kern_mutex.c revision 111508
1/*-
2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. Berkeley Software Design Inc's name may not be used to endorse or
13 *    promote products derived from this software without specific prior
14 *    written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29 *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30 * $FreeBSD: head/sys/kern/kern_mutex.c 111508 2003-02-25 22:28:46Z mtm $
31 */
32
33/*
34 * Machine independent bits of mutex implementation.
35 */
36
37#include "opt_adaptive_mutexes.h"
38#include "opt_ddb.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/ktr.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/resourcevar.h>
50#include <sys/sched.h>
51#include <sys/sbuf.h>
52#include <sys/stdint.h>
53#include <sys/sysctl.h>
54#include <sys/vmmeter.h>
55
56#include <machine/atomic.h>
57#include <machine/bus.h>
58#include <machine/clock.h>
59#include <machine/cpu.h>
60
61#include <ddb/ddb.h>
62
63#include <vm/vm.h>
64#include <vm/vm_extern.h>
65
66/*
67 * Internal utility macros.
68 */
69#define mtx_unowned(m)	((m)->mtx_lock == MTX_UNOWNED)
70
71#define mtx_owner(m)	(mtx_unowned((m)) ? NULL \
72	: (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
73
74/* XXXKSE This test will change. */
75#define	thread_running(td)						\
76	((td)->td_kse != NULL && (td)->td_kse->ke_oncpu != NOCPU)
77
78/*
79 * Lock classes for sleep and spin mutexes.
80 */
81struct lock_class lock_class_mtx_sleep = {
82	"sleep mutex",
83	LC_SLEEPLOCK | LC_RECURSABLE
84};
85struct lock_class lock_class_mtx_spin = {
86	"spin mutex",
87	LC_SPINLOCK | LC_RECURSABLE
88};
89
90/*
91 * System-wide mutexes
92 */
93struct mtx sched_lock;
94struct mtx Giant;
95
96/*
97 * Prototypes for non-exported routines.
98 */
99static void	propagate_priority(struct thread *);
100
101static void
102propagate_priority(struct thread *td)
103{
104	int pri = td->td_priority;
105	struct mtx *m = td->td_blocked;
106
107	mtx_assert(&sched_lock, MA_OWNED);
108	for (;;) {
109		struct thread *td1;
110
111		td = mtx_owner(m);
112
113		if (td == NULL) {
114			/*
115			 * This really isn't quite right. Really
116			 * ought to bump priority of thread that
117			 * next acquires the mutex.
118			 */
119			MPASS(m->mtx_lock == MTX_CONTESTED);
120			return;
121		}
122
123		MPASS(td->td_proc != NULL);
124		MPASS(td->td_proc->p_magic == P_MAGIC);
125		KASSERT(!TD_IS_SLEEPING(td), ("sleeping thread owns a mutex"));
126		if (td->td_priority <= pri) /* lower is higher priority */
127			return;
128
129
130		/*
131		 * If lock holder is actually running, just bump priority.
132		 */
133		if (TD_IS_RUNNING(td)) {
134			td->td_priority = pri;
135			return;
136		}
137
138#ifndef SMP
139		/*
140		 * For UP, we check to see if td is curthread (this shouldn't
141		 * ever happen however as it would mean we are in a deadlock.)
142		 */
143		KASSERT(td != curthread, ("Deadlock detected"));
144#endif
145
146		/*
147		 * If on run queue move to new run queue, and quit.
148		 * XXXKSE this gets a lot more complicated under threads
149		 * but try anyhow.
150		 */
151		if (TD_ON_RUNQ(td)) {
152			MPASS(td->td_blocked == NULL);
153			sched_prio(td, pri);
154			return;
155		}
156		/*
157		 * Adjust for any other cases.
158		 */
159		td->td_priority = pri;
160
161		/*
162		 * If we aren't blocked on a mutex, we should be.
