1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD$");
95
96/*
97 * Manages physical address maps.
98 *
99 * Since the information managed by this module is also stored by the
100 * logical address mapping module, this module may throw away valid virtual
101 * to physical mappings at almost any time.  However, invalidations of
102 * mappings must be done as requested.
103 *
104 * In order to cope with hardware architectures which make virtual to
105 * physical map invalidates expensive, this module may delay invalidate
106 * reduced protection operations until such time as they are actually
107 * necessary.  This module is given full information as to which processors
108 * are currently using which maps, and to when physical maps must be made
109 * correct.
110 */
111
112#include "opt_kstack_pages.h"
113
114#include <sys/param.h>
115#include <sys/kernel.h>
116#include <sys/queue.h>
117#include <sys/cpuset.h>
118#include <sys/ktr.h>
119#include <sys/lock.h>
120#include <sys/msgbuf.h>
121#include <sys/mutex.h>
122#include <sys/proc.h>
123#include <sys/rwlock.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#include <sys/systm.h>
127#include <sys/vmmeter.h>
128
129#include <dev/ofw/openfirm.h>
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/platform.h>
143#include <machine/bat.h>
144#include <machine/frame.h>
145#include <machine/md_var.h>
146#include <machine/psl.h>
147#include <machine/pte.h>
148#include <machine/smp.h>
149#include <machine/sr.h>
150#include <machine/mmuvar.h>
151#include <machine/trap_aim.h>
152
153#include "mmu_if.h"
154
155#define	MOEA_DEBUG
156
157#define TODO	panic("%s: not implemented", __func__);
158
159#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
160#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
161#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
162
163struct ofw_map {
164	vm_offset_t	om_va;
165	vm_size_t	om_len;
166	vm_offset_t	om_pa;
167	u_int		om_mode;
168};
169
170extern unsigned char _etext[];
171extern unsigned char _end[];
172
173extern int dumpsys_minidump;
174
175/*
176 * Map of physical memory regions.
177 */
178static struct	mem_region *regions;
179static struct	mem_region *pregions;
180static u_int    phys_avail_count;
181static int	regions_sz, pregions_sz;
182static struct	ofw_map *translations;
183
184/*
185 * Lock for the pteg and pvo tables.
186 */
187struct mtx	moea_table_mutex;
188struct mtx	moea_vsid_mutex;
189
190/* tlbie instruction synchronization */
191static struct mtx tlbie_mtx;
192
193/*
194 * PTEG data.
195 */
196static struct	pteg *moea_pteg_table;
197u_int		moea_pteg_count;
198u_int		moea_pteg_mask;
199
200/*
201 * PVO data.
202 */
203struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
204struct	pvo_head moea_pvo_kunmanaged =
205    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
206
207static struct rwlock_padalign pvh_global_lock;
208
209uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
210uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
211
212#define	BPVO_POOL_SIZE	32768
213static struct	pvo_entry *moea_bpvo_pool;
214static int	moea_bpvo_pool_index = 0;
215
216#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
217static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
218
219static boolean_t moea_initialized = FALSE;
220
221/*
222 * Statistics.
223 */
224u_int	moea_pte_valid = 0;
225u_int	moea_pte_overflow = 0;
226u_int	moea_pte_replacements = 0;
227u_int	moea_pvo_entries = 0;
228u_int	moea_pvo_enter_calls = 0;
229u_int	moea_pvo_remove_calls = 0;
230u_int	moea_pte_spills = 0;
231SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
232    0, "");
233SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
234    &moea_pte_overflow, 0, "");
235SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
236    &moea_pte_replacements, 0, "");
237SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
238    0, "");
239SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
240    &moea_pvo_enter_calls, 0, "");
241SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
242    &moea_pvo_remove_calls, 0, "");
243SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
244    &moea_pte_spills, 0, "");
245
246/*
247 * Allocate physical memory for use in moea_bootstrap.
248 */
249static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
250
251/*
252 * PTE calls.
253 */
254static int		moea_pte_insert(u_int, struct pte *);
255
256/*
257 * PVO calls.
258 */
259static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
260		    vm_offset_t, vm_offset_t, u_int, int);
261static void	moea_pvo_remove(struct pvo_entry *, int);
262static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
263static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
264
265/*
266 * Utility routines.
267 */
268static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
269			    vm_prot_t, boolean_t);
270static void		moea_syncicache(vm_offset_t, vm_size_t);
271static boolean_t	moea_query_bit(vm_page_t, int);
272static u_int		moea_clear_bit(vm_page_t, int);
273static void		moea_kremove(mmu_t, vm_offset_t);
274int		moea_pte_spill(vm_offset_t);
275
276/*
277 * Kernel MMU interface
278 */
279void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
280void moea_clear_modify(mmu_t, vm_page_t);
281void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
282void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
283    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
284void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
285void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
286    vm_prot_t);
287void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
288vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
289vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
290void moea_init(mmu_t);
291boolean_t moea_is_modified(mmu_t, vm_page_t);
292boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
293boolean_t moea_is_referenced(mmu_t, vm_page_t);
294int moea_ts_referenced(mmu_t, vm_page_t);
295vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
296boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297int moea_page_wired_mappings(mmu_t, vm_page_t);
298void moea_pinit(mmu_t, pmap_t);
299void moea_pinit0(mmu_t, pmap_t);
300void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
301void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
302void moea_qremove(mmu_t, vm_offset_t, int);
303void moea_release(mmu_t, pmap_t);
304void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
305void moea_remove_all(mmu_t, vm_page_t);
306void moea_remove_write(mmu_t, vm_page_t);
307void moea_zero_page(mmu_t, vm_page_t);
308void moea_zero_page_area(mmu_t, vm_page_t, int, int);
309void moea_zero_page_idle(mmu_t, vm_page_t);
310void moea_activate(mmu_t, struct thread *);
311void moea_deactivate(mmu_t, struct thread *);
312void moea_cpu_bootstrap(mmu_t, int);
313void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
314void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
315void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
316void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
318void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
319void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
321boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
323vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
324    vm_size_t *sz);
325struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev);
326
327static mmu_method_t moea_methods[] = {
328	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
329	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
330	MMUMETHOD(mmu_copy_page,	moea_copy_page),
331	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
332	MMUMETHOD(mmu_enter,		moea_enter),
333	MMUMETHOD(mmu_enter_object,	moea_enter_object),
334	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
335	MMUMETHOD(mmu_extract,		moea_extract),
336	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
337	MMUMETHOD(mmu_init,		moea_init),
338	MMUMETHOD(mmu_is_modified,	moea_is_modified),
339	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
340	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
341	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
342	MMUMETHOD(mmu_map,     		moea_map),
343	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
344	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
345	MMUMETHOD(mmu_pinit,		moea_pinit),
346	MMUMETHOD(mmu_pinit0,		moea_pinit0),
347	MMUMETHOD(mmu_protect,		moea_protect),
348	MMUMETHOD(mmu_qenter,		moea_qenter),
349	MMUMETHOD(mmu_qremove,		moea_qremove),
350	MMUMETHOD(mmu_release,		moea_release),
351	MMUMETHOD(mmu_remove,		moea_remove),
352	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
353	MMUMETHOD(mmu_remove_write,	moea_remove_write),
354	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
355	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
356	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
357	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
358	MMUMETHOD(mmu_activate,		moea_activate),
359	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
360	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
361
362	/* Internal interfaces */
363	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
364	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
365	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
366	MMUMETHOD(mmu_mapdev,		moea_mapdev),
367	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
368	MMUMETHOD(mmu_kextract,		moea_kextract),
369	MMUMETHOD(mmu_kenter,		moea_kenter),
370	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
371	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
372	MMUMETHOD(mmu_scan_md,		moea_scan_md),
373	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
374
375	{ 0, 0 }
376};
377
378MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
379
380static __inline uint32_t
381moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
382{
383	uint32_t pte_lo;
384	int i;
385
386	if (ma != VM_MEMATTR_DEFAULT) {
387		switch (ma) {
388		case VM_MEMATTR_UNCACHEABLE:
389			return (PTE_I | PTE_G);
390		case VM_MEMATTR_WRITE_COMBINING:
391		case VM_MEMATTR_WRITE_BACK:
392		case VM_MEMATTR_PREFETCHABLE:
393			return (PTE_I);
394		case VM_MEMATTR_WRITE_THROUGH:
395			return (PTE_W | PTE_M);
396		}
397	}
398
399	/*
400	 * Assume the page is cache inhibited and access is guarded unless
401	 * it's in our available memory array.
