;
1728
1729	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1730
1731	loops = 0;
1732	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1733		if (pvo->pvo_pmap == pmap)
1734			return (TRUE);
1735		if (++loops >= 16)
1736			break;
1737	}
1738
1739	return (FALSE);
1740}
1741
1742/*
1743 * Return the number of managed mappings to the given physical page
1744 * that are wired.
1745 */
1746int
1747moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1748{
1749	struct pvo_entry *pvo;
1750	int count;
1751
1752	count = 0;
1753	if (!moea64_initialized || (m->flags & PG_FICTITIOUS) != 0)
1754		return (count);
1755	vm_page_lock_queues();
1756	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1757		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1758			count++;
1759	vm_page_unlock_queues();
1760	return (count);
1761}
1762
1763static u_int	moea64_vsidcontext;
1764
1765void
1766moea64_pinit(mmu_t mmu, pmap_t pmap)
1767{
1768	int	i, mask;
1769	u_int	entropy;
1770
1771	PMAP_LOCK_INIT(pmap);
1772
1773	entropy = 0;
1774	__asm __volatile("mftb %0" : "=r"(entropy));
1775
1776	if (pmap_bootstrapped)
1777		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap);
1778	else
1779		pmap->pmap_phys = pmap;
1780
1781	/*
1782	 * Allocate some segment registers for this pmap.
1783	 */
1784	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1785		u_int	hash, n;
1786
1787		/*
1788		 * Create a new value by mutiplying by a prime and adding in
1789		 * entropy from the timebase register.  This is to make the
1790		 * VSID more random so that the PT hash function collides
1791		 * less often.  (Note that the prime casues gcc to do shifts
1792		 * instead of a multiply.)
1793		 */
1794		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1795		hash = moea64_vsidcontext & (NPMAPS - 1);
1796		if (hash == 0)		/* 0 is special, avoid it */
1797			continue;
1798		n = hash >> 5;
1799		mask = 1 << (hash & (VSID_NBPW - 1));
1800		hash = (moea64_vsidcontext & 0xfffff);
1801		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1802			/* anything free in this bucket? */
1803			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1804				entropy = (moea64_vsidcontext >> 20);
1805				continue;
1806			}
1807			i = ffs(~moea64_vsid_bitmap[i]) - 1;
1808			mask = 1 << i;
1809			hash &= 0xfffff & ~(VSID_NBPW - 1);
1810			hash |= i;
1811		}
1812		moea64_vsid_bitmap[n] |= mask;
1813		for (i = 0; i < 16; i++) {
1814			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1815		}
1816		return;
1817	}
1818
1819	panic("moea64_pinit: out of segments");
1820}
1821
1822/*
1823 * Initialize the pmap associated with process 0.
1824 */
1825void
1826moea64_pinit0(mmu_t mmu, pmap_t pm)
1827{
1828	moea64_pinit(mmu, pm);
1829	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1830}
1831
1832/*
1833 * Set the physical protection on the specified range of this map as requested.
1834 */
1835void
1836moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1837    vm_prot_t prot)
1838{
1839	struct	pvo_entry *pvo;
1840	struct	lpte *pt;
1841	int	pteidx;
1842
1843	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1844	    eva, prot);
1845
1846
1847	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1848	    ("moea64_protect: non current pmap"));
1849
1850	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1851		moea64_remove(mmu, pm, sva, eva);
1852		return;
1853	}
1854
1855	vm_page_lock_queues();
1856	PMAP_LOCK(pm);
1857	for (; sva < eva; sva += PAGE_SIZE) {
1858		pvo = moea64_pvo_find_va(pm, sva, &pteidx);
1859		if (pvo == NULL)
1860			continue;
1861
1862		/*
1863		 * Grab the PTE pointer before we diddle with the cached PTE
1864		 * copy.
1865		 */
1866		LOCK_TABLE();
1867		pt = moea64_pvo_to_pte(pvo, pteidx);
1868
1869		/*
1870		 * Change the protection of the page.
1871		 */
1872		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1873		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1874		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1875		if ((prot & VM_PROT_EXECUTE) == 0)
1876			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1877
1878		/*
1879		 * If the PVO is in the page table, update that pte as well.