163		 */
164		KASSERT(TD_ON_LOCK(td), (
165		    "process %d(%s):%d holds %s but isn't blocked on a mutex\n",
166		    td->td_proc->p_pid, td->td_proc->p_comm, td->td_state,
167		    m->mtx_object.lo_name));
168
169		/*
170		 * Pick up the mutex that td is blocked on.
171		 */
172		m = td->td_blocked;
173		MPASS(m != NULL);
174
175		/*
176		 * Check if the thread needs to be moved up on
177		 * the blocked chain
178		 */
179		if (td == TAILQ_FIRST(&m->mtx_blocked)) {
180			continue;
181		}
182
183		td1 = TAILQ_PREV(td, threadqueue, td_lockq);
184		if (td1->td_priority <= pri) {
185			continue;
186		}
187
188		/*
189		 * Remove thread from blocked chain and determine where
190		 * it should be moved up to.  Since we know that td1 has
191		 * a lower priority than td, we know that at least one
192		 * thread in the chain has a lower priority and that
193		 * td1 will thus not be NULL after the loop.
194		 */
195		TAILQ_REMOVE(&m->mtx_blocked, td, td_lockq);
196		TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq) {
197			MPASS(td1->td_proc->p_magic == P_MAGIC);
198			if (td1->td_priority > pri)
199				break;
200		}
201
202		MPASS(td1 != NULL);
203		TAILQ_INSERT_BEFORE(td1, td, td_lockq);
204		CTR4(KTR_LOCK,
205		    "propagate_priority: p %p moved before %p on [%p] %s",
206		    td, td1, m, m->mtx_object.lo_name);
207	}
208}
209
210#ifdef MUTEX_PROFILING
211SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
212SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
213static int mutex_prof_enable = 0;
214SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
215    &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
216
217struct mutex_prof {
218	const char	*name;
219	const char	*file;
220	int		line;
221	uintmax_t	cnt_max;
222	uintmax_t	cnt_tot;
223	uintmax_t	cnt_cur;
224	struct mutex_prof *next;
225};
226
227/*
228 * mprof_buf is a static pool of profiling records to avoid possible
229 * reentrance of the memory allocation functions.
230 *
231 * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
232 */
233#define	NUM_MPROF_BUFFERS	1000
234static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
235static int first_free_mprof_buf;
236#define	MPROF_HASH_SIZE		1009
237static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
238/* SWAG: sbuf size = avg stat. line size * number of locks */
239#define MPROF_SBUF_SIZE		256 * 400
240
241static int mutex_prof_acquisitions;
242SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
243    &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
244static int mutex_prof_records;
245SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
246    &mutex_prof_records, 0, "Number of profiling records");
247static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
248SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
249    &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
250static int mutex_prof_rejected;
251SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
252    &mutex_prof_rejected, 0, "Number of rejected profiling records");
253static int mutex_prof_hashsize = MPROF_HASH_SIZE;
254SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
255    &mutex_prof_hashsize, 0, "Hash size");
256static int mutex_prof_collisions = 0;
257SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
258    &mutex_prof_collisions, 0, "Number of hash collisions");
259
260/*
261 * mprof_mtx protects the profiling buffers and the hash.
262 */
263static struct mtx mprof_mtx;
264MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
265
266static u_int64_t
267nanoseconds(void)
268{
269	struct timespec tv;
270
271	nanotime(&tv);
272	return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
273}
274
275static int
276dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
277{
278	struct sbuf *sb;
279	int error, i;
280	static int multiplier = 1;
281
282	if (first_free_mprof_buf == 0)
283		return (SYSCTL_OUT(req, "No locking recorded",
284		    sizeof("No locking recorded")));
285
286retry_sbufops:
287	sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
288	sbuf_printf(sb, "%6s %12s %11s %5s %s\n",
289	    "max", "total", "count", "avg", "name");
290	/*
291	 * XXX this spinlock seems to be by far the largest perpetrator
292	 * of spinlock latency (1.6 msec on an Athlon1600 was recorded
293	 * even before I pessimized it further by moving the average
294	 * computation here).
