1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD$");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_radix.h>
137#include <vm/vm_reserv.h>
138#include <vm/uma.h>
139
140#ifdef DEV_APIC
141#include <sys/bus.h>
142#include <machine/intr_machdep.h>
143#include <machine/apicvar.h>
144#endif
145#include <machine/cpu.h>
146#include <machine/cputypes.h>
147#include <machine/md_var.h>
148#include <machine/pcb.h>
149#include <machine/specialreg.h>
150#ifdef SMP
151#include <machine/smp.h>
152#endif
153
154#ifdef XBOX
155#include <machine/xbox.h>
156#endif
157
158#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
159#define CPU_ENABLE_SSE
160#endif
161
162#ifndef PMAP_SHPGPERPROC
163#define PMAP_SHPGPERPROC 200
164#endif
165
166#if !defined(DIAGNOSTIC)
167#ifdef __GNUC_GNU_INLINE__
168#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
169#else
170#define PMAP_INLINE	extern inline
171#endif
172#else
173#define PMAP_INLINE
174#endif
175
176#ifdef PV_STATS
177#define PV_STAT(x)	do { x ; } while (0)
178#else
179#define PV_STAT(x)	do { } while (0)
180#endif
181
182#define	pa_index(pa)	((pa) >> PDRSHIFT)
183#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
184
185/*
186 * Get PDEs and PTEs for user/kernel address space
187 */
188#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
189#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
190
191#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
192#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
193#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
194#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
195#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
196
197#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
198    atomic_clear_int((u_int *)(pte), PG_W))
199#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
200
201struct pmap kernel_pmap_store;
202LIST_HEAD(pmaplist, pmap);
203static struct pmaplist allpmaps;
204static struct mtx allpmaps_lock;
205
206vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
207vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
208int pgeflag = 0;		/* PG_G or-in */
209int pseflag = 0;		/* PG_PS or-in */
210
211static int nkpt = NKPT;
212vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
213extern u_int32_t KERNend;
214extern u_int32_t KPTphys;
215
216#ifdef PAE
217pt_entry_t pg_nx;
218static uma_zone_t pdptzone;
219#endif
220
221static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
222
223static int pat_works = 1;
224SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
225    "Is page attribute table fully functional?");
226
227static int pg_ps_enabled = 1;
228SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
229    "Are large page mappings enabled?");
230
231#define	PAT_INDEX_SIZE	8
232static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
233
234static struct rwlock_padalign pvh_global_lock;
235
236/*
237 * Data for the pv entry allocation mechanism
238 */
239static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
240static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
241static struct md_page *pv_table;
242static int shpgperproc = PMAP_SHPGPERPROC;
243
244struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
245int pv_maxchunks;			/* How many chunks we have KVA for */
246vm_offset_t pv_vafree;			/* freelist stored in the PTE */
247
248/*
249 * All those kernel PT submaps that BSD is so fond of
250 */
251struct sysmaps {
252	struct	mtx lock;
253	pt_entry_t *CMAP1;
254	pt_entry_t *CMAP2;
255	caddr_t	CADDR1;
256	caddr_t	CADDR2;
257};
258static struct sysmaps sysmaps_pcpu[MAXCPU];
259pt_entry_t *CMAP1 = 0;
260static pt_entry_t *CMAP3;
261static pd_entry_t *KPTD;
262caddr_t CADDR1 = 0, ptvmmap = 0;
263static caddr_t CADDR3;
264struct msgbuf *msgbufp = 0;
265
266/*
267 * Crashdump maps.
268 */
269static caddr_t crashdumpmap;
270
271static pt_entry_t *PMAP1 = 0, *PMAP2;
272static pt_entry_t *PADDR1 = 0, *PADDR2;
273#ifdef SMP
274static int PMAP1cpu;
275static int PMAP1changedcpu;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
277	   &PMAP1changedcpu, 0,
278	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
279#endif
280static int PMAP1changed;
281SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
282	   &PMAP1changed, 0,
283	   "Number of times pmap_pte_quick changed PMAP1");
284static int PMAP1unchanged;
285SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
286	   &PMAP1unchanged, 0,
287	   "Number of times pmap_pte_quick didn't change PMAP1");
288static struct mtx PMAP2mutex;
289
290static void	free_pv_chunk(struct pv_chunk *pc);
291static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
292static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
293static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
294static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
295static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
296static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
297static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
298		    vm_offset_t va);
299static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
300
301static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
302static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
303    vm_prot_t prot);
304static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
305    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
306static void pmap_flush_page(vm_page_t m);
307static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
308static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
309static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
310static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
311static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
312static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
313static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
314static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
315static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
316static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
317    vm_prot_t prot);
318static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
319static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
320    struct spglist *free);
321static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
322    struct spglist *free);
323static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
324static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
325    struct spglist *free);
326static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
327					vm_offset_t va);
328static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
329static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
330    vm_page_t m);
331static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
332    pd_entry_t newpde);
333static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
334
335static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
336
337static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
338static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
339static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
340static void pmap_pte_release(pt_entry_t *pte);
341static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
342#ifdef PAE
343static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
344#endif
345static void pmap_set_pg(void);
346
347static __inline void pagezero(void *page);
348
349CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
350CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
351
352/*
353 * If you get an error here, then you set KVA_PAGES wrong! See the
354 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
355 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
356 */
357CTASSERT(KERNBASE % (1 << 24) == 0);
358
359/*
360 *	Bootstrap the system enough to run with virtual memory.
361 *
362 *	On the i386 this is called after mapping has already been enabled
363 *	and just syncs the pmap module with what has already been done.
364 *	[We can't call it easily with mapping off since the kernel is not
365 *	mapped with PA == VA, hence we would have to relocate every address
366 *	from the linked base (virtual) address "KERNBASE" to the actual
367 *	(physical) address starting relative to 0]
368 */
369void
370pmap_bootstrap(vm_paddr_t firstaddr)
371{
372	vm_offset_t va;
373	pt_entry_t *pte, *unused;
374	struct sysmaps *sysmaps;
375	int i;
376
377	/*
378	 * Initialize the first available kernel virtual address.  However,
379	 * using "firstaddr" may waste a few pages of the kernel virtual
380	 * address space, because locore may not have mapped every physical
381	 * page that it allocated.  Preferably, locore would provide a first
382	 * unused virtual address in addition to "firstaddr".
383	 */
384	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
385
386	virtual_end = VM_MAX_KERNEL_ADDRESS;
387
388	/*
389	 * Initialize the kernel pmap (which is statically allocated).
390	 */
391	PMAP_LOCK_INIT(kernel_pmap);
392	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
393#ifdef PAE
394	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
395#endif
396	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
397	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
398
399 	/*
400	 * Initialize the global pv list lock.
401	 */
402	rw_init(&pvh_global_lock, "pmap pv global");
403
404	LIST_INIT(&allpmaps);
405
406	/*
407	 * Request a spin mutex so that changes to allpmaps cannot be
408	 * preempted by smp_rendezvous_cpus().  Otherwise,
409	 * pmap_update_pde_kernel() could access allpmaps while it is
410	 * being changed.
411	 */
412	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
413	mtx_lock_spin(&allpmaps_lock);
414	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
415	mtx_unlock_spin(&allpmaps_lock);
416
417	/*
418	 * Reserve some special page table entries/VA space for temporary
419	 * mapping of pages.
420	 */
421#define	SYSMAP(c, p, v, n)	\
422	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
423
424	va = virtual_avail;
425	pte = vtopte(va);
426
427	/*
428	 * CMAP1/CMAP2 are used for zeroing and copying pages.
429	 * CMAP3 is used for the idle process page zeroing.
430	 */
431	for (i = 0; i < MAXCPU; i++) {
432		sysmaps = &sysmaps_pcpu[i];
433		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
434		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
435		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
436	}
437	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
438	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
439
440	/*
441	 * Crashdump maps.
442	 */
443	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
444
445	/*
446	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
447	 */
448	SYSMAP(caddr_t, unused, ptvmmap, 1)
449
450	/*
451	 * msgbufp is used to map the system message buffer.
452	 */
453	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
454
455	/*
456	 * KPTmap is used by pmap_kextract().
457	 *
458	 * KPTmap is first initialized by locore.  However, that initial
459	 * KPTmap can only support NKPT page table pages.  Here, a larger
460	 * KPTmap is created that can support KVA_PAGES page table pages.
461	 */
462	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
463
464	for (i = 0; i < NKPT; i++)
465		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
466
467	/*
468	 * Adjust the start of the KPTD and KPTmap so that the implementation
469	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
470	 */
471	KPTD -= KPTDI;
472	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
473
474	/*
475	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
476	 * respectively.
477	 */
478	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
479	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
480
481	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482
483	virtual_avail = va;
484
485	/*
486	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487	 * physical memory region that is used by the ACPI wakeup code.  This
488	 * mapping must not have PG_G set.
489	 */
490#ifdef XBOX
491	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
492	 * an early stadium, we cannot yet neatly map video memory ... :-(
493	 * Better fixes are very welcome! */
494	if (!arch_i386_is_xbox)
495#endif
496	for (i = 1; i < NKPT; i++)
497		PTD[i] = 0;
498
499	/* Initialize the PAT MSR if present. */
500	pmap_init_pat();
501
502	/* Turn on PG_G on kernel page(s) */
503	pmap_set_pg();
504}
505
506/*
507 * Setup the PAT MSR.
508 */
509void
510pmap_init_pat(void)
511{
512	int pat_table[PAT_INDEX_SIZE];
513	uint64_t pat_msr;
514	u_long cr0, cr4;
515	int i;
516
517	/* Set default PAT index table. */
518	for (i = 0; i < PAT_INDEX_SIZE; i++)
519		pat_table[i] = -1;
520	pat_table[PAT_WRITE_BACK] = 0;
521	pat_table[PAT_WRITE_THROUGH] = 1;
522	pat_table[PAT_UNCACHEABLE] = 3;
523	pat_table[PAT_WRITE_COMBINING] = 3;
524	pat_table[PAT_WRITE_PROTECTED] = 3;
525	pat_table[PAT_UNCACHED] = 3;
526
527	/* Bail if this CPU doesn't implement PAT. */
528	if ((cpu_feature & CPUID_PAT) == 0) {
529		for (i = 0; i < PAT_INDEX_SIZE; i++)
530			pat_index[i] = pat_table[i];
531		pat_works = 0;
532		return;
533	}
534
535	/*
536	 * Due to some Intel errata, we can only safely use the lower 4
537	 * PAT entries.
538	 *
539	 *   Intel Pentium III Processor Specification Update
540	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
541	 * or Mode C Paging)
542	 *
543	 *   Intel Pentium IV  Processor Specification Update
544	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
545	 */
546	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
547	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
548		pat_works = 0;
549
550	/* Initialize default PAT entries. */
551	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
552	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
553	    PAT_VALUE(2, PAT_UNCACHED) |
554	    PAT_VALUE(3, PAT_UNCACHEABLE) |
555	    PAT_VALUE(4, PAT_WRITE_BACK) |
556	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
557	    PAT_VALUE(6, PAT_UNCACHED) |
558	    PAT_VALUE(7, PAT_UNCACHEABLE);
559
560	if (pat_works) {
561		/*
562		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
563		 * Program 5 and 6 as WP and WC.
564		 * Leave 4 and 7 as WB and UC.
565		 */
566		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
567		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
568		    PAT_VALUE(6, PAT_WRITE_COMBINING);
569		pat_table[PAT_UNCACHED] = 2;
570		pat_table[PAT_WRITE_PROTECTED] = 5;
571		pat_table[PAT_WRITE_COMBINING] = 6;
572	} else {
573		/*
574		 * Just replace PAT Index 2 with WC instead of UC-.
575		 */
576		pat_msr &= ~PAT_MASK(2);
577		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
578		pat_table[PAT_WRITE_COMBINING] = 2;
579	}
580
581	/* Disable PGE. */
582	cr4 = rcr4();
583	load_cr4(cr4 & ~CR4_PGE);
584
585	/* Disable caches (CD = 1, NW = 0). */
586	cr0 = rcr0();
587	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
588
589	/* Flushes caches and TLBs. */
590	wbinvd();
591	invltlb();
592
593	/* Update PAT and index table. */
594	wrmsr(MSR_PAT, pat_msr);
595	for (i = 0; i < PAT_INDEX_SIZE; i++)
596		pat_index[i] = pat_table[i];
597
598	/* Flush caches and TLBs again. */
599	wbinvd();
600	invltlb();
601
602	/* Restore caches and PGE. */
603	load_cr0(cr0);
604	load_cr4(cr4);
605}
606
607/*
608 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
609 */
610static void
611pmap_set_pg(void)
612{
613	pt_entry_t *pte;
614	vm_offset_t va, endva;
615
616	if (pgeflag == 0)
617		return;
618
619	endva = KERNBASE + KERNend;
620
621	if (pseflag) {
622		va = KERNBASE + KERNLOAD;
623		while (va  < endva) {
624			pdir_pde(PTD, va) |= pgeflag;
625			invltlb();	/* Play it safe, invltlb() every time */
626			va += NBPDR;
627		}
628	} else {
629		va = (vm_offset_t)btext;
630		while (va < endva) {
631			pte = vtopte(va);
632			if (*pte)
633				*pte |= pgeflag;
634			invltlb();	/* Play it safe, invltlb() every time */
635			va += PAGE_SIZE;
636		}
637	}
638}
639
640/*
641 * Initialize a vm_page's machine-dependent fields.
642 */
643void
644pmap_page_init(vm_page_t m)
645{
646
647	TAILQ_INIT(&m->md.pv_list);
648	m->md.pat_mode = PAT_WRITE_BACK;
649}
650
651#ifdef PAE
652static void *
653pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
654{
655
656	/* Inform UMA that this allocator uses kernel_map/object. */
657	*flags = UMA_SLAB_KERNEL;
658	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
659	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
660}
661#endif
662
663/*
664 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
665 * Requirements:
666 *  - Must deal with pages in order to ensure that none of the PG_* bits
667 *    are ever set, PG_V in particular.
668 *  - Assumes we can write to ptes without pte_store() atomic ops, even
669 *    on PAE systems.  This should be ok.
670 *  - Assumes nothing will ever test these addresses for 0 to indicate
671 *    no mapping instead of correctly checking PG_V.
672 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
673 * Because PG_V is never set, there can be no mappings to invalidate.
674 */
675static vm_offset_t
676pmap_ptelist_alloc(vm_offset_t *head)
677{
678	pt_entry_t *pte;
679	vm_offset_t va;
680
681	va = *head;
682	if (va == 0)
683		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
684	pte = vtopte(va);
685	*head = *pte;
686	if (*head & PG_V)
687		panic("pmap_ptelist_alloc: va with PG_V set!");
688	*pte = 0;
689	return (va);
690}
691
692static void
693pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
694{
695	pt_entry_t *pte;
696
697	if (va & PG_V)
698		panic("pmap_ptelist_free: freeing va with PG_V set!");
699	pte = vtopte(va);
700	*pte = *head;		/* virtual! PG_V is 0 though */
701	*head = va;
702}
703
704static void
705pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
706{
707	int i;
708	vm_offset_t va;
709
710	*head = 0;
711	for (i = npages - 1; i >= 0; i--) {
712		va = (vm_offset_t)base + i * PAGE_SIZE;
713		pmap_ptelist_free(head, va);
714	}
715}
716
717
718/*
719 *	Initialize the pmap module.
720 *	Called by vm_init, to initialize any structures that the pmap
721 *	system needs to map virtual memory.
722 */
723void
724pmap_init(void)
725{
726	vm_page_t mpte;
727	vm_size_t s;
728	int i, pv_npg;
729
730	/*
731	 * Initialize the vm page array entries for the kernel pmap's
732	 * page table pages.
733	 */
734	for (i = 0; i < NKPT; i++) {
735		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
736		KASSERT(mpte >= vm_page_array &&
737		    mpte < &vm_page_array[vm_page_array_size],
738		    ("pmap_init: page table page is out of range"));
739		mpte->pindex = i + KPTDI;
740		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
741	}
742
743	/*
744	 * Initialize the address space (zone) for the pv entries.  Set a
745	 * high water mark so that the system can recover from excessive
746	 * numbers of pv entries.
747	 */
748	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
749	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
750	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
751	pv_entry_max = roundup(pv_entry_max, _NPCPV);
752	pv_entry_high_water = 9 * (pv_entry_max / 10);
753
754	/*
755	 * If the kernel is running in a virtual machine on an AMD Family 10h
756	 * processor, then it must assume that MCA is enabled by the virtual
757	 * machine monitor.
758	 */
759	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
760	    CPUID_TO_FAMILY(cpu_id) == 0x10)
761		workaround_erratum383 = 1;
762
763	/*
764	 * Are large page mappings supported and enabled?
765	 */
766	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
767	if (pseflag == 0)
768		pg_ps_enabled = 0;
769	else if (pg_ps_enabled) {
770		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
771		    ("pmap_init: can't assign to pagesizes[1]"));
772		pagesizes[1] = NBPDR;
773	}
774
775	/*
776	 * Calculate the size of the pv head table for superpages.
777	 */
778	for (i = 0; phys_avail[i + 1]; i += 2);
779	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
780
781	/*
782	 * Allocate memory for the pv head table for superpages.
783	 */
784	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
785	s = round_page(s);
786	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
787	    M_WAITOK | M_ZERO);
788	for (i = 0; i < pv_npg; i++)
789		TAILQ_INIT(&pv_table[i].pv_list);
790
791	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
792	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
793	if (pv_chunkbase == NULL)
794		panic("pmap_init: not enough kvm for pv chunks");
795	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
796#ifdef PAE
797	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
798	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
799	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
800	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
801#endif
802}
803
804
805SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
806	"Max number of PV entries");
807SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
808	"Page share factor per proc");
809
810static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
811    "2/4MB page mapping counters");
812
813static u_long pmap_pde_demotions;
814SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
815    &pmap_pde_demotions, 0, "2/4MB page demotions");
816
817static u_long pmap_pde_mappings;
818SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
819    &pmap_pde_mappings, 0, "2/4MB page mappings");
820
821static u_long pmap_pde_p_failures;
822SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
823    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
824
825static u_long pmap_pde_promotions;
826SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
827    &pmap_pde_promotions, 0, "2/4MB page promotions");
828
829/***************************************************
830 * Low level helper routines.....
831 ***************************************************/
832
833/*
834 * Determine the appropriate bits to set in a PTE or PDE for a specified
835 * caching mode.
836 */
837int
838pmap_cache_bits(int mode, boolean_t is_pde)
839{
840	int cache_bits, pat_flag, pat_idx;
841
842	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
843		panic("Unknown caching mode %d\n", mode);
844
845	/* The PAT bit is different for PTE's and PDE's. */
846	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
847
848	/* Map the caching mode to a PAT index. */
849	pat_idx = pat_index[mode];
850
851	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
852	cache_bits = 0;
853	if (pat_idx & 0x4)
854		cache_bits |= pat_flag;
855	if (pat_idx & 0x2)
856		cache_bits |= PG_NC_PCD;
857	if (pat_idx & 0x1)
858		cache_bits |= PG_NC_PWT;
859	return (cache_bits);
860}
861
862/*
863 * The caller is responsible for maintaining TLB consistency.
864 */
865static void
866pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
867{
868	pd_entry_t *pde;
869	pmap_t pmap;
870	boolean_t PTD_updated;
871
872	PTD_updated = FALSE;
873	mtx_lock_spin(&allpmaps_lock);
874	LIST_FOREACH(pmap, &allpmaps, pm_list) {
875		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
876		    PG_FRAME))
877			PTD_updated = TRUE;
878		pde = pmap_pde(pmap, va);
879		pde_store(pde, newpde);
880	}
881	mtx_unlock_spin(&allpmaps_lock);
882	KASSERT(PTD_updated,
883	    ("pmap_kenter_pde: current page table is not in allpmaps"));
884}
885
886/*
887 * After changing the page size for the specified virtual address in the page
888 * table, flush the corresponding entries from the processor's TLB.  Only the
889 * calling processor's TLB is affected.