402	 */
403	pte_lo = PTE_I | PTE_G;
404	for (i = 0; i < pregions_sz; i++) {
405		if ((pa >= pregions[i].mr_start) &&
406		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
407			pte_lo = PTE_M;
408			break;
409		}
410	}
411
412	return pte_lo;
413}
414
415static void
416tlbie(vm_offset_t va)
417{
418
419	mtx_lock_spin(&tlbie_mtx);
420	__asm __volatile("ptesync");
421	__asm __volatile("tlbie %0" :: "r"(va));
422	__asm __volatile("eieio; tlbsync; ptesync");
423	mtx_unlock_spin(&tlbie_mtx);
424}
425
426static void
427tlbia(void)
428{
429	vm_offset_t va;
430
431	for (va = 0; va < 0x00040000; va += 0x00001000) {
432		__asm __volatile("tlbie %0" :: "r"(va));
433		powerpc_sync();
434	}
435	__asm __volatile("tlbsync");
436	powerpc_sync();
437}
438
439static __inline int
440va_to_sr(u_int *sr, vm_offset_t va)
441{
442	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
443}
444
445static __inline u_int
446va_to_pteg(u_int sr, vm_offset_t addr)
447{
448	u_int hash;
449
450	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
451	    ADDR_PIDX_SHFT);
452	return (hash & moea_pteg_mask);
453}
454
455static __inline struct pvo_head *
456vm_page_to_pvoh(vm_page_t m)
457{
458
459	return (&m->md.mdpg_pvoh);
460}
461
462static __inline void
463moea_attr_clear(vm_page_t m, int ptebit)
464{
465
466	rw_assert(&pvh_global_lock, RA_WLOCKED);
467	m->md.mdpg_attrs &= ~ptebit;
468}
469
470static __inline int
471moea_attr_fetch(vm_page_t m)
472{
473
474	return (m->md.mdpg_attrs);
475}
476
477static __inline void
478moea_attr_save(vm_page_t m, int ptebit)
479{
480
481	rw_assert(&pvh_global_lock, RA_WLOCKED);
482	m->md.mdpg_attrs |= ptebit;
483}
484
485static __inline int
486moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
487{
488	if (pt->pte_hi == pvo_pt->pte_hi)
489		return (1);
490
491	return (0);
492}
493
494static __inline int
495moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
496{
497	return (pt->pte_hi & ~PTE_VALID) ==
498	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
499	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
500}
501
502static __inline void
503moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
504{
505
506	mtx_assert(&moea_table_mutex, MA_OWNED);
507
508	/*
509	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
510	 * set when the real pte is set in memory.
511	 *
512	 * Note: Don't set the valid bit for correct operation of tlb update.
513	 */
514	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
515	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
516	pt->pte_lo = pte_lo;
517}
518
519static __inline void
520moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
521{
522
523	mtx_assert(&moea_table_mutex, MA_OWNED);
524	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
525}
526
527static __inline void
528moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
529{
530
531	mtx_assert(&moea_table_mutex, MA_OWNED);
532
533	/*
534	 * As shown in Section 7.6.3.2.3
535	 */
536	pt->pte_lo &= ~ptebit;
537	tlbie(va);
538}
539
540static __inline void
541moea_pte_set(struct pte *pt, struct pte *pvo_pt)
542{
543
544	mtx_assert(&moea_table_mutex, MA_OWNED);
545	pvo_pt->pte_hi |= PTE_VALID;
546
547	/*
548	 * Update the PTE as defined in section 7.6.3.1.
549	 * Note that the REF/CHG bits are from pvo_pt and thus should have
550	 * been saved so this routine can restore them (if desired).
551	 */
552	pt->pte_lo = pvo_pt->pte_lo;
553	powerpc_sync();
554	pt->pte_hi = pvo_pt->pte_hi;
555	powerpc_sync();
556	moea_pte_valid++;
557}
558
559static __inline void
560moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
561{
562
563	mtx_assert(&moea_table_mutex, MA_OWNED);
564	pvo_pt->pte_hi &= ~PTE_VALID;
565
566	/*
567	 * Force the reg & chg bits back into the PTEs.
568	 */
569	powerpc_sync();
570
571	/*
572	 * Invalidate the pte.
573	 */
574	pt->pte_hi &= ~PTE_VALID;
575
576	tlbie(va);
577
578	/*
579	 * Save the reg & chg bits.
580	 */
581	moea_pte_synch(pt, pvo_pt);
582	moea_pte_valid--;
583}
584
585static __inline void
586moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
587{
588
589	/*
590	 * Invalidate the PTE
591	 */
592	moea_pte_unset(pt, pvo_pt, va);
593	moea_pte_set(pt, pvo_pt);
594}
595
596/*
597 * Quick sort callout for comparing memory regions.
598 */
599static int	om_cmp(const void *a, const void *b);
600
601static int
602om_cmp(const void *a, const void *b)
603{
604	const struct	ofw_map *mapa;
605	const struct	ofw_map *mapb;
606
607	mapa = a;
608	mapb = b;
609	if (mapa->om_pa < mapb->om_pa)
610		return (-1);
611	else if (mapa->om_pa > mapb->om_pa)
612		return (1);
613	else
614		return (0);
615}
616
617void
618moea_cpu_bootstrap(mmu_t mmup, int ap)
619{
620	u_int sdr;
621	int i;
622
623	if (ap) {
624		powerpc_sync();
625		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
626		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
627		isync();
628		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
629		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
630		isync();
631	}
632
633#ifdef WII
634	/*
635	 * Special case for the Wii: don't install the PCI BAT.
636	 */
637	if (strcmp(installed_platform(), "wii") != 0) {
638#endif
639		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
640		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
641#ifdef WII
642	}
643#endif
644	isync();
645
646	__asm __volatile("mtibatu 1,%0" :: "r"(0));
647	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
648	__asm __volatile("mtibatu 2,%0" :: "r"(0));
649	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
650	__asm __volatile("mtibatu 3,%0" :: "r"(0));
651	isync();
652
653	for (i = 0; i < 16; i++)
654		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
655	powerpc_sync();
656
657	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
658	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
659	isync();
660
661	tlbia();
662}
663
664void
665moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
666{
667	ihandle_t	mmui;
668	phandle_t	chosen, mmu;
669	int		sz;
670	int		i, j;
671	vm_size_t	size, physsz, hwphyssz;
672	vm_offset_t	pa, va, off;
673	void		*dpcpu;
674	register_t	msr;
675
676        /*
677         * Set up BAT0 to map the lowest 256 MB area
678         */
679        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
680        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
681
682	/*
683	 * Map PCI memory space.
684	 */
685	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
686	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
687
688	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
689	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
690
691	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
692	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
693
694	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
695	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
696
697	/*
698	 * Map obio devices.
699	 */
700	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
701	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
702
703	/*
704	 * Use an IBAT and a DBAT to map the bottom segment of memory
705	 * where we are. Turn off instruction relocation temporarily
706	 * to prevent faults while reprogramming the IBAT.
707	 */
708	msr = mfmsr();
709	mtmsr(msr & ~PSL_IR);
710	__asm (".balign 32; \n"
711	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
712	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
713	    :: "r"(battable[0].batu), "r"(battable[0].batl));
714	mtmsr(msr);
715
716#ifdef WII
717        if (strcmp(installed_platform(), "wii") != 0) {
718#endif
719		/* map pci space */
720		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
721		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
722#ifdef WII
723	}
724#endif
725	isync();
726
727	/* set global direct map flag */
728	hw_direct_map = 1;
729
730	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
731	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
732
733	for (i = 0; i < pregions_sz; i++) {
734		vm_offset_t pa;
735		vm_offset_t end;
736
737		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
738			pregions[i].mr_start,
739			pregions[i].mr_start + pregions[i].mr_size,
740			pregions[i].mr_size);
741		/*
742		 * Install entries into the BAT table to allow all
743		 * of physmem to be convered by on-demand BAT entries.
744		 * The loop will sometimes set the same battable element
745		 * twice, but that's fine since they won't be used for
746		 * a while yet.
747		 */
748		pa = pregions[i].mr_start & 0xf0000000;
749		end = pregions[i].mr_start + pregions[i].mr_size;
750		do {
751                        u_int n = pa >> ADDR_SR_SHFT;
752
753			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
754			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
755			pa += SEGMENT_LENGTH;
756		} while (pa < end);
757	}
758
759	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
760		panic("moea_bootstrap: phys_avail too small");
761
762	phys_avail_count = 0;
763	physsz = 0;
764	hwphyssz = 0;
765	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
766	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
767		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
768		    regions[i].mr_start + regions[i].mr_size,
769		    regions[i].mr_size);
770		if (hwphyssz != 0 &&
771		    (physsz + regions[i].mr_size) >= hwphyssz) {
772			if (physsz < hwphyssz) {
773				phys_avail[j] = regions[i].mr_start;
774				phys_avail[j + 1] = regions[i].mr_start +
775				    hwphyssz - physsz;
776				physsz = hwphyssz;
777				phys_avail_count++;
778			}
779			break;
780		}
781		phys_avail[j] = regions[i].mr_start;
782		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
783		phys_avail_count++;
784		physsz += regions[i].mr_size;
785	}
786
787	/* Check for overlap with the kernel and exception vectors */
788	for (j = 0; j < 2*phys_avail_count; j+=2) {
789		if (phys_avail[j] < EXC_LAST)
790			phys_avail[j] += EXC_LAST;
791
792		if (kernelstart >= phys_avail[j] &&
793		    kernelstart < phys_avail[j+1]) {
794			if (kernelend < phys_avail[j+1]) {
795				phys_avail[2*phys_avail_count] =
796				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
797				phys_avail[2*phys_avail_count + 1] =
798				    phys_avail[j+1];
799				phys_avail_count++;
800			}
801
802			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
803		}
804
805		if (kernelend >= phys_avail[j] &&
806		    kernelend < phys_avail[j+1]) {
807			if (kernelstart > phys_avail[j]) {
808				phys_avail[2*phys_avail_count] = phys_avail[j];
809				phys_avail[2*phys_avail_count + 1] =
810				    kernelstart & ~PAGE_MASK;
811				phys_avail_count++;
812			}
813
814			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
815		}
816	}
817
818	physmem = btoc(physsz);
819
820	/*
821	 * Allocate PTEG table.