295	 */
296	mtx_lock_spin(&mprof_mtx);
297	for (i = 0; i < first_free_mprof_buf; ++i) {
298		sbuf_printf(sb, "%6ju %12ju %11ju %5ju %s:%d (%s)\n",
299		    mprof_buf[i].cnt_max / 1000,
300		    mprof_buf[i].cnt_tot / 1000,
301		    mprof_buf[i].cnt_cur,
302		    mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
303			mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
304		    mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
305		if (sbuf_overflowed(sb)) {
306			mtx_unlock_spin(&mprof_mtx);
307			sbuf_delete(sb);
308			multiplier++;
309			goto retry_sbufops;
310		}
311	}
312	mtx_unlock_spin(&mprof_mtx);
313	sbuf_finish(sb);
314	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
315	sbuf_delete(sb);
316	return (error);
317}
318SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
319    NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
320#endif
321
322/*
323 * Function versions of the inlined __mtx_* macros.  These are used by
324 * modules and can also be called from assembly language if needed.
325 */
326void
327_mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
328{
329
330	MPASS(curthread != NULL);
331	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
332	    ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
333	    file, line));
334	_get_sleep_lock(m, curthread, opts, file, line);
335	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
336	    line);
337	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
338#ifdef MUTEX_PROFILING
339	/* don't reset the timer when/if recursing */
340	if (m->mtx_acqtime == 0) {
341		m->mtx_filename = file;
342		m->mtx_lineno = line;
343		m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
344		++mutex_prof_acquisitions;
345	}
346#endif
347}
348
349void
350_mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
351{
352
353	MPASS(curthread != NULL);
354	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_sleep,
355	    ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
356	    file, line));
357	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
358	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
359	    line);
360	mtx_assert(m, MA_OWNED);
361#ifdef MUTEX_PROFILING
362	if (m->mtx_acqtime != 0) {
363		static const char *unknown = "(unknown)";
364		struct mutex_prof *mpp;
365		u_int64_t acqtime, now;
366		const char *p, *q;
367		volatile u_int hash;
368
369		now = nanoseconds();
370		acqtime = m->mtx_acqtime;
371		m->mtx_acqtime = 0;
372		if (now <= acqtime)
373			goto out;
374		for (p = m->mtx_filename;
375		    p != NULL && strncmp(p, "../", 3) == 0; p += 3)
376			/* nothing */ ;
377		if (p == NULL || *p == '\0')
378			p = unknown;
379		for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
380			hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
381		mtx_lock_spin(&mprof_mtx);
382		for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
383			if (mpp->line == m->mtx_lineno &&
384			    strcmp(mpp->file, p) == 0)
385				break;
386		if (mpp == NULL) {
387			/* Just exit if we cannot get a trace buffer */
388			if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
389				++mutex_prof_rejected;
390				goto unlock;
391			}
392			mpp = &mprof_buf[first_free_mprof_buf++];
393			mpp->name = mtx_name(m);
394			mpp->file = p;
395			mpp->line = m->mtx_lineno;
396			mpp->next = mprof_hash[hash];
397			if (mprof_hash[hash] != NULL)
398				++mutex_prof_collisions;
399			mprof_hash[hash] = mpp;
400			++mutex_prof_records;
401		}
402		/*
403		 * Record if the mutex has been held longer now than ever
404		 * before.