890 *
891 * The calling thread must be pinned to a processor.
892 */
893static void
894pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
895{
896	u_long cr4;
897
898	if ((newpde & PG_PS) == 0)
899		/* Demotion: flush a specific 2MB page mapping. */
900		invlpg(va);
901	else if ((newpde & PG_G) == 0)
902		/*
903		 * Promotion: flush every 4KB page mapping from the TLB
904		 * because there are too many to flush individually.
905		 */
906		invltlb();
907	else {
908		/*
909		 * Promotion: flush every 4KB page mapping from the TLB,
910		 * including any global (PG_G) mappings.
911		 */
912		cr4 = rcr4();
913		load_cr4(cr4 & ~CR4_PGE);
914		/*
915		 * Although preemption at this point could be detrimental to
916		 * performance, it would not lead to an error.  PG_G is simply
917		 * ignored if CR4.PGE is clear.  Moreover, in case this block
918		 * is re-entered, the load_cr4() either above or below will
919		 * modify CR4.PGE flushing the TLB.
920		 */
921		load_cr4(cr4 | CR4_PGE);
922	}
923}
924#ifdef SMP
925/*
926 * For SMP, these functions have to use the IPI mechanism for coherence.
927 *
928 * N.B.: Before calling any of the following TLB invalidation functions,
929 * the calling processor must ensure that all stores updating a non-
930 * kernel page table are globally performed.  Otherwise, another
931 * processor could cache an old, pre-update entry without being
932 * invalidated.  This can happen one of two ways: (1) The pmap becomes
933 * active on another processor after its pm_active field is checked by
934 * one of the following functions but before a store updating the page
935 * table is globally performed. (2) The pmap becomes active on another
936 * processor before its pm_active field is checked but due to
937 * speculative loads one of the following functions stills reads the
938 * pmap as inactive on the other processor.
939 *
940 * The kernel page table is exempt because its pm_active field is
941 * immutable.  The kernel page table is always active on every
942 * processor.
943 */
944void
945pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
946{
947	cpuset_t other_cpus;
948	u_int cpuid;
949
950	sched_pin();
951	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
952		invlpg(va);
953		smp_invlpg(va);
954	} else {
955		cpuid = PCPU_GET(cpuid);
956		other_cpus = all_cpus;
957		CPU_CLR(cpuid, &other_cpus);
958		if (CPU_ISSET(cpuid, &pmap->pm_active))
959			invlpg(va);
960		CPU_AND(&other_cpus, &pmap->pm_active);
961		if (!CPU_EMPTY(&other_cpus))
962			smp_masked_invlpg(other_cpus, va);
963	}
964	sched_unpin();
965}
966
967void
968pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
969{
970	cpuset_t other_cpus;
971	vm_offset_t addr;
972	u_int cpuid;
973
974	sched_pin();
975	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
976		for (addr = sva; addr < eva; addr += PAGE_SIZE)
977			invlpg(addr);
978		smp_invlpg_range(sva, eva);
979	} else {
980		cpuid = PCPU_GET(cpuid);
981		other_cpus = all_cpus;
982		CPU_CLR(cpuid, &other_cpus);
983		if (CPU_ISSET(cpuid, &pmap->pm_active))
984			for (addr = sva; addr < eva; addr += PAGE_SIZE)
985				invlpg(addr);
986		CPU_AND(&other_cpus, &pmap->pm_active);
987		if (!CPU_EMPTY(&other_cpus))
988			smp_masked_invlpg_range(other_cpus, sva, eva);
989	}
990	sched_unpin();
991}
992
993void
994pmap_invalidate_all(pmap_t pmap)
995{
996	cpuset_t other_cpus;
997	u_int cpuid;
998
999	sched_pin();
1000	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1001		invltlb();
1002		smp_invltlb();
1003	} else {
1004		cpuid = PCPU_GET(cpuid);
1005		other_cpus = all_cpus;
1006		CPU_CLR(cpuid, &other_cpus);
1007		if (CPU_ISSET(cpuid, &pmap->pm_active))
1008			invltlb();
1009		CPU_AND(&other_cpus, &pmap->pm_active);
1010		if (!CPU_EMPTY(&other_cpus))
1011			smp_masked_invltlb(other_cpus);
1012	}
1013	sched_unpin();
1014}
1015
1016void
1017pmap_invalidate_cache(void)
1018{
1019
1020	sched_pin();
1021	wbinvd();
1022	smp_cache_flush();
1023	sched_unpin();
1024}
1025
1026struct pde_action {
1027	cpuset_t invalidate;	/* processors that invalidate their TLB */
1028	vm_offset_t va;
1029	pd_entry_t *pde;
1030	pd_entry_t newpde;
1031	u_int store;		/* processor that updates the PDE */
1032};
1033
1034static void
1035pmap_update_pde_kernel(void *arg)
1036{
1037	struct pde_action *act = arg;
1038	pd_entry_t *pde;
1039	pmap_t pmap;
1040
1041	if (act->store == PCPU_GET(cpuid)) {
1042
1043		/*
1044		 * Elsewhere, this operation requires allpmaps_lock for
1045		 * synchronization.  Here, it does not because it is being
1046		 * performed in the context of an all_cpus rendezvous.
1047		 */
1048		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1049			pde = pmap_pde(pmap, act->va);
1050			pde_store(pde, act->newpde);
1051		}
1052	}
1053}
1054
1055static void
1056pmap_update_pde_user(void *arg)
1057{
1058	struct pde_action *act = arg;
1059
1060	if (act->store == PCPU_GET(cpuid))
1061		pde_store(act->pde, act->newpde);
1062}
1063
1064static void
1065pmap_update_pde_teardown(void *arg)
1066{
1067	struct pde_action *act = arg;
1068
1069	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1070		pmap_update_pde_invalidate(act->va, act->newpde);
1071}
1072
1073/*
1074 * Change the page size for the specified virtual address in a way that
1075 * prevents any possibility of the TLB ever having two entries that map the
1076 * same virtual address using different page sizes.  This is the recommended
1077 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1078 * machine check exception for a TLB state that is improperly diagnosed as a
1079 * hardware error.
1080 */
1081static void
1082pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1083{
1084	struct pde_action act;
1085	cpuset_t active, other_cpus;
1086	u_int cpuid;
1087
1088	sched_pin();
1089	cpuid = PCPU_GET(cpuid);
1090	other_cpus = all_cpus;
1091	CPU_CLR(cpuid, &other_cpus);
1092	if (pmap == kernel_pmap)
1093		active = all_cpus;
1094	else
1095		active = pmap->pm_active;
1096	if (CPU_OVERLAP(&active, &other_cpus)) {
1097		act.store = cpuid;
1098		act.invalidate = active;
1099		act.va = va;
1100		act.pde = pde;
1101		act.newpde = newpde;
1102		CPU_SET(cpuid, &active);
1103		smp_rendezvous_cpus(active,
1104		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1105		    pmap_update_pde_kernel : pmap_update_pde_user,
1106		    pmap_update_pde_teardown, &act);
1107	} else {
1108		if (pmap == kernel_pmap)
1109			pmap_kenter_pde(va, newpde);
1110		else
1111			pde_store(pde, newpde);
1112		if (CPU_ISSET(cpuid, &active))
1113			pmap_update_pde_invalidate(va, newpde);
1114	}
1115	sched_unpin();
1116}
1117#else /* !SMP */
1118/*
1119 * Normal, non-SMP, 486+ invalidation functions.
1120 * We inline these within pmap.c for speed.
1121 */
1122PMAP_INLINE void
1123pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1124{
1125
1126	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1127		invlpg(va);
1128}
1129
1130PMAP_INLINE void
1131pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1132{
1133	vm_offset_t addr;
1134
1135	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1136		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1137			invlpg(addr);
1138}
1139
1140PMAP_INLINE void
1141pmap_invalidate_all(pmap_t pmap)
1142{
1143
1144	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1145		invltlb();
1146}
1147
1148PMAP_INLINE void
1149pmap_invalidate_cache(void)
1150{
1151
1152	wbinvd();
1153}
1154
1155static void
1156pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1157{
1158
1159	if (pmap == kernel_pmap)
1160		pmap_kenter_pde(va, newpde);
1161	else
1162		pde_store(pde, newpde);
1163	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1164		pmap_update_pde_invalidate(va, newpde);
1165}
1166#endif /* !SMP */
1167
1168#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1169
1170void
1171pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1172{
1173
1174	KASSERT((sva & PAGE_MASK) == 0,
1175	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1176	KASSERT((eva & PAGE_MASK) == 0,
1177	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1178
1179	if (cpu_feature & CPUID_SS)
1180		; /* If "Self Snoop" is supported, do nothing. */
1181	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1182	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1183
1184#ifdef DEV_APIC
1185		/*
1186		 * XXX: Some CPUs fault, hang, or trash the local APIC
1187		 * registers if we use CLFLUSH on the local APIC
1188		 * range.  The local APIC is always uncached, so we
1189		 * don't need to flush for that range anyway.
1190		 */
1191		if (pmap_kextract(sva) == lapic_paddr)
1192			return;
1193#endif
1194		/*
1195		 * Otherwise, do per-cache line flush.  Use the mfence
1196		 * instruction to insure that previous stores are
1197		 * included in the write-back.  The processor
1198		 * propagates flush to other processors in the cache
1199		 * coherence domain.
1200		 */
1201		mfence();
1202		for (; sva < eva; sva += cpu_clflush_line_size)
1203			clflush(sva);
1204		mfence();
1205	} else {
1206
1207		/*
1208		 * No targeted cache flush methods are supported by CPU,
1209		 * or the supplied range is bigger than 2MB.
1210		 * Globally invalidate cache.
1211		 */
1212		pmap_invalidate_cache();
1213	}
1214}
1215
1216void
1217pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1218{
1219	int i;
1220
1221	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1222	    (cpu_feature & CPUID_CLFSH) == 0) {
1223		pmap_invalidate_cache();
1224	} else {
1225		for (i = 0; i < count; i++)
1226			pmap_flush_page(pages[i]);
1227	}
1228}
1229
1230/*
1231 * Are we current address space or kernel?  N.B. We return FALSE when
1232 * a pmap's page table is in use because a kernel thread is borrowing
1233 * it.  The borrowed page table can change spontaneously, making any
1234 * dependence on its continued use subject to a race condition.
1235 */
1236static __inline int
1237pmap_is_current(pmap_t pmap)
1238{
1239
1240	return (pmap == kernel_pmap ||
1241	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1242	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1243}
1244
1245/*
1246 * If the given pmap is not the current or kernel pmap, the returned pte must
1247 * be released by passing it to pmap_pte_release().
1248 */
1249pt_entry_t *
1250pmap_pte(pmap_t pmap, vm_offset_t va)
1251{
1252	pd_entry_t newpf;
1253	pd_entry_t *pde;
1254
1255	pde = pmap_pde(pmap, va);
1256	if (*pde & PG_PS)
1257		return (pde);
1258	if (*pde != 0) {
1259		/* are we current address space or kernel? */
1260		if (pmap_is_current(pmap))
1261			return (vtopte(va));
1262		mtx_lock(&PMAP2mutex);
1263		newpf = *pde & PG_FRAME;
1264		if ((*PMAP2 & PG_FRAME) != newpf) {
1265			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1266			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1267		}
1268		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1269	}
1270	return (NULL);
1271}
1272
1273/*
1274 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1275 * being NULL.
1276 */
1277static __inline void
1278pmap_pte_release(pt_entry_t *pte)
1279{
1280
1281	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1282		mtx_unlock(&PMAP2mutex);
1283}
1284
1285static __inline void
1286invlcaddr(void *caddr)
1287{
1288
1289	invlpg((u_int)caddr);
1290}
1291
1292/*
1293 * Super fast pmap_pte routine best used when scanning
1294 * the pv lists.  This eliminates many coarse-grained
1295 * invltlb calls.  Note that many of the pv list
1296 * scans are across different pmaps.  It is very wasteful
1297 * to do an entire invltlb for checking a single mapping.
1298 *
1299 * If the given pmap is not the current pmap, pvh_global_lock
1300 * must be held and curthread pinned to a CPU.
1301 */
1302static pt_entry_t *
1303pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1304{
1305	pd_entry_t newpf;
1306	pd_entry_t *pde;
1307
1308	pde = pmap_pde(pmap, va);
1309	if (*pde & PG_PS)
1310		return (pde);
1311	if (*pde != 0) {
1312		/* are we current address space or kernel? */
1313		if (pmap_is_current(pmap))
1314			return (vtopte(va));
1315		rw_assert(&pvh_global_lock, RA_WLOCKED);
1316		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1317		newpf = *pde & PG_FRAME;
1318		if ((*PMAP1 & PG_FRAME) != newpf) {
1319			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1320#ifdef SMP
1321			PMAP1cpu = PCPU_GET(cpuid);
1322#endif
1323			invlcaddr(PADDR1);
1324			PMAP1changed++;
1325		} else
1326#ifdef SMP
1327		if (PMAP1cpu != PCPU_GET(cpuid)) {
1328			PMAP1cpu = PCPU_GET(cpuid);
1329			invlcaddr(PADDR1);
1330			PMAP1changedcpu++;
1331		} else
1332#endif
1333			PMAP1unchanged++;
1334		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1335	}
1336	return (0);
1337}
1338
1339/*
1340 *	Routine:	pmap_extract
1341 *	Function:
1342 *		Extract the physical page address associated
1343 *		with the given map/virtual_address pair.
1344 */
1345vm_paddr_t
1346pmap_extract(pmap_t pmap, vm_offset_t va)
1347{
1348	vm_paddr_t rtval;
1349	pt_entry_t *pte;
1350	pd_entry_t pde;
1351
1352	rtval = 0;
1353	PMAP_LOCK(pmap);
1354	pde = pmap->pm_pdir[va >> PDRSHIFT];
1355	if (pde != 0) {
1356		if ((pde & PG_PS) != 0)
1357			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1358		else {
1359			pte = pmap_pte(pmap, va);
1360			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1361			pmap_pte_release(pte);
1362		}
1363	}
1364	PMAP_UNLOCK(pmap);
1365	return (rtval);
1366}
1367
1368/*
1369 *	Routine:	pmap_extract_and_hold
1370 *	Function:
1371 *		Atomically extract and hold the physical page
1372 *		with the given pmap and virtual address pair
1373 *		if that mapping permits the given protection.
1374 */
1375vm_page_t
1376pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1377{
1378	pd_entry_t pde;
1379	pt_entry_t pte, *ptep;
1380	vm_page_t m;
1381	vm_paddr_t pa;
1382
1383	pa = 0;
1384	m = NULL;
1385	PMAP_LOCK(pmap);
1386retry:
1387	pde = *pmap_pde(pmap, va);
1388	if (pde != 0) {
1389		if (pde & PG_PS) {
1390			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1391				if (vm_page_pa_tryrelock(pmap, (pde &
1392				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1393					goto retry;
1394				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1395				    (va & PDRMASK));
1396				vm_page_hold(m);
1397			}
1398		} else {
1399			ptep = pmap_pte(pmap, va);
1400			pte = *ptep;
1401			pmap_pte_release(ptep);
1402			if (pte != 0 &&
1403			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1404				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1405				    &pa))
1406					goto retry;
1407				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1408				vm_page_hold(m);
1409			}
1410		}
1411	}
1412	PA_UNLOCK_COND(pa);
1413	PMAP_UNLOCK(pmap);
1414	return (m);
1415}
1416
1417/***************************************************
1418 * Low level mapping routines.....
1419 ***************************************************/
1420
1421/*
1422 * Add a wired page to the kva.
1423 * Note: not SMP coherent.
1424 *
1425 * This function may be used before pmap_bootstrap() is called.
1426 */
1427PMAP_INLINE void
1428pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1429{
1430	pt_entry_t *pte;
1431
1432	pte = vtopte(va);
1433	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1434}
1435
1436static __inline void
1437pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1438{
1439	pt_entry_t *pte;
1440
1441	pte = vtopte(va);
1442	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1443}
1444
1445/*
1446 * Remove a page from the kernel pagetables.
1447 * Note: not SMP coherent.
1448 *
1449 * This function may be used before pmap_bootstrap() is called.
1450 */
1451PMAP_INLINE void
1452pmap_kremove(vm_offset_t va)
1453{
1454	pt_entry_t *pte;
1455
1456	pte = vtopte(va);
1457	pte_clear(pte);
1458}
1459
1460/*
1461 *	Used to map a range of physical addresses into kernel
1462 *	virtual address space.
1463 *
1464 *	The value passed in '*virt' is a suggested virtual address for
1465 *	the mapping. Architectures which can support a direct-mapped
1466 *	physical to virtual region can return the appropriate address
1467 *	within that region, leaving '*virt' unchanged. Other
1468 *	architectures should map the pages starting at '*virt' and
1469 *	update '*virt' with the first usable address after the mapped
1470 *	region.
1471 */
1472vm_offset_t
1473pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1474{
1475	vm_offset_t va, sva;
1476	vm_paddr_t superpage_offset;
1477	pd_entry_t newpde;
1478
1479	va = *virt;
1480	/*
1481	 * Does the physical address range's size and alignment permit at
1482	 * least one superpage mapping to be created?
1483	 */
1484	superpage_offset = start & PDRMASK;
1485	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1486		/*
1487		 * Increase the starting virtual address so that its alignment
1488		 * does not preclude the use of superpage mappings.
1489		 */
1490		if ((va & PDRMASK) < superpage_offset)
1491			va = (va & ~PDRMASK) + superpage_offset;
1492		else if ((va & PDRMASK) > superpage_offset)
1493			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1494	}
1495	sva = va;
1496	while (start < end) {
1497		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1498		    pseflag) {
1499			KASSERT((va & PDRMASK) == 0,
1500			    ("pmap_map: misaligned va %#x", va));
1501			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1502			pmap_kenter_pde(va, newpde);
1503			va += NBPDR;
1504			start += NBPDR;
1505		} else {
1506			pmap_kenter(va, start);
1507			va += PAGE_SIZE;
1508			start += PAGE_SIZE;
1509		}
1510	}
1511	pmap_invalidate_range(kernel_pmap, sva, va);
1512	*virt = va;
1513	return (sva);
1514}
1515
1516
1517/*
1518 * Add a list of wired pages to the kva
1519 * this routine is only used for temporary
1520 * kernel mappings that do not need to have
1521 * page modification or references recorded.
1522 * Note that old mappings are simply written
1523 * over.  The page *must* be wired.
1524 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1525 */
1526void
1527pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1528{
1529	pt_entry_t *endpte, oldpte, pa, *pte;
1530	vm_page_t m;
1531
1532	oldpte = 0;
1533	pte = vtopte(sva);
1534	endpte = pte + count;
1535	while (pte < endpte) {
1536		m = *ma++;
1537		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1538		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1539			oldpte |= *pte;
1540			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1541		}
1542		pte++;
1543	}
1544	if (__predict_false((oldpte & PG_V) != 0))
1545		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1546		    PAGE_SIZE);
1547}
1548
1549/*
1550 * This routine tears out page mappings from the
1551 * kernel -- it is meant only for temporary mappings.
1552 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1553 */
1554void
1555pmap_qremove(vm_offset_t sva, int count)
1556{
1557	vm_offset_t va;
1558
1559	va = sva;
1560	while (count-- > 0) {
1561		pmap_kremove(va);
1562		va += PAGE_SIZE;
1563	}
1564	pmap_invalidate_range(kernel_pmap, sva, va);
1565}
1566
1567/***************************************************
1568 * Page table page management routines.....
1569 ***************************************************/
1570static __inline void
1571pmap_free_zero_pages(struct spglist *free)
1572{
1573	vm_page_t m;
1574
1575	while ((m = SLIST_FIRST(free)) != NULL) {
1576		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1577		/* Preserve the page's PG_ZERO setting. */
1578		vm_page_free_toq(m);
1579	}
1580}
1581
1582/*
1583 * Schedule the specified unused page table page to be freed.  Specifically,
1584 * add the page to the specified list of pages that will be released to the
1585 * physical memory manager after the TLB has been updated.
