1/*-
2 * Copyright (c) 1982, 1986 The Regents of the University of California.
3 * Copyright (c) 1989, 1990 William Jolitz
4 * Copyright (c) 1994 John Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * the Systems Programming Group of the University of Utah Computer
9 * Science Department, and William Jolitz.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
36 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
37 *	from: src/sys/i386/i386/vm_machdep.c,v 1.132.2.2 2000/08/26 04:19:26 yokota
38 *	JNPR: vm_machdep.c,v 1.8.2.2 2007/08/16 15:59:17 girish
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD$");
43
44#include "opt_compat.h"
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/malloc.h>
50#include <sys/proc.h>
51#include <sys/syscall.h>
52#include <sys/sysent.h>
53#include <sys/buf.h>
54#include <sys/vnode.h>
55#include <sys/vmmeter.h>
56#include <sys/kernel.h>
57#include <sys/sysctl.h>
58#include <sys/unistd.h>
59
60#include <machine/cache.h>
61#include <machine/clock.h>
62#include <machine/cpu.h>
63#include <machine/md_var.h>
64#include <machine/pcb.h>
65
66#include <vm/vm.h>
67#include <vm/vm_extern.h>
68#include <vm/pmap.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_map.h>
71#include <vm/vm_page.h>
72#include <vm/vm_pageout.h>
73#include <vm/vm_param.h>
74#include <vm/uma.h>
75#include <vm/uma_int.h>
76
77#include <sys/user.h>
78#include <sys/mbuf.h>
79#ifndef __mips_n64
80#include <sys/sf_buf.h>
81#endif
82
83/* Duplicated from asm.h */
84#if defined(__mips_o32)
85#define	SZREG	4
86#else
87#define	SZREG	8
88#endif
89#if defined(__mips_o32) || defined(__mips_o64)
90#define	CALLFRAME_SIZ	(SZREG * (4 + 2))
91#elif defined(__mips_n32) || defined(__mips_n64)
92#define	CALLFRAME_SIZ	(SZREG * 4)
93#endif
94
95#ifndef __mips_n64
96
97#ifndef NSFBUFS
98#define	NSFBUFS		(512 + maxusers * 16)
99#endif
100
101static int nsfbufs;
102static int nsfbufspeak;
103static int nsfbufsused;
104
105SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufs, CTLFLAG_RDTUN, &nsfbufs, 0,
106    "Maximum number of sendfile(2) sf_bufs available");
107SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufspeak, CTLFLAG_RD, &nsfbufspeak, 0,
108    "Number of sendfile(2) sf_bufs at peak usage");
109SYSCTL_INT(_kern_ipc, OID_AUTO, nsfbufsused, CTLFLAG_RD, &nsfbufsused, 0,
110    "Number of sendfile(2) sf_bufs in use");
111
112static void	sf_buf_init(void *arg);
113SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL);
114
115/*
116 * Expanded sf_freelist head.  Really an SLIST_HEAD() in disguise, with the
117 * sf_freelist head with the sf_lock mutex.
118 */
119static struct {
120	SLIST_HEAD(, sf_buf) sf_head;
121	struct mtx sf_lock;
122} sf_freelist;
123
124static u_int	sf_buf_alloc_want;
125#endif /* !__mips_n64 */
126
127/*
128 * Finish a fork operation, with process p2 nearly set up.
129 * Copy and update the pcb, set up the stack so that the child
130 * ready to run and return to user mode.
131 */
132void
133cpu_fork(register struct thread *td1,register struct proc *p2,
134    struct thread *td2,int flags)
135{
136	register struct proc *p1;
137	struct pcb *pcb2;
138
139	p1 = td1->td_proc;
140	if ((flags & RFPROC) == 0)
141		return;
142	/* It is assumed that the vm_thread_alloc called
143	 * cpu_thread_alloc() before cpu_fork is called.
144	 */
145
146	/* Point the pcb to the top of the stack */
147	pcb2 = td2->td_pcb;
148
149	/* Copy p1's pcb, note that in this case
150	 * our pcb also includes the td_frame being copied
151	 * too. The older mips2 code did an additional copy
152	 * of the td_frame, for us that's not needed any
153	 * longer (this copy does them both)
154	 */
155	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));
156
157	/* Point mdproc and then copy over td1's contents
158	 * md_proc is empty for MIPS
159	 */
160	td2->td_md.md_flags = td1->td_md.md_flags & MDTD_FPUSED;
161
162	/*
163	 * Set up return-value registers as fork() libc stub expects.