822	 */
823#ifdef PTEGCOUNT
824	moea_pteg_count = PTEGCOUNT;
825#else
826	moea_pteg_count = 0x1000;
827
828	while (moea_pteg_count < physmem)
829		moea_pteg_count <<= 1;
830
831	moea_pteg_count >>= 1;
832#endif /* PTEGCOUNT */
833
834	size = moea_pteg_count * sizeof(struct pteg);
835	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
836	    size);
837	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
838	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
839	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
840	moea_pteg_mask = moea_pteg_count - 1;
841
842	/*
843	 * Allocate pv/overflow lists.
844	 */
845	size = sizeof(struct pvo_head) * moea_pteg_count;
846	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
847	    PAGE_SIZE);
848	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
849	for (i = 0; i < moea_pteg_count; i++)
850		LIST_INIT(&moea_pvo_table[i]);
851
852	/*
853	 * Initialize the lock that synchronizes access to the pteg and pvo
854	 * tables.
855	 */
856	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
857	    MTX_RECURSE);
858	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
859
860	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
861
862	/*
863	 * Initialise the unmanaged pvo pool.
864	 */
865	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
866		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
867	moea_bpvo_pool_index = 0;
868
869	/*
870	 * Make sure kernel vsid is allocated as well as VSID 0.
871	 */
872	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
873		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
874	moea_vsid_bitmap[0] |= 1;
875
876	/*
877	 * Initialize the kernel pmap (which is statically allocated).
878	 */
879	PMAP_LOCK_INIT(kernel_pmap);
880	for (i = 0; i < 16; i++)
881		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
882	CPU_FILL(&kernel_pmap->pm_active);
883	RB_INIT(&kernel_pmap->pmap_pvo);
884
885 	/*
886	 * Initialize the global pv list lock.
887	 */
888	rw_init(&pvh_global_lock, "pmap pv global");
889
890	/*
891	 * Set up the Open Firmware mappings
892	 */
893	chosen = OF_finddevice("/chosen");
894	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
895	    (mmu = OF_instance_to_package(mmui)) != -1 &&
896	    (sz = OF_getproplen(mmu, "translations")) != -1) {
897		translations = NULL;
898		for (i = 0; phys_avail[i] != 0; i += 2) {
899			if (phys_avail[i + 1] >= sz) {
900				translations = (struct ofw_map *)phys_avail[i];
901				break;
902			}
903		}
904		if (translations == NULL)
905			panic("moea_bootstrap: no space to copy translations");
906		bzero(translations, sz);
907		if (OF_getprop(mmu, "translations", translations, sz) == -1)
908			panic("moea_bootstrap: can't get ofw translations");
909		CTR0(KTR_PMAP, "moea_bootstrap: translations");
910		sz /= sizeof(*translations);
911		qsort(translations, sz, sizeof (*translations), om_cmp);
912		for (i = 0; i < sz; i++) {
913			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
914			    translations[i].om_pa, translations[i].om_va,
915			    translations[i].om_len);
916
917			/*
918			 * If the mapping is 1:1, let the RAM and device
919			 * on-demand BAT tables take care of the translation.
920			 */
921			if (translations[i].om_va == translations[i].om_pa)
922				continue;
923
924			/* Enter the pages */
925			for (off = 0; off < translations[i].om_len;
926			    off += PAGE_SIZE)
927				moea_kenter(mmup, translations[i].om_va + off,
928					    translations[i].om_pa + off);
929		}
930	}
931
932	/*
933	 * Calculate the last available physical address.
934	 */
935	for (i = 0; phys_avail[i + 2] != 0; i += 2)
936		;
937	Maxmem = powerpc_btop(phys_avail[i + 1]);
938
939	moea_cpu_bootstrap(mmup,0);
940
941	pmap_bootstrapped++;
942
943	/*
944	 * Set the start and end of kva.
945	 */
946	virtual_avail = VM_MIN_KERNEL_ADDRESS;
947	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
948
949	/*
950	 * Allocate a kernel stack with a guard page for thread0 and map it
951	 * into the kernel page map.
952	 */
953	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
954	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
955	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
956	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
957	thread0.td_kstack = va;
958	thread0.td_kstack_pages = KSTACK_PAGES;
959	for (i = 0; i < KSTACK_PAGES; i++) {
960		moea_kenter(mmup, va, pa);
961		pa += PAGE_SIZE;
962		va += PAGE_SIZE;
963	}
964
965	/*
966	 * Allocate virtual address space for the message buffer.
967	 */
968	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
969	msgbufp = (struct msgbuf *)virtual_avail;
970	va = virtual_avail;
971	virtual_avail += round_page(msgbufsize);
972	while (va < virtual_avail) {
973		moea_kenter(mmup, va, pa);
974		pa += PAGE_SIZE;
975		va += PAGE_SIZE;
976	}
977
978	/*
979	 * Allocate virtual address space for the dynamic percpu area.
980	 */
981	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
982	dpcpu = (void *)virtual_avail;
983	va = virtual_avail;
984	virtual_avail += DPCPU_SIZE;
985	while (va < virtual_avail) {
986		moea_kenter(mmup, va, pa);
987		pa += PAGE_SIZE;
988		va += PAGE_SIZE;
989	}
990	dpcpu_init(dpcpu, 0);
991}
992
993/*
994 * Activate a user pmap.  The pmap must be activated before it's address
995 * space can be accessed in any way.
996 */
997void
998moea_activate(mmu_t mmu, struct thread *td)
999{
1000	pmap_t	pm, pmr;
1001
1002	/*
1003	 * Load all the data we need up front to encourage the compiler to
1004	 * not issue any loads while we have interrupts disabled below.
1005	 */
1006	pm = &td->td_proc->p_vmspace->vm_pmap;
1007	pmr = pm->pmap_phys;
1008
1009	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1010	PCPU_SET(curpmap, pmr);
1011}
1012
1013void
1014moea_deactivate(mmu_t mmu, struct thread *td)
1015{
1016	pmap_t	pm;
1017
1018	pm = &td->td_proc->p_vmspace->vm_pmap;
1019	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1020	PCPU_SET(curpmap, NULL);
1021}
1022
1023void
1024moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1025{
1026	struct	pvo_entry *pvo;
1027
1028	PMAP_LOCK(pm);
1029	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1030
1031	if (pvo != NULL) {
1032		if (wired) {
1033			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1034				pm->pm_stats.wired_count++;
1035			pvo->pvo_vaddr |= PVO_WIRED;
1036		} else {
1037			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1038				pm->pm_stats.wired_count--;
1039			pvo->pvo_vaddr &= ~PVO_WIRED;
1040		}
1041	}
1042	PMAP_UNLOCK(pm);
1043}
1044
1045void
1046moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1047{
1048	vm_offset_t	dst;
1049	vm_offset_t	src;
1050
1051	dst = VM_PAGE_TO_PHYS(mdst);
1052	src = VM_PAGE_TO_PHYS(msrc);
1053
1054	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1055}
1056
1057void
1058moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1059    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1060{
1061	void *a_cp, *b_cp;
1062	vm_offset_t a_pg_offset, b_pg_offset;
1063	int cnt;
1064
1065	while (xfersize > 0) {
1066		a_pg_offset = a_offset & PAGE_MASK;
1067		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1068		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1069		    a_pg_offset;
1070		b_pg_offset = b_offset & PAGE_MASK;
1071		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1072		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1073		    b_pg_offset;
1074		bcopy(a_cp, b_cp, cnt);
1075		a_offset += cnt;
1076		b_offset += cnt;
1077		xfersize -= cnt;
1078	}
1079}
1080
1081/*
1082 * Zero a page of physical memory by temporarily mapping it into the tlb.
1083 */
1084void
1085moea_zero_page(mmu_t mmu, vm_page_t m)
1086{
1087	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1088	void *va = (void *)pa;
1089
1090	bzero(va, PAGE_SIZE);
1091}
1092
1093void
1094moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1095{
1096	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1097	void *va = (void *)(pa + off);
1098
1099	bzero(va, size);
1100}
1101
1102void
1103moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1104{
1105	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1106	void *va = (void *)pa;
1107
1108	bzero(va, PAGE_SIZE);
1109}
1110
1111/*
1112 * Map the given physical page at the specified virtual address in the
1113 * target pmap with the protection requested.  If specified the page
1114 * will be wired down.