1586 */
1587static __inline void
1588pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1589    boolean_t set_PG_ZERO)
1590{
1591
1592	if (set_PG_ZERO)
1593		m->flags |= PG_ZERO;
1594	else
1595		m->flags &= ~PG_ZERO;
1596	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1597}
1598
1599/*
1600 * Inserts the specified page table page into the specified pmap's collection
1601 * of idle page table pages.  Each of a pmap's page table pages is responsible
1602 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1603 * ordered by this virtual address range.
1604 */
1605static __inline int
1606pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1607{
1608
1609	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1610	return (vm_radix_insert(&pmap->pm_root, mpte));
1611}
1612
1613/*
1614 * Looks for a page table page mapping the specified virtual address in the
1615 * specified pmap's collection of idle page table pages.  Returns NULL if there
1616 * is no page table page corresponding to the specified virtual address.
1617 */
1618static __inline vm_page_t
1619pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1620{
1621
1622	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1624}
1625
1626/*
1627 * Removes the specified page table page from the specified pmap's collection
1628 * of idle page table pages.  The specified page table page must be a member of
1629 * the pmap's collection.
1630 */
1631static __inline void
1632pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1633{
1634
1635	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1636	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1637}
1638
1639/*
1640 * Decrements a page table page's wire count, which is used to record the
1641 * number of valid page table entries within the page.  If the wire count
1642 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1643 * page table page was unmapped and FALSE otherwise.
1644 */
1645static inline boolean_t
1646pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1647{
1648
1649	--m->wire_count;
1650	if (m->wire_count == 0) {
1651		_pmap_unwire_ptp(pmap, m, free);
1652		return (TRUE);
1653	} else
1654		return (FALSE);
1655}
1656
1657static void
1658_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1659{
1660	vm_offset_t pteva;
1661
1662	/*
1663	 * unmap the page table page
1664	 */
1665	pmap->pm_pdir[m->pindex] = 0;
1666	--pmap->pm_stats.resident_count;
1667
1668	/*
1669	 * This is a release store so that the ordinary store unmapping
1670	 * the page table page is globally performed before TLB shoot-
1671	 * down is begun.
1672	 */
1673	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1674
1675	/*
1676	 * Do an invltlb to make the invalidated mapping
1677	 * take effect immediately.
1678	 */
1679	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1680	pmap_invalidate_page(pmap, pteva);
1681
1682	/*
1683	 * Put page on a list so that it is released after
1684	 * *ALL* TLB shootdown is done
1685	 */
1686	pmap_add_delayed_free_list(m, free, TRUE);
1687}
1688
1689/*
1690 * After removing a page table entry, this routine is used to
1691 * conditionally free the page, and manage the hold/wire counts.
1692 */
1693static int
1694pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1695{
1696	pd_entry_t ptepde;
1697	vm_page_t mpte;
1698
1699	if (va >= VM_MAXUSER_ADDRESS)
1700		return (0);
1701	ptepde = *pmap_pde(pmap, va);
1702	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1703	return (pmap_unwire_ptp(pmap, mpte, free));
1704}
1705
1706/*
1707 * Initialize the pmap for the swapper process.
1708 */
1709void
1710pmap_pinit0(pmap_t pmap)
1711{
1712
1713	PMAP_LOCK_INIT(pmap);
1714	/*
1715	 * Since the page table directory is shared with the kernel pmap,
1716	 * which is already included in the list "allpmaps", this pmap does
1717	 * not need to be inserted into that list.
1718	 */
1719	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1720#ifdef PAE
1721	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1722#endif
1723	pmap->pm_root.rt_root = 0;
1724	CPU_ZERO(&pmap->pm_active);
1725	PCPU_SET(curpmap, pmap);
1726	TAILQ_INIT(&pmap->pm_pvchunk);
1727	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1728}
1729
1730/*
1731 * Initialize a preallocated and zeroed pmap structure,
1732 * such as one in a vmspace structure.
1733 */
1734int
1735pmap_pinit(pmap_t pmap)
1736{
1737	vm_page_t m, ptdpg[NPGPTD];
1738	vm_paddr_t pa;
1739	int i;
1740
1741	/*
1742	 * No need to allocate page table space yet but we do need a valid
1743	 * page directory table.
1744	 */
1745	if (pmap->pm_pdir == NULL) {
1746		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1747		if (pmap->pm_pdir == NULL) {
1748			PMAP_LOCK_DESTROY(pmap);
1749			return (0);
1750		}
1751#ifdef PAE
1752		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1753		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1754		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1755		    ("pmap_pinit: pdpt misaligned"));
1756		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1757		    ("pmap_pinit: pdpt above 4g"));
1758#endif
1759		pmap->pm_root.rt_root = 0;
1760	}
1761	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1762	    ("pmap_pinit: pmap has reserved page table page(s)"));
1763
1764	/*
1765	 * allocate the page directory page(s)
1766	 */
1767	for (i = 0; i < NPGPTD;) {
1768		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1769		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1770		if (m == NULL)
1771			VM_WAIT;
1772		else {
1773			ptdpg[i++] = m;
1774		}
1775	}
1776
1777	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1778
1779	for (i = 0; i < NPGPTD; i++)
1780		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1781			pagezero(pmap->pm_pdir + (i * NPDEPG));
1782
1783	mtx_lock_spin(&allpmaps_lock);
1784	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1785	/* Copy the kernel page table directory entries. */
1786	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1787	mtx_unlock_spin(&allpmaps_lock);
1788
1789	/* install self-referential address mapping entry(s) */
1790	for (i = 0; i < NPGPTD; i++) {
1791		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1792		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1793#ifdef PAE
1794		pmap->pm_pdpt[i] = pa | PG_V;
1795#endif
1796	}
1797
1798	CPU_ZERO(&pmap->pm_active);
1799	TAILQ_INIT(&pmap->pm_pvchunk);
1800	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1801
1802	return (1);
1803}
1804
1805/*
1806 * this routine is called if the page table page is not
1807 * mapped correctly.
1808 */
1809static vm_page_t
1810_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1811{
1812	vm_paddr_t ptepa;
1813	vm_page_t m;
1814
1815	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1816	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1817	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1818
1819	/*
1820	 * Allocate a page table page.
1821	 */
1822	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1823	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1824		if (flags & M_WAITOK) {
1825			PMAP_UNLOCK(pmap);
1826			rw_wunlock(&pvh_global_lock);
1827			VM_WAIT;
1828			rw_wlock(&pvh_global_lock);
1829			PMAP_LOCK(pmap);
1830		}
1831
1832		/*
1833		 * Indicate the need to retry.  While waiting, the page table
1834		 * page may have been allocated.
1835		 */
1836		return (NULL);
1837	}
1838	if ((m->flags & PG_ZERO) == 0)
1839		pmap_zero_page(m);
1840
1841	/*
1842	 * Map the pagetable page into the process address space, if
1843	 * it isn't already there.
1844	 */
1845
1846	pmap->pm_stats.resident_count++;
1847
1848	ptepa = VM_PAGE_TO_PHYS(m);
1849	pmap->pm_pdir[ptepindex] =
1850		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1851
1852	return (m);
1853}
1854
1855static vm_page_t
1856pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1857{
1858	u_int ptepindex;
1859	pd_entry_t ptepa;
1860	vm_page_t m;
1861
1862	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1863	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1864	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1865
1866	/*
1867	 * Calculate pagetable page index
1868	 */
1869	ptepindex = va >> PDRSHIFT;
1870retry:
1871	/*
1872	 * Get the page directory entry
1873	 */
1874	ptepa = pmap->pm_pdir[ptepindex];
1875
1876	/*
1877	 * This supports switching from a 4MB page to a
1878	 * normal 4K page.
1879	 */
1880	if (ptepa & PG_PS) {
1881		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1882		ptepa = pmap->pm_pdir[ptepindex];
1883	}
1884
1885	/*
1886	 * If the page table page is mapped, we just increment the
1887	 * hold count, and activate it.
1888	 */
1889	if (ptepa) {
1890		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1891		m->wire_count++;
1892	} else {
1893		/*
1894		 * Here if the pte page isn't mapped, or if it has
1895		 * been deallocated.
1896		 */
1897		m = _pmap_allocpte(pmap, ptepindex, flags);
1898		if (m == NULL && (flags & M_WAITOK))
1899			goto retry;
1900	}
1901	return (m);
1902}
1903
1904
1905/***************************************************
1906* Pmap allocation/deallocation routines.
1907 ***************************************************/
1908
1909#ifdef SMP
1910/*
1911 * Deal with a SMP shootdown of other users of the pmap that we are
1912 * trying to dispose of.  This can be a bit hairy.
1913 */
1914static cpuset_t *lazymask;
1915static u_int lazyptd;
1916static volatile u_int lazywait;
1917
1918void pmap_lazyfix_action(void);
1919
1920void
1921pmap_lazyfix_action(void)
1922{
1923
1924#ifdef COUNT_IPIS
1925	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1926#endif
1927	if (rcr3() == lazyptd)
1928		load_cr3(curpcb->pcb_cr3);
1929	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1930	atomic_store_rel_int(&lazywait, 1);
1931}
1932
1933static void
1934pmap_lazyfix_self(u_int cpuid)
1935{
1936
1937	if (rcr3() == lazyptd)
1938		load_cr3(curpcb->pcb_cr3);
1939	CPU_CLR_ATOMIC(cpuid, lazymask);
1940}
1941
1942
1943static void
1944pmap_lazyfix(pmap_t pmap)
1945{
1946	cpuset_t mymask, mask;
1947	u_int cpuid, spins;
1948	int lsb;
1949
1950	mask = pmap->pm_active;
1951	while (!CPU_EMPTY(&mask)) {
1952		spins = 50000000;
1953
1954		/* Find least significant set bit. */
1955		lsb = CPU_FFS(&mask);
1956		MPASS(lsb != 0);
1957		lsb--;
1958		CPU_SETOF(lsb, &mask);
1959		mtx_lock_spin(&smp_ipi_mtx);
1960#ifdef PAE
1961		lazyptd = vtophys(pmap->pm_pdpt);
1962#else
1963		lazyptd = vtophys(pmap->pm_pdir);
1964#endif
1965		cpuid = PCPU_GET(cpuid);
1966
1967		/* Use a cpuset just for having an easy check. */
1968		CPU_SETOF(cpuid, &mymask);
1969		if (!CPU_CMP(&mask, &mymask)) {
1970			lazymask = &pmap->pm_active;
1971			pmap_lazyfix_self(cpuid);
1972		} else {
1973			atomic_store_rel_int((u_int *)&lazymask,
1974			    (u_int)&pmap->pm_active);
1975			atomic_store_rel_int(&lazywait, 0);
1976			ipi_selected(mask, IPI_LAZYPMAP);
1977			while (lazywait == 0) {
1978				ia32_pause();
1979				if (--spins == 0)
1980					break;
1981			}
1982		}
1983		mtx_unlock_spin(&smp_ipi_mtx);
1984		if (spins == 0)
1985			printf("pmap_lazyfix: spun for 50000000\n");
1986		mask = pmap->pm_active;
1987	}
1988}
1989
1990#else	/* SMP */
1991
1992/*
1993 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1994 * unlikely to have to even execute this code, including the fact
1995 * that the cleanup is deferred until the parent does a wait(2), which
1996 * means that another userland process has run.
1997 */
1998static void
1999pmap_lazyfix(pmap_t pmap)
2000{
2001	u_int cr3;
2002
2003	cr3 = vtophys(pmap->pm_pdir);
2004	if (cr3 == rcr3()) {
2005		load_cr3(curpcb->pcb_cr3);
2006		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2007	}
2008}
2009#endif	/* SMP */
2010
2011/*
2012 * Release any resources held by the given physical map.
2013 * Called when a pmap initialized by pmap_pinit is being released.
2014 * Should only be called if the map contains no valid mappings.
2015 */
2016void
2017pmap_release(pmap_t pmap)
2018{
2019	vm_page_t m, ptdpg[NPGPTD];
2020	int i;
2021
2022	KASSERT(pmap->pm_stats.resident_count == 0,
2023	    ("pmap_release: pmap resident count %ld != 0",
2024	    pmap->pm_stats.resident_count));
2025	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2026	    ("pmap_release: pmap has reserved page table page(s)"));
2027
2028	pmap_lazyfix(pmap);
2029	mtx_lock_spin(&allpmaps_lock);
2030	LIST_REMOVE(pmap, pm_list);
2031	mtx_unlock_spin(&allpmaps_lock);
2032
2033	for (i = 0; i < NPGPTD; i++)
2034		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2035		    PG_FRAME);
2036
2037	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2038	    sizeof(*pmap->pm_pdir));
2039
2040	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2041
2042	for (i = 0; i < NPGPTD; i++) {
2043		m = ptdpg[i];
2044#ifdef PAE
2045		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2046		    ("pmap_release: got wrong ptd page"));
2047#endif
2048		m->wire_count--;
2049		atomic_subtract_int(&cnt.v_wire_count, 1);
2050		vm_page_free_zero(m);
2051	}
2052}
2053
2054static int
2055kvm_size(SYSCTL_HANDLER_ARGS)
2056{
2057	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2058
2059	return (sysctl_handle_long(oidp, &ksize, 0, req));
2060}
2061SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2062    0, 0, kvm_size, "IU", "Size of KVM");
2063
2064static int
2065kvm_free(SYSCTL_HANDLER_ARGS)
2066{
2067	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2068
2069	return (sysctl_handle_long(oidp, &kfree, 0, req));
2070}
2071SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2072    0, 0, kvm_free, "IU", "Amount of KVM free");
2073
2074/*
2075 * grow the number of kernel page table entries, if needed
2076 */
2077void
2078pmap_growkernel(vm_offset_t addr)
2079{
2080	vm_paddr_t ptppaddr;
2081	vm_page_t nkpg;
2082	pd_entry_t newpdir;
2083
2084	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2085	addr = roundup2(addr, NBPDR);
2086	if (addr - 1 >= kernel_map->max_offset)
2087		addr = kernel_map->max_offset;
2088	while (kernel_vm_end < addr) {
2089		if (pdir_pde(PTD, kernel_vm_end)) {
2090			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2091			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2092				kernel_vm_end = kernel_map->max_offset;
2093				break;
2094			}
2095			continue;
2096		}
2097
2098		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2099		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2100		    VM_ALLOC_ZERO);
2101		if (nkpg == NULL)
2102			panic("pmap_growkernel: no memory to grow kernel");
2103
2104		nkpt++;
2105
2106		if ((nkpg->flags & PG_ZERO) == 0)
2107			pmap_zero_page(nkpg);
2108		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2109		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2110		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2111
2112		pmap_kenter_pde(kernel_vm_end, newpdir);
2113		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2114		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2115			kernel_vm_end = kernel_map->max_offset;
2116			break;
2117		}
2118	}
2119}
2120
2121
2122/***************************************************
2123 * page management routines.
2124 ***************************************************/
2125
2126CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2127CTASSERT(_NPCM == 11);
2128CTASSERT(_NPCPV == 336);
2129
2130static __inline struct pv_chunk *
2131pv_to_chunk(pv_entry_t pv)
2132{
2133
2134	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2135}
2136
2137#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2138
2139#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2140#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2141
2142static const uint32_t pc_freemask[_NPCM] = {
2143	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2144	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2145	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2146	PC_FREE0_9, PC_FREE10
2147};
2148
2149SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2150	"Current number of pv entries");
2151
2152#ifdef PV_STATS
2153static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2154
2155SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2156	"Current number of pv entry chunks");
2157SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2158	"Current number of pv entry chunks allocated");
2159SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2160	"Current number of pv entry chunks frees");
2161SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2162	"Number of times tried to get a chunk page but failed.");
2163
2164static long pv_entry_frees, pv_entry_allocs;
2165static int pv_entry_spare;
2166
2167SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2168	"Current number of pv entry frees");
2169SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2170	"Current number of pv entry allocs");
2171SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2172	"Current number of spare pv entries");
2173#endif
2174
2175/*
2176 * We are in a serious low memory condition.  Resort to
2177 * drastic measures to free some pages so we can allocate
2178 * another pv entry chunk.
2179 */
2180static vm_page_t
2181pmap_pv_reclaim(pmap_t locked_pmap)
2182{
2183	struct pch newtail;
2184	struct pv_chunk *pc;
2185	struct md_page *pvh;
2186	pd_entry_t *pde;
2187	pmap_t pmap;
2188	pt_entry_t *pte, tpte;
2189	pv_entry_t pv;
2190	vm_offset_t va;
2191	vm_page_t m, m_pc;
2192	struct spglist free;
2193	uint32_t inuse;
2194	int bit, field, freed;
2195
2196	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2197	pmap = NULL;
2198	m_pc = NULL;
2199	SLIST_INIT(&free);
2200	TAILQ_INIT(&newtail);
2201	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2202	    SLIST_EMPTY(&free))) {
2203		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2204		if (pmap != pc->pc_pmap) {
2205			if (pmap != NULL) {
2206				pmap_invalidate_all(pmap);
2207				if (pmap != locked_pmap)
2208					PMAP_UNLOCK(pmap);
2209			}
2210			pmap = pc->pc_pmap;
2211			/* Avoid deadlock and lock recursion. */
2212			if (pmap > locked_pmap)
2213				PMAP_LOCK(pmap);
2214			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2215				pmap = NULL;
2216				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2217				continue;
2218			}
2219		}
2220
2221		/*
2222		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2223		 */
2224		freed = 0;
2225		for (field = 0; field < _NPCM; field++) {
2226			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2227			    inuse != 0; inuse &= ~(1UL << bit)) {
2228				bit = bsfl(inuse);
2229				pv = &pc->pc_pventry[field * 32 + bit];
2230				va = pv->pv_va;
2231				pde = pmap_pde(pmap, va);
2232				if ((*pde & PG_PS) != 0)
2233					continue;
2234				pte = pmap_pte(pmap, va);
2235				tpte = *pte;
2236				if ((tpte & PG_W) == 0)
2237					tpte = pte_load_clear(pte);
2238				pmap_pte_release(pte);
2239				if ((tpte & PG_W) != 0)
2240					continue;
2241				KASSERT(tpte != 0,
2242				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2243				    pmap, va));
2244				if ((tpte & PG_G) != 0)
2245					pmap_invalidate_page(pmap, va);
2246				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2247				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2248					vm_page_dirty(m);
2249				if ((tpte & PG_A) != 0)
2250					vm_page_aflag_set(m, PGA_REFERENCED);
2251				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2252				if (TAILQ_EMPTY(&m->md.pv_list) &&
2253				    (m->flags & PG_FICTITIOUS) == 0) {
2254					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2255					if (TAILQ_EMPTY(&pvh->pv_list)) {
2256						vm_page_aflag_clear(m,
2257						    PGA_WRITEABLE);
2258					}
2259				}
2260				pc->pc_map[field] |= 1UL << bit;
2261				pmap_unuse_pt(pmap, va, &free);
2262				freed++;
2263			}
2264		}
2265		if (freed == 0) {
2266			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2267			continue;
2268		}
2269		/* Every freed mapping is for a 4 KB page. */
2270		pmap->pm_stats.resident_count -= freed;
2271		PV_STAT(pv_entry_frees += freed);
2272		PV_STAT(pv_entry_spare += freed);
2273		pv_entry_count -= freed;
2274		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2275		for (field = 0; field < _NPCM; field++)
2276			if (pc->pc_map[field] != pc_freemask[field]) {
2277				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2278				    pc_list);
2279				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2280
2281				/*
2282				 * One freed pv entry in locked_pmap is
2283				 * sufficient.