1880		 */
1881		if (pt != NULL) {
1882			moea64_pte_change(pt, &pvo->pvo_pte.lpte,
1883			    pvo->pvo_pmap, PVO_VADDR(pvo));
1884			if ((pvo->pvo_pte.lpte.pte_lo &
1885			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1886				moea64_syncicache(pm, sva,
1887				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1888				    PAGE_SIZE);
1889			}
1890		}
1891		UNLOCK_TABLE();
1892	}
1893	vm_page_unlock_queues();
1894	PMAP_UNLOCK(pm);
1895}
1896
1897/*
1898 * Map a list of wired pages into kernel virtual address space.  This is
1899 * intended for temporary mappings which do not need page modification or
1900 * references recorded.  Existing mappings in the region are overwritten.
1901 */
1902void
1903moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1904{
1905	while (count-- > 0) {
1906		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1907		va += PAGE_SIZE;
1908		m++;
1909	}
1910}
1911
1912/*
1913 * Remove page mappings from kernel virtual address space.  Intended for
1914 * temporary mappings entered by moea64_qenter.
1915 */
1916void
1917moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1918{
1919	while (count-- > 0) {
1920		moea64_kremove(mmu, va);
1921		va += PAGE_SIZE;
1922	}
1923}
1924
1925void
1926moea64_release(mmu_t mmu, pmap_t pmap)
1927{
1928        int idx, mask;
1929
1930	/*
1931	 * Free segment register's VSID
1932	 */
1933        if (pmap->pm_sr[0] == 0)
1934                panic("moea64_release");
1935
1936        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1937        mask = 1 << (idx % VSID_NBPW);
1938        idx /= VSID_NBPW;
1939        moea64_vsid_bitmap[idx] &= ~mask;
1940	PMAP_LOCK_DESTROY(pmap);
1941}
1942
1943/*
1944 * Remove the given range of addresses from the specified map.
1945 */
1946void
1947moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1948{
1949	struct	pvo_entry *pvo;
1950	int	pteidx;
1951
1952	vm_page_lock_queues();
1953	PMAP_LOCK(pm);
1954	for (; sva < eva; sva += PAGE_SIZE) {
1955		pvo = moea64_pvo_find_va(pm, sva, &pteidx);
1956		if (pvo != NULL) {
1957			moea64_pvo_remove(pvo, pteidx);
1958		}
1959	}
1960	vm_page_unlock_queues();
1961	PMAP_UNLOCK(pm);
1962}
1963
1964/*
1965 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
1966 * will reflect changes in pte's back to the vm_page.
1967 */
1968void
1969moea64_remove_all(mmu_t mmu, vm_page_t m)
1970{
1971	struct  pvo_head *pvo_head;
1972	struct	pvo_entry *pvo, *next_pvo;
1973	pmap_t	pmap;
1974
1975	vm_page_lock_queues();
1976	pvo_head = vm_page_to_pvoh(m);
1977	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1978		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1979
1980		MOEA_PVO_CHECK(pvo);	/* sanity check */
1981		pmap = pvo->pvo_pmap;
1982		PMAP_LOCK(pmap);
1983		moea64_pvo_remove(pvo, -1);
1984		PMAP_UNLOCK(pmap);
1985	}
1986	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
1987		moea64_attr_clear(m, LPTE_CHG);
1988		vm_page_dirty(m);
1989	}
1990	vm_page_flag_clear(m, PG_WRITEABLE);
1991	vm_page_unlock_queues();
1992}
1993
1994/*
1995 * Allocate a physical page of memory directly from the phys_avail map.
1996 * Can only be called from moea64_bootstrap before avail start and end are
1997 * calculated.