164	 */
165	td2->td_frame->v0 = 0;
166	td2->td_frame->v1 = 1;
167	td2->td_frame->a3 = 0;
168
169	if (td1 == PCPU_GET(fpcurthread))
170		MipsSaveCurFPState(td1);
171
172	pcb2->pcb_context[PCB_REG_RA] = (register_t)(intptr_t)fork_trampoline;
173	/* Make sp 64-bit aligned */
174	pcb2->pcb_context[PCB_REG_SP] = (register_t)(((vm_offset_t)td2->td_pcb &
175	    ~(sizeof(__int64_t) - 1)) - CALLFRAME_SIZ);
176	pcb2->pcb_context[PCB_REG_S0] = (register_t)(intptr_t)fork_return;
177	pcb2->pcb_context[PCB_REG_S1] = (register_t)(intptr_t)td2;
178	pcb2->pcb_context[PCB_REG_S2] = (register_t)(intptr_t)td2->td_frame;
179	pcb2->pcb_context[PCB_REG_SR] = mips_rd_status() &
180	    (MIPS_SR_KX | MIPS_SR_UX | MIPS_SR_INT_MASK);
181	/*
182	 * FREEBSD_DEVELOPERS_FIXME:
183	 * Setup any other CPU-Specific registers (Not MIPS Standard)
184	 * and/or bits in other standard MIPS registers (if CPU-Specific)
185	 *  that are needed.
186	 */
187
188	td2->td_md.md_tls = td1->td_md.md_tls;
189	td2->td_md.md_saved_intr = MIPS_SR_INT_IE;
190	td2->td_md.md_spinlock_count = 1;
191#ifdef CPU_CNMIPS
192	if (td1->td_md.md_flags & MDTD_COP2USED) {
193		if (td1->td_md.md_cop2owner == COP2_OWNER_USERLAND) {
194			if (td1->td_md.md_ucop2)
195				octeon_cop2_save(td1->td_md.md_ucop2);
196			else
197				panic("cpu_fork: ucop2 is NULL but COP2 is enabled");
198		}
199		else {
200			if (td1->td_md.md_cop2)
201				octeon_cop2_save(td1->td_md.md_cop2);
202			else
203				panic("cpu_fork: cop2 is NULL but COP2 is enabled");
204		}
205	}
206
207	if (td1->td_md.md_cop2) {
208		td2->td_md.md_cop2 = octeon_cop2_alloc_ctx();
209		memcpy(td2->td_md.md_cop2, td1->td_md.md_cop2,
210			sizeof(*td1->td_md.md_cop2));
211	}
212	if (td1->td_md.md_ucop2) {
213		td2->td_md.md_ucop2 = octeon_cop2_alloc_ctx();
214		memcpy(td2->td_md.md_ucop2, td1->td_md.md_ucop2,
215			sizeof(*td1->td_md.md_ucop2));
216	}
217	td2->td_md.md_cop2owner = td1->td_md.md_cop2owner;
218	pcb2->pcb_context[PCB_REG_SR] |= MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX | MIPS_SR_SX;
219	/* Clear COP2 bits for userland & kernel */
220	td2->td_frame->sr &= ~MIPS_SR_COP_2_BIT;
221	pcb2->pcb_context[PCB_REG_SR] &= ~MIPS_SR_COP_2_BIT;
222#endif
223}
224
225/*
226 * Intercept the return address from a freshly forked process that has NOT
227 * been scheduled yet.
228 *
229 * This is needed to make kernel threads stay in kernel mode.
230 */
231void
232cpu_set_fork_handler(struct thread *td, void (*func) __P((void *)), void *arg)
233{
234	/*
235	 * Note that the trap frame follows the args, so the function
236	 * is really called like this:	func(arg, frame);
237	 */
238	td->td_pcb->pcb_context[PCB_REG_S0] = (register_t)(intptr_t)func;
239	td->td_pcb->pcb_context[PCB_REG_S1] = (register_t)(intptr_t)arg;
240}
241
242void
243cpu_exit(struct thread *td)
244{
245}
246
247void
248cpu_thread_exit(struct thread *td)
249{
250
251	if (PCPU_GET(fpcurthread) == td)
252		PCPU_GET(fpcurthread) = (struct thread *)0;
253#ifdef  CPU_CNMIPS
254	if (td->td_md.md_cop2)
255		memset(td->td_md.md_cop2, 0,
256			sizeof(*td->td_md.md_cop2));
257	if (td->td_md.md_ucop2)
258		memset(td->td_md.md_ucop2, 0,
259			sizeof(*td->td_md.md_ucop2));
260#endif
261}
262
263void
264cpu_thread_free(struct thread *td)
265{
266#ifdef  CPU_CNMIPS
267	if (td->td_md.md_cop2)
268		octeon_cop2_free_ctx(td->td_md.md_cop2);
269	if (td->td_md.md_ucop2)
270		octeon_cop2_free_ctx(td->td_md.md_ucop2);
271	td->td_md.md_cop2 = NULL;
272	td->td_md.md_ucop2 = NULL;
273#endif
274}
275
276void
277cpu_thread_clean(struct thread *td)
278{
279}
280
281void
282cpu_thread_swapin(struct thread *td)
283{
284	pt_entry_t *pte;
285	int i;
286
287	/*
288	 * The kstack may be at a different physical address now.