2284				 */
2285				if (pmap == locked_pmap)
2286					goto out;
2287				break;
2288			}
2289		if (field == _NPCM) {
2290			PV_STAT(pv_entry_spare -= _NPCPV);
2291			PV_STAT(pc_chunk_count--);
2292			PV_STAT(pc_chunk_frees++);
2293			/* Entire chunk is free; return it. */
2294			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2295			pmap_qremove((vm_offset_t)pc, 1);
2296			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2297			break;
2298		}
2299	}
2300out:
2301	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2302	if (pmap != NULL) {
2303		pmap_invalidate_all(pmap);
2304		if (pmap != locked_pmap)
2305			PMAP_UNLOCK(pmap);
2306	}
2307	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2308		m_pc = SLIST_FIRST(&free);
2309		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2310		/* Recycle a freed page table page. */
2311		m_pc->wire_count = 1;
2312		atomic_add_int(&cnt.v_wire_count, 1);
2313	}
2314	pmap_free_zero_pages(&free);
2315	return (m_pc);
2316}
2317
2318/*
2319 * free the pv_entry back to the free list
2320 */
2321static void
2322free_pv_entry(pmap_t pmap, pv_entry_t pv)
2323{
2324	struct pv_chunk *pc;
2325	int idx, field, bit;
2326
2327	rw_assert(&pvh_global_lock, RA_WLOCKED);
2328	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2329	PV_STAT(pv_entry_frees++);
2330	PV_STAT(pv_entry_spare++);
2331	pv_entry_count--;
2332	pc = pv_to_chunk(pv);
2333	idx = pv - &pc->pc_pventry[0];
2334	field = idx / 32;
2335	bit = idx % 32;
2336	pc->pc_map[field] |= 1ul << bit;
2337	for (idx = 0; idx < _NPCM; idx++)
2338		if (pc->pc_map[idx] != pc_freemask[idx]) {
2339			/*
2340			 * 98% of the time, pc is already at the head of the
2341			 * list.  If it isn't already, move it to the head.
2342			 */
2343			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2344			    pc)) {
2345				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2346				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2347				    pc_list);
2348			}
2349			return;
2350		}
2351	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2352	free_pv_chunk(pc);
2353}
2354
2355static void
2356free_pv_chunk(struct pv_chunk *pc)
2357{
2358	vm_page_t m;
2359
2360 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2361	PV_STAT(pv_entry_spare -= _NPCPV);
2362	PV_STAT(pc_chunk_count--);
2363	PV_STAT(pc_chunk_frees++);
2364	/* entire chunk is free, return it */
2365	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2366	pmap_qremove((vm_offset_t)pc, 1);
2367	vm_page_unwire(m, 0);
2368	vm_page_free(m);
2369	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2370}
2371
2372/*
2373 * get a new pv_entry, allocating a block from the system
2374 * when needed.
2375 */
2376static pv_entry_t
2377get_pv_entry(pmap_t pmap, boolean_t try)
2378{
2379	static const struct timeval printinterval = { 60, 0 };
2380	static struct timeval lastprint;
2381	int bit, field;
2382	pv_entry_t pv;
2383	struct pv_chunk *pc;
2384	vm_page_t m;
2385
2386	rw_assert(&pvh_global_lock, RA_WLOCKED);
2387	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2388	PV_STAT(pv_entry_allocs++);
2389	pv_entry_count++;
2390	if (pv_entry_count > pv_entry_high_water)
2391		if (ratecheck(&lastprint, &printinterval))
2392			printf("Approaching the limit on PV entries, consider "
2393			    "increasing either the vm.pmap.shpgperproc or the "
2394			    "vm.pmap.pv_entry_max tunable.\n");
2395retry:
2396	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2397	if (pc != NULL) {
2398		for (field = 0; field < _NPCM; field++) {
2399			if (pc->pc_map[field]) {
2400				bit = bsfl(pc->pc_map[field]);
2401				break;
2402			}
2403		}
2404		if (field < _NPCM) {
2405			pv = &pc->pc_pventry[field * 32 + bit];
2406			pc->pc_map[field] &= ~(1ul << bit);
2407			/* If this was the last item, move it to tail */
2408			for (field = 0; field < _NPCM; field++)
2409				if (pc->pc_map[field] != 0) {
2410					PV_STAT(pv_entry_spare--);
2411					return (pv);	/* not full, return */
2412				}
2413			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2414			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2415			PV_STAT(pv_entry_spare--);
2416			return (pv);
2417		}
2418	}
2419	/*
2420	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2421	 * global lock.  If "pv_vafree" is currently non-empty, it will
2422	 * remain non-empty until pmap_ptelist_alloc() completes.
2423	 */
2424	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2425	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2426		if (try) {
2427			pv_entry_count--;
2428			PV_STAT(pc_chunk_tryfail++);
2429			return (NULL);
2430		}
2431		m = pmap_pv_reclaim(pmap);
2432		if (m == NULL)
2433			goto retry;
2434	}
2435	PV_STAT(pc_chunk_count++);
2436	PV_STAT(pc_chunk_allocs++);
2437	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2438	pmap_qenter((vm_offset_t)pc, &m, 1);
2439	pc->pc_pmap = pmap;
2440	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2441	for (field = 1; field < _NPCM; field++)
2442		pc->pc_map[field] = pc_freemask[field];
2443	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2444	pv = &pc->pc_pventry[0];
2445	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2446	PV_STAT(pv_entry_spare += _NPCPV - 1);
2447	return (pv);
2448}
2449
2450static __inline pv_entry_t
2451pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2452{
2453	pv_entry_t pv;
2454
2455	rw_assert(&pvh_global_lock, RA_WLOCKED);
2456	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2457		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2458			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2459			break;
2460		}
2461	}
2462	return (pv);
2463}
2464
2465static void
2466pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2467{
2468	struct md_page *pvh;
2469	pv_entry_t pv;
2470	vm_offset_t va_last;
2471	vm_page_t m;
2472
2473	rw_assert(&pvh_global_lock, RA_WLOCKED);
2474	KASSERT((pa & PDRMASK) == 0,
2475	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2476
2477	/*
2478	 * Transfer the 4mpage's pv entry for this mapping to the first
2479	 * page's pv list.
2480	 */
2481	pvh = pa_to_pvh(pa);
2482	va = trunc_4mpage(va);
2483	pv = pmap_pvh_remove(pvh, pmap, va);
2484	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2485	m = PHYS_TO_VM_PAGE(pa);
2486	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2487	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2488	va_last = va + NBPDR - PAGE_SIZE;
2489	do {
2490		m++;
2491		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2492		    ("pmap_pv_demote_pde: page %p is not managed", m));
2493		va += PAGE_SIZE;
2494		pmap_insert_entry(pmap, va, m);
2495	} while (va < va_last);
2496}
2497
2498static void
2499pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2500{
2501	struct md_page *pvh;
2502	pv_entry_t pv;
2503	vm_offset_t va_last;
2504	vm_page_t m;
2505
2506	rw_assert(&pvh_global_lock, RA_WLOCKED);
2507	KASSERT((pa & PDRMASK) == 0,
2508	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2509
2510	/*
2511	 * Transfer the first page's pv entry for this mapping to the
2512	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2513	 * to get_pv_entry(), a transfer avoids the possibility that
2514	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2515	 * removes one of the mappings that is being promoted.
2516	 */
2517	m = PHYS_TO_VM_PAGE(pa);
2518	va = trunc_4mpage(va);
2519	pv = pmap_pvh_remove(&m->md, pmap, va);
2520	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2521	pvh = pa_to_pvh(pa);
2522	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2523	/* Free the remaining NPTEPG - 1 pv entries. */
2524	va_last = va + NBPDR - PAGE_SIZE;
2525	do {
2526		m++;
2527		va += PAGE_SIZE;
2528		pmap_pvh_free(&m->md, pmap, va);
2529	} while (va < va_last);
2530}
2531
2532static void
2533pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2534{
2535	pv_entry_t pv;
2536
2537	pv = pmap_pvh_remove(pvh, pmap, va);
2538	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2539	free_pv_entry(pmap, pv);
2540}
2541
2542static void
2543pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2544{
2545	struct md_page *pvh;
2546
2547	rw_assert(&pvh_global_lock, RA_WLOCKED);
2548	pmap_pvh_free(&m->md, pmap, va);
2549	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2550		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2551		if (TAILQ_EMPTY(&pvh->pv_list))
2552			vm_page_aflag_clear(m, PGA_WRITEABLE);
2553	}
2554}
2555
2556/*
2557 * Create a pv entry for page at pa for
2558 * (pmap, va).
2559 */
2560static void
2561pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2562{
2563	pv_entry_t pv;
2564
2565	rw_assert(&pvh_global_lock, RA_WLOCKED);
2566	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2567	pv = get_pv_entry(pmap, FALSE);
2568	pv->pv_va = va;
2569	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2570}
2571
2572/*
2573 * Conditionally create a pv entry.
2574 */
2575static boolean_t
2576pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2577{
2578	pv_entry_t pv;
2579
2580	rw_assert(&pvh_global_lock, RA_WLOCKED);
2581	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2582	if (pv_entry_count < pv_entry_high_water &&
2583	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2584		pv->pv_va = va;
2585		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2586		return (TRUE);
2587	} else
2588		return (FALSE);
2589}
2590
2591/*
2592 * Create the pv entries for each of the pages within a superpage.
2593 */
2594static boolean_t
2595pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2596{
2597	struct md_page *pvh;
2598	pv_entry_t pv;
2599
2600	rw_assert(&pvh_global_lock, RA_WLOCKED);
2601	if (pv_entry_count < pv_entry_high_water &&
2602	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2603		pv->pv_va = va;
2604		pvh = pa_to_pvh(pa);
2605		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2606		return (TRUE);
2607	} else
2608		return (FALSE);
2609}
2610
2611/*
2612 * Fills a page table page with mappings to consecutive physical pages.
2613 */
2614static void
2615pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2616{
2617	pt_entry_t *pte;
2618
2619	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2620		*pte = newpte;
2621		newpte += PAGE_SIZE;
2622	}
2623}
2624
2625/*
2626 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2627 * 2- or 4MB page mapping is invalidated.
2628 */
2629static boolean_t
2630pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2631{
2632	pd_entry_t newpde, oldpde;
2633	pt_entry_t *firstpte, newpte;
2634	vm_paddr_t mptepa;
2635	vm_page_t mpte;
2636	struct spglist free;
2637
2638	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2639	oldpde = *pde;
2640	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2641	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2642	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2643	    NULL)
2644		pmap_remove_pt_page(pmap, mpte);
2645	else {
2646		KASSERT((oldpde & PG_W) == 0,
2647		    ("pmap_demote_pde: page table page for a wired mapping"
2648		    " is missing"));
2649
2650		/*
2651		 * Invalidate the 2- or 4MB page mapping and return
2652		 * "failure" if the mapping was never accessed or the
2653		 * allocation of the new page table page fails.
2654		 */
2655		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2656		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2657		    VM_ALLOC_WIRED)) == NULL) {
2658			SLIST_INIT(&free);
2659			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2660			pmap_invalidate_page(pmap, trunc_4mpage(va));
2661			pmap_free_zero_pages(&free);
2662			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2663			    " in pmap %p", va, pmap);
2664			return (FALSE);
2665		}
2666		if (va < VM_MAXUSER_ADDRESS)
2667			pmap->pm_stats.resident_count++;
2668	}
2669	mptepa = VM_PAGE_TO_PHYS(mpte);
2670
2671	/*
2672	 * If the page mapping is in the kernel's address space, then the
2673	 * KPTmap can provide access to the page table page.  Otherwise,
2674	 * temporarily map the page table page (mpte) into the kernel's
2675	 * address space at either PADDR1 or PADDR2.
2676	 */
2677	if (va >= KERNBASE)
2678		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2679	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2680		if ((*PMAP1 & PG_FRAME) != mptepa) {
2681			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2682#ifdef SMP
2683			PMAP1cpu = PCPU_GET(cpuid);
2684#endif
2685			invlcaddr(PADDR1);
2686			PMAP1changed++;
2687		} else
2688#ifdef SMP
2689		if (PMAP1cpu != PCPU_GET(cpuid)) {
2690			PMAP1cpu = PCPU_GET(cpuid);
2691			invlcaddr(PADDR1);
2692			PMAP1changedcpu++;
2693		} else
2694#endif
2695			PMAP1unchanged++;
2696		firstpte = PADDR1;
2697	} else {
2698		mtx_lock(&PMAP2mutex);
2699		if ((*PMAP2 & PG_FRAME) != mptepa) {
2700			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2701			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2702		}
2703		firstpte = PADDR2;
2704	}
2705	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2706	KASSERT((oldpde & PG_A) != 0,
2707	    ("pmap_demote_pde: oldpde is missing PG_A"));
2708	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2709	    ("pmap_demote_pde: oldpde is missing PG_M"));
2710	newpte = oldpde & ~PG_PS;
2711	if ((newpte & PG_PDE_PAT) != 0)
2712		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2713
2714	/*
2715	 * If the page table page is new, initialize it.
2716	 */
2717	if (mpte->wire_count == 1) {
2718		mpte->wire_count = NPTEPG;
2719		pmap_fill_ptp(firstpte, newpte);
2720	}
2721	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2722	    ("pmap_demote_pde: firstpte and newpte map different physical"
2723	    " addresses"));
2724
2725	/*
2726	 * If the mapping has changed attributes, update the page table
2727	 * entries.
2728	 */
2729	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2730		pmap_fill_ptp(firstpte, newpte);
2731
2732	/*
2733	 * Demote the mapping.  This pmap is locked.  The old PDE has
2734	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2735	 * set.  Thus, there is no danger of a race with another
2736	 * processor changing the setting of PG_A and/or PG_M between
2737	 * the read above and the store below.
2738	 */
2739	if (workaround_erratum383)
2740		pmap_update_pde(pmap, va, pde, newpde);
2741	else if (pmap == kernel_pmap)
2742		pmap_kenter_pde(va, newpde);
2743	else
2744		pde_store(pde, newpde);
2745	if (firstpte == PADDR2)
2746		mtx_unlock(&PMAP2mutex);
2747
2748	/*
2749	 * Invalidate the recursive mapping of the page table page.
2750	 */
2751	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2752
2753	/*
2754	 * Demote the pv entry.  This depends on the earlier demotion
2755	 * of the mapping.  Specifically, the (re)creation of a per-
2756	 * page pv entry might trigger the execution of pmap_collect(),
2757	 * which might reclaim a newly (re)created per-page pv entry
2758	 * and destroy the associated mapping.  In order to destroy
2759	 * the mapping, the PDE must have already changed from mapping
2760	 * the 2mpage to referencing the page table page.
2761	 */
2762	if ((oldpde & PG_MANAGED) != 0)
2763		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2764
2765	pmap_pde_demotions++;
2766	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2767	    " in pmap %p", va, pmap);
2768	return (TRUE);
2769}
2770
2771/*
2772 * Removes a 2- or 4MB page mapping from the kernel pmap.
2773 */
2774static void
2775pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2776{
2777	pd_entry_t newpde;
2778	vm_paddr_t mptepa;
2779	vm_page_t mpte;
2780
2781	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2782	mpte = pmap_lookup_pt_page(pmap, va);
2783	if (mpte == NULL)
2784		panic("pmap_remove_kernel_pde: Missing pt page.");
2785
2786	pmap_remove_pt_page(pmap, mpte);
2787	mptepa = VM_PAGE_TO_PHYS(mpte);
2788	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2789
2790	/*
2791	 * Initialize the page table page.
2792	 */
2793	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2794
2795	/*
2796	 * Remove the mapping.
2797	 */
2798	if (workaround_erratum383)
2799		pmap_update_pde(pmap, va, pde, newpde);
2800	else
2801		pmap_kenter_pde(va, newpde);
2802
2803	/*
2804	 * Invalidate the recursive mapping of the page table page.
2805	 */
2806	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2807}
2808
2809/*
2810 * pmap_remove_pde: do the things to unmap a superpage in a process
2811 */
2812static void
2813pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2814    struct spglist *free)
2815{
2816	struct md_page *pvh;
2817	pd_entry_t oldpde;
2818	vm_offset_t eva, va;
2819	vm_page_t m, mpte;
2820
2821	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2822	KASSERT((sva & PDRMASK) == 0,
2823	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2824	oldpde = pte_load_clear(pdq);
2825	if (oldpde & PG_W)
2826		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2827
2828	/*
2829	 * Machines that don't support invlpg, also don't support
2830	 * PG_G.
2831	 */
2832	if (oldpde & PG_G)
2833		pmap_invalidate_page(kernel_pmap, sva);
2834	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2835	if (oldpde & PG_MANAGED) {
2836		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2837		pmap_pvh_free(pvh, pmap, sva);
2838		eva = sva + NBPDR;
2839		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2840		    va < eva; va += PAGE_SIZE, m++) {
2841			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2842				vm_page_dirty(m);
2843			if (oldpde & PG_A)
2844				vm_page_aflag_set(m, PGA_REFERENCED);
2845			if (TAILQ_EMPTY(&m->md.pv_list) &&
2846			    TAILQ_EMPTY(&pvh->pv_list))
2847				vm_page_aflag_clear(m, PGA_WRITEABLE);
2848		}
2849	}
2850	if (pmap == kernel_pmap) {
2851		pmap_remove_kernel_pde(pmap, pdq, sva);
2852	} else {
2853		mpte = pmap_lookup_pt_page(pmap, sva);
2854		if (mpte != NULL) {
2855			pmap_remove_pt_page(pmap, mpte);
2856			pmap->pm_stats.resident_count--;
2857			KASSERT(mpte->wire_count == NPTEPG,
2858			    ("pmap_remove_pde: pte page wire count error"));
2859			mpte->wire_count = 0;
2860			pmap_add_delayed_free_list(mpte, free, FALSE);
2861			atomic_subtract_int(&cnt.v_wire_count, 1);
2862		}
2863	}
2864}
2865
2866/*
2867 * pmap_remove_pte: do the things to unmap a page in a process
2868 */
2869static int
2870pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2871    struct spglist *free)
2872{
2873	pt_entry_t oldpte;
2874	vm_page_t m;
2875
2876	rw_assert(&pvh_global_lock, RA_WLOCKED);
2877	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2878	oldpte = pte_load_clear(ptq);
2879	KASSERT(oldpte != 0,
2880	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2881	if (oldpte & PG_W)
2882		pmap->pm_stats.wired_count -= 1;
2883	/*
2884	 * Machines that don't support invlpg, also don't support
2885	 * PG_G.
2886	 */
2887	if (oldpte & PG_G)
2888		pmap_invalidate_page(kernel_pmap, va);
2889	pmap->pm_stats.resident_count -= 1;
2890	if (oldpte & PG_MANAGED) {
2891		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2892		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2893			vm_page_dirty(m);
2894		if (oldpte & PG_A)
2895			vm_page_aflag_set(m, PGA_REFERENCED);
2896		pmap_remove_entry(pmap, m, va);
2897	}
2898	return (pmap_unuse_pt(pmap, va, free));
2899}
2900
2901/*
2902 * Remove a single page from a process address space
2903 */
2904static void
2905pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2906{
2907	pt_entry_t *pte;
2908
2909	rw_assert(&pvh_global_lock, RA_WLOCKED);
2910	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2911	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2912	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2913		return;
2914	pmap_remove_pte(pmap, pte, va, free);
2915	pmap_invalidate_page(pmap, va);
2916}
2917
2918/*
2919 *	Remove the given range of addresses from the specified map.
2920 *
2921 *	It is assumed that the start and end are properly
2922 *	rounded to the page size.
2923 */
2924void
2925pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2926{
2927	vm_offset_t pdnxt;
2928	pd_entry_t ptpaddr;
2929	pt_entry_t *pte;
2930	struct spglist free;
2931	int anyvalid;
2932
2933	/*
2934	 * Perform an unsynchronized read.  This is, however, safe.
2935	 */
2936	if (pmap->pm_stats.resident_count == 0)
2937		return;
2938
2939	anyvalid = 0;
2940	SLIST_INIT(&free);
2941
2942	rw_wlock(&pvh_global_lock);
2943	sched_pin();
2944	PMAP_LOCK(pmap);
2945
2946	/*
2947	 * special handling of removing one page.  a very
2948	 * common operation and easy to short circuit some
2949	 * code.
2950	 */
2951	if ((sva + PAGE_SIZE == eva) &&
2952	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2953		pmap_remove_page(pmap, sva, &free);
2954		goto out;
2955	}
2956
2957	for (; sva < eva; sva = pdnxt) {
2958		u_int pdirindex;
2959
2960		/*
2961		 * Calculate index for next page table.