1115 */
1116void
1117moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1118	   boolean_t wired)
1119{
1120
1121	rw_wlock(&pvh_global_lock);
1122	PMAP_LOCK(pmap);
1123	moea_enter_locked(pmap, va, m, prot, wired);
1124	rw_wunlock(&pvh_global_lock);
1125	PMAP_UNLOCK(pmap);
1126}
1127
1128/*
1129 * Map the given physical page at the specified virtual address in the
1130 * target pmap with the protection requested.  If specified the page
1131 * will be wired down.
1132 *
1133 * The page queues and pmap must be locked.
1134 */
1135static void
1136moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1137    boolean_t wired)
1138{
1139	struct		pvo_head *pvo_head;
1140	uma_zone_t	zone;
1141	vm_page_t	pg;
1142	u_int		pte_lo, pvo_flags;
1143	int		error;
1144
1145	if (!moea_initialized) {
1146		pvo_head = &moea_pvo_kunmanaged;
1147		zone = moea_upvo_zone;
1148		pvo_flags = 0;
1149		pg = NULL;
1150	} else {
1151		pvo_head = vm_page_to_pvoh(m);
1152		pg = m;
1153		zone = moea_mpvo_zone;
1154		pvo_flags = PVO_MANAGED;
1155	}
1156	if (pmap_bootstrapped)
1157		rw_assert(&pvh_global_lock, RA_WLOCKED);
1158	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1159	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1160		VM_OBJECT_ASSERT_LOCKED(m->object);
1161
1162	/* XXX change the pvo head for fake pages */
1163	if ((m->oflags & VPO_UNMANAGED) != 0) {
1164		pvo_flags &= ~PVO_MANAGED;
1165		pvo_head = &moea_pvo_kunmanaged;
1166		zone = moea_upvo_zone;
1167	}
1168
1169	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1170
1171	if (prot & VM_PROT_WRITE) {
1172		pte_lo |= PTE_BW;
1173		if (pmap_bootstrapped &&
1174		    (m->oflags & VPO_UNMANAGED) == 0)
1175			vm_page_aflag_set(m, PGA_WRITEABLE);
1176	} else
1177		pte_lo |= PTE_BR;
1178
1179	if (prot & VM_PROT_EXECUTE)
1180		pvo_flags |= PVO_EXECUTABLE;
1181
1182	if (wired)
1183		pvo_flags |= PVO_WIRED;
1184
1185	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1186	    pte_lo, pvo_flags);
1187
1188	/*
1189	 * Flush the real page from the instruction cache. This has be done
1190	 * for all user mappings to prevent information leakage via the
1191	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1192	 * mapping for a page.
1193	 */
1194	if (pmap != kernel_pmap && error == ENOENT &&
1195	    (pte_lo & (PTE_I | PTE_G)) == 0)
1196		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1197}
1198
1199/*
1200 * Maps a sequence of resident pages belonging to the same object.
1201 * The sequence begins with the given page m_start.  This page is
1202 * mapped at the given virtual address start.  Each subsequent page is
1203 * mapped at a virtual address that is offset from start by the same
1204 * amount as the page is offset from m_start within the object.  The
1205 * last page in the sequence is the page with the largest offset from
1206 * m_start that can be mapped at a virtual address less than the given
1207 * virtual address end.  Not every virtual page between start and end
1208 * is mapped; only those for which a resident page exists with the
1209 * corresponding offset from m_start are mapped.
1210 */
1211void
1212moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1213    vm_page_t m_start, vm_prot_t prot)
1214{
1215	vm_page_t m;
1216	vm_pindex_t diff, psize;
1217
1218	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1219
1220	psize = atop(end - start);
1221	m = m_start;
1222	rw_wlock(&pvh_global_lock);
1223	PMAP_LOCK(pm);
1224	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1225		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1226		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1227		m = TAILQ_NEXT(m, listq);
1228	}
1229	rw_wunlock(&pvh_global_lock);
1230	PMAP_UNLOCK(pm);
1231}
1232
1233void
1234moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1235    vm_prot_t prot)
1236{
1237
1238	rw_wlock(&pvh_global_lock);
1239	PMAP_LOCK(pm);
1240	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1241	    FALSE);
1242	rw_wunlock(&pvh_global_lock);
1243	PMAP_UNLOCK(pm);
1244}
1245
1246vm_paddr_t
1247moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1248{
1249	struct	pvo_entry *pvo;
1250	vm_paddr_t pa;
1251
1252	PMAP_LOCK(pm);
1253	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1254	if (pvo == NULL)
1255		pa = 0;
1256	else
1257		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1258	PMAP_UNLOCK(pm);
1259	return (pa);
1260}
1261
1262/*
1263 * Atomically extract and hold the physical page with the given
1264 * pmap and virtual address pair if that mapping permits the given
1265 * protection.
1266 */
1267vm_page_t
1268moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1269{
1270	struct	pvo_entry *pvo;
1271	vm_page_t m;
1272        vm_paddr_t pa;
1273
1274	m = NULL;
1275	pa = 0;
1276	PMAP_LOCK(pmap);
1277retry:
1278	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1279	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1280	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1281	     (prot & VM_PROT_WRITE) == 0)) {
1282		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1283			goto retry;
1284		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1285		vm_page_hold(m);
1286	}
1287	PA_UNLOCK_COND(pa);
1288	PMAP_UNLOCK(pmap);
1289	return (m);
1290}
1291
1292void
1293moea_init(mmu_t mmu)
1294{
1295
1296	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1297	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1298	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1299	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1300	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1301	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1302	moea_initialized = TRUE;
1303}
1304
1305boolean_t
1306moea_is_referenced(mmu_t mmu, vm_page_t m)
1307{
1308	boolean_t rv;
1309
1310	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1311	    ("moea_is_referenced: page %p is not managed", m));
1312	rw_wlock(&pvh_global_lock);
1313	rv = moea_query_bit(m, PTE_REF);
1314	rw_wunlock(&pvh_global_lock);
1315	return (rv);
1316}
1317
1318boolean_t
1319moea_is_modified(mmu_t mmu, vm_page_t m)
1320{
1321	boolean_t rv;
1322
1323	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1324	    ("moea_is_modified: page %p is not managed", m));
1325
1326	/*
1327	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1328	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1329	 * is clear, no PTEs can have PTE_CHG set.
1330	 */
1331	VM_OBJECT_ASSERT_WLOCKED(m->object);
1332	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1333		return (FALSE);
1334	rw_wlock(&pvh_global_lock);
1335	rv = moea_query_bit(m, PTE_CHG);
1336	rw_wunlock(&pvh_global_lock);
1337	return (rv);
1338}
1339
1340boolean_t
1341moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1342{
1343	struct pvo_entry *pvo;
1344	boolean_t rv;
1345
1346	PMAP_LOCK(pmap);
1347	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1348	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1349	PMAP_UNLOCK(pmap);
1350	return (rv);
1351}
1352
1353void
1354moea_clear_modify(mmu_t mmu, vm_page_t m)
1355{
1356
1357	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1358	    ("moea_clear_modify: page %p is not managed", m));
1359	VM_OBJECT_ASSERT_WLOCKED(m->object);
1360	KASSERT(!vm_page_xbusied(m),
1361	    ("moea_clear_modify: page %p is exclusive busy", m));
1362
1363	/*
1364	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1365	 * set.  If the object containing the page is locked and the page is
1366	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1367	 */
1368	if ((m->aflags & PGA_WRITEABLE) == 0)
1369		return;
1370	rw_wlock(&pvh_global_lock);
1371	moea_clear_bit(m, PTE_CHG);
1372	rw_wunlock(&pvh_global_lock);
1373}
1374
1375/*
1376 * Clear the write and modified bits in each of the given page's mappings.
1377 */
1378void
1379moea_remove_write(mmu_t mmu, vm_page_t m)
1380{
1381	struct	pvo_entry *pvo;
1382	struct	pte *pt;
1383	pmap_t	pmap;
1384	u_int	lo;
1385
1386	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1387	    ("moea_remove_write: page %p is not managed", m));
1388
1389	/*
1390	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1391	 * set by another thread while the object is locked.  Thus,
1392	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1393	 */
1394	VM_OBJECT_ASSERT_WLOCKED(m->object);
1395	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1396		return;
1397	rw_wlock(&pvh_global_lock);
1398	lo = moea_attr_fetch(m);
1399	powerpc_sync();
1400	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1401		pmap = pvo->pvo_pmap;
1402		PMAP_LOCK(pmap);
1403		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1404			pt = moea_pvo_to_pte(pvo, -1);
1405			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1406			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1407			if (pt != NULL) {
1408				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1409				lo |= pvo->pvo_pte.pte.pte_lo;
1410				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1411				moea_pte_change(pt, &pvo->pvo_pte.pte,
1412				    pvo->pvo_vaddr);
1413				mtx_unlock(&moea_table_mutex);
1414			}
1415		}
1416		PMAP_UNLOCK(pmap);
1417	}
1418	if ((lo & PTE_CHG) != 0) {
1419		moea_attr_clear(m, PTE_CHG);
1420		vm_page_dirty(m);
1421	}
1422	vm_page_aflag_clear(m, PGA_WRITEABLE);
1423	rw_wunlock(&pvh_global_lock);
1424}
1425
1426/*
1427 *	moea_ts_referenced:
1428 *
1429 *	Return a count of reference bits for a page, clearing those bits.