1998 */
1999static vm_offset_t
2000moea64_bootstrap_alloc(vm_size_t size, u_int align)
2001{
2002	vm_offset_t	s, e;
2003	int		i, j;
2004
2005	size = round_page(size);
2006	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2007		if (align != 0)
2008			s = (phys_avail[i] + align - 1) & ~(align - 1);
2009		else
2010			s = phys_avail[i];
2011		e = s + size;
2012
2013		if (s < phys_avail[i] || e > phys_avail[i + 1])
2014			continue;
2015
2016		if (s == phys_avail[i]) {
2017			phys_avail[i] += size;
2018		} else if (e == phys_avail[i + 1]) {
2019			phys_avail[i + 1] -= size;
2020		} else {
2021			for (j = phys_avail_count * 2; j > i; j -= 2) {
2022				phys_avail[j] = phys_avail[j - 2];
2023				phys_avail[j + 1] = phys_avail[j - 1];
2024			}
2025
2026			phys_avail[i + 3] = phys_avail[i + 1];
2027			phys_avail[i + 1] = s;
2028			phys_avail[i + 2] = e;
2029			phys_avail_count++;
2030		}
2031
2032		return (s);
2033	}
2034	panic("moea64_bootstrap_alloc: could not allocate memory");
2035}
2036
2037static void
2038tlbia(void)
2039{
2040	vm_offset_t i;
2041	register_t msr, scratch;
2042
2043	for (i = 0; i < 0xFF000; i += 0x00001000) {
2044		__asm __volatile("\
2045		    mfmsr %0; \
2046		    mr %1, %0; \
2047		    insrdi %1,%3,1,0; \
2048		    mtmsrd %1; \
2049		    ptesync; \
2050		    \
2051		    tlbiel %2; \
2052		    \
2053		    mtmsrd %0; \
2054		    eieio; \
2055		    tlbsync; \
2056		    ptesync;"
2057		: "=r"(msr), "=r"(scratch) : "r"(i), "r"(1));
2058	}
2059}
2060
2061static int
2062moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2063    vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags)
2064{
2065	struct	 pvo_entry *pvo;
2066	uint64_t vsid;
2067	int	 first;
2068	u_int	 ptegidx;
2069	int	 i;
2070	int      bootstrap;
2071
2072	/*
2073	 * One nasty thing that can happen here is that the UMA calls to
2074	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2075	 * which calls UMA...
2076	 *
2077	 * We break the loop by detecting recursion and allocating out of
2078	 * the bootstrap pool.
2079	 */
2080
2081	moea64_pvo_enter_calls++;
2082	first = 0;
2083	bootstrap = (flags & PVO_BOOTSTRAP);
2084
2085	if (!moea64_initialized)
2086		bootstrap = 1;
2087
2088	/*
2089	 * Compute the PTE Group index.
2090	 */
2091	va &= ~ADDR_POFF;
2092	vsid = va_to_vsid(pm, va);
2093	ptegidx = va_to_pteg(vsid, va);
2094
2095	/*
2096	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2097	 * there is a mapping.
2098	 */
2099	LOCK_TABLE();
2100
2101	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2102		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2103			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2104			    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
2105			    (pte_lo & LPTE_PP)) {
2106				UNLOCK_TABLE();
2107				return (0);
2108			}
2109			moea64_pvo_remove(pvo, -1);
2110			break;
2111		}
2112	}
2113
2114	/*
2115	 * If we aren't overwriting a mapping, try to allocate.
2116	 */
2117	if (bootstrap) {
2118		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2119			panic("moea64_enter: bpvo pool exhausted, %d, %d, %d",
2120			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2121			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2122		}
2123		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2124		moea64_bpvo_pool_index++;
2125		bootstrap = 1;
2126	} else {
2127		/*
2128		 * Note: drop the table lock around the UMA allocation in
2129		 * case the UMA allocator needs to manipulate the page
2130		 * table. The mapping we are working with is already
2131		 * protected by the PMAP lock.
2132		 */
2133		UNLOCK_TABLE();
2134		pvo = uma_zalloc(zone, M_NOWAIT);
2135		LOCK_TABLE();
2136	}
2137
2138	if (pvo == NULL) {
2139		UNLOCK_TABLE();
2140		return (ENOMEM);
2141	}
2142
2143	moea64_pvo_entries++;
2144	pvo->pvo_vaddr = va;
2145	pvo->pvo_pmap = pm;
2146	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2147	pvo->pvo_vaddr &= ~ADDR_POFF;
2148
2149	if (!(flags & VM_PROT_EXECUTE))
2150		pte_lo |= LPTE_NOEXEC;
2151	if (flags & PVO_WIRED)
2152		pvo->pvo_vaddr |= PVO_WIRED;
2153	if (pvo_head != &moea64_pvo_kunmanaged)
2154		pvo->pvo_vaddr |= PVO_MANAGED;
2155	if (bootstrap)
2156		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2157	if (flags & PVO_FAKE)
2158		pvo->pvo_vaddr |= PVO_FAKE;
2159
2160	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2161	    (uint64_t)(pa) | pte_lo);
2162
2163	/*
2164	 * Remember if the list was empty and therefore will be the first
2165	 * item.