405		 */
406		if (now - acqtime > mpp->cnt_max)
407			mpp->cnt_max = now - acqtime;
408		mpp->cnt_tot += now - acqtime;
409		mpp->cnt_cur++;
410unlock:
411		mtx_unlock_spin(&mprof_mtx);
412	}
413out:
414#endif
415	_rel_sleep_lock(m, curthread, opts, file, line);
416}
417
418void
419_mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
420{
421
422	MPASS(curthread != NULL);
423	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
424	    ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
425	    m->mtx_object.lo_name, file, line));
426#if defined(SMP) || LOCK_DEBUG > 0 || 1
427	_get_spin_lock(m, curthread, opts, file, line);
428#else
429	critical_enter();
430#endif
431	LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
432	    line);
433	WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
434}
435
436void
437_mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
438{
439
440	MPASS(curthread != NULL);
441	KASSERT(m->mtx_object.lo_class == &lock_class_mtx_spin,
442	    ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
443	    m->mtx_object.lo_name, file, line));
444	WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
445	LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
446	    line);
447	mtx_assert(m, MA_OWNED);
448#if defined(SMP) || LOCK_DEBUG > 0 || 1
449	_rel_spin_lock(m);
450#else
451	critical_exit();
452#endif
453}
454
455/*
456 * The important part of mtx_trylock{,_flags}()
457 * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that
458 * if we're called, it's because we know we don't already own this lock.
459 */
460int
461_mtx_trylock(struct mtx *m, int opts, const char *file, int line)
462{
463	int rval;
464
465	MPASS(curthread != NULL);
466
467	rval = _obtain_lock(m, curthread);
468
469	LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
470	if (rval) {
471		/*
472		 * We do not handle recursion in _mtx_trylock; see the
473		 * note at the top of the routine.
474		 */
475		KASSERT(!mtx_recursed(m),
476		    ("mtx_trylock() called on a recursed mutex"));
477		WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
478		    file, line);
479	}
480
481	return (rval);
482}
483
484/*
485 * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
486 *
487 * We call this if the lock is either contested (i.e. we need to go to
488 * sleep waiting for it), or if we need to recurse on it.
489 */
490void
491_mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line)
492{
493	struct thread *td = curthread;
494#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
495	struct thread *owner;
496#endif
497#ifdef KTR
498	int cont_logged = 0;
499#endif
500
501	if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)td) {
502		m->mtx_recurse++;
503		atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
504		if (LOCK_LOG_TEST(&m->mtx_object, opts))
505			CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
506		return;
507	}
508
509	if (LOCK_LOG_TEST(&m->mtx_object, opts))
510		CTR4(KTR_LOCK,
511		    "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
512		    m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
513
514	while (!_obtain_lock(m, td)) {
515		uintptr_t v;
516		struct thread *td1;
517
518		mtx_lock_spin(&sched_lock);
519		/*
520		 * Check if the lock has been released while spinning for
521		 * the sched_lock.
522		 */
523		if ((v = m->mtx_lock) == MTX_UNOWNED) {
524			mtx_unlock_spin(&sched_lock);
525#ifdef __i386__
526			ia32_pause();
527#endif
528			continue;
529		}
530
531		/*
532		 * The mutex was marked contested on release. This means that
533		 * there are threads blocked on it.
534		 */
535		if (v == MTX_CONTESTED) {
536			td1 = TAILQ_FIRST(&m->mtx_blocked);
537			MPASS(td1 != NULL);
538			m->mtx_lock = (uintptr_t)td | MTX_CONTESTED;
539
540			if (td1->td_priority < td->td_priority)
541				td->td_priority = td1->td_priority;
542			mtx_unlock_spin(&sched_lock);
543			return;
544		}
545
546		/*
547		 * If the mutex isn't already contested and a failure occurs
548		 * setting the contested bit, the mutex was either released
549		 * or the state of the MTX_RECURSED bit changed.
550		 */
551		if ((v & MTX_CONTESTED) == 0 &&
552		    !atomic_cmpset_ptr(&m->mtx_lock, (void *)v,
553			(void *)(v | MTX_CONTESTED))) {
554			mtx_unlock_spin(&sched_lock);
555#ifdef __i386__
556			ia32_pause();
557#endif
558			continue;
559		}
560
561#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
562		/*
563		 * If the current owner of the lock is executing on another
564		 * CPU, spin instead of blocking.