1430 *	It is not necessary for every reference bit to be cleared, but it
1431 *	is necessary that 0 only be returned when there are truly no
1432 *	reference bits set.
1433 *
1434 *	XXX: The exact number of bits to check and clear is a matter that
1435 *	should be tested and standardized at some point in the future for
1436 *	optimal aging of shared pages.
1437 */
1438int
1439moea_ts_referenced(mmu_t mmu, vm_page_t m)
1440{
1441	int count;
1442
1443	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1444	    ("moea_ts_referenced: page %p is not managed", m));
1445	rw_wlock(&pvh_global_lock);
1446	count = moea_clear_bit(m, PTE_REF);
1447	rw_wunlock(&pvh_global_lock);
1448	return (count);
1449}
1450
1451/*
1452 * Modify the WIMG settings of all mappings for a page.
1453 */
1454void
1455moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1456{
1457	struct	pvo_entry *pvo;
1458	struct	pvo_head *pvo_head;
1459	struct	pte *pt;
1460	pmap_t	pmap;
1461	u_int	lo;
1462
1463	if ((m->oflags & VPO_UNMANAGED) != 0) {
1464		m->md.mdpg_cache_attrs = ma;
1465		return;
1466	}
1467
1468	rw_wlock(&pvh_global_lock);
1469	pvo_head = vm_page_to_pvoh(m);
1470	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1471
1472	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1473		pmap = pvo->pvo_pmap;
1474		PMAP_LOCK(pmap);
1475		pt = moea_pvo_to_pte(pvo, -1);
1476		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1477		pvo->pvo_pte.pte.pte_lo |= lo;
1478		if (pt != NULL) {
1479			moea_pte_change(pt, &pvo->pvo_pte.pte,
1480			    pvo->pvo_vaddr);
1481			if (pvo->pvo_pmap == kernel_pmap)
1482				isync();
1483		}
1484		mtx_unlock(&moea_table_mutex);
1485		PMAP_UNLOCK(pmap);
1486	}
1487	m->md.mdpg_cache_attrs = ma;
1488	rw_wunlock(&pvh_global_lock);
1489}
1490
1491/*
1492 * Map a wired page into kernel virtual address space.
1493 */
1494void
1495moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1496{
1497
1498	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1499}
1500
1501void
1502moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1503{
1504	u_int		pte_lo;
1505	int		error;
1506
1507#if 0
1508	if (va < VM_MIN_KERNEL_ADDRESS)
1509		panic("moea_kenter: attempt to enter non-kernel address %#x",
1510		    va);
1511#endif
1512
1513	pte_lo = moea_calc_wimg(pa, ma);
1514
1515	PMAP_LOCK(kernel_pmap);
1516	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1517	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1518
1519	if (error != 0 && error != ENOENT)
1520		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1521		    pa, error);
1522
1523	PMAP_UNLOCK(kernel_pmap);
1524}
1525
1526/*
1527 * Extract the physical page address associated with the given kernel virtual
1528 * address.
1529 */
1530vm_paddr_t
1531moea_kextract(mmu_t mmu, vm_offset_t va)
1532{
1533	struct		pvo_entry *pvo;
1534	vm_paddr_t pa;
1535
1536	/*
1537	 * Allow direct mappings on 32-bit OEA
1538	 */
1539	if (va < VM_MIN_KERNEL_ADDRESS) {
1540		return (va);
1541	}
1542
1543	PMAP_LOCK(kernel_pmap);
1544	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1545	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1546	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1547	PMAP_UNLOCK(kernel_pmap);
1548	return (pa);
1549}
1550
1551/*
1552 * Remove a wired page from kernel virtual address space.
1553 */
1554void
1555moea_kremove(mmu_t mmu, vm_offset_t va)
1556{
1557
1558	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1559}
1560
1561/*
1562 * Map a range of physical addresses into kernel virtual address space.
1563 *
1564 * The value passed in *virt is a suggested virtual address for the mapping.
1565 * Architectures which can support a direct-mapped physical to virtual region
1566 * can return the appropriate address within that region, leaving '*virt'
1567 * unchanged.  We cannot and therefore do not; *virt is updated with the
1568 * first usable address after the mapped region.
1569 */
1570vm_offset_t
1571moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1572    vm_paddr_t pa_end, int prot)
1573{
1574	vm_offset_t	sva, va;
1575
1576	sva = *virt;
1577	va = sva;
1578	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1579		moea_kenter(mmu, va, pa_start);
1580	*virt = va;
1581	return (sva);
1582}
1583
1584/*
1585 * Returns true if the pmap's pv is one of the first
1586 * 16 pvs linked to from this page.  This count may
1587 * be changed upwards or downwards in the future; it
1588 * is only necessary that true be returned for a small
1589 * subset of pmaps for proper page aging.
1590 */
1591boolean_t
1592moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1593{
1594        int loops;
1595	struct pvo_entry *pvo;
1596	boolean_t rv;
1597
1598	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1599	    ("moea_page_exists_quick: page %p is not managed", m));
1600	loops = 0;
1601	rv = FALSE;
1602	rw_wlock(&pvh_global_lock);
1603	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1604		if (pvo->pvo_pmap == pmap) {
1605			rv = TRUE;
1606			break;
1607		}
1608		if (++loops >= 16)
1609			break;
1610	}
1611	rw_wunlock(&pvh_global_lock);
1612	return (rv);
1613}
1614
1615/*
1616 * Return the number of managed mappings to the given physical page
1617 * that are wired.
1618 */
1619int
1620moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1621{
1622	struct pvo_entry *pvo;
1623	int count;
1624
1625	count = 0;
1626	if ((m->oflags & VPO_UNMANAGED) != 0)
1627		return (count);
1628	rw_wlock(&pvh_global_lock);
1629	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1630		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1631			count++;
1632	rw_wunlock(&pvh_global_lock);
1633	return (count);
1634}
1635
1636static u_int	moea_vsidcontext;
1637
1638void
1639moea_pinit(mmu_t mmu, pmap_t pmap)
1640{
1641	int	i, mask;
1642	u_int	entropy;
1643
1644	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1645	RB_INIT(&pmap->pmap_pvo);
1646
1647	entropy = 0;
1648	__asm __volatile("mftb %0" : "=r"(entropy));
1649
1650	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1651	    == NULL) {
1652		pmap->pmap_phys = pmap;
1653	}
1654
1655
1656	mtx_lock(&moea_vsid_mutex);
1657	/*
1658	 * Allocate some segment registers for this pmap.
1659	 */
1660	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1661		u_int	hash, n;
1662
1663		/*
1664		 * Create a new value by mutiplying by a prime and adding in
1665		 * entropy from the timebase register.  This is to make the
1666		 * VSID more random so that the PT hash function collides
1667		 * less often.  (Note that the prime casues gcc to do shifts
1668		 * instead of a multiply.)
1669		 */
1670		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1671		hash = moea_vsidcontext & (NPMAPS - 1);
1672		if (hash == 0)		/* 0 is special, avoid it */
1673			continue;
1674		n = hash >> 5;
1675		mask = 1 << (hash & (VSID_NBPW - 1));
1676		hash = (moea_vsidcontext & 0xfffff);
1677		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1678			/* anything free in this bucket? */
1679			if (moea_vsid_bitmap[n] == 0xffffffff) {
1680				entropy = (moea_vsidcontext >> 20);
1681				continue;
1682			}
1683			i = ffs(~moea_vsid_bitmap[n]) - 1;
1684			mask = 1 << i;
1685			hash &= 0xfffff & ~(VSID_NBPW - 1);
1686			hash |= i;
1687		}
1688		KASSERT(!(moea_vsid_bitmap[n] & mask),
1689		    ("Allocating in-use VSID group %#x\n", hash));
1690		moea_vsid_bitmap[n] |= mask;
1691		for (i = 0; i < 16; i++)
1692			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1693		mtx_unlock(&moea_vsid_mutex);
1694		return;
1695	}
1696
1697	mtx_unlock(&moea_vsid_mutex);
1698	panic("moea_pinit: out of segments");
1699}
1700
1701/*
1702 * Initialize the pmap associated with process 0.
1703 */
1704void
1705moea_pinit0(mmu_t mmu, pmap_t pm)
1706{
1707
1708	PMAP_LOCK_INIT(pm);
1709	moea_pinit(mmu, pm);
1710	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1711}
1712
1713/*
1714 * Set the physical protection on the specified range of this map as requested.
1715 */
1716void
1717moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1718    vm_prot_t prot)
1719{
1720	struct	pvo_entry *pvo, *tpvo, key;
1721	struct	pte *pt;
1722
1723	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1724	    ("moea_protect: non current pmap"));
1725
1726	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1727		moea_remove(mmu, pm, sva, eva);
1728		return;
1729	}
1730
1731	rw_wlock(&pvh_global_lock);
1732	PMAP_LOCK(pm);
1733	key.pvo_vaddr = sva;
1734	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1735	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1736		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1737		if ((prot & VM_PROT_EXECUTE) == 0)
1738			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1739
1740		/*
1741		 * Grab the PTE pointer before we diddle with the cached PTE
1742		 * copy.