2166	 */
2167	if (LIST_FIRST(pvo_head) == NULL)
2168		first = 1;
2169	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2170
2171	if (pvo->pvo_vaddr & PVO_WIRED)
2172		pm->pm_stats.wired_count++;
2173	pm->pm_stats.resident_count++;
2174
2175	/*
2176	 * We hope this succeeds but it isn't required.
2177	 */
2178	i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
2179	if (i >= 0) {
2180		PVO_PTEGIDX_SET(pvo, i);
2181	} else {
2182		panic("moea64_pvo_enter: overflow");
2183		moea64_pte_overflow++;
2184	}
2185
2186	if (pm == kernel_pmap)
2187		isync();
2188
2189	UNLOCK_TABLE();
2190
2191	return (first ? ENOENT : 0);
2192}
2193
2194static void
2195moea64_pvo_remove(struct pvo_entry *pvo, int pteidx)
2196{
2197	struct	lpte *pt;
2198
2199	/*
2200	 * If there is an active pte entry, we need to deactivate it (and
2201	 * save the ref & cfg bits).
2202	 */
2203	LOCK_TABLE();
2204	pt = moea64_pvo_to_pte(pvo, pteidx);
2205	if (pt != NULL) {
2206		moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap,
2207		    PVO_VADDR(pvo));
2208		PVO_PTEGIDX_CLR(pvo);
2209	} else {
2210		moea64_pte_overflow--;
2211	}
2212
2213	/*
2214	 * Update our statistics.
2215	 */
2216	pvo->pvo_pmap->pm_stats.resident_count--;
2217	if (pvo->pvo_vaddr & PVO_WIRED)
2218		pvo->pvo_pmap->pm_stats.wired_count--;
2219
2220	/*
2221	 * Save the REF/CHG bits into their cache if the page is managed.
2222	 */
2223	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2224		struct	vm_page *pg;
2225
2226		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2227		if (pg != NULL) {
2228			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2229			    (LPTE_REF | LPTE_CHG));
2230		}
2231	}
2232
2233	/*
2234	 * Remove this PVO from the PV list.
2235	 */
2236	LIST_REMOVE(pvo, pvo_vlink);
2237
2238	/*
2239	 * Remove this from the overflow list and return it to the pool
2240	 * if we aren't going to reuse it.
2241	 */
2242	LIST_REMOVE(pvo, pvo_olink);
2243	UNLOCK_TABLE();
2244
2245	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2246		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2247		    moea64_upvo_zone, pvo);
2248
2249	moea64_pvo_entries--;
2250	moea64_pvo_remove_calls++;
2251}
2252
2253static __inline int
2254moea64_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2255{
2256
2257	/*
2258	 * We can find the actual pte entry without searching by grabbing
2259	 * the PTEG index from 3 unused bits in pvo_vaddr and by
2260	 * noticing the HID bit.
2261	 */
2262	if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
2263		ptegidx ^= moea64_pteg_mask;
2264
2265	return ((ptegidx << 3) | PVO_PTEGIDX_GET(pvo));
2266}
2267
2268static struct pvo_entry *
2269moea64_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2270{
2271	struct		pvo_entry *pvo;
2272	int		ptegidx;
2273	uint64_t	vsid;
2274
2275	va &= ~ADDR_POFF;
2276	vsid = va_to_vsid(pm, va);
2277	ptegidx = va_to_pteg(vsid, va);
2278
2279	LOCK_TABLE();
2280	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2281		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2282			if (pteidx_p)
2283				*pteidx_p = moea64_pvo_pte_index(pvo, ptegidx);
2284			break;
2285		}
2286	}
2287	UNLOCK_TABLE();
2288
2289	return (pvo);
2290}
2291
2292static struct lpte *
2293moea64_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2294{
2295	struct lpte *pt;
2296
2297	/*
2298	 * If we haven't been supplied the ptegidx, calculate it.