289	 * Cache the PTEs for the Kernel stack in the machine dependent
290	 * part of the thread struct so cpu_switch() can quickly map in
291	 * the pcb struct and kernel stack.
292	 */
293	for (i = 0; i < KSTACK_PAGES; i++) {
294		pte = pmap_pte(kernel_pmap, td->td_kstack + i * PAGE_SIZE);
295		td->td_md.md_upte[i] = *pte & ~TLBLO_SWBITS_MASK;
296	}
297}
298
299void
300cpu_thread_swapout(struct thread *td)
301{
302}
303
304void
305cpu_thread_alloc(struct thread *td)
306{
307	pt_entry_t *pte;
308	int i;
309
310	KASSERT((td->td_kstack & (1 << PAGE_SHIFT)) == 0, ("kernel stack must be aligned."));
311	td->td_pcb = (struct pcb *)(td->td_kstack +
312	    td->td_kstack_pages * PAGE_SIZE) - 1;
313	td->td_frame = &td->td_pcb->pcb_regs;
314
315	for (i = 0; i < KSTACK_PAGES; i++) {
316		pte = pmap_pte(kernel_pmap, td->td_kstack + i * PAGE_SIZE);
317		td->td_md.md_upte[i] = *pte & ~TLBLO_SWBITS_MASK;
318	}
319}
320
321void
322cpu_set_syscall_retval(struct thread *td, int error)
323{
324	struct trapframe *locr0 = td->td_frame;
325	unsigned int code;
326	int quad_syscall;
327
328	code = locr0->v0;
329	quad_syscall = 0;
330#if defined(__mips_n32) || defined(__mips_n64)
331#ifdef COMPAT_FREEBSD32
332	if (code == SYS___syscall && SV_PROC_FLAG(td->td_proc, SV_ILP32))
333		quad_syscall = 1;
334#endif
335#else
336	if (code == SYS___syscall)
337		quad_syscall = 1;
338#endif
339
340	if (code == SYS_syscall)
341		code = locr0->a0;
342	else if (code == SYS___syscall) {
343		if (quad_syscall)
344			code = _QUAD_LOWWORD ? locr0->a1 : locr0->a0;
345		else
346			code = locr0->a0;
347	}
348
349	switch (error) {
350	case 0:
351		if (quad_syscall && code != SYS_lseek) {
352			/*
353			 * System call invoked through the
354			 * SYS___syscall interface but the
355			 * return value is really just 32
356			 * bits.
357			 */
358			locr0->v0 = td->td_retval[0];
359			if (_QUAD_LOWWORD)
360				locr0->v1 = td->td_retval[0];
361			locr0->a3 = 0;
362		} else {
363			locr0->v0 = td->td_retval[0];
364			locr0->v1 = td->td_retval[1];
365			locr0->a3 = 0;
366		}
367		break;
368
369	case ERESTART:
370		locr0->pc = td->td_pcb->pcb_tpc;
371		break;
372
373	case EJUSTRETURN:
374		break;	/* nothing to do */
375
376	default:
377		if (quad_syscall && code != SYS_lseek) {
378			locr0->v0 = error;
379			if (_QUAD_LOWWORD)
380				locr0->v1 = error;
381			locr0->a3 = 1;
382		} else {
383			locr0->v0 = error;
384			locr0->a3 = 1;
385		}
386	}
387}
388
389/*
390 * Initialize machine state (pcb and trap frame) for a new thread about to
391 * upcall. Put enough state in the new thread's PCB to get it to go back
392 * userret(), where we can intercept it again to set the return (upcall)
393 * Address and stack, along with those from upcalls that are from other sources
394 * such as those generated in thread_userret() itself.