1743		 */
1744		pt = moea_pvo_to_pte(pvo, -1);
1745		/*
1746		 * Change the protection of the page.
1747		 */
1748		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1749		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1750
1751		/*
1752		 * If the PVO is in the page table, update that pte as well.
1753		 */
1754		if (pt != NULL) {
1755			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1756			mtx_unlock(&moea_table_mutex);
1757		}
1758	}
1759	rw_wunlock(&pvh_global_lock);
1760	PMAP_UNLOCK(pm);
1761}
1762
1763/*
1764 * Map a list of wired pages into kernel virtual address space.  This is
1765 * intended for temporary mappings which do not need page modification or
1766 * references recorded.  Existing mappings in the region are overwritten.
1767 */
1768void
1769moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1770{
1771	vm_offset_t va;
1772
1773	va = sva;
1774	while (count-- > 0) {
1775		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1776		va += PAGE_SIZE;
1777		m++;
1778	}
1779}
1780
1781/*
1782 * Remove page mappings from kernel virtual address space.  Intended for
1783 * temporary mappings entered by moea_qenter.
1784 */
1785void
1786moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1787{
1788	vm_offset_t va;
1789
1790	va = sva;
1791	while (count-- > 0) {
1792		moea_kremove(mmu, va);
1793		va += PAGE_SIZE;
1794	}
1795}
1796
1797void
1798moea_release(mmu_t mmu, pmap_t pmap)
1799{
1800        int idx, mask;
1801
1802	/*
1803	 * Free segment register's VSID
1804	 */
1805        if (pmap->pm_sr[0] == 0)
1806                panic("moea_release");
1807
1808	mtx_lock(&moea_vsid_mutex);
1809        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1810        mask = 1 << (idx % VSID_NBPW);
1811        idx /= VSID_NBPW;
1812        moea_vsid_bitmap[idx] &= ~mask;
1813	mtx_unlock(&moea_vsid_mutex);
1814}
1815
1816/*
1817 * Remove the given range of addresses from the specified map.
1818 */
1819void
1820moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1821{
1822	struct	pvo_entry *pvo, *tpvo, key;
1823
1824	rw_wlock(&pvh_global_lock);
1825	PMAP_LOCK(pm);
1826	key.pvo_vaddr = sva;
1827	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1828	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1829		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1830		moea_pvo_remove(pvo, -1);
1831	}
1832	PMAP_UNLOCK(pm);
1833	rw_wunlock(&pvh_global_lock);
1834}
1835
1836/*
1837 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1838 * will reflect changes in pte's back to the vm_page.
1839 */
1840void
1841moea_remove_all(mmu_t mmu, vm_page_t m)
1842{
1843	struct  pvo_head *pvo_head;
1844	struct	pvo_entry *pvo, *next_pvo;
1845	pmap_t	pmap;
1846
1847	rw_wlock(&pvh_global_lock);
1848	pvo_head = vm_page_to_pvoh(m);
1849	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1850		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1851
1852		pmap = pvo->pvo_pmap;
1853		PMAP_LOCK(pmap);
1854		moea_pvo_remove(pvo, -1);
1855		PMAP_UNLOCK(pmap);
1856	}
1857	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1858		moea_attr_clear(m, PTE_CHG);
1859		vm_page_dirty(m);
1860	}
1861	vm_page_aflag_clear(m, PGA_WRITEABLE);
1862	rw_wunlock(&pvh_global_lock);
1863}
1864
1865/*
1866 * Allocate a physical page of memory directly from the phys_avail map.
1867 * Can only be called from moea_bootstrap before avail start and end are
1868 * calculated.
1869 */
1870static vm_offset_t
1871moea_bootstrap_alloc(vm_size_t size, u_int align)
1872{
1873	vm_offset_t	s, e;
1874	int		i, j;
1875
1876	size = round_page(size);
1877	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1878		if (align != 0)
1879			s = (phys_avail[i] + align - 1) & ~(align - 1);
1880		else
1881			s = phys_avail[i];
1882		e = s + size;
1883
1884		if (s < phys_avail[i] || e > phys_avail[i + 1])
1885			continue;
1886
1887		if (s == phys_avail[i]) {
1888			phys_avail[i] += size;
1889		} else if (e == phys_avail[i + 1]) {
1890			phys_avail[i + 1] -= size;
1891		} else {
1892			for (j = phys_avail_count * 2; j > i; j -= 2) {
1893				phys_avail[j] = phys_avail[j - 2];
1894				phys_avail[j + 1] = phys_avail[j - 1];
1895			}
1896
1897			phys_avail[i + 3] = phys_avail[i + 1];
1898			phys_avail[i + 1] = s;
1899			phys_avail[i + 2] = e;
1900			phys_avail_count++;
1901		}
1902
1903		return (s);
1904	}
1905	panic("moea_bootstrap_alloc: could not allocate memory");
1906}
1907
1908static void
1909moea_syncicache(vm_offset_t pa, vm_size_t len)
1910{
1911	__syncicache((void *)pa, len);
1912}
1913
1914static int
1915moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1916    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1917{
1918	struct	pvo_entry *pvo;
1919	u_int	sr;
1920	int	first;
1921	u_int	ptegidx;
1922	int	i;
1923	int     bootstrap;
1924
1925	moea_pvo_enter_calls++;
1926	first = 0;
1927	bootstrap = 0;
1928
1929	/*
1930	 * Compute the PTE Group index.
1931	 */
1932	va &= ~ADDR_POFF;
1933	sr = va_to_sr(pm->pm_sr, va);
1934	ptegidx = va_to_pteg(sr, va);
1935
1936	/*
1937	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1938	 * there is a mapping.
1939	 */
1940	mtx_lock(&moea_table_mutex);
1941	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1942		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1943			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1944			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1945			    (pte_lo & PTE_PP)) {
1946				mtx_unlock(&moea_table_mutex);
1947				return (0);
1948			}
1949			moea_pvo_remove(pvo, -1);
1950			break;
1951		}
1952	}
1953
1954	/*
1955	 * If we aren't overwriting a mapping, try to allocate.
1956	 */
1957	if (moea_initialized) {
1958		pvo = uma_zalloc(zone, M_NOWAIT);
1959	} else {
1960		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1961			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1962			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1963			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1964		}
1965		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1966		moea_bpvo_pool_index++;
1967		bootstrap = 1;
1968	}
1969
1970	if (pvo == NULL) {
1971		mtx_unlock(&moea_table_mutex);
1972		return (ENOMEM);
1973	}
1974
1975	moea_pvo_entries++;
1976	pvo->pvo_vaddr = va;
1977	pvo->pvo_pmap = pm;
1978	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1979	pvo->pvo_vaddr &= ~ADDR_POFF;
1980	if (flags & VM_PROT_EXECUTE)
1981		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1982	if (flags & PVO_WIRED)
1983		pvo->pvo_vaddr |= PVO_WIRED;
1984	if (pvo_head != &moea_pvo_kunmanaged)
1985		pvo->pvo_vaddr |= PVO_MANAGED;
1986	if (bootstrap)
1987		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1988
1989	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1990
1991	/*
1992	 * Add to pmap list
1993	 */
1994	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1995
1996	/*
1997	 * Remember if the list was empty and therefore will be the first
1998	 * item.
1999	 */
2000	if (LIST_FIRST(pvo_head) == NULL)
2001		first = 1;
2002	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2003
2004	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2005		pm->pm_stats.wired_count++;
2006	pm->pm_stats.resident_count++;
2007
2008	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2009	KASSERT(i < 8, ("Invalid PTE index"));
2010	if (i >= 0) {
2011		PVO_PTEGIDX_SET(pvo, i);
2012	} else {
2013		panic("moea_pvo_enter: overflow");
2014		moea_pte_overflow++;
2015	}
2016	mtx_unlock(&moea_table_mutex);
2017
2018	return (first ? ENOENT : 0);
2019}
2020
2021static void
2022moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2023{
2024	struct	pte *pt;
2025
2026	/*
2027	 * If there is an active pte entry, we need to deactivate it (and
2028	 * save the ref & cfg bits).
2029	 */
2030	pt = moea_pvo_to_pte(pvo, pteidx);
2031	if (pt != NULL) {
2032		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2033		mtx_unlock(&moea_table_mutex);
2034		PVO_PTEGIDX_CLR(pvo);
2035	} else {
2036		moea_pte_overflow--;
2037	}
2038
2039	/*
2040	 * Update our statistics.
2041	 */
2042	pvo->pvo_pmap->pm_stats.resident_count--;
2043	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2044		pvo->pvo_pmap->pm_stats.wired_count--;
2045
2046	/*
2047	 * Save the REF/CHG bits into their cache if the page is managed.
2048	 */
2049	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2050		struct	vm_page *pg;
2051
2052		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2053		if (pg != NULL) {
2054			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2055			    (PTE_REF | PTE_CHG));
2056		}
2057	}
2058
2059	/*
2060	 * Remove this PVO from the PV and pmap lists.