2299	 */
2300	if (pteidx == -1) {
2301		int		ptegidx;
2302		uint64_t	vsid;
2303
2304		vsid = va_to_vsid(pvo->pvo_pmap, PVO_VADDR(pvo));
2305		ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo));
2306		pteidx = moea64_pvo_pte_index(pvo, ptegidx);
2307	}
2308
2309	pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
2310
2311	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
2312	    !PVO_PTEGIDX_ISSET(pvo)) {
2313		panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
2314		    "valid pte index", pvo);
2315	}
2316
2317	if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
2318	    PVO_PTEGIDX_ISSET(pvo)) {
2319		panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
2320		    "pvo but no valid pte", pvo);
2321	}
2322
2323	if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
2324	    LPTE_VALID) {
2325		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
2326			panic("moea64_pvo_to_pte: pvo %p has valid pte in "
2327			    "moea64_pteg_table %p but invalid in pvo", pvo, pt);
2328		}
2329
2330		if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
2331		    ~(LPTE_M|LPTE_CHG|LPTE_REF)) != 0) {
2332			panic("moea64_pvo_to_pte: pvo %p pte does not match "
2333			    "pte %p in moea64_pteg_table difference is %#x",
2334			    pvo, pt,
2335			    (uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
2336		}
2337
2338		ASSERT_TABLE_LOCK();
2339		return (pt);
2340	}
2341
2342	if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
2343		panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
2344		    "moea64_pteg_table but valid in pvo", pvo, pt);
2345	}
2346
2347	return (NULL);
2348}
2349
2350static int
2351moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
2352{
2353	struct	lpte *pt;
2354	int	i;
2355
2356	ASSERT_TABLE_LOCK();
2357
2358	/*
2359	 * First try primary hash.
2360	 */
2361	for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2362		if ((pt->pte_hi & LPTE_VALID) == 0 &&
2363		    (pt->pte_hi & LPTE_LOCKED) == 0) {
2364			pvo_pt->pte_hi &= ~LPTE_HID;
2365			moea64_pte_set(pt, pvo_pt);
2366			return (i);
2367		}
2368	}
2369
2370	/*
2371	 * Now try secondary hash.
2372	 */
2373	ptegidx ^= moea64_pteg_mask;
2374
2375	for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2376		if ((pt->pte_hi & LPTE_VALID) == 0 &&
2377		    (pt->pte_hi & LPTE_LOCKED) == 0) {
2378			pvo_pt->pte_hi |= LPTE_HID;
2379			moea64_pte_set(pt, pvo_pt);
2380			return (i);
2381		}
2382	}
2383
2384	panic("moea64_pte_insert: overflow");
2385	return (-1);
2386}
2387
2388static boolean_t
2389moea64_query_bit(vm_page_t m, u_int64_t ptebit)
2390{
2391	struct	pvo_entry *pvo;
2392	struct	lpte *pt;
2393
2394	if (moea64_attr_fetch(m) & ptebit)
2395		return (TRUE);
2396
2397	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2398
2399	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2400		MOEA_PVO_CHECK(pvo);	/* sanity check */
2401
2402		/*
2403		 * See if we saved the bit off.  If so, cache it and return
2404		 * success.
2405		 */
2406		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2407			moea64_attr_save(m, ptebit);
2408			MOEA_PVO_CHECK(pvo);	/* sanity check */
2409			return (TRUE);
2410		}
2411	}
2412
2413	/*
2414	 * No luck, now go through the hard part of looking at the PTEs
2415	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2416	 * the PTEs.
2417	 */
2418	SYNC();
2419	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2420		MOEA_PVO_CHECK(pvo);	/* sanity check */
2421
2422		/*
2423		 * See if this pvo has a valid PTE.  if so, fetch the
2424		 * REF/CHG bits from the valid PTE.  If the appropriate
2425		 * ptebit is set, cache it and return success.