565		 */
566		owner = (struct thread *)(v & MTX_FLAGMASK);
567		if (m != &Giant && thread_running(owner)) {
568			mtx_unlock_spin(&sched_lock);
569			while (mtx_owner(m) == owner && thread_running(owner)) {
570#ifdef __i386__
571				ia32_pause();
572#endif
573			}
574			continue;
575		}
576#endif	/* SMP && ADAPTIVE_MUTEXES */
577
578		/*
579		 * We definitely must sleep for this lock.
580		 */
581		mtx_assert(m, MA_NOTOWNED);
582
583#ifdef notyet
584		/*
585		 * If we're borrowing an interrupted thread's VM context, we
586		 * must clean up before going to sleep.
587		 */
588		if (td->td_ithd != NULL) {
589			struct ithd *it = td->td_ithd;
590
591			if (it->it_interrupted) {
592				if (LOCK_LOG_TEST(&m->mtx_object, opts))
593					CTR2(KTR_LOCK,
594				    "_mtx_lock_sleep: %p interrupted %p",
595					    it, it->it_interrupted);
596				intr_thd_fixup(it);
597			}
598		}
599#endif
600
601		/*
602		 * Put us on the list of threads blocked on this mutex.
603		 */
604		if (TAILQ_EMPTY(&m->mtx_blocked)) {
605			td1 = mtx_owner(m);
606			LIST_INSERT_HEAD(&td1->td_contested, m, mtx_contested);
607			TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
608		} else {
609			TAILQ_FOREACH(td1, &m->mtx_blocked, td_lockq)
610				if (td1->td_priority > td->td_priority)
611					break;
612			if (td1)
613				TAILQ_INSERT_BEFORE(td1, td, td_lockq);
614			else
615				TAILQ_INSERT_TAIL(&m->mtx_blocked, td, td_lockq);
616		}
617#ifdef KTR
618		if (!cont_logged) {
619			CTR6(KTR_CONTENTION,
620			    "contention: %p at %s:%d wants %s, taken by %s:%d",
621			    td, file, line, m->mtx_object.lo_name,
622			    WITNESS_FILE(&m->mtx_object),
623			    WITNESS_LINE(&m->mtx_object));
624			cont_logged = 1;
625		}
626#endif
627
628		/*
629		 * Save who we're blocked on.
630		 */
631		td->td_blocked = m;
632		td->td_lockname = m->mtx_object.lo_name;
633		TD_SET_LOCK(td);
634		propagate_priority(td);
635
636		if (LOCK_LOG_TEST(&m->mtx_object, opts))
637			CTR3(KTR_LOCK,
638			    "_mtx_lock_sleep: p %p blocked on [%p] %s", td, m,
639			    m->mtx_object.lo_name);
640
641		td->td_proc->p_stats->p_ru.ru_nvcsw++;
642		mi_switch();
643
644		if (LOCK_LOG_TEST(&m->mtx_object, opts))
645			CTR3(KTR_LOCK,
646			  "_mtx_lock_sleep: p %p free from blocked on [%p] %s",
647			  td, m, m->mtx_object.lo_name);
648
649		mtx_unlock_spin(&sched_lock);
650	}
651
652#ifdef KTR
653	if (cont_logged) {
654		CTR4(KTR_CONTENTION,
655		    "contention end: %s acquired by %p at %s:%d",
656		    m->mtx_object.lo_name, td, file, line);
657	}
658#endif
659	return;
660}
661
662/*
663 * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
664 *
665 * This is only called if we need to actually spin for the lock. Recursion
666 * is handled inline.