2061	 */
2062	LIST_REMOVE(pvo, pvo_vlink);
2063	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2064
2065	/*
2066	 * Remove this from the overflow list and return it to the pool
2067	 * if we aren't going to reuse it.
2068	 */
2069	LIST_REMOVE(pvo, pvo_olink);
2070	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2071		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2072		    moea_upvo_zone, pvo);
2073	moea_pvo_entries--;
2074	moea_pvo_remove_calls++;
2075}
2076
2077static __inline int
2078moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2079{
2080	int	pteidx;
2081
2082	/*
2083	 * We can find the actual pte entry without searching by grabbing
2084	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2085	 * noticing the HID bit.
2086	 */
2087	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2088	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2089		pteidx ^= moea_pteg_mask * 8;
2090
2091	return (pteidx);
2092}
2093
2094static struct pvo_entry *
2095moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2096{
2097	struct	pvo_entry *pvo;
2098	int	ptegidx;
2099	u_int	sr;
2100
2101	va &= ~ADDR_POFF;
2102	sr = va_to_sr(pm->pm_sr, va);
2103	ptegidx = va_to_pteg(sr, va);
2104
2105	mtx_lock(&moea_table_mutex);
2106	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2107		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2108			if (pteidx_p)
2109				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2110			break;
2111		}
2112	}
2113	mtx_unlock(&moea_table_mutex);
2114
2115	return (pvo);
2116}
2117
2118static struct pte *
2119moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2120{
2121	struct	pte *pt;
2122
2123	/*
2124	 * If we haven't been supplied the ptegidx, calculate it.
2125	 */
2126	if (pteidx == -1) {
2127		int	ptegidx;
2128		u_int	sr;
2129
2130		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2131		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2132		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2133	}
2134
2135	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2136	mtx_lock(&moea_table_mutex);
2137
2138	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2139		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2140		    "valid pte index", pvo);
2141	}
2142
2143	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2144		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2145		    "pvo but no valid pte", pvo);
2146	}
2147
2148	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2149		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2150			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2151			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2152		}
2153
2154		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2155		    != 0) {
2156			panic("moea_pvo_to_pte: pvo %p pte does not match "
2157			    "pte %p in moea_pteg_table", pvo, pt);
2158		}
2159
2160		mtx_assert(&moea_table_mutex, MA_OWNED);
2161		return (pt);
2162	}
2163
2164	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2165		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2166		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2167	}
2168
2169	mtx_unlock(&moea_table_mutex);
2170	return (NULL);
2171}
2172
2173/*
2174 * XXX: THIS STUFF SHOULD BE IN pte.c?
2175 */
2176int
2177moea_pte_spill(vm_offset_t addr)
2178{
2179	struct	pvo_entry *source_pvo, *victim_pvo;
2180	struct	pvo_entry *pvo;
2181	int	ptegidx, i, j;
2182	u_int	sr;
2183	struct	pteg *pteg;
2184	struct	pte *pt;
2185
2186	moea_pte_spills++;
2187
2188	sr = mfsrin(addr);
2189	ptegidx = va_to_pteg(sr, addr);
2190
2191	/*
2192	 * Have to substitute some entry.  Use the primary hash for this.
2193	 * Use low bits of timebase as random generator.
2194	 */
2195	pteg = &moea_pteg_table[ptegidx];
2196	mtx_lock(&moea_table_mutex);
2197	__asm __volatile("mftb %0" : "=r"(i));
2198	i &= 7;
2199	pt = &pteg->pt[i];
2200
2201	source_pvo = NULL;
2202	victim_pvo = NULL;
2203	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2204		/*
2205		 * We need to find a pvo entry for this address.
2206		 */
2207		if (source_pvo == NULL &&
2208		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2209		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2210			/*
2211			 * Now found an entry to be spilled into the pteg.
2212			 * The PTE is now valid, so we know it's active.
2213			 */
2214			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2215
2216			if (j >= 0) {
2217				PVO_PTEGIDX_SET(pvo, j);
2218				moea_pte_overflow--;
2219				mtx_unlock(&moea_table_mutex);
2220				return (1);
2221			}
2222
2223			source_pvo = pvo;
2224
2225			if (victim_pvo != NULL)
2226				break;
2227		}
2228
2229		/*
2230		 * We also need the pvo entry of the victim we are replacing
2231		 * so save the R & C bits of the PTE.
2232		 */
2233		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2234		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2235			victim_pvo = pvo;
2236			if (source_pvo != NULL)
2237				break;
2238		}
2239	}
2240
2241	if (source_pvo == NULL) {
2242		mtx_unlock(&moea_table_mutex);
2243		return (0);
2244	}
2245
2246	if (victim_pvo == NULL) {
2247		if ((pt->pte_hi & PTE_HID) == 0)
2248			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2249			    "entry", pt);
2250
2251		/*
2252		 * If this is a secondary PTE, we need to search it's primary
2253		 * pvo bucket for the matching PVO.
2254		 */
2255		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2256		    pvo_olink) {
2257			/*
2258			 * We also need the pvo entry of the victim we are
2259			 * replacing so save the R & C bits of the PTE.
2260			 */
2261			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2262				victim_pvo = pvo;
2263				break;
2264			}
2265		}
2266
2267		if (victim_pvo == NULL)
2268			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2269			    "entry", pt);
2270	}
2271
2272	/*
2273	 * We are invalidating the TLB entry for the EA we are replacing even
2274	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2275	 * contained in the TLB entry.
2276	 */
2277	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2278
2279	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2280	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2281
2282	PVO_PTEGIDX_CLR(victim_pvo);
2283	PVO_PTEGIDX_SET(source_pvo, i);
2284	moea_pte_replacements++;
2285
2286	mtx_unlock(&moea_table_mutex);
2287	return (1);
2288}
2289
2290static __inline struct pvo_entry *
2291moea_pte_spillable_ident(u_int ptegidx)
2292{
2293	struct	pte *pt;
2294	struct	pvo_entry *pvo_walk, *pvo = NULL;
2295
2296	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2297		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2298			continue;
2299
2300		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2301			continue;
2302
2303		pt = moea_pvo_to_pte(pvo_walk, -1);
2304
2305		if (pt == NULL)
2306			continue;
2307
2308		pvo = pvo_walk;
2309
2310		mtx_unlock(&moea_table_mutex);
2311		if (!(pt->pte_lo & PTE_REF))
2312			return (pvo_walk);
2313	}
2314
2315	return (pvo);
2316}
2317
2318static int
2319moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2320{
2321	struct	pte *pt;
2322	struct	pvo_entry *victim_pvo;
2323	int	i;
2324	int	victim_idx;
2325	u_int	pteg_bkpidx = ptegidx;
2326
2327	mtx_assert(&moea_table_mutex, MA_OWNED);
2328
2329	/*
2330	 * First try primary hash.
2331	 */
2332	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2333		if ((pt->pte_hi & PTE_VALID) == 0) {
2334			pvo_pt->pte_hi &= ~PTE_HID;
2335			moea_pte_set(pt, pvo_pt);
2336			return (i);
2337		}
2338	}
2339
2340	/*
2341	 * Now try secondary hash.
2342	 */
2343	ptegidx ^= moea_pteg_mask;
2344
2345	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2346		if ((pt->pte_hi & PTE_VALID) == 0) {
2347			pvo_pt->pte_hi |= PTE_HID;
2348			moea_pte_set(pt, pvo_pt);
2349			return (i);
2350		}
2351	}
2352
2353	/* Try again, but this time try to force a PTE out. */
2354	ptegidx = pteg_bkpidx;
2355
2356	victim_pvo = moea_pte_spillable_ident(ptegidx);
2357	if (victim_pvo == NULL) {
2358		ptegidx ^= moea_pteg_mask;
2359		victim_pvo = moea_pte_spillable_ident(ptegidx);
2360	}
2361
2362	if (victim_pvo == NULL) {
2363		panic("moea_pte_insert: overflow");
2364		return (-1);
2365	}
2366
2367	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2368
2369	if (pteg_bkpidx == ptegidx)
2370		pvo_pt->pte_hi &= ~PTE_HID;
2371	else
2372		pvo_pt->pte_hi |= PTE_HID;
2373
2374	/*
2375	 * Synchronize the sacrifice PTE with its PVO, then mark both
2376	 * invalid. The PVO will be reused when/if the VM system comes
2377	 * here after a fault.
2378	 */
2379	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2380
2381	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2382	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2383
2384	/*
2385	 * Set the new PTE.
2386	 */
2387	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2388	PVO_PTEGIDX_CLR(victim_pvo);
2389	moea_pte_overflow++;
2390	moea_pte_set(pt, pvo_pt);
2391
2392	return (victim_idx & 7);
2393}
2394
2395static boolean_t
2396moea_query_bit(vm_page_t m, int ptebit)
2397{
2398	struct	pvo_entry *pvo;
2399	struct	pte *pt;
2400
2401	rw_assert(&pvh_global_lock, RA_WLOCKED);
2402	if (moea_attr_fetch(m) & ptebit)
2403		return (TRUE);
2404
2405	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2406
2407		/*
2408		 * See if we saved the bit off.  If so, cache it and return
2409		 * success.