2962		 */
2963		pdnxt = (sva + NBPDR) & ~PDRMASK;
2964		if (pdnxt < sva)
2965			pdnxt = eva;
2966		if (pmap->pm_stats.resident_count == 0)
2967			break;
2968
2969		pdirindex = sva >> PDRSHIFT;
2970		ptpaddr = pmap->pm_pdir[pdirindex];
2971
2972		/*
2973		 * Weed out invalid mappings. Note: we assume that the page
2974		 * directory table is always allocated, and in kernel virtual.
2975		 */
2976		if (ptpaddr == 0)
2977			continue;
2978
2979		/*
2980		 * Check for large page.
2981		 */
2982		if ((ptpaddr & PG_PS) != 0) {
2983			/*
2984			 * Are we removing the entire large page?  If not,
2985			 * demote the mapping and fall through.
2986			 */
2987			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2988				/*
2989				 * The TLB entry for a PG_G mapping is
2990				 * invalidated by pmap_remove_pde().
2991				 */
2992				if ((ptpaddr & PG_G) == 0)
2993					anyvalid = 1;
2994				pmap_remove_pde(pmap,
2995				    &pmap->pm_pdir[pdirindex], sva, &free);
2996				continue;
2997			} else if (!pmap_demote_pde(pmap,
2998			    &pmap->pm_pdir[pdirindex], sva)) {
2999				/* The large page mapping was destroyed. */
3000				continue;
3001			}
3002		}
3003
3004		/*
3005		 * Limit our scan to either the end of the va represented
3006		 * by the current page table page, or to the end of the
3007		 * range being removed.
3008		 */
3009		if (pdnxt > eva)
3010			pdnxt = eva;
3011
3012		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3013		    sva += PAGE_SIZE) {
3014			if (*pte == 0)
3015				continue;
3016
3017			/*
3018			 * The TLB entry for a PG_G mapping is invalidated
3019			 * by pmap_remove_pte().
3020			 */
3021			if ((*pte & PG_G) == 0)
3022				anyvalid = 1;
3023			if (pmap_remove_pte(pmap, pte, sva, &free))
3024				break;
3025		}
3026	}
3027out:
3028	sched_unpin();
3029	if (anyvalid)
3030		pmap_invalidate_all(pmap);
3031	rw_wunlock(&pvh_global_lock);
3032	PMAP_UNLOCK(pmap);
3033	pmap_free_zero_pages(&free);
3034}
3035
3036/*
3037 *	Routine:	pmap_remove_all
3038 *	Function:
3039 *		Removes this physical page from
3040 *		all physical maps in which it resides.
3041 *		Reflects back modify bits to the pager.
3042 *
3043 *	Notes:
3044 *		Original versions of this routine were very
3045 *		inefficient because they iteratively called
3046 *		pmap_remove (slow...)
3047 */
3048
3049void
3050pmap_remove_all(vm_page_t m)
3051{
3052	struct md_page *pvh;
3053	pv_entry_t pv;
3054	pmap_t pmap;
3055	pt_entry_t *pte, tpte;
3056	pd_entry_t *pde;
3057	vm_offset_t va;
3058	struct spglist free;
3059
3060	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3061	    ("pmap_remove_all: page %p is not managed", m));
3062	SLIST_INIT(&free);
3063	rw_wlock(&pvh_global_lock);
3064	sched_pin();
3065	if ((m->flags & PG_FICTITIOUS) != 0)
3066		goto small_mappings;
3067	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3068	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3069		va = pv->pv_va;
3070		pmap = PV_PMAP(pv);
3071		PMAP_LOCK(pmap);
3072		pde = pmap_pde(pmap, va);
3073		(void)pmap_demote_pde(pmap, pde, va);
3074		PMAP_UNLOCK(pmap);
3075	}
3076small_mappings:
3077	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3078		pmap = PV_PMAP(pv);
3079		PMAP_LOCK(pmap);
3080		pmap->pm_stats.resident_count--;
3081		pde = pmap_pde(pmap, pv->pv_va);
3082		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3083		    " a 4mpage in page %p's pv list", m));
3084		pte = pmap_pte_quick(pmap, pv->pv_va);
3085		tpte = pte_load_clear(pte);
3086		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3087		    pmap, pv->pv_va));
3088		if (tpte & PG_W)
3089			pmap->pm_stats.wired_count--;
3090		if (tpte & PG_A)
3091			vm_page_aflag_set(m, PGA_REFERENCED);
3092
3093		/*
3094		 * Update the vm_page_t clean and reference bits.
3095		 */
3096		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3097			vm_page_dirty(m);
3098		pmap_unuse_pt(pmap, pv->pv_va, &free);
3099		pmap_invalidate_page(pmap, pv->pv_va);
3100		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3101		free_pv_entry(pmap, pv);
3102		PMAP_UNLOCK(pmap);
3103	}
3104	vm_page_aflag_clear(m, PGA_WRITEABLE);
3105	sched_unpin();
3106	rw_wunlock(&pvh_global_lock);
3107	pmap_free_zero_pages(&free);
3108}
3109
3110/*
3111 * pmap_protect_pde: do the things to protect a 4mpage in a process
3112 */
3113static boolean_t
3114pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3115{
3116	pd_entry_t newpde, oldpde;
3117	vm_offset_t eva, va;
3118	vm_page_t m;
3119	boolean_t anychanged;
3120
3121	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3122	KASSERT((sva & PDRMASK) == 0,
3123	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3124	anychanged = FALSE;
3125retry:
3126	oldpde = newpde = *pde;
3127	if (oldpde & PG_MANAGED) {
3128		eva = sva + NBPDR;
3129		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3130		    va < eva; va += PAGE_SIZE, m++)
3131			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3132				vm_page_dirty(m);
3133	}
3134	if ((prot & VM_PROT_WRITE) == 0)
3135		newpde &= ~(PG_RW | PG_M);
3136#ifdef PAE
3137	if ((prot & VM_PROT_EXECUTE) == 0)
3138		newpde |= pg_nx;
3139#endif
3140	if (newpde != oldpde) {
3141		if (!pde_cmpset(pde, oldpde, newpde))
3142			goto retry;
3143		if (oldpde & PG_G)
3144			pmap_invalidate_page(pmap, sva);
3145		else
3146			anychanged = TRUE;
3147	}
3148	return (anychanged);
3149}
3150
3151/*
3152 *	Set the physical protection on the
3153 *	specified range of this map as requested.
3154 */
3155void
3156pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3157{
3158	vm_offset_t pdnxt;
3159	pd_entry_t ptpaddr;
3160	pt_entry_t *pte;
3161	boolean_t anychanged, pv_lists_locked;
3162
3163	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3164		pmap_remove(pmap, sva, eva);
3165		return;
3166	}
3167
3168#ifdef PAE
3169	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3170	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3171		return;
3172#else
3173	if (prot & VM_PROT_WRITE)
3174		return;
3175#endif
3176
3177	if (pmap_is_current(pmap))
3178		pv_lists_locked = FALSE;
3179	else {
3180		pv_lists_locked = TRUE;
3181resume:
3182		rw_wlock(&pvh_global_lock);
3183		sched_pin();
3184	}
3185	anychanged = FALSE;
3186
3187	PMAP_LOCK(pmap);
3188	for (; sva < eva; sva = pdnxt) {
3189		pt_entry_t obits, pbits;
3190		u_int pdirindex;
3191
3192		pdnxt = (sva + NBPDR) & ~PDRMASK;
3193		if (pdnxt < sva)
3194			pdnxt = eva;
3195
3196		pdirindex = sva >> PDRSHIFT;
3197		ptpaddr = pmap->pm_pdir[pdirindex];
3198
3199		/*
3200		 * Weed out invalid mappings. Note: we assume that the page
3201		 * directory table is always allocated, and in kernel virtual.
3202		 */
3203		if (ptpaddr == 0)
3204			continue;
3205
3206		/*
3207		 * Check for large page.
3208		 */
3209		if ((ptpaddr & PG_PS) != 0) {
3210			/*
3211			 * Are we protecting the entire large page?  If not,
3212			 * demote the mapping and fall through.
3213			 */
3214			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3215				/*
3216				 * The TLB entry for a PG_G mapping is
3217				 * invalidated by pmap_protect_pde().
3218				 */
3219				if (pmap_protect_pde(pmap,
3220				    &pmap->pm_pdir[pdirindex], sva, prot))
3221					anychanged = TRUE;
3222				continue;
3223			} else {
3224				if (!pv_lists_locked) {
3225					pv_lists_locked = TRUE;
3226					if (!rw_try_wlock(&pvh_global_lock)) {
3227						if (anychanged)
3228							pmap_invalidate_all(
3229							    pmap);
3230						PMAP_UNLOCK(pmap);
3231						goto resume;
3232					}
3233					sched_pin();
3234				}
3235				if (!pmap_demote_pde(pmap,
3236				    &pmap->pm_pdir[pdirindex], sva)) {
3237					/*
3238					 * The large page mapping was
3239					 * destroyed.
3240					 */
3241					continue;
3242				}
3243			}
3244		}
3245
3246		if (pdnxt > eva)
3247			pdnxt = eva;
3248
3249		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3250		    sva += PAGE_SIZE) {
3251			vm_page_t m;
3252
3253retry:
3254			/*
3255			 * Regardless of whether a pte is 32 or 64 bits in
3256			 * size, PG_RW, PG_A, and PG_M are among the least
3257			 * significant 32 bits.
3258			 */
3259			obits = pbits = *pte;
3260			if ((pbits & PG_V) == 0)
3261				continue;
3262
3263			if ((prot & VM_PROT_WRITE) == 0) {
3264				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3265				    (PG_MANAGED | PG_M | PG_RW)) {
3266					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3267					vm_page_dirty(m);
3268				}
3269				pbits &= ~(PG_RW | PG_M);
3270			}
3271#ifdef PAE
3272			if ((prot & VM_PROT_EXECUTE) == 0)
3273				pbits |= pg_nx;
3274#endif
3275
3276			if (pbits != obits) {
3277#ifdef PAE
3278				if (!atomic_cmpset_64(pte, obits, pbits))
3279					goto retry;
3280#else
3281				if (!atomic_cmpset_int((u_int *)pte, obits,
3282				    pbits))
3283					goto retry;
3284#endif
3285				if (obits & PG_G)
3286					pmap_invalidate_page(pmap, sva);
3287				else
3288					anychanged = TRUE;
3289			}
3290		}
3291	}
3292	if (anychanged)
3293		pmap_invalidate_all(pmap);
3294	if (pv_lists_locked) {
3295		sched_unpin();
3296		rw_wunlock(&pvh_global_lock);
3297	}
3298	PMAP_UNLOCK(pmap);
3299}
3300
3301/*
3302 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3303 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3304 * For promotion to occur, two conditions must be met: (1) the 4KB page
3305 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3306 * mappings must have identical characteristics.
3307 *
3308 * Managed (PG_MANAGED) mappings within the kernel address space are not
3309 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3310 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3311 * pmap.
3312 */
3313static void
3314pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3315{
3316	pd_entry_t newpde;
3317	pt_entry_t *firstpte, oldpte, pa, *pte;
3318	vm_offset_t oldpteva;
3319	vm_page_t mpte;
3320
3321	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3322
3323	/*
3324	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3325	 * either invalid, unused, or does not map the first 4KB physical page
3326	 * within a 2- or 4MB page.
3327	 */
3328	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3329setpde:
3330	newpde = *firstpte;
3331	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3332		pmap_pde_p_failures++;
3333		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3334		    " in pmap %p", va, pmap);
3335		return;
3336	}
3337	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3338		pmap_pde_p_failures++;
3339		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3340		    " in pmap %p", va, pmap);
3341		return;
3342	}
3343	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3344		/*
3345		 * When PG_M is already clear, PG_RW can be cleared without
3346		 * a TLB invalidation.
3347		 */
3348		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3349		    ~PG_RW))
3350			goto setpde;
3351		newpde &= ~PG_RW;
3352	}
3353
3354	/*
3355	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3356	 * PTE maps an unexpected 4KB physical page or does not have identical
3357	 * characteristics to the first PTE.
3358	 */
3359	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3360	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3361setpte:
3362		oldpte = *pte;
3363		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3364			pmap_pde_p_failures++;
3365			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3366			    " in pmap %p", va, pmap);
3367			return;
3368		}
3369		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3370			/*
3371			 * When PG_M is already clear, PG_RW can be cleared
3372			 * without a TLB invalidation.
3373			 */
3374			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3375			    oldpte & ~PG_RW))
3376				goto setpte;
3377			oldpte &= ~PG_RW;
3378			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3379			    (va & ~PDRMASK);
3380			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3381			    " in pmap %p", oldpteva, pmap);
3382		}
3383		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3384			pmap_pde_p_failures++;
3385			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3386			    " in pmap %p", va, pmap);
3387			return;
3388		}
3389		pa -= PAGE_SIZE;
3390	}
3391
3392	/*
3393	 * Save the page table page in its current state until the PDE
3394	 * mapping the superpage is demoted by pmap_demote_pde() or
3395	 * destroyed by pmap_remove_pde().
3396	 */
3397	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3398	KASSERT(mpte >= vm_page_array &&
3399	    mpte < &vm_page_array[vm_page_array_size],
3400	    ("pmap_promote_pde: page table page is out of range"));
3401	KASSERT(mpte->pindex == va >> PDRSHIFT,
3402	    ("pmap_promote_pde: page table page's pindex is wrong"));
3403	if (pmap_insert_pt_page(pmap, mpte)) {
3404		pmap_pde_p_failures++;
3405		CTR2(KTR_PMAP,
3406		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3407		    pmap);
3408		return;
3409	}
3410
3411	/*
3412	 * Promote the pv entries.
3413	 */
3414	if ((newpde & PG_MANAGED) != 0)
3415		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3416
3417	/*
3418	 * Propagate the PAT index to its proper position.
3419	 */
3420	if ((newpde & PG_PTE_PAT) != 0)
3421		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3422
3423	/*
3424	 * Map the superpage.
3425	 */
3426	if (workaround_erratum383)
3427		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3428	else if (pmap == kernel_pmap)
3429		pmap_kenter_pde(va, PG_PS | newpde);
3430	else
3431		pde_store(pde, PG_PS | newpde);
3432
3433	pmap_pde_promotions++;
3434	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3435	    " in pmap %p", va, pmap);
3436}
3437
3438/*
3439 *	Insert the given physical page (p) at
3440 *	the specified virtual address (v) in the
3441 *	target physical map with the protection requested.
3442 *
3443 *	If specified, the page will be wired down, meaning
3444 *	that the related pte can not be reclaimed.
3445 *
3446 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3447 *	or lose information.  That is, this routine must actually
3448 *	insert this page into the given map NOW.
3449 */
3450void
3451pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3452    vm_prot_t prot, boolean_t wired)
3453{
3454	pd_entry_t *pde;
3455	pt_entry_t *pte;
3456	pt_entry_t newpte, origpte;
3457	pv_entry_t pv;
3458	vm_paddr_t opa, pa;
3459	vm_page_t mpte, om;
3460	boolean_t invlva;
3461
3462	va = trunc_page(va);
3463	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3464	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3465	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3466	    va));
3467	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3468		VM_OBJECT_ASSERT_WLOCKED(m->object);
3469
3470	mpte = NULL;
3471
3472	rw_wlock(&pvh_global_lock);
3473	PMAP_LOCK(pmap);
3474	sched_pin();
3475
3476	/*
3477	 * In the case that a page table page is not
3478	 * resident, we are creating it here.
3479	 */
3480	if (va < VM_MAXUSER_ADDRESS) {
3481		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3482	}
3483
3484	pde = pmap_pde(pmap, va);
3485	if ((*pde & PG_PS) != 0)
3486		panic("pmap_enter: attempted pmap_enter on 4MB page");
3487	pte = pmap_pte_quick(pmap, va);
3488
3489	/*
3490	 * Page Directory table entry not valid, we need a new PT page
3491	 */
3492	if (pte == NULL) {
3493		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3494			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3495	}
3496
3497	pa = VM_PAGE_TO_PHYS(m);
3498	om = NULL;
3499	origpte = *pte;
3500	opa = origpte & PG_FRAME;
3501
3502	/*
3503	 * Mapping has not changed, must be protection or wiring change.
3504	 */
3505	if (origpte && (opa == pa)) {
3506		/*
3507		 * Wiring change, just update stats. We don't worry about
3508		 * wiring PT pages as they remain resident as long as there
3509		 * are valid mappings in them. Hence, if a user page is wired,
3510		 * the PT page will be also.
3511		 */
3512		if (wired && ((origpte & PG_W) == 0))
3513			pmap->pm_stats.wired_count++;
3514		else if (!wired && (origpte & PG_W))
3515			pmap->pm_stats.wired_count--;
3516
3517		/*
3518		 * Remove extra pte reference
3519		 */
3520		if (mpte)
3521			mpte->wire_count--;
3522
3523		if (origpte & PG_MANAGED) {
3524			om = m;
3525			pa |= PG_MANAGED;
3526		}
3527		goto validate;
3528	}
3529
3530	pv = NULL;
3531
3532	/*
3533	 * Mapping has changed, invalidate old range and fall through to
3534	 * handle validating new mapping.
3535	 */
3536	if (opa) {
3537		if (origpte & PG_W)
3538			pmap->pm_stats.wired_count--;
3539		if (origpte & PG_MANAGED) {
3540			om = PHYS_TO_VM_PAGE(opa);
3541			pv = pmap_pvh_remove(&om->md, pmap, va);
3542		}
3543		if (mpte != NULL) {
3544			mpte->wire_count--;
3545			KASSERT(mpte->wire_count > 0,
3546			    ("pmap_enter: missing reference to page table page,"
3547			     " va: 0x%x", va));
3548		}
3549	} else
3550		pmap->pm_stats.resident_count++;
3551
3552	/*
3553	 * Enter on the PV list if part of our managed memory.
3554	 */
3555	if ((m->oflags & VPO_UNMANAGED) == 0) {
3556		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3557		    ("pmap_enter: managed mapping within the clean submap"));
3558		if (pv == NULL)
3559			pv = get_pv_entry(pmap, FALSE);
3560		pv->pv_va = va;
3561		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3562		pa |= PG_MANAGED;
3563	} else if (pv != NULL)
3564		free_pv_entry(pmap, pv);
3565
3566	/*
3567	 * Increment counters
3568	 */
3569	if (wired)
3570		pmap->pm_stats.wired_count++;
3571
3572validate:
3573	/*
3574	 * Now validate mapping with desired protection/wiring.
3575	 */
3576	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3577	if ((prot & VM_PROT_WRITE) != 0) {
3578		newpte |= PG_RW;
3579		if ((newpte & PG_MANAGED) != 0)
3580			vm_page_aflag_set(m, PGA_WRITEABLE);
3581	}
3582#ifdef PAE
3583	if ((prot & VM_PROT_EXECUTE) == 0)
3584		newpte |= pg_nx;
3585#endif
3586	if (wired)
3587		newpte |= PG_W;
3588	if (va < VM_MAXUSER_ADDRESS)
3589		newpte |= PG_U;
3590	if (pmap == kernel_pmap)
3591		newpte |= pgeflag;
3592
3593	/*
3594	 * if the mapping or permission bits are different, we need
3595	 * to update the pte.
3596	 */
3597	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3598		newpte |= PG_A;
3599		if ((access & VM_PROT_WRITE) != 0)
3600			newpte |= PG_M;
3601		if (origpte & PG_V) {
3602			invlva = FALSE;
3603			origpte = pte_load_store(pte, newpte);
3604			if (origpte & PG_A) {
3605				if (origpte & PG_MANAGED)
3606					vm_page_aflag_set(om, PGA_REFERENCED);
3607				if (opa != VM_PAGE_TO_PHYS(m))
3608					invlva = TRUE;
3609#ifdef PAE
3610				if ((origpte & PG_NX) == 0 &&
3611				    (newpte & PG_NX) != 0)
3612					invlva = TRUE;
3613#endif
3614			}
3615			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3616				if ((origpte & PG_MANAGED) != 0)
3617					vm_page_dirty(om);
3618				if ((prot & VM_PROT_WRITE) == 0)
3619					invlva = TRUE;
3620			}
3621			if ((origpte & PG_MANAGED) != 0 &&
3622			    TAILQ_EMPTY(&om->md.pv_list) &&
3623			    ((om->flags & PG_FICTITIOUS) != 0 ||
3624			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3625				vm_page_aflag_clear(om, PGA_WRITEABLE);
3626			if (invlva)
3627				pmap_invalidate_page(pmap, va);
3628		} else
3629			pte_store(pte, newpte);
3630	}
3631
3632	/*
3633	 * If both the page table page and the reservation are fully
3634	 * populated, then attempt promotion.