395 */
396void
397cpu_set_upcall(struct thread *td, struct thread *td0)
398{
399	struct pcb *pcb2;
400
401	/* Point the pcb to the top of the stack. */
402	pcb2 = td->td_pcb;
403
404	/*
405	 * Copy the upcall pcb.  This loads kernel regs.
406	 * Those not loaded individually below get their default
407	 * values here.
408	 *
409	 * XXXKSE It might be a good idea to simply skip this as
410	 * the values of the other registers may be unimportant.
411	 * This would remove any requirement for knowing the KSE
412	 * at this time (see the matching comment below for
413	 * more analysis) (need a good safe default).
414	 * In MIPS, the trapframe is the first element of the PCB
415	 * and gets copied when we copy the PCB. No separate copy
416	 * is needed.
417	 */
418	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
419
420	/*
421	 * Set registers for trampoline to user mode.
422	 */
423
424	pcb2->pcb_context[PCB_REG_RA] = (register_t)(intptr_t)fork_trampoline;
425	/* Make sp 64-bit aligned */
426	pcb2->pcb_context[PCB_REG_SP] = (register_t)(((vm_offset_t)td->td_pcb &
427	    ~(sizeof(__int64_t) - 1)) - CALLFRAME_SIZ);
428	pcb2->pcb_context[PCB_REG_S0] = (register_t)(intptr_t)fork_return;
429	pcb2->pcb_context[PCB_REG_S1] = (register_t)(intptr_t)td;
430	pcb2->pcb_context[PCB_REG_S2] = (register_t)(intptr_t)td->td_frame;
431	/* Dont set IE bit in SR. sched lock release will take care of it */
432	pcb2->pcb_context[PCB_REG_SR] = mips_rd_status() &
433	    (MIPS_SR_PX | MIPS_SR_KX | MIPS_SR_UX | MIPS_SR_INT_MASK);
434
435	/*
436	 * FREEBSD_DEVELOPERS_FIXME:
437	 * Setup any other CPU-Specific registers (Not MIPS Standard)
438	 * that are needed.
439	 */
440
441	/* SMP Setup to release sched_lock in fork_exit(). */
442	td->td_md.md_spinlock_count = 1;
443	td->td_md.md_saved_intr = MIPS_SR_INT_IE;
444#if 0
445	    /* Maybe we need to fix this? */
446	td->td_md.md_saved_sr = ( (MIPS_SR_COP_2_BIT | MIPS_SR_COP_0_BIT) |
447	                          (MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX | MIPS_SR_SX) |
448	                          (MIPS_SR_INT_IE | MIPS_HARD_INT_MASK));
449#endif
450}
451
452/*
453 * Set that machine state for performing an upcall that has to
454 * be done in thread_userret() so that those upcalls generated
455 * in thread_userret() itself can be done as well.
456 */
457void
458cpu_set_upcall_kse(struct thread *td, void (*entry)(void *), void *arg,
459    stack_t *stack)
460{
461	struct trapframe *tf;
462	register_t sp;
463
464	/*
465	 * At the point where a function is called, sp must be 8
466	 * byte aligned[for compatibility with 64-bit CPUs]
467	 * in ``See MIPS Run'' by D. Sweetman, p. 269
468	 * align stack
469	 */
470	sp = ((register_t)(intptr_t)(stack->ss_sp + stack->ss_size) & ~0x7) -
471	    CALLFRAME_SIZ;
472
473	/*
474	 * Set the trap frame to point at the beginning of the uts
475	 * function.
476	 */
477	tf = td->td_frame;
478	bzero(tf, sizeof(struct trapframe));
479	tf->sp = sp;
480	tf->pc = (register_t)(intptr_t)entry;
481	/*
482	 * MIPS ABI requires T9 to be the same as PC
483	 * in subroutine entry point
484	 */
485	tf->t9 = (register_t)(intptr_t)entry;
486	tf->a0 = (register_t)(intptr_t)arg;
487
488	/*
489	 * Keep interrupt mask
490	 */
491	td->td_frame->sr = MIPS_SR_KSU_USER | MIPS_SR_EXL | MIPS_SR_INT_IE |
492	    (mips_rd_status() & MIPS_SR_INT_MASK);
493#if defined(__mips_n32)
494	td->td_frame->sr |= MIPS_SR_PX;
495#elif  defined(__mips_n64)
496	td->td_frame->sr |= MIPS_SR_PX | MIPS_SR_UX | MIPS_SR_KX;
497#endif
498/*	tf->sr |= (ALL_INT_MASK & idle_mask) | SR_INT_ENAB; */
499	/**XXX the above may now be wrong -- mips2 implements this as panic */
500	/*
501	 * FREEBSD_DEVELOPERS_FIXME:
502	 * Setup any other CPU-Specific registers (Not MIPS Standard)
503	 * that are needed.