2426		 */
2427		LOCK_TABLE();
2428		pt = moea64_pvo_to_pte(pvo, -1);
2429		if (pt != NULL) {
2430			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2431			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2432				UNLOCK_TABLE();
2433
2434				moea64_attr_save(m, ptebit);
2435				MOEA_PVO_CHECK(pvo);	/* sanity check */
2436				return (TRUE);
2437			}
2438		}
2439		UNLOCK_TABLE();
2440	}
2441
2442	return (FALSE);
2443}
2444
2445static u_int
2446moea64_clear_bit(vm_page_t m, u_int64_t ptebit, u_int64_t *origbit)
2447{
2448	u_int	count;
2449	struct	pvo_entry *pvo;
2450	struct	lpte *pt;
2451	uint64_t rv;
2452
2453	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2454
2455	/*
2456	 * Clear the cached value.
2457	 */
2458	rv = moea64_attr_fetch(m);
2459	moea64_attr_clear(m, ptebit);
2460
2461	/*
2462	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2463	 * we can reset the right ones).  note that since the pvo entries and
2464	 * list heads are accessed via BAT0 and are never placed in the page
2465	 * table, we don't have to worry about further accesses setting the
2466	 * REF/CHG bits.
2467	 */
2468	SYNC();
2469
2470	/*
2471	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2472	 * valid pte clear the ptebit from the valid pte.
2473	 */
2474	count = 0;
2475	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2476		MOEA_PVO_CHECK(pvo);	/* sanity check */
2477
2478		LOCK_TABLE();
2479		pt = moea64_pvo_to_pte(pvo, -1);
2480		if (pt != NULL) {
2481			moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
2482			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2483				count++;
2484				moea64_pte_clear(pt, pvo->pvo_pmap, PVO_VADDR(pvo), ptebit);
2485			}
2486		}
2487		rv |= pvo->pvo_pte.lpte.pte_lo;
2488		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2489		MOEA_PVO_CHECK(pvo);	/* sanity check */
2490		UNLOCK_TABLE();
2491	}
2492
2493	if (origbit != NULL) {
2494		*origbit = rv;
2495	}
2496
2497	return (count);
2498}
2499
2500boolean_t
2501moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2502{
2503	struct pvo_entry *pvo;
2504	vm_offset_t ppa;
2505	int error = 0;
2506
2507	PMAP_LOCK(kernel_pmap);
2508	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2509		pvo = moea64_pvo_find_va(kernel_pmap, ppa, NULL);
2510		if (pvo == NULL ||
2511		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2512			error = EFAULT;
2513			break;
2514		}
2515	}
2516	PMAP_UNLOCK(kernel_pmap);
2517
2518	return (error);
2519}
2520
2521/*
2522 * Map a set of physical memory pages into the kernel virtual
2523 * address space. Return a pointer to where it is mapped. This
2524 * routine is intended to be used for mapping device memory,
2525 * NOT real memory.
2526 */
2527void *
2528moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2529{
2530	vm_offset_t va, tmpva, ppa, offset;
2531
2532	ppa = trunc_page(pa);
2533	offset = pa & PAGE_MASK;
2534	size = roundup(offset + size, PAGE_SIZE);
2535
2536	va = kmem_alloc_nofault(kernel_map, size);
2537
2538	if (!va)
2539		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2540
2541	for (tmpva = va; size > 0;) {
2542		moea64_kenter(mmu, tmpva, ppa);
2543		size -= PAGE_SIZE;
2544		tmpva += PAGE_SIZE;
2545		ppa += PAGE_SIZE;
2546	}
2547
2548	return ((void *)(va + offset));
2549}
2550
2551void
2552moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2553{
2554	vm_offset_t base, offset;
2555
2556	base = trunc_page(va);
2557	offset = va & PAGE_MASK;
2558	size = roundup(offset + size, PAGE_SIZE);
2559
2560	kmem_free(kernel_map, base, size);
2561}
2562
2563static void
2564moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2565{
2566	struct pvo_entry *pvo;
2567	vm_offset_t lim;
2568	vm_paddr_t pa;
2569	vm_size_t len;
2570
2571	PMAP_LOCK(pm);
2572	while (sz > 0) {
2573		lim = round_page(va);
2574		len = MIN(lim - va, sz);
2575		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2576		if (pvo != NULL) {
2577			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
2578			    (va & ADDR_POFF);
2579			moea64_syncicache(pm, va, pa, len);
2580		}
2581		va += len;
2582		sz -= len;
2583	}
2584	PMAP_UNLOCK(pm);
2585}
2586