3635	 */
3636	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3637	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3638	    vm_reserv_level_iffullpop(m) == 0)
3639		pmap_promote_pde(pmap, pde, va);
3640
3641	sched_unpin();
3642	rw_wunlock(&pvh_global_lock);
3643	PMAP_UNLOCK(pmap);
3644}
3645
3646/*
3647 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3648 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3649 * blocking, (2) a mapping already exists at the specified virtual address, or
3650 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3651 */
3652static boolean_t
3653pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3654{
3655	pd_entry_t *pde, newpde;
3656
3657	rw_assert(&pvh_global_lock, RA_WLOCKED);
3658	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3659	pde = pmap_pde(pmap, va);
3660	if (*pde != 0) {
3661		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3662		    " in pmap %p", va, pmap);
3663		return (FALSE);
3664	}
3665	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3666	    PG_PS | PG_V;
3667	if ((m->oflags & VPO_UNMANAGED) == 0) {
3668		newpde |= PG_MANAGED;
3669
3670		/*
3671		 * Abort this mapping if its PV entry could not be created.
3672		 */
3673		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3674			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3675			    " in pmap %p", va, pmap);
3676			return (FALSE);
3677		}
3678	}
3679#ifdef PAE
3680	if ((prot & VM_PROT_EXECUTE) == 0)
3681		newpde |= pg_nx;
3682#endif
3683	if (va < VM_MAXUSER_ADDRESS)
3684		newpde |= PG_U;
3685
3686	/*
3687	 * Increment counters.
3688	 */
3689	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3690
3691	/*
3692	 * Map the superpage.
3693	 */
3694	pde_store(pde, newpde);
3695
3696	pmap_pde_mappings++;
3697	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3698	    " in pmap %p", va, pmap);
3699	return (TRUE);
3700}
3701
3702/*
3703 * Maps a sequence of resident pages belonging to the same object.
3704 * The sequence begins with the given page m_start.  This page is
3705 * mapped at the given virtual address start.  Each subsequent page is
3706 * mapped at a virtual address that is offset from start by the same
3707 * amount as the page is offset from m_start within the object.  The
3708 * last page in the sequence is the page with the largest offset from
3709 * m_start that can be mapped at a virtual address less than the given
3710 * virtual address end.  Not every virtual page between start and end
3711 * is mapped; only those for which a resident page exists with the
3712 * corresponding offset from m_start are mapped.
3713 */
3714void
3715pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3716    vm_page_t m_start, vm_prot_t prot)
3717{
3718	vm_offset_t va;
3719	vm_page_t m, mpte;
3720	vm_pindex_t diff, psize;
3721
3722	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3723
3724	psize = atop(end - start);
3725	mpte = NULL;
3726	m = m_start;
3727	rw_wlock(&pvh_global_lock);
3728	PMAP_LOCK(pmap);
3729	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3730		va = start + ptoa(diff);
3731		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3732		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3733		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3734		    pmap_enter_pde(pmap, va, m, prot))
3735			m = &m[NBPDR / PAGE_SIZE - 1];
3736		else
3737			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3738			    mpte);
3739		m = TAILQ_NEXT(m, listq);
3740	}
3741	rw_wunlock(&pvh_global_lock);
3742	PMAP_UNLOCK(pmap);
3743}
3744
3745/*
3746 * this code makes some *MAJOR* assumptions:
3747 * 1. Current pmap & pmap exists.
3748 * 2. Not wired.
3749 * 3. Read access.
3750 * 4. No page table pages.
3751 * but is *MUCH* faster than pmap_enter...
3752 */
3753
3754void
3755pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3756{
3757
3758	rw_wlock(&pvh_global_lock);
3759	PMAP_LOCK(pmap);
3760	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3761	rw_wunlock(&pvh_global_lock);
3762	PMAP_UNLOCK(pmap);
3763}
3764
3765static vm_page_t
3766pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3767    vm_prot_t prot, vm_page_t mpte)
3768{
3769	pt_entry_t *pte;
3770	vm_paddr_t pa;
3771	struct spglist free;
3772
3773	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3774	    (m->oflags & VPO_UNMANAGED) != 0,
3775	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3776	rw_assert(&pvh_global_lock, RA_WLOCKED);
3777	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3778
3779	/*
3780	 * In the case that a page table page is not
3781	 * resident, we are creating it here.
3782	 */
3783	if (va < VM_MAXUSER_ADDRESS) {
3784		u_int ptepindex;
3785		pd_entry_t ptepa;
3786
3787		/*
3788		 * Calculate pagetable page index
3789		 */
3790		ptepindex = va >> PDRSHIFT;
3791		if (mpte && (mpte->pindex == ptepindex)) {
3792			mpte->wire_count++;
3793		} else {
3794			/*
3795			 * Get the page directory entry
3796			 */
3797			ptepa = pmap->pm_pdir[ptepindex];
3798
3799			/*
3800			 * If the page table page is mapped, we just increment
3801			 * the hold count, and activate it.
3802			 */
3803			if (ptepa) {
3804				if (ptepa & PG_PS)
3805					return (NULL);
3806				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3807				mpte->wire_count++;
3808			} else {
3809				mpte = _pmap_allocpte(pmap, ptepindex,
3810				    M_NOWAIT);
3811				if (mpte == NULL)
3812					return (mpte);
3813			}
3814		}
3815	} else {
3816		mpte = NULL;
3817	}
3818
3819	/*
3820	 * This call to vtopte makes the assumption that we are
3821	 * entering the page into the current pmap.  In order to support
3822	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3823	 * But that isn't as quick as vtopte.
3824	 */
3825	pte = vtopte(va);
3826	if (*pte) {
3827		if (mpte != NULL) {
3828			mpte->wire_count--;
3829			mpte = NULL;
3830		}
3831		return (mpte);
3832	}
3833
3834	/*
3835	 * Enter on the PV list if part of our managed memory.
3836	 */
3837	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3838	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3839		if (mpte != NULL) {
3840			SLIST_INIT(&free);
3841			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3842				pmap_invalidate_page(pmap, va);
3843				pmap_free_zero_pages(&free);
3844			}
3845
3846			mpte = NULL;
3847		}
3848		return (mpte);
3849	}
3850
3851	/*
3852	 * Increment counters
3853	 */
3854	pmap->pm_stats.resident_count++;
3855
3856	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3857#ifdef PAE
3858	if ((prot & VM_PROT_EXECUTE) == 0)
3859		pa |= pg_nx;
3860#endif
3861
3862	/*
3863	 * Now validate mapping with RO protection
3864	 */
3865	if ((m->oflags & VPO_UNMANAGED) != 0)
3866		pte_store(pte, pa | PG_V | PG_U);
3867	else
3868		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3869	return (mpte);
3870}
3871
3872/*
3873 * Make a temporary mapping for a physical address.  This is only intended
3874 * to be used for panic dumps.
3875 */
3876void *
3877pmap_kenter_temporary(vm_paddr_t pa, int i)
3878{
3879	vm_offset_t va;
3880
3881	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3882	pmap_kenter(va, pa);
3883	invlpg(va);
3884	return ((void *)crashdumpmap);
3885}
3886
3887/*
3888 * This code maps large physical mmap regions into the
3889 * processor address space.  Note that some shortcuts
3890 * are taken, but the code works.
3891 */
3892void
3893pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3894    vm_pindex_t pindex, vm_size_t size)
3895{
3896	pd_entry_t *pde;
3897	vm_paddr_t pa, ptepa;
3898	vm_page_t p;
3899	int pat_mode;
3900
3901	VM_OBJECT_ASSERT_WLOCKED(object);
3902	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3903	    ("pmap_object_init_pt: non-device object"));
3904	if (pseflag &&
3905	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3906		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3907			return;
3908		p = vm_page_lookup(object, pindex);
3909		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3910		    ("pmap_object_init_pt: invalid page %p", p));
3911		pat_mode = p->md.pat_mode;
3912
3913		/*
3914		 * Abort the mapping if the first page is not physically
3915		 * aligned to a 2/4MB page boundary.
3916		 */
3917		ptepa = VM_PAGE_TO_PHYS(p);
3918		if (ptepa & (NBPDR - 1))
3919			return;
3920
3921		/*
3922		 * Skip the first page.  Abort the mapping if the rest of
3923		 * the pages are not physically contiguous or have differing
3924		 * memory attributes.
3925		 */
3926		p = TAILQ_NEXT(p, listq);
3927		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3928		    pa += PAGE_SIZE) {
3929			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3930			    ("pmap_object_init_pt: invalid page %p", p));
3931			if (pa != VM_PAGE_TO_PHYS(p) ||
3932			    pat_mode != p->md.pat_mode)
3933				return;
3934			p = TAILQ_NEXT(p, listq);
3935		}
3936
3937		/*
3938		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3939		 * "size" is a multiple of 2/4M, adding the PAT setting to
3940		 * "pa" will not affect the termination of this loop.
3941		 */
3942		PMAP_LOCK(pmap);
3943		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3944		    size; pa += NBPDR) {
3945			pde = pmap_pde(pmap, addr);
3946			if (*pde == 0) {
3947				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3948				    PG_U | PG_RW | PG_V);
3949				pmap->pm_stats.resident_count += NBPDR /
3950				    PAGE_SIZE;
3951				pmap_pde_mappings++;
3952			}
3953			/* Else continue on if the PDE is already valid. */
3954			addr += NBPDR;
3955		}
3956		PMAP_UNLOCK(pmap);
3957	}
3958}
3959
3960/*
3961 *	Routine:	pmap_change_wiring
3962 *	Function:	Change the wiring attribute for a map/virtual-address
3963 *			pair.
3964 *	In/out conditions:
3965 *			The mapping must already exist in the pmap.
3966 */
3967void
3968pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3969{
3970	pd_entry_t *pde;
3971	pt_entry_t *pte;
3972	boolean_t are_queues_locked;
3973
3974	are_queues_locked = FALSE;
3975retry:
3976	PMAP_LOCK(pmap);
3977	pde = pmap_pde(pmap, va);
3978	if ((*pde & PG_PS) != 0) {
3979		if (!wired != ((*pde & PG_W) == 0)) {
3980			if (!are_queues_locked) {
3981				are_queues_locked = TRUE;
3982				if (!rw_try_wlock(&pvh_global_lock)) {
3983					PMAP_UNLOCK(pmap);
3984					rw_wlock(&pvh_global_lock);
3985					goto retry;
3986				}
3987			}
3988			if (!pmap_demote_pde(pmap, pde, va))
3989				panic("pmap_change_wiring: demotion failed");
3990		} else
3991			goto out;
3992	}
3993	pte = pmap_pte(pmap, va);
3994
3995	if (wired && !pmap_pte_w(pte))
3996		pmap->pm_stats.wired_count++;
3997	else if (!wired && pmap_pte_w(pte))
3998		pmap->pm_stats.wired_count--;
3999
4000	/*
4001	 * Wiring is not a hardware characteristic so there is no need to
4002	 * invalidate TLB.
4003	 */
4004	pmap_pte_set_w(pte, wired);
4005	pmap_pte_release(pte);
4006out:
4007	if (are_queues_locked)
4008		rw_wunlock(&pvh_global_lock);
4009	PMAP_UNLOCK(pmap);
4010}
4011
4012
4013
4014/*
4015 *	Copy the range specified by src_addr/len
4016 *	from the source map to the range dst_addr/len
4017 *	in the destination map.
4018 *
4019 *	This routine is only advisory and need not do anything.
4020 */
4021
4022void
4023pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4024    vm_offset_t src_addr)
4025{
4026	struct spglist free;
4027	vm_offset_t addr;
4028	vm_offset_t end_addr = src_addr + len;
4029	vm_offset_t pdnxt;
4030
4031	if (dst_addr != src_addr)
4032		return;
4033
4034	if (!pmap_is_current(src_pmap))
4035		return;
4036
4037	rw_wlock(&pvh_global_lock);
4038	if (dst_pmap < src_pmap) {
4039		PMAP_LOCK(dst_pmap);
4040		PMAP_LOCK(src_pmap);
4041	} else {
4042		PMAP_LOCK(src_pmap);
4043		PMAP_LOCK(dst_pmap);
4044	}
4045	sched_pin();
4046	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4047		pt_entry_t *src_pte, *dst_pte;
4048		vm_page_t dstmpte, srcmpte;
4049		pd_entry_t srcptepaddr;
4050		u_int ptepindex;
4051
4052		KASSERT(addr < UPT_MIN_ADDRESS,
4053		    ("pmap_copy: invalid to pmap_copy page tables"));
4054
4055		pdnxt = (addr + NBPDR) & ~PDRMASK;
4056		if (pdnxt < addr)
4057			pdnxt = end_addr;
4058		ptepindex = addr >> PDRSHIFT;
4059
4060		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4061		if (srcptepaddr == 0)
4062			continue;
4063
4064		if (srcptepaddr & PG_PS) {
4065			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4066				continue;
4067			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4068			    ((srcptepaddr & PG_MANAGED) == 0 ||
4069			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4070			    PG_PS_FRAME))) {
4071				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4072				    ~PG_W;
4073				dst_pmap->pm_stats.resident_count +=
4074				    NBPDR / PAGE_SIZE;
4075			}
4076			continue;
4077		}
4078
4079		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4080		KASSERT(srcmpte->wire_count > 0,
4081		    ("pmap_copy: source page table page is unused"));
4082
4083		if (pdnxt > end_addr)
4084			pdnxt = end_addr;
4085
4086		src_pte = vtopte(addr);
4087		while (addr < pdnxt) {
4088			pt_entry_t ptetemp;
4089			ptetemp = *src_pte;
4090			/*
4091			 * we only virtual copy managed pages
4092			 */
4093			if ((ptetemp & PG_MANAGED) != 0) {
4094				dstmpte = pmap_allocpte(dst_pmap, addr,
4095				    M_NOWAIT);
4096				if (dstmpte == NULL)
4097					goto out;
4098				dst_pte = pmap_pte_quick(dst_pmap, addr);
4099				if (*dst_pte == 0 &&
4100				    pmap_try_insert_pv_entry(dst_pmap, addr,
4101				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4102					/*
4103					 * Clear the wired, modified, and
4104					 * accessed (referenced) bits
4105					 * during the copy.
4106					 */
4107					*dst_pte = ptetemp & ~(PG_W | PG_M |
4108					    PG_A);
4109					dst_pmap->pm_stats.resident_count++;
4110	 			} else {
4111					SLIST_INIT(&free);
4112					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4113					    &free)) {
4114						pmap_invalidate_page(dst_pmap,
4115						    addr);
4116						pmap_free_zero_pages(&free);
4117					}
4118					goto out;
4119				}
4120				if (dstmpte->wire_count >= srcmpte->wire_count)
4121					break;
4122			}
4123			addr += PAGE_SIZE;
4124			src_pte++;
4125		}
4126	}
4127out:
4128	sched_unpin();
4129	rw_wunlock(&pvh_global_lock);
4130	PMAP_UNLOCK(src_pmap);
4131	PMAP_UNLOCK(dst_pmap);
4132}
4133
4134static __inline void
4135pagezero(void *page)
4136{
4137#if defined(I686_CPU)
4138	if (cpu_class == CPUCLASS_686) {
4139#if defined(CPU_ENABLE_SSE)
4140		if (cpu_feature & CPUID_SSE2)
4141			sse2_pagezero(page);
4142		else
4143#endif
4144			i686_pagezero(page);
4145	} else
4146#endif
4147		bzero(page, PAGE_SIZE);
4148}
4149
4150/*
4151 *	pmap_zero_page zeros the specified hardware page by mapping
4152 *	the page into KVM and using bzero to clear its contents.
4153 */
4154void
4155pmap_zero_page(vm_page_t m)
4156{
4157	struct sysmaps *sysmaps;
4158
4159	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4160	mtx_lock(&sysmaps->lock);
4161	if (*sysmaps->CMAP2)
4162		panic("pmap_zero_page: CMAP2 busy");
4163	sched_pin();
4164	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4165	    pmap_cache_bits(m->md.pat_mode, 0);
4166	invlcaddr(sysmaps->CADDR2);
4167	pagezero(sysmaps->CADDR2);
4168	*sysmaps->CMAP2 = 0;
4169	sched_unpin();
4170	mtx_unlock(&sysmaps->lock);
4171}
4172
4173/*
4174 *	pmap_zero_page_area zeros the specified hardware page by mapping
4175 *	the page into KVM and using bzero to clear its contents.
4176 *
4177 *	off and size may not cover an area beyond a single hardware page.
4178 */
4179void
4180pmap_zero_page_area(vm_page_t m, int off, int size)
4181{
4182	struct sysmaps *sysmaps;
4183
4184	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4185	mtx_lock(&sysmaps->lock);
4186	if (*sysmaps->CMAP2)
4187		panic("pmap_zero_page_area: CMAP2 busy");
4188	sched_pin();
4189	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4190	    pmap_cache_bits(m->md.pat_mode, 0);
4191	invlcaddr(sysmaps->CADDR2);
4192	if (off == 0 && size == PAGE_SIZE)
4193		pagezero(sysmaps->CADDR2);
4194	else
4195		bzero((char *)sysmaps->CADDR2 + off, size);
4196	*sysmaps->CMAP2 = 0;
4197	sched_unpin();
4198	mtx_unlock(&sysmaps->lock);
4199}
4200
4201/*
4202 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4203 *	the page into KVM and using bzero to clear its contents.  This
4204 *	is intended to be called from the vm_pagezero process only and
4205 *	outside of Giant.
4206 */
4207void
4208pmap_zero_page_idle(vm_page_t m)
4209{
4210
4211	if (*CMAP3)
4212		panic("pmap_zero_page_idle: CMAP3 busy");
4213	sched_pin();
4214	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4215	    pmap_cache_bits(m->md.pat_mode, 0);
4216	invlcaddr(CADDR3);
4217	pagezero(CADDR3);
4218	*CMAP3 = 0;
4219	sched_unpin();
4220}
4221
4222/*
4223 *	pmap_copy_page copies the specified (machine independent)
4224 *	page by mapping the page into virtual memory and using
4225 *	bcopy to copy the page, one machine dependent page at a
4226 *	time.