504	 */
505}
506
507/*
508 * Implement the pre-zeroed page mechanism.
509 * This routine is called from the idle loop.
510 */
511
512#define	ZIDLE_LO(v)	((v) * 2 / 3)
513#define	ZIDLE_HI(v)	((v) * 4 / 5)
514
515/*
516 * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-))
517 */
518#ifndef __mips_n64
519static void
520sf_buf_init(void *arg)
521{
522	struct sf_buf *sf_bufs;
523	vm_offset_t sf_base;
524	int i;
525
526	nsfbufs = NSFBUFS;
527	TUNABLE_INT_FETCH("kern.ipc.nsfbufs", &nsfbufs);
528
529	mtx_init(&sf_freelist.sf_lock, "sf_bufs list lock", NULL, MTX_DEF);
530	SLIST_INIT(&sf_freelist.sf_head);
531	sf_base = kva_alloc(nsfbufs * PAGE_SIZE);
532	sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP,
533	    M_NOWAIT | M_ZERO);
534	for (i = 0; i < nsfbufs; i++) {
535		sf_bufs[i].kva = sf_base + i * PAGE_SIZE;
536		SLIST_INSERT_HEAD(&sf_freelist.sf_head, &sf_bufs[i], free_list);
537	}
538	sf_buf_alloc_want = 0;
539}
540
541/*
542 * Get an sf_buf from the freelist.  Will block if none are available.
543 */
544struct sf_buf *
545sf_buf_alloc(struct vm_page *m, int flags)
546{
547	struct sf_buf *sf;
548	int error;
549
550	mtx_lock(&sf_freelist.sf_lock);
551	while ((sf = SLIST_FIRST(&sf_freelist.sf_head)) == NULL) {
552		if (flags & SFB_NOWAIT)
553			break;
554		sf_buf_alloc_want++;
555		SFSTAT_INC(sf_allocwait);
556		error = msleep(&sf_freelist, &sf_freelist.sf_lock,
557		    (flags & SFB_CATCH) ? PCATCH | PVM : PVM, "sfbufa", 0);
558		sf_buf_alloc_want--;
559
560		/*
561		 * If we got a signal, don't risk going back to sleep.
562		 */
563		if (error)
564			break;
565	}
566	if (sf != NULL) {
567		SLIST_REMOVE_HEAD(&sf_freelist.sf_head, free_list);
568		sf->m = m;
569		nsfbufsused++;
570		nsfbufspeak = imax(nsfbufspeak, nsfbufsused);
571		pmap_qenter(sf->kva, &sf->m, 1);
572	}
573	mtx_unlock(&sf_freelist.sf_lock);
574	return (sf);
575}
576
577/*
578 * Release resources back to the system.
579 */
580void
581sf_buf_free(struct sf_buf *sf)
582{
583	pmap_qremove(sf->kva, 1);
584	mtx_lock(&sf_freelist.sf_lock);
585	SLIST_INSERT_HEAD(&sf_freelist.sf_head, sf, free_list);
586	nsfbufsused--;
587	if (sf_buf_alloc_want > 0)
588		wakeup(&sf_freelist);
589	mtx_unlock(&sf_freelist.sf_lock);
590}
591#endif	/* !__mips_n64 */
592
593/*
594 * Software interrupt handler for queued VM system processing.