2410		 */
2411		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2412			moea_attr_save(m, ptebit);
2413			return (TRUE);
2414		}
2415	}
2416
2417	/*
2418	 * No luck, now go through the hard part of looking at the PTEs
2419	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2420	 * the PTEs.
2421	 */
2422	powerpc_sync();
2423	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2424
2425		/*
2426		 * See if this pvo has a valid PTE.  if so, fetch the
2427		 * REF/CHG bits from the valid PTE.  If the appropriate
2428		 * ptebit is set, cache it and return success.
2429		 */
2430		pt = moea_pvo_to_pte(pvo, -1);
2431		if (pt != NULL) {
2432			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2433			mtx_unlock(&moea_table_mutex);
2434			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2435				moea_attr_save(m, ptebit);
2436				return (TRUE);
2437			}
2438		}
2439	}
2440
2441	return (FALSE);
2442}
2443
2444static u_int
2445moea_clear_bit(vm_page_t m, int ptebit)
2446{
2447	u_int	count;
2448	struct	pvo_entry *pvo;
2449	struct	pte *pt;
2450
2451	rw_assert(&pvh_global_lock, RA_WLOCKED);
2452
2453	/*
2454	 * Clear the cached value.
2455	 */
2456	moea_attr_clear(m, ptebit);
2457
2458	/*
2459	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2460	 * we can reset the right ones).  note that since the pvo entries and
2461	 * list heads are accessed via BAT0 and are never placed in the page
2462	 * table, we don't have to worry about further accesses setting the
2463	 * REF/CHG bits.
2464	 */
2465	powerpc_sync();
2466
2467	/*
2468	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2469	 * valid pte clear the ptebit from the valid pte.
2470	 */
2471	count = 0;
2472	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2473		pt = moea_pvo_to_pte(pvo, -1);
2474		if (pt != NULL) {
2475			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2476			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2477				count++;
2478				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2479			}
2480			mtx_unlock(&moea_table_mutex);
2481		}
2482		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2483	}
2484
2485	return (count);
2486}
2487
2488/*
2489 * Return true if the physical range is encompassed by the battable[idx]
2490 */
2491static int
2492moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2493{
2494	u_int prot;
2495	u_int32_t start;
2496	u_int32_t end;
2497	u_int32_t bat_ble;
2498
2499	/*
2500	 * Return immediately if not a valid mapping
2501	 */
2502	if (!(battable[idx].batu & BAT_Vs))
2503		return (EINVAL);
2504
2505	/*
2506	 * The BAT entry must be cache-inhibited, guarded, and r/w
2507	 * so it can function as an i/o page
2508	 */
2509	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2510	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2511		return (EPERM);
2512
2513	/*
2514	 * The address should be within the BAT range. Assume that the
2515	 * start address in the BAT has the correct alignment (thus
2516	 * not requiring masking)
2517	 */
2518	start = battable[idx].batl & BAT_PBS;
2519	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2520	end = start | (bat_ble << 15) | 0x7fff;
2521
2522	if ((pa < start) || ((pa + size) > end))
2523		return (ERANGE);
2524
2525	return (0);
2526}
2527
2528boolean_t
2529moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2530{
2531	int i;
2532
2533	/*
2534	 * This currently does not work for entries that
2535	 * overlap 256M BAT segments.
2536	 */
2537
2538	for(i = 0; i < 16; i++)
2539		if (moea_bat_mapped(i, pa, size) == 0)
2540			return (0);
2541
2542	return (EFAULT);
2543}
2544
2545/*
2546 * Map a set of physical memory pages into the kernel virtual
2547 * address space. Return a pointer to where it is mapped. This
2548 * routine is intended to be used for mapping device memory,
2549 * NOT real memory.
2550 */
2551void *
2552moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2553{
2554
2555	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2556}
2557
2558void *
2559moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2560{
2561	vm_offset_t va, tmpva, ppa, offset;
2562	int i;
2563
2564	ppa = trunc_page(pa);
2565	offset = pa & PAGE_MASK;
2566	size = roundup(offset + size, PAGE_SIZE);
2567
2568	/*
2569	 * If the physical address lies within a valid BAT table entry,
2570	 * return the 1:1 mapping. This currently doesn't work
2571	 * for regions that overlap 256M BAT segments.
2572	 */
2573	for (i = 0; i < 16; i++) {
2574		if (moea_bat_mapped(i, pa, size) == 0)
2575			return ((void *) pa);
2576	}
2577
2578	va = kva_alloc(size);
2579	if (!va)
2580		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2581
2582	for (tmpva = va; size > 0;) {
2583		moea_kenter_attr(mmu, tmpva, ppa, ma);
2584		tlbie(tmpva);
2585		size -= PAGE_SIZE;
2586		tmpva += PAGE_SIZE;
2587		ppa += PAGE_SIZE;
2588	}
2589
2590	return ((void *)(va + offset));
2591}
2592
2593void
2594moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2595{
2596	vm_offset_t base, offset;
2597
2598	/*
2599	 * If this is outside kernel virtual space, then it's a
2600	 * battable entry and doesn't require unmapping
2601	 */
2602	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2603		base = trunc_page(va);
2604		offset = va & PAGE_MASK;
2605		size = roundup(offset + size, PAGE_SIZE);
2606		kva_free(base, size);
2607	}
2608}
2609
2610static void
2611moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2612{
2613	struct pvo_entry *pvo;
2614	vm_offset_t lim;
2615	vm_paddr_t pa;
2616	vm_size_t len;
2617
2618	PMAP_LOCK(pm);
2619	while (sz > 0) {
2620		lim = round_page(va);
2621		len = MIN(lim - va, sz);
2622		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2623		if (pvo != NULL) {
2624			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2625			    (va & ADDR_POFF);
2626			moea_syncicache(pa, len);
2627		}
2628		va += len;
2629		sz -= len;
2630	}
2631	PMAP_UNLOCK(pm);
2632}
2633
2634vm_offset_t
2635moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2636    vm_size_t *sz)
2637{
2638	if (md->md_vaddr == ~0UL)
2639	    return (md->md_paddr + ofs);
2640	else
2641	    return (md->md_vaddr + ofs);
2642}
2643
2644struct pmap_md *
2645moea_scan_md(mmu_t mmu, struct pmap_md *prev)
2646{
2647	static struct pmap_md md;
2648	struct pvo_entry *pvo;
2649	vm_offset_t va;
2650
2651	if (dumpsys_minidump) {
2652		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2653		if (prev == NULL) {
2654			/* 1st: kernel .data and .bss. */
2655			md.md_index = 1;
2656			md.md_vaddr = trunc_page((uintptr_t)_etext);
2657			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2658			return (&md);
2659		}
2660		switch (prev->md_index) {
2661		case 1:
2662			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2663			md.md_index = 2;
2664			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2665			md.md_size = round_page(msgbufp->msg_size);
2666			break;
2667		case 2:
2668			/* 3rd: kernel VM. */
2669			va = prev->md_vaddr + prev->md_size;
2670			/* Find start of next chunk (from va). */
2671			while (va < virtual_end) {
2672				/* Don't dump the buffer cache. */
2673				if (va >= kmi.buffer_sva &&
2674				    va < kmi.buffer_eva) {
2675					va = kmi.buffer_eva;
2676					continue;
2677				}
2678				pvo = moea_pvo_find_va(kernel_pmap,
2679				    va & ~ADDR_POFF, NULL);
2680				if (pvo != NULL &&
2681				    (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2682					break;
2683				va += PAGE_SIZE;
2684			}
2685			if (va < virtual_end) {
2686				md.md_vaddr = va;
2687				va += PAGE_SIZE;
2688				/* Find last page in chunk. */
2689				while (va < virtual_end) {
2690					/* Don't run into the buffer cache. */
2691					if (va == kmi.buffer_sva)
2692						break;
2693					pvo = moea_pvo_find_va(kernel_pmap,
2694					    va & ~ADDR_POFF, NULL);
2695					if (pvo == NULL ||
2696					    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2697						break;
2698					va += PAGE_SIZE;
2699				}
2700				md.md_size = va - md.md_vaddr;
2701				break;
2702			}
2703			md.md_index = 3;
2704			/* FALLTHROUGH */
2705		default:
2706			return (NULL);
2707		}
2708	} else { /* minidumps */
2709		mem_regions(&pregions, &pregions_sz,
2710		    &regions, &regions_sz);
2711
2712		if (prev == NULL) {
2713			/* first physical chunk. */
2714			md.md_paddr = pregions[0].mr_start;
2715			md.md_size = pregions[0].mr_size;
2716			md.md_vaddr = ~0UL;
2717			md.md_index = 1;
2718		} else if (md.md_index < pregions_sz) {
2719			md.md_paddr = pregions[md.md_index].mr_start;
2720			md.md_size = pregions[md.md_index].mr_size;
2721			md.md_vaddr = ~0UL;
2722			md.md_index++;
2723		} else {
2724			/* There's no next physical chunk. */
2725			return (NULL);
2726		}
2727	}
2728
2729	return (&md);
2730}
2731