4227 */
4228void
4229pmap_copy_page(vm_page_t src, vm_page_t dst)
4230{
4231	struct sysmaps *sysmaps;
4232
4233	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4234	mtx_lock(&sysmaps->lock);
4235	if (*sysmaps->CMAP1)
4236		panic("pmap_copy_page: CMAP1 busy");
4237	if (*sysmaps->CMAP2)
4238		panic("pmap_copy_page: CMAP2 busy");
4239	sched_pin();
4240	invlpg((u_int)sysmaps->CADDR1);
4241	invlpg((u_int)sysmaps->CADDR2);
4242	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4243	    pmap_cache_bits(src->md.pat_mode, 0);
4244	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4245	    pmap_cache_bits(dst->md.pat_mode, 0);
4246	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4247	*sysmaps->CMAP1 = 0;
4248	*sysmaps->CMAP2 = 0;
4249	sched_unpin();
4250	mtx_unlock(&sysmaps->lock);
4251}
4252
4253int unmapped_buf_allowed = 1;
4254
4255void
4256pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4257    vm_offset_t b_offset, int xfersize)
4258{
4259	struct sysmaps *sysmaps;
4260	vm_page_t a_pg, b_pg;
4261	char *a_cp, *b_cp;
4262	vm_offset_t a_pg_offset, b_pg_offset;
4263	int cnt;
4264
4265	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4266	mtx_lock(&sysmaps->lock);
4267	if (*sysmaps->CMAP1 != 0)
4268		panic("pmap_copy_pages: CMAP1 busy");
4269	if (*sysmaps->CMAP2 != 0)
4270		panic("pmap_copy_pages: CMAP2 busy");
4271	sched_pin();
4272	while (xfersize > 0) {
4273		invlpg((u_int)sysmaps->CADDR1);
4274		invlpg((u_int)sysmaps->CADDR2);
4275		a_pg = ma[a_offset >> PAGE_SHIFT];
4276		a_pg_offset = a_offset & PAGE_MASK;
4277		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4278		b_pg = mb[b_offset >> PAGE_SHIFT];
4279		b_pg_offset = b_offset & PAGE_MASK;
4280		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4281		*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4282		    pmap_cache_bits(b_pg->md.pat_mode, 0);
4283		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4284		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4285		a_cp = sysmaps->CADDR1 + a_pg_offset;
4286		b_cp = sysmaps->CADDR2 + b_pg_offset;
4287		bcopy(a_cp, b_cp, cnt);
4288		a_offset += cnt;
4289		b_offset += cnt;
4290		xfersize -= cnt;
4291	}
4292	*sysmaps->CMAP1 = 0;
4293	*sysmaps->CMAP2 = 0;
4294	sched_unpin();
4295	mtx_unlock(&sysmaps->lock);
4296}
4297
4298/*
4299 * Returns true if the pmap's pv is one of the first
4300 * 16 pvs linked to from this page.  This count may
4301 * be changed upwards or downwards in the future; it
4302 * is only necessary that true be returned for a small
4303 * subset of pmaps for proper page aging.
4304 */
4305boolean_t
4306pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4307{
4308	struct md_page *pvh;
4309	pv_entry_t pv;
4310	int loops = 0;
4311	boolean_t rv;
4312
4313	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4314	    ("pmap_page_exists_quick: page %p is not managed", m));
4315	rv = FALSE;
4316	rw_wlock(&pvh_global_lock);
4317	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4318		if (PV_PMAP(pv) == pmap) {
4319			rv = TRUE;
4320			break;
4321		}
4322		loops++;
4323		if (loops >= 16)
4324			break;
4325	}
4326	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4327		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4328		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4329			if (PV_PMAP(pv) == pmap) {
4330				rv = TRUE;
4331				break;
4332			}
4333			loops++;
4334			if (loops >= 16)
4335				break;
4336		}
4337	}
4338	rw_wunlock(&pvh_global_lock);
4339	return (rv);
4340}
4341
4342/*
4343 *	pmap_page_wired_mappings:
4344 *
4345 *	Return the number of managed mappings to the given physical page
4346 *	that are wired.
4347 */
4348int
4349pmap_page_wired_mappings(vm_page_t m)
4350{
4351	int count;
4352
4353	count = 0;
4354	if ((m->oflags & VPO_UNMANAGED) != 0)
4355		return (count);
4356	rw_wlock(&pvh_global_lock);
4357	count = pmap_pvh_wired_mappings(&m->md, count);
4358	if ((m->flags & PG_FICTITIOUS) == 0) {
4359	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4360	        count);
4361	}
4362	rw_wunlock(&pvh_global_lock);
4363	return (count);
4364}
4365
4366/*
4367 *	pmap_pvh_wired_mappings:
4368 *
4369 *	Return the updated number "count" of managed mappings that are wired.
4370 */
4371static int
4372pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4373{
4374	pmap_t pmap;
4375	pt_entry_t *pte;
4376	pv_entry_t pv;
4377
4378	rw_assert(&pvh_global_lock, RA_WLOCKED);
4379	sched_pin();
4380	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4381		pmap = PV_PMAP(pv);
4382		PMAP_LOCK(pmap);
4383		pte = pmap_pte_quick(pmap, pv->pv_va);
4384		if ((*pte & PG_W) != 0)
4385			count++;
4386		PMAP_UNLOCK(pmap);
4387	}
4388	sched_unpin();
4389	return (count);
4390}
4391
4392/*
4393 * Returns TRUE if the given page is mapped individually or as part of
4394 * a 4mpage.  Otherwise, returns FALSE.
4395 */
4396boolean_t
4397pmap_page_is_mapped(vm_page_t m)
4398{
4399	boolean_t rv;
4400
4401	if ((m->oflags & VPO_UNMANAGED) != 0)
4402		return (FALSE);
4403	rw_wlock(&pvh_global_lock);
4404	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4405	    ((m->flags & PG_FICTITIOUS) == 0 &&
4406	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4407	rw_wunlock(&pvh_global_lock);
4408	return (rv);
4409}
4410
4411/*
4412 * Remove all pages from specified address space
4413 * this aids process exit speeds.  Also, this code
4414 * is special cased for current process only, but
4415 * can have the more generic (and slightly slower)
4416 * mode enabled.  This is much faster than pmap_remove
4417 * in the case of running down an entire address space.
4418 */
4419void
4420pmap_remove_pages(pmap_t pmap)
4421{
4422	pt_entry_t *pte, tpte;
4423	vm_page_t m, mpte, mt;
4424	pv_entry_t pv;
4425	struct md_page *pvh;
4426	struct pv_chunk *pc, *npc;
4427	struct spglist free;
4428	int field, idx;
4429	int32_t bit;
4430	uint32_t inuse, bitmask;
4431	int allfree;
4432
4433	if (pmap != PCPU_GET(curpmap)) {
4434		printf("warning: pmap_remove_pages called with non-current pmap\n");
4435		return;
4436	}
4437	SLIST_INIT(&free);
4438	rw_wlock(&pvh_global_lock);
4439	PMAP_LOCK(pmap);
4440	sched_pin();
4441	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4442		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4443		    pc->pc_pmap));
4444		allfree = 1;
4445		for (field = 0; field < _NPCM; field++) {
4446			inuse = ~pc->pc_map[field] & pc_freemask[field];
4447			while (inuse != 0) {
4448				bit = bsfl(inuse);
4449				bitmask = 1UL << bit;
4450				idx = field * 32 + bit;
4451				pv = &pc->pc_pventry[idx];
4452				inuse &= ~bitmask;
4453
4454				pte = pmap_pde(pmap, pv->pv_va);
4455				tpte = *pte;
4456				if ((tpte & PG_PS) == 0) {
4457					pte = vtopte(pv->pv_va);
4458					tpte = *pte & ~PG_PTE_PAT;
4459				}
4460
4461				if (tpte == 0) {
4462					printf(
4463					    "TPTE at %p  IS ZERO @ VA %08x\n",
4464					    pte, pv->pv_va);
4465					panic("bad pte");
4466				}
4467
4468/*
4469 * We cannot remove wired pages from a process' mapping at this time
4470 */
4471				if (tpte & PG_W) {
4472					allfree = 0;
4473					continue;
4474				}
4475
4476				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4477				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4478				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4479				    m, (uintmax_t)m->phys_addr,
4480				    (uintmax_t)tpte));
4481
4482				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4483				    m < &vm_page_array[vm_page_array_size],
4484				    ("pmap_remove_pages: bad tpte %#jx",
4485				    (uintmax_t)tpte));
4486
4487				pte_clear(pte);
4488
4489				/*
4490				 * Update the vm_page_t clean/reference bits.
4491				 */
4492				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4493					if ((tpte & PG_PS) != 0) {
4494						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4495							vm_page_dirty(mt);
4496					} else
4497						vm_page_dirty(m);
4498				}
4499
4500				/* Mark free */
4501				PV_STAT(pv_entry_frees++);
4502				PV_STAT(pv_entry_spare++);
4503				pv_entry_count--;
4504				pc->pc_map[field] |= bitmask;
4505				if ((tpte & PG_PS) != 0) {
4506					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4507					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4508					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4509					if (TAILQ_EMPTY(&pvh->pv_list)) {
4510						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4511							if (TAILQ_EMPTY(&mt->md.pv_list))
4512								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4513					}
4514					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4515					if (mpte != NULL) {
4516						pmap_remove_pt_page(pmap, mpte);
4517						pmap->pm_stats.resident_count--;
4518						KASSERT(mpte->wire_count == NPTEPG,
4519						    ("pmap_remove_pages: pte page wire count error"));
4520						mpte->wire_count = 0;
4521						pmap_add_delayed_free_list(mpte, &free, FALSE);
4522						atomic_subtract_int(&cnt.v_wire_count, 1);
4523					}
4524				} else {
4525					pmap->pm_stats.resident_count--;
4526					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4527					if (TAILQ_EMPTY(&m->md.pv_list) &&
4528					    (m->flags & PG_FICTITIOUS) == 0) {
4529						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4530						if (TAILQ_EMPTY(&pvh->pv_list))
4531							vm_page_aflag_clear(m, PGA_WRITEABLE);
4532					}
4533					pmap_unuse_pt(pmap, pv->pv_va, &free);
4534				}
4535			}
4536		}
4537		if (allfree) {
4538			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4539			free_pv_chunk(pc);
4540		}
4541	}
4542	sched_unpin();
4543	pmap_invalidate_all(pmap);
4544	rw_wunlock(&pvh_global_lock);
4545	PMAP_UNLOCK(pmap);
4546	pmap_free_zero_pages(&free);
4547}
4548
4549/*
4550 *	pmap_is_modified:
4551 *
4552 *	Return whether or not the specified physical page was modified
4553 *	in any physical maps.
4554 */
4555boolean_t
4556pmap_is_modified(vm_page_t m)
4557{
4558	boolean_t rv;
4559
4560	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4561	    ("pmap_is_modified: page %p is not managed", m));
4562
4563	/*
4564	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4565	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4566	 * is clear, no PTEs can have PG_M set.
4567	 */
4568	VM_OBJECT_ASSERT_WLOCKED(m->object);
4569	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4570		return (FALSE);
4571	rw_wlock(&pvh_global_lock);
4572	rv = pmap_is_modified_pvh(&m->md) ||
4573	    ((m->flags & PG_FICTITIOUS) == 0 &&
4574	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4575	rw_wunlock(&pvh_global_lock);
4576	return (rv);
4577}
4578
4579/*
4580 * Returns TRUE if any of the given mappings were used to modify
4581 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4582 * mappings are supported.
4583 */
4584static boolean_t
4585pmap_is_modified_pvh(struct md_page *pvh)
4586{
4587	pv_entry_t pv;
4588	pt_entry_t *pte;
4589	pmap_t pmap;
4590	boolean_t rv;
4591
4592	rw_assert(&pvh_global_lock, RA_WLOCKED);
4593	rv = FALSE;
4594	sched_pin();
4595	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4596		pmap = PV_PMAP(pv);
4597		PMAP_LOCK(pmap);
4598		pte = pmap_pte_quick(pmap, pv->pv_va);
4599		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4600		PMAP_UNLOCK(pmap);
4601		if (rv)
4602			break;
4603	}
4604	sched_unpin();
4605	return (rv);
4606}
4607
4608/*
4609 *	pmap_is_prefaultable:
4610 *
4611 *	Return whether or not the specified virtual address is elgible
4612 *	for prefault.
4613 */
4614boolean_t
4615pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4616{
4617	pd_entry_t *pde;
4618	pt_entry_t *pte;
4619	boolean_t rv;
4620
4621	rv = FALSE;
4622	PMAP_LOCK(pmap);
4623	pde = pmap_pde(pmap, addr);
4624	if (*pde != 0 && (*pde & PG_PS) == 0) {
4625		pte = vtopte(addr);
4626		rv = *pte == 0;
4627	}
4628	PMAP_UNLOCK(pmap);
4629	return (rv);
4630}
4631
4632/*
4633 *	pmap_is_referenced:
4634 *
4635 *	Return whether or not the specified physical page was referenced
4636 *	in any physical maps.
4637 */
4638boolean_t
4639pmap_is_referenced(vm_page_t m)
4640{
4641	boolean_t rv;
4642
4643	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4644	    ("pmap_is_referenced: page %p is not managed", m));
4645	rw_wlock(&pvh_global_lock);
4646	rv = pmap_is_referenced_pvh(&m->md) ||
4647	    ((m->flags & PG_FICTITIOUS) == 0 &&
4648	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4649	rw_wunlock(&pvh_global_lock);
4650	return (rv);
4651}
4652
4653/*
4654 * Returns TRUE if any of the given mappings were referenced and FALSE
4655 * otherwise.  Both page and 4mpage mappings are supported.
4656 */
4657static boolean_t
4658pmap_is_referenced_pvh(struct md_page *pvh)
4659{
4660	pv_entry_t pv;
4661	pt_entry_t *pte;
4662	pmap_t pmap;
4663	boolean_t rv;
4664
4665	rw_assert(&pvh_global_lock, RA_WLOCKED);
4666	rv = FALSE;
4667	sched_pin();
4668	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4669		pmap = PV_PMAP(pv);
4670		PMAP_LOCK(pmap);
4671		pte = pmap_pte_quick(pmap, pv->pv_va);
4672		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4673		PMAP_UNLOCK(pmap);
4674		if (rv)
4675			break;
4676	}
4677	sched_unpin();
4678	return (rv);
4679}
4680
4681/*
4682 * Clear the write and modified bits in each of the given page's mappings.
4683 */
4684void
4685pmap_remove_write(vm_page_t m)
4686{
4687	struct md_page *pvh;
4688	pv_entry_t next_pv, pv;
4689	pmap_t pmap;
4690	pd_entry_t *pde;
4691	pt_entry_t oldpte, *pte;
4692	vm_offset_t va;
4693
4694	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4695	    ("pmap_remove_write: page %p is not managed", m));
4696
4697	/*
4698	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4699	 * set by another thread while the object is locked.  Thus,
4700	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4701	 */
4702	VM_OBJECT_ASSERT_WLOCKED(m->object);
4703	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4704		return;
4705	rw_wlock(&pvh_global_lock);
4706	sched_pin();
4707	if ((m->flags & PG_FICTITIOUS) != 0)
4708		goto small_mappings;
4709	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4710	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4711		va = pv->pv_va;
4712		pmap = PV_PMAP(pv);
4713		PMAP_LOCK(pmap);
4714		pde = pmap_pde(pmap, va);
4715		if ((*pde & PG_RW) != 0)
4716			(void)pmap_demote_pde(pmap, pde, va);
4717		PMAP_UNLOCK(pmap);
4718	}
4719small_mappings:
4720	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4721		pmap = PV_PMAP(pv);
4722		PMAP_LOCK(pmap);
4723		pde = pmap_pde(pmap, pv->pv_va);
4724		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4725		    " a 4mpage in page %p's pv list", m));
4726		pte = pmap_pte_quick(pmap, pv->pv_va);
4727retry:
4728		oldpte = *pte;
4729		if ((oldpte & PG_RW) != 0) {
4730			/*
4731			 * Regardless of whether a pte is 32 or 64 bits
4732			 * in size, PG_RW and PG_M are among the least
4733			 * significant 32 bits.
4734			 */
4735			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4736			    oldpte & ~(PG_RW | PG_M)))
4737				goto retry;
4738			if ((oldpte & PG_M) != 0)
4739				vm_page_dirty(m);
4740			pmap_invalidate_page(pmap, pv->pv_va);
4741		}
4742		PMAP_UNLOCK(pmap);
4743	}
4744	vm_page_aflag_clear(m, PGA_WRITEABLE);
4745	sched_unpin();
4746	rw_wunlock(&pvh_global_lock);
4747}
4748
4749#define	PMAP_TS_REFERENCED_MAX	5
4750
4751/*
4752 *	pmap_ts_referenced:
4753 *
4754 *	Return a count of reference bits for a page, clearing those bits.
4755 *	It is not necessary for every reference bit to be cleared, but it
4756 *	is necessary that 0 only be returned when there are truly no
4757 *	reference bits set.
4758 *
4759 *	XXX: The exact number of bits to check and clear is a matter that
4760 *	should be tested and standardized at some point in the future for
4761 *	optimal aging of shared pages.
4762 */
4763int
4764pmap_ts_referenced(vm_page_t m)
4765{
4766	struct md_page *pvh;
4767	pv_entry_t pv, pvf;
4768	pmap_t pmap;
4769	pd_entry_t *pde;
4770	pt_entry_t *pte;
4771	vm_paddr_t pa;
4772	int rtval = 0;
4773
4774	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4775	    ("pmap_ts_referenced: page %p is not managed", m));
4776	pa = VM_PAGE_TO_PHYS(m);
4777	pvh = pa_to_pvh(pa);
4778	rw_wlock(&pvh_global_lock);
4779	sched_pin();
4780	if ((m->flags & PG_FICTITIOUS) != 0 ||
4781	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4782		goto small_mappings;
4783	pv = pvf;
4784	do {
4785		pmap = PV_PMAP(pv);
4786		PMAP_LOCK(pmap);
4787		pde = pmap_pde(pmap, pv->pv_va);
4788		if ((*pde & PG_A) != 0) {
4789			/*
4790			 * Since this reference bit is shared by either 1024
4791			 * or 512 4KB pages, it should not be cleared every
4792			 * time it is tested.  Apply a simple "hash" function
4793			 * on the physical page number, the virtual superpage
4794			 * number, and the pmap address to select one 4KB page
4795			 * out of the 1024 or 512 on which testing the
4796			 * reference bit will result in clearing that bit.
4797			 * This function is designed to avoid the selection of
4798			 * the same 4KB page for every 2- or 4MB page mapping.
4799			 *
4800			 * On demotion, a mapping that hasn't been referenced
4801			 * is simply destroyed.  To avoid the possibility of a
4802			 * subsequent page fault on a demoted wired mapping,
4803			 * always leave its reference bit set.  Moreover,
4804			 * since the superpage is wired, the current state of
4805			 * its reference bit won't affect page replacement.
4806			 */
4807			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4808			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4809			    (*pde & PG_W) == 0) {
4810				atomic_clear_int((u_int *)pde, PG_A);
4811				pmap_invalidate_page(pmap, pv->pv_va);
4812			}
4813			rtval++;
4814		}
4815		PMAP_UNLOCK(pmap);
4816		/* Rotate the PV list if it has more than one entry. */
4817		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4818			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4819			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4820		}
4821		if (rtval >= PMAP_TS_REFERENCED_MAX)
4822			goto out;
4823	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4824small_mappings:
4825	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4826		goto out;
4827	pv = pvf;
4828	do {
4829		pmap = PV_PMAP(pv);
4830		PMAP_LOCK(pmap);
4831		pde = pmap_pde(pmap, pv->pv_va);
4832		KASSERT((*pde & PG_PS) == 0,
4833		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4834		    m));
4835		pte = pmap_pte_quick(pmap, pv->pv_va);
4836		if ((*pte & PG_A) != 0) {
4837			atomic_clear_int((u_int *)pte, PG_A);
4838			pmap_invalidate_page(pmap, pv->pv_va);
4839			rtval++;
4840		}
4841		PMAP_UNLOCK(pmap);
4842		/* Rotate the PV list if it has more than one entry. */
4843		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4844			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4845			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4846		}
4847	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4848	    PMAP_TS_REFERENCED_MAX);
4849out:
4850	sched_unpin();
4851	rw_wunlock(&pvh_global_lock);
4852	return (rtval);
4853}
4854
4855/*
4856 *	Apply the given advice to the specified range of addresses within the
4857 *	given pmap.  Depending on the advice, clear the referenced and/or
4858 *	modified flags in each mapping and set the mapped page's dirty field.