667 */
668void
669_mtx_lock_spin(struct mtx *m, int opts, const char *file, int line)
670{
671	int i = 0;
672
673	if (LOCK_LOG_TEST(&m->mtx_object, opts))
674		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
675
676	for (;;) {
677		if (_obtain_lock(m, curthread))
678			break;
679
680		/* Give interrupts a chance while we spin. */
681		critical_exit();
682		while (m->mtx_lock != MTX_UNOWNED) {
683			if (i++ < 10000000) {
684#ifdef __i386__
685				ia32_pause();
686#endif
687				continue;
688			}
689			if (i < 60000000)
690				DELAY(1);
691#ifdef DDB
692			else if (!db_active)
693#else
694			else
695#endif
696				panic("spin lock %s held by %p for > 5 seconds",
697				    m->mtx_object.lo_name, (void *)m->mtx_lock);
698#ifdef __i386__
699			ia32_pause();
700#endif
701		}
702		critical_enter();
703	}
704
705	if (LOCK_LOG_TEST(&m->mtx_object, opts))
706		CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
707
708	return;
709}
710
711/*
712 * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
713 *
714 * We are only called here if the lock is recursed or contested (i.e. we
715 * need to wake up a blocked thread).
716 */
717void
718_mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
719{
720	struct thread *td, *td1;
721	struct mtx *m1;
722	int pri;
723
724	td = curthread;
725
726	if (mtx_recursed(m)) {
727		if (--(m->mtx_recurse) == 0)
728			atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
729		if (LOCK_LOG_TEST(&m->mtx_object, opts))
730			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
731		return;
732	}
733
734	mtx_lock_spin(&sched_lock);
735	if (LOCK_LOG_TEST(&m->mtx_object, opts))
736		CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
737
738	td1 = TAILQ_FIRST(&m->mtx_blocked);
739#if defined(SMP) && defined(ADAPTIVE_MUTEXES)
740	if (td1 == NULL) {
741		_release_lock_quick(m);
742		if (LOCK_LOG_TEST(&m->mtx_object, opts))
743			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
744		mtx_unlock_spin(&sched_lock);
745		return;
746	}
747#endif
748	MPASS(td->td_proc->p_magic == P_MAGIC);
749	MPASS(td1->td_proc->p_magic == P_MAGIC);
750
751	TAILQ_REMOVE(&m->mtx_blocked, td1, td_lockq);
752
753	if (TAILQ_EMPTY(&m->mtx_blocked)) {
754		LIST_REMOVE(m, mtx_contested);
755		_release_lock_quick(m);
756		if (LOCK_LOG_TEST(&m->mtx_object, opts))
757			CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
758	} else
759		atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED);
760
761	pri = PRI_MAX;
762	LIST_FOREACH(m1, &td->td_contested, mtx_contested) {
763		int cp = TAILQ_FIRST(&m1->mtx_blocked)->td_priority;
764		if (cp < pri)
765			pri = cp;
766	}
767
768	if (pri > td->td_base_pri)
769		pri = td->td_base_pri;
770	td->td_priority = pri;
771
772	if (LOCK_LOG_TEST(&m->mtx_object, opts))
773		CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p",
774		    m, td1);
775
776	td1->td_blocked = NULL;
777	TD_CLR_LOCK(td1);
778	if (!TD_CAN_RUN(td1)) {
779		mtx_unlock_spin(&sched_lock);
780		return;
781	}
782	setrunqueue(td1);
783
784	if (td->td_critnest == 1 && td1->td_priority < pri) {
785#ifdef notyet
786		if (td->td_ithd != NULL) {
787			struct ithd *it = td->td_ithd;
788
789			if (it->it_interrupted) {
790				if (LOCK_LOG_TEST(&m->mtx_object, opts))
791					CTR2(KTR_LOCK,
792				    "_mtx_unlock_sleep: %p interrupted %p",
793					    it, it->it_interrupted);
794				intr_thd_fixup(it);
795			}
796		}
797#endif
798		if (LOCK_LOG_TEST(&m->mtx_object, opts))
799			CTR2(KTR_LOCK,
800			    "_mtx_unlock_sleep: %p switching out lock=%p", m,
801			    (void *)m->mtx_lock);
802
803		td->td_proc->p_stats->p_ru.ru_nivcsw++;
804		mi_switch();
805		if (LOCK_LOG_TEST(&m->mtx_object, opts))
806			CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
807			    m, (void *)m->mtx_lock);
808	}
809
810	mtx_unlock_spin(&sched_lock);
811
812	return;
813}
814
815/*
816 * All the unlocking of MTX_SPIN locks is done inline.