595 */
596void
597swi_vm(void *dummy)
598{
599
600	if (busdma_swi_pending)
601		busdma_swi();
602}
603
604int
605cpu_set_user_tls(struct thread *td, void *tls_base)
606{
607
608	td->td_md.md_tls = (char*)tls_base;
609
610	return (0);
611}
612
613#ifdef DDB
614#include <ddb/ddb.h>
615
616#define DB_PRINT_REG(ptr, regname)			\
617	db_printf("  %-12s %p\n", #regname, (void *)(intptr_t)((ptr)->regname))
618
619#define DB_PRINT_REG_ARRAY(ptr, arrname, regname)	\
620	db_printf("  %-12s %p\n", #regname, (void *)(intptr_t)((ptr)->arrname[regname]))
621
622static void
623dump_trapframe(struct trapframe *trapframe)
624{
625
626	db_printf("Trapframe at %p\n", trapframe);
627
628	DB_PRINT_REG(trapframe, zero);
629	DB_PRINT_REG(trapframe, ast);
630	DB_PRINT_REG(trapframe, v0);
631	DB_PRINT_REG(trapframe, v1);
632	DB_PRINT_REG(trapframe, a0);
633	DB_PRINT_REG(trapframe, a1);
634	DB_PRINT_REG(trapframe, a2);
635	DB_PRINT_REG(trapframe, a3);
636#if defined(__mips_n32) || defined(__mips_n64)
637	DB_PRINT_REG(trapframe, a4);
638	DB_PRINT_REG(trapframe, a5);
639	DB_PRINT_REG(trapframe, a6);
640	DB_PRINT_REG(trapframe, a7);
641	DB_PRINT_REG(trapframe, t0);
642	DB_PRINT_REG(trapframe, t1);
643	DB_PRINT_REG(trapframe, t2);
644	DB_PRINT_REG(trapframe, t3);
645#else
646	DB_PRINT_REG(trapframe, t0);
647	DB_PRINT_REG(trapframe, t1);
648	DB_PRINT_REG(trapframe, t2);
649	DB_PRINT_REG(trapframe, t3);
650	DB_PRINT_REG(trapframe, t4);
651	DB_PRINT_REG(trapframe, t5);
652	DB_PRINT_REG(trapframe, t6);
653	DB_PRINT_REG(trapframe, t7);
654#endif
655	DB_PRINT_REG(trapframe, s0);
656	DB_PRINT_REG(trapframe, s1);
657	DB_PRINT_REG(trapframe, s2);
658	DB_PRINT_REG(trapframe, s3);
659	DB_PRINT_REG(trapframe, s4);
660	DB_PRINT_REG(trapframe, s5);
661	DB_PRINT_REG(trapframe, s6);
662	DB_PRINT_REG(trapframe, s7);
663	DB_PRINT_REG(trapframe, t8);
664	DB_PRINT_REG(trapframe, t9);
665	DB_PRINT_REG(trapframe, k0);
666	DB_PRINT_REG(trapframe, k1);
667	DB_PRINT_REG(trapframe, gp);
668	DB_PRINT_REG(trapframe, sp);
669	DB_PRINT_REG(trapframe, s8);
670	DB_PRINT_REG(trapframe, ra);
671	DB_PRINT_REG(trapframe, sr);
672	DB_PRINT_REG(trapframe, mullo);
673	DB_PRINT_REG(trapframe, mulhi);
674	DB_PRINT_REG(trapframe, badvaddr);
675	DB_PRINT_REG(trapframe, cause);
676	DB_PRINT_REG(trapframe, pc);
677}
678
679DB_SHOW_COMMAND(pcb, ddb_dump_pcb)
680{
681	struct thread *td;
682	struct pcb *pcb;
683	struct trapframe *trapframe;
684
685	/* Determine which thread to examine. */
686	if (have_addr)
687		td = db_lookup_thread(addr, TRUE);
688	else
689		td = curthread;
690
691	pcb = td->td_pcb;
692
693	db_printf("Thread %d at %p\n", td->td_tid, td);
694
695	db_printf("PCB at %p\n", pcb);
696
697	trapframe = &pcb->pcb_regs;
698	dump_trapframe(trapframe);
699
700	db_printf("PCB Context:\n");
701	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S0);
702	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S1);
703	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S2);
704	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S3);
705	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S4);
706	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S5);
707	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S6);
708	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S7);
709	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_SP);
710	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_S8);
711	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_RA);
712	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_SR);
713	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_GP);
714	DB_PRINT_REG_ARRAY(pcb, pcb_context, PCB_REG_PC);
715
716	db_printf("PCB onfault = %p\n", pcb->pcb_onfault);
717	db_printf("md_saved_intr = 0x%0lx\n", (long)td->td_md.md_saved_intr);
718	db_printf("md_spinlock_count = %d\n", td->td_md.md_spinlock_count);
719
720	if (td->td_frame != trapframe) {
721		db_printf("td->td_frame %p is not the same as pcb_regs %p\n",
722			  td->td_frame, trapframe);
723	}
724}
725
726/*
727 * Dump the trapframe beginning at address specified by first argument.
728 */
729DB_SHOW_COMMAND(trapframe, ddb_dump_trapframe)
730{
731
732	if (!have_addr)
733		return;
734
735	dump_trapframe((struct trapframe *)addr);
736}
737
738#endif	/* DDB */
739