4859 */
4860void
4861pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4862{
4863	pd_entry_t oldpde, *pde;
4864	pt_entry_t *pte;
4865	vm_offset_t pdnxt;
4866	vm_page_t m;
4867	boolean_t anychanged, pv_lists_locked;
4868
4869	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4870		return;
4871	if (pmap_is_current(pmap))
4872		pv_lists_locked = FALSE;
4873	else {
4874		pv_lists_locked = TRUE;
4875resume:
4876		rw_wlock(&pvh_global_lock);
4877		sched_pin();
4878	}
4879	anychanged = FALSE;
4880	PMAP_LOCK(pmap);
4881	for (; sva < eva; sva = pdnxt) {
4882		pdnxt = (sva + NBPDR) & ~PDRMASK;
4883		if (pdnxt < sva)
4884			pdnxt = eva;
4885		pde = pmap_pde(pmap, sva);
4886		oldpde = *pde;
4887		if ((oldpde & PG_V) == 0)
4888			continue;
4889		else if ((oldpde & PG_PS) != 0) {
4890			if ((oldpde & PG_MANAGED) == 0)
4891				continue;
4892			if (!pv_lists_locked) {
4893				pv_lists_locked = TRUE;
4894				if (!rw_try_wlock(&pvh_global_lock)) {
4895					if (anychanged)
4896						pmap_invalidate_all(pmap);
4897					PMAP_UNLOCK(pmap);
4898					goto resume;
4899				}
4900				sched_pin();
4901			}
4902			if (!pmap_demote_pde(pmap, pde, sva)) {
4903				/*
4904				 * The large page mapping was destroyed.
4905				 */
4906				continue;
4907			}
4908
4909			/*
4910			 * Unless the page mappings are wired, remove the
4911			 * mapping to a single page so that a subsequent
4912			 * access may repromote.  Since the underlying page
4913			 * table page is fully populated, this removal never
4914			 * frees a page table page.
4915			 */
4916			if ((oldpde & PG_W) == 0) {
4917				pte = pmap_pte_quick(pmap, sva);
4918				KASSERT((*pte & PG_V) != 0,
4919				    ("pmap_advise: invalid PTE"));
4920				pmap_remove_pte(pmap, pte, sva, NULL);
4921				anychanged = TRUE;
4922			}
4923		}
4924		if (pdnxt > eva)
4925			pdnxt = eva;
4926		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4927		    sva += PAGE_SIZE) {
4928			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
4929			    PG_V))
4930				continue;
4931			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4932				if (advice == MADV_DONTNEED) {
4933					/*
4934					 * Future calls to pmap_is_modified()
4935					 * can be avoided by making the page
4936					 * dirty now.
4937					 */
4938					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4939					vm_page_dirty(m);
4940				}
4941				atomic_clear_int((u_int *)pte, PG_M | PG_A);
4942			} else if ((*pte & PG_A) != 0)
4943				atomic_clear_int((u_int *)pte, PG_A);
4944			else
4945				continue;
4946			if ((*pte & PG_G) != 0)
4947				pmap_invalidate_page(pmap, sva);
4948			else
4949				anychanged = TRUE;
4950		}
4951	}
4952	if (anychanged)
4953		pmap_invalidate_all(pmap);
4954	if (pv_lists_locked) {
4955		sched_unpin();
4956		rw_wunlock(&pvh_global_lock);
4957	}
4958	PMAP_UNLOCK(pmap);
4959}
4960
4961/*
4962 *	Clear the modify bits on the specified physical page.
4963 */
4964void
4965pmap_clear_modify(vm_page_t m)
4966{
4967	struct md_page *pvh;
4968	pv_entry_t next_pv, pv;
4969	pmap_t pmap;
4970	pd_entry_t oldpde, *pde;
4971	pt_entry_t oldpte, *pte;
4972	vm_offset_t va;
4973
4974	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4975	    ("pmap_clear_modify: page %p is not managed", m));
4976	VM_OBJECT_ASSERT_WLOCKED(m->object);
4977	KASSERT(!vm_page_xbusied(m),
4978	    ("pmap_clear_modify: page %p is exclusive busied", m));
4979
4980	/*
4981	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4982	 * If the object containing the page is locked and the page is not
4983	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4984	 */
4985	if ((m->aflags & PGA_WRITEABLE) == 0)
4986		return;
4987	rw_wlock(&pvh_global_lock);
4988	sched_pin();
4989	if ((m->flags & PG_FICTITIOUS) != 0)
4990		goto small_mappings;
4991	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4992	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4993		va = pv->pv_va;
4994		pmap = PV_PMAP(pv);
4995		PMAP_LOCK(pmap);
4996		pde = pmap_pde(pmap, va);
4997		oldpde = *pde;
4998		if ((oldpde & PG_RW) != 0) {
4999			if (pmap_demote_pde(pmap, pde, va)) {
5000				if ((oldpde & PG_W) == 0) {
5001					/*
5002					 * Write protect the mapping to a
5003					 * single page so that a subsequent
5004					 * write access may repromote.
5005					 */
5006					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5007					    PG_PS_FRAME);
5008					pte = pmap_pte_quick(pmap, va);
5009					oldpte = *pte;
5010					if ((oldpte & PG_V) != 0) {
5011						/*
5012						 * Regardless of whether a pte is 32 or 64 bits
5013						 * in size, PG_RW and PG_M are among the least
5014						 * significant 32 bits.
5015						 */
5016						while (!atomic_cmpset_int((u_int *)pte,
5017						    oldpte,
5018						    oldpte & ~(PG_M | PG_RW)))
5019							oldpte = *pte;
5020						vm_page_dirty(m);
5021						pmap_invalidate_page(pmap, va);
5022					}
5023				}
5024			}
5025		}
5026		PMAP_UNLOCK(pmap);
5027	}
5028small_mappings:
5029	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5030		pmap = PV_PMAP(pv);
5031		PMAP_LOCK(pmap);
5032		pde = pmap_pde(pmap, pv->pv_va);
5033		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5034		    " a 4mpage in page %p's pv list", m));
5035		pte = pmap_pte_quick(pmap, pv->pv_va);
5036		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5037			/*
5038			 * Regardless of whether a pte is 32 or 64 bits
5039			 * in size, PG_M is among the least significant
5040			 * 32 bits.
5041			 */
5042			atomic_clear_int((u_int *)pte, PG_M);
5043			pmap_invalidate_page(pmap, pv->pv_va);
5044		}
5045		PMAP_UNLOCK(pmap);
5046	}
5047	sched_unpin();
5048	rw_wunlock(&pvh_global_lock);
5049}
5050
5051/*
5052 * Miscellaneous support routines follow
5053 */
5054
5055/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5056static __inline void
5057pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5058{
5059	u_int opte, npte;
5060
5061	/*
5062	 * The cache mode bits are all in the low 32-bits of the
5063	 * PTE, so we can just spin on updating the low 32-bits.
5064	 */
5065	do {
5066		opte = *(u_int *)pte;
5067		npte = opte & ~PG_PTE_CACHE;
5068		npte |= cache_bits;
5069	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5070}
5071
5072/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5073static __inline void
5074pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5075{
5076	u_int opde, npde;
5077
5078	/*
5079	 * The cache mode bits are all in the low 32-bits of the
5080	 * PDE, so we can just spin on updating the low 32-bits.
5081	 */
5082	do {
5083		opde = *(u_int *)pde;
5084		npde = opde & ~PG_PDE_CACHE;
5085		npde |= cache_bits;
5086	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5087}
5088
5089/*
5090 * Map a set of physical memory pages into the kernel virtual
5091 * address space. Return a pointer to where it is mapped. This
5092 * routine is intended to be used for mapping device memory,
5093 * NOT real memory.
5094 */
5095void *
5096pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5097{
5098	vm_offset_t va, offset;
5099	vm_size_t tmpsize;
5100
5101	offset = pa & PAGE_MASK;
5102	size = round_page(offset + size);
5103	pa = pa & PG_FRAME;
5104
5105	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5106		va = KERNBASE + pa;
5107	else
5108		va = kva_alloc(size);
5109	if (!va)
5110		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
5111
5112	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5113		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5114	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5115	pmap_invalidate_cache_range(va, va + size);
5116	return ((void *)(va + offset));
5117}
5118
5119void *
5120pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5121{
5122
5123	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5124}
5125
5126void *
5127pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5128{
5129
5130	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5131}
5132
5133void
5134pmap_unmapdev(vm_offset_t va, vm_size_t size)
5135{
5136	vm_offset_t base, offset;
5137
5138	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5139		return;
5140	base = trunc_page(va);
5141	offset = va & PAGE_MASK;
5142	size = round_page(offset + size);
5143	kva_free(base, size);
5144}
5145
5146/*
5147 * Sets the memory attribute for the specified page.
5148 */
5149void
5150pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5151{
5152
5153	m->md.pat_mode = ma;
5154	if ((m->flags & PG_FICTITIOUS) != 0)
5155		return;
5156
5157	/*
5158	 * If "m" is a normal page, flush it from the cache.
5159	 * See pmap_invalidate_cache_range().
5160	 *
5161	 * First, try to find an existing mapping of the page by sf
5162	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5163	 * flushes the cache.
5164	 */
5165	if (sf_buf_invalidate_cache(m))
5166		return;
5167
5168	/*
5169	 * If page is not mapped by sf buffer, but CPU does not
5170	 * support self snoop, map the page transient and do
5171	 * invalidation. In the worst case, whole cache is flushed by
5172	 * pmap_invalidate_cache_range().
5173	 */
5174	if ((cpu_feature & CPUID_SS) == 0)
5175		pmap_flush_page(m);
5176}
5177
5178static void
5179pmap_flush_page(vm_page_t m)
5180{
5181	struct sysmaps *sysmaps;
5182	vm_offset_t sva, eva;
5183
5184	if ((cpu_feature & CPUID_CLFSH) != 0) {
5185		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5186		mtx_lock(&sysmaps->lock);
5187		if (*sysmaps->CMAP2)
5188			panic("pmap_flush_page: CMAP2 busy");
5189		sched_pin();
5190		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5191		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5192		invlcaddr(sysmaps->CADDR2);
5193		sva = (vm_offset_t)sysmaps->CADDR2;
5194		eva = sva + PAGE_SIZE;
5195
5196		/*
5197		 * Use mfence despite the ordering implied by
5198		 * mtx_{un,}lock() because clflush is not guaranteed
5199		 * to be ordered by any other instruction.
5200		 */
5201		mfence();
5202		for (; sva < eva; sva += cpu_clflush_line_size)
5203			clflush(sva);
5204		mfence();
5205		*sysmaps->CMAP2 = 0;
5206		sched_unpin();
5207		mtx_unlock(&sysmaps->lock);
5208	} else
5209		pmap_invalidate_cache();
5210}
5211
5212/*
5213 * Changes the specified virtual address range's memory type to that given by
5214 * the parameter "mode".  The specified virtual address range must be
5215 * completely contained within either the kernel map.
5216 *
5217 * Returns zero if the change completed successfully, and either EINVAL or
5218 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5219 * of the virtual address range was not mapped, and ENOMEM is returned if
5220 * there was insufficient memory available to complete the change.
5221 */
5222int
5223pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5224{
5225	vm_offset_t base, offset, tmpva;
5226	pd_entry_t *pde;
5227	pt_entry_t *pte;
5228	int cache_bits_pte, cache_bits_pde;
5229	boolean_t changed;
5230
5231	base = trunc_page(va);
5232	offset = va & PAGE_MASK;
5233	size = round_page(offset + size);
5234
5235	/*
5236	 * Only supported on kernel virtual addresses above the recursive map.
5237	 */
5238	if (base < VM_MIN_KERNEL_ADDRESS)
5239		return (EINVAL);
5240
5241	cache_bits_pde = pmap_cache_bits(mode, 1);
5242	cache_bits_pte = pmap_cache_bits(mode, 0);
5243	changed = FALSE;
5244
5245	/*
5246	 * Pages that aren't mapped aren't supported.  Also break down
5247	 * 2/4MB pages into 4KB pages if required.
5248	 */
5249	PMAP_LOCK(kernel_pmap);
5250	for (tmpva = base; tmpva < base + size; ) {
5251		pde = pmap_pde(kernel_pmap, tmpva);
5252		if (*pde == 0) {
5253			PMAP_UNLOCK(kernel_pmap);
5254			return (EINVAL);
5255		}
5256		if (*pde & PG_PS) {
5257			/*
5258			 * If the current 2/4MB page already has
5259			 * the required memory type, then we need not
5260			 * demote this page.  Just increment tmpva to
5261			 * the next 2/4MB page frame.
5262			 */
5263			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5264				tmpva = trunc_4mpage(tmpva) + NBPDR;
5265				continue;
5266			}
5267
5268			/*
5269			 * If the current offset aligns with a 2/4MB
5270			 * page frame and there is at least 2/4MB left
5271			 * within the range, then we need not break
5272			 * down this page into 4KB pages.
5273			 */
5274			if ((tmpva & PDRMASK) == 0 &&
5275			    tmpva + PDRMASK < base + size) {
5276				tmpva += NBPDR;
5277				continue;
5278			}
5279			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5280				PMAP_UNLOCK(kernel_pmap);
5281				return (ENOMEM);
5282			}
5283		}
5284		pte = vtopte(tmpva);
5285		if (*pte == 0) {
5286			PMAP_UNLOCK(kernel_pmap);
5287			return (EINVAL);
5288		}
5289		tmpva += PAGE_SIZE;
5290	}
5291	PMAP_UNLOCK(kernel_pmap);
5292
5293	/*
5294	 * Ok, all the pages exist, so run through them updating their
5295	 * cache mode if required.
5296	 */
5297	for (tmpva = base; tmpva < base + size; ) {
5298		pde = pmap_pde(kernel_pmap, tmpva);
5299		if (*pde & PG_PS) {
5300			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5301				pmap_pde_attr(pde, cache_bits_pde);
5302				changed = TRUE;
5303			}
5304			tmpva = trunc_4mpage(tmpva) + NBPDR;
5305		} else {
5306			pte = vtopte(tmpva);
5307			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5308				pmap_pte_attr(pte, cache_bits_pte);
5309				changed = TRUE;
5310			}
5311			tmpva += PAGE_SIZE;
5312		}
5313	}
5314
5315	/*
5316	 * Flush CPU caches to make sure any data isn't cached that
5317	 * shouldn't be, etc.
5318	 */
5319	if (changed) {
5320		pmap_invalidate_range(kernel_pmap, base, tmpva);
5321		pmap_invalidate_cache_range(base, tmpva);
5322	}
5323	return (0);
5324}
5325
5326/*
5327 * perform the pmap work for mincore
5328 */
5329int
5330pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5331{
5332	pd_entry_t *pdep;
5333	pt_entry_t *ptep, pte;
5334	vm_paddr_t pa;
5335	int val;
5336
5337	PMAP_LOCK(pmap);
5338retry:
5339	pdep = pmap_pde(pmap, addr);
5340	if (*pdep != 0) {
5341		if (*pdep & PG_PS) {
5342			pte = *pdep;
5343			/* Compute the physical address of the 4KB page. */
5344			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5345			    PG_FRAME;
5346			val = MINCORE_SUPER;
5347		} else {
5348			ptep = pmap_pte(pmap, addr);
5349			pte = *ptep;
5350			pmap_pte_release(ptep);
5351			pa = pte & PG_FRAME;
5352			val = 0;
5353		}
5354	} else {
5355		pte = 0;
5356		pa = 0;
5357		val = 0;
5358	}
5359	if ((pte & PG_V) != 0) {
5360		val |= MINCORE_INCORE;
5361		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5362			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5363		if ((pte & PG_A) != 0)
5364			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5365	}
5366	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5367	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5368	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5369		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5370		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5371			goto retry;
5372	} else
5373		PA_UNLOCK_COND(*locked_pa);
5374	PMAP_UNLOCK(pmap);
5375	return (val);
5376}
5377
5378void
5379pmap_activate(struct thread *td)
5380{
5381	pmap_t	pmap, oldpmap;
5382	u_int	cpuid;
5383	u_int32_t  cr3;
5384
5385	critical_enter();
5386	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5387	oldpmap = PCPU_GET(curpmap);
5388	cpuid = PCPU_GET(cpuid);
5389#if defined(SMP)
5390	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5391	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5392#else
5393	CPU_CLR(cpuid, &oldpmap->pm_active);
5394	CPU_SET(cpuid, &pmap->pm_active);
5395#endif
5396#ifdef PAE
5397	cr3 = vtophys(pmap->pm_pdpt);
5398#else
5399	cr3 = vtophys(pmap->pm_pdir);
5400#endif
5401	/*
5402	 * pmap_activate is for the current thread on the current cpu
5403	 */
5404	td->td_pcb->pcb_cr3 = cr3;
5405	load_cr3(cr3);
5406	PCPU_SET(curpmap, pmap);
5407	critical_exit();
5408}
5409
5410void
5411pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5412{
5413}
5414
5415/*
5416 *	Increase the starting virtual address of the given mapping if a
5417 *	different alignment might result in more superpage mappings.
5418 */
5419void
5420pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5421    vm_offset_t *addr, vm_size_t size)
5422{
5423	vm_offset_t superpage_offset;
5424
5425	if (size < NBPDR)
5426		return;
5427	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5428		offset += ptoa(object->pg_color);
5429	superpage_offset = offset & PDRMASK;
5430	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5431	    (*addr & PDRMASK) == superpage_offset)
5432		return;
5433	if ((*addr & PDRMASK) < superpage_offset)
5434		*addr = (*addr & ~PDRMASK) + superpage_offset;
5435	else
5436		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5437}
5438
5439
5440#if defined(PMAP_DEBUG)
5441pmap_pid_dump(int pid)
5442{
5443	pmap_t pmap;
5444	struct proc *p;
5445	int npte = 0;
5446	int index;
5447
5448	sx_slock(&allproc_lock);
5449	FOREACH_PROC_IN_SYSTEM(p) {
5450		if (p->p_pid != pid)
5451			continue;
5452
5453		if (p->p_vmspace) {
5454			int i,j;
5455			index = 0;
5456			pmap = vmspace_pmap(p->p_vmspace);
5457			for (i = 0; i < NPDEPTD; i++) {
5458				pd_entry_t *pde;
5459				pt_entry_t *pte;
5460				vm_offset_t base = i << PDRSHIFT;
5461
5462				pde = &pmap->pm_pdir[i];
5463				if (pde && pmap_pde_v(pde)) {
5464					for (j = 0; j < NPTEPG; j++) {
5465						vm_offset_t va = base + (j << PAGE_SHIFT);
5466						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5467							if (index) {
5468								index = 0;
5469								printf("\n");
5470							}
5471							sx_sunlock(&allproc_lock);
5472							return (npte);
5473						}
5474						pte = pmap_pte(pmap, va);
5475						if (pte && pmap_pte_v(pte)) {
5476							pt_entry_t pa;
5477							vm_page_t m;
5478							pa = *pte;
5479							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5480							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5481								va, pa, m->hold_count, m->wire_count, m->flags);
5482							npte++;
5483							index++;
5484							if (index >= 2) {
5485								index = 0;
5486								printf("\n");
5487							} else {
5488								printf(" ");
5489							}
5490						}
5491					}
5492				}
5493			}
5494		}
5495	}
5496	sx_sunlock(&allproc_lock);
5497	return (npte);
5498}
5499#endif
5500
5501#if defined(DEBUG)
5502
5503static void	pads(pmap_t pm);
5504void		pmap_pvdump(vm_paddr_t pa);
5505
5506/* print address space of pmap*/
5507static void
5508pads(pmap_t pm)
5509{
5510	int i, j;
5511	vm_paddr_t va;
5512	pt_entry_t *ptep;
5513
5514	if (pm == kernel_pmap)
5515		return;
5516	for (i = 0; i < NPDEPTD; i++)
5517		if (pm->pm_pdir[i])
5518			for (j = 0; j < NPTEPG; j++) {
5519				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5520				if (pm == kernel_pmap && va < KERNBASE)
5521					continue;
5522				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5523					continue;
5524				ptep = pmap_pte(pm, va);
5525				if (pmap_pte_v(ptep))
5526					printf("%x:%x ", va, *ptep);
5527			};
5528
5529}
5530
5531void
5532pmap_pvdump(vm_paddr_t pa)
5533{
5534	pv_entry_t pv;
5535	pmap_t pmap;
5536	vm_page_t m;
5537
5538	printf("pa %x", pa);
5539	m = PHYS_TO_VM_PAGE(pa);
5540	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5541		pmap = PV_PMAP(pv);
5542		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5543		pads(pmap);
5544	}
5545	printf(" ");
5546}
5547#endif
5548