817 * See the _rel_spin_lock() macro for the details.
818 */
819
820/*
821 * The backing function for the INVARIANTS-enabled mtx_assert()
822 */
823#ifdef INVARIANT_SUPPORT
824void
825_mtx_assert(struct mtx *m, int what, const char *file, int line)
826{
827
828	if (panicstr != NULL)
829		return;
830	switch (what) {
831	case MA_OWNED:
832	case MA_OWNED | MA_RECURSED:
833	case MA_OWNED | MA_NOTRECURSED:
834		if (!mtx_owned(m))
835			panic("mutex %s not owned at %s:%d",
836			    m->mtx_object.lo_name, file, line);
837		if (mtx_recursed(m)) {
838			if ((what & MA_NOTRECURSED) != 0)
839				panic("mutex %s recursed at %s:%d",
840				    m->mtx_object.lo_name, file, line);
841		} else if ((what & MA_RECURSED) != 0) {
842			panic("mutex %s unrecursed at %s:%d",
843			    m->mtx_object.lo_name, file, line);
844		}
845		break;
846	case MA_NOTOWNED:
847		if (mtx_owned(m))
848			panic("mutex %s owned at %s:%d",
849			    m->mtx_object.lo_name, file, line);
850		break;
851	default:
852		panic("unknown mtx_assert at %s:%d", file, line);
853	}
854}
855#endif
856
857/*
858 * The MUTEX_DEBUG-enabled mtx_validate()
859 *
860 * Most of these checks have been moved off into the LO_INITIALIZED flag
861 * maintained by the witness code.
862 */
863#ifdef MUTEX_DEBUG
864
865void	mtx_validate(struct mtx *);
866
867void
868mtx_validate(struct mtx *m)
869{
870
871/*
872 * XXX: When kernacc() does not require Giant we can reenable this check
873 */
874#ifdef notyet
875/*
876 * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
877 * we can re-enable the kernacc() checks.
878 */
879#ifndef __alpha__
880	/*
881	 * Can't call kernacc() from early init386(), especially when
882	 * initializing Giant mutex, because some stuff in kernacc()
883	 * requires Giant itself.
884	 */
885	if (!cold)
886		if (!kernacc((caddr_t)m, sizeof(m),
887		    VM_PROT_READ | VM_PROT_WRITE))
888			panic("Can't read and write to mutex %p", m);
889#endif
890#endif
891}
892#endif
893
894/*
895 * General init routine used by the MTX_SYSINIT() macro.
896 */
897void
898mtx_sysinit(void *arg)
899{
900	struct mtx_args *margs = arg;
901
902	mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
903}
904
905/*
906 * Mutex initialization routine; initialize lock `m' of type contained in
907 * `opts' with options contained in `opts' and name `name.'  The optional
908 * lock type `type' is used as a general lock category name for use with
909 * witness.
910 */
911void
912mtx_init(struct mtx *m, const char *name, const char *type, int opts)
913{
914	struct lock_object *lock;
915
916	MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
917	    MTX_SLEEPABLE | MTX_NOWITNESS | MTX_DUPOK)) == 0);
918
919#ifdef MUTEX_DEBUG
920	/* Diagnostic and error correction */
921	mtx_validate(m);
922#endif
923
924	lock = &m->mtx_object;
925	KASSERT((lock->lo_flags & LO_INITIALIZED) == 0,
926	    ("mutex %s %p already initialized", name, m));
927	bzero(m, sizeof(*m));
928	if (opts & MTX_SPIN)
929		lock->lo_class = &lock_class_mtx_spin;
930	else
931		lock->lo_class = &lock_class_mtx_sleep;
932	lock->lo_name = name;
933	lock->lo_type = type != NULL ? type : name;
934	if (opts & MTX_QUIET)
935		lock->lo_flags = LO_QUIET;
936	if (opts & MTX_RECURSE)
937		lock->lo_flags |= LO_RECURSABLE;
938	if (opts & MTX_SLEEPABLE)
939		lock->lo_flags |= LO_SLEEPABLE;
940	if ((opts & MTX_NOWITNESS) == 0)
941		lock->lo_flags |= LO_WITNESS;
942	if (opts & MTX_DUPOK)
943		lock->lo_flags |= LO_DUPOK;
944
945	m->mtx_lock = MTX_UNOWNED;
946	TAILQ_INIT(&m->mtx_blocked);
947
948	LOCK_LOG_INIT(lock, opts);
949
950	WITNESS_INIT(lock);
951}
952
953/*
954 * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
955 * passed in as a flag here because if the corresponding mtx_init() was
956 * called with MTX_QUIET set, then it will already be set in the mutex's
957 * flags.
958 */
959void
960mtx_destroy(struct mtx *m)
961{
962
963	LOCK_LOG_DESTROY(&m->mtx_object, 0);
964
965	if (!mtx_owned(m))
966		MPASS(mtx_unowned(m));
967	else {
968		MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
969
970		/* Tell witness this isn't locked to make it happy. */
971		WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
972		    __LINE__);
973	}
974
975	WITNESS_DESTROY(&m->mtx_object);
976}
977
978/*
979 * Intialize the mutex code and system mutexes.  This is called from the MD
980 * startup code prior to mi_startup().  The per-CPU data space needs to be
981 * setup before this is called.
982 */
983void
984mutex_init(void)
985{
986
987	/* Setup thread0 so that mutexes work. */
988	LIST_INIT(&thread0.td_contested);
989
990	/*
991	 * Initialize mutexes.
992	 */
993	mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
994	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
995	mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
996	mtx_lock(&Giant);
997}
998
999/*
1000 * Encapsulated Giant mutex routines.  These routines provide encapsulation
1001 * control for the Giant mutex, allowing sysctls to be used to turn on and
1002 * off Giant around certain subsystems.  The default value for the sysctls
1003 * are set to what developers believe is stable and working in regards to
1004 * the Giant pushdown.  Developers should not turn off Giant via these
1005 * sysctls unless they know what they are doing.
1006 *
1007 * Callers of mtx_lock_giant() are expected to pass the return value to an
1008 * accompanying mtx_unlock_giant() later on.  If multiple subsystems are
1009 * effected by a Giant wrap, all related sysctl variables must be zero for
1010 * the subsystem call to operate without Giant (as determined by the caller).
1011 */
1012
1013SYSCTL_NODE(_kern, OID_AUTO, giant, CTLFLAG_RD, NULL, "Giant mutex manipulation");
1014
1015static int kern_giant_all = 0;
1016SYSCTL_INT(_kern_giant, OID_AUTO, all, CTLFLAG_RW, &kern_giant_all, 0, "");
1017
1018int kern_giant_proc = 1;	/* Giant around PROC locks */
1019int kern_giant_file = 1;	/* Giant around struct file & filedesc */
1020int kern_giant_ucred = 1;	/* Giant around ucred */
1021SYSCTL_INT(_kern_giant, OID_AUTO, proc, CTLFLAG_RW, &kern_giant_proc, 0, "");
1022SYSCTL_INT(_kern_giant, OID_AUTO, file, CTLFLAG_RW, &kern_giant_file, 0, "");
1023SYSCTL_INT(_kern_giant, OID_AUTO, ucred, CTLFLAG_RW, &kern_giant_ucred, 0, "");
1024
1025int
1026mtx_lock_giant(int sysctlvar)
1027{
1028	if (sysctlvar || kern_giant_all) {
1029		mtx_lock(&Giant);
1030		return(1);
1031	}
1032	return(0);
1033}
1034
1035void
1036mtx_unlock_giant(int s)
1037{
1038	if (s)
1039		mtx_unlock(&Giant);
1040}
1041