1/*-
2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3 *
4 * Eric Davis        <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano     <zambrano@broadcom.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#ifndef ECORE_INIT_OPS_H
38#define ECORE_INIT_OPS_H
39
40
41
42
43
44
45
46
47
48
49static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
50static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
51static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
52				      ecore_dma_addr_t phys_addr, uint32_t addr,
53				      uint32_t len);
54
55static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
56			      const uint32_t *data, uint32_t len)
57{
58	uint32_t i;
59
60	for (i = 0; i < len; i++)
61		REG_WR(sc, addr + i*4, data[i]);
62}
63
64static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
65			      const uint32_t *data, uint32_t len)
66{
67	uint32_t i;
68
69	for (i = 0; i < len; i++)
70		ecore_reg_wr_ind(sc, addr + i*4, data[i]);
71}
72
73static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
74				uint8_t wb)
75{
76	if (DMAE_READY(sc))
77		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
78
79	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
80	else if (wb && CHIP_IS_E1(sc))
81		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
82
83	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
84	else
85		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
86}
87
88static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
89			    uint32_t len, uint8_t wb)
90{
91	uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
92	uint32_t buf_len32 = buf_len/4;
93	uint32_t i;
94
95	ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
96
97	for (i = 0; i < len; i += buf_len32) {
98		uint32_t cur_len = min(buf_len32, len - i);
99
100		ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
101	}
102}
103
104static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
105{
106	if (DMAE_READY(sc))
107		ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
108
109	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
110	else if (CHIP_IS_E1(sc))
111		ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
112
113	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
114	else
115		ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
116}
117
118static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
119			     const uint32_t *data, uint32_t len64)
120{
121	uint32_t buf_len32 = FW_BUF_SIZE/4;
122	uint32_t len = len64*2;
123	uint64_t data64 = 0;
124	uint32_t i;
125
126	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
127	data64 = HILO_U64((*(data + 1)), (*data));
128
129	len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
130	for (i = 0; i < len64; i++) {
131		uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
132
133		*pdata = data64;
134	}
135
136	for (i = 0; i < len; i += buf_len32) {
137		uint32_t cur_len = min(buf_len32, len - i);
138
139		ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
140	}
141}
142
143/*********************************************************
144   There are different blobs for each PRAM section.
145   In addition, each blob write operation is divided into a few operations
146   in order to decrease the amount of phys. contiguous buffer needed.
147   Thus, when we select a blob the address may be with some offset
148   from the beginning of PRAM section.
149   The same holds for the INT_TABLE sections.
150**********************************************************/
151#define IF_IS_INT_TABLE_ADDR(base, addr) \
152			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
153
154#define IF_IS_PRAM_ADDR(base, addr) \
155			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
156
157static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
158				const uint8_t *data)
159{
160	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
161		data = INIT_TSEM_INT_TABLE_DATA(sc);
162	else
163		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
164			data = INIT_CSEM_INT_TABLE_DATA(sc);
165	else
166		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
167			data = INIT_USEM_INT_TABLE_DATA(sc);
168	else
169		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
170			data = INIT_XSEM_INT_TABLE_DATA(sc);
171	else
172		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
173			data = INIT_TSEM_PRAM_DATA(sc);
174	else
175		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
176			data = INIT_CSEM_PRAM_DATA(sc);
177	else
178		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
179			data = INIT_USEM_PRAM_DATA(sc);
180	else
181		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
182			data = INIT_XSEM_PRAM_DATA(sc);
183
184	return data;
185}
186
187static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
188			     const uint32_t *data, uint32_t len)
189{
190	if (DMAE_READY(sc))
191		VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
192
193	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
194	else if (CHIP_IS_E1(sc))
195		ecore_init_ind_wr(sc, addr, data, len);
196
197	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
198	else
199		ecore_init_str_wr(sc, addr, data, len);
200}
201
202#ifndef FW_ZIP_SUPPORT
203static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
204{
205	const uint8_t *data = NULL;
206
207	data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
208
209	if (DMAE_READY(sc))
210		VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
211
212	/* in E1 BIOS initiated ZLR may interrupt widebus writes */
213	else if (CHIP_IS_E1(sc))
214		ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
215
216	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
217	else
218		ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
219}
220
221#endif
222
223static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
224			uint32_t val_hi)
225{
226	uint32_t wb_write[2];
227
228	wb_write[0] = val_lo;
229	wb_write[1] = val_hi;
230	REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
231}
232
233static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
234			     uint32_t blob_off)
235{
236	const uint8_t *data = NULL;
237	int rc;
238	uint32_t i;
239
240	data = ecore_sel_blob(sc, addr, data) + blob_off*4;
241
242	rc = ecore_gunzip(sc, data, len);
243	if (rc)
244		return;
245
246	/* gunzip_outlen is in dwords */
247	len = GUNZIP_OUTLEN(sc);
248	for (i = 0; i < len; i++)
249		((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
250				ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
251
252	ecore_write_big_buf_wb(sc, addr, len);
253}
254
255static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
256{
257	uint16_t op_start =
258		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
259						     STAGE_START)];
260	uint16_t op_end =
261		INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
262						     STAGE_END)];
263	const union init_op *op;
264	uint32_t op_idx, op_type, addr, len;
265	const uint32_t *data, *data_base;
266
267	/* If empty block */
268	if (op_start == op_end)
269		return;
270
271	data_base = INIT_DATA(sc);
272
273	for (op_idx = op_start; op_idx < op_end; op_idx++) {
274
275		op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
276		/* Get generic data */
277		op_type = op->raw.op;
278		addr = op->raw.offset;
279		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
280		 * OP_WR64 (we assume that op_arr_write and op_write have the
281		 * same structure).
282		 */
283		len = op->arr_wr.data_len;
284		data = data_base + op->arr_wr.data_off;
285
286		switch (op_type) {
287		case OP_RD:
288			REG_RD(sc, addr);
289			break;
290		case OP_WR:
291			REG_WR(sc, addr, op->write.val);
292			break;
293		case OP_SW:
294			ecore_init_str_wr(sc, addr, data, len);
295			break;
296		case OP_WB:
297			ecore_init_wr_wb(sc, addr, data, len);
298			break;
299#ifndef FW_ZIP_SUPPORT
300		case OP_FW:
301			ecore_init_fw(sc, addr, len);
302			break;
303#endif
304		case OP_ZR:
305			ecore_init_fill(sc, addr, 0, op->zero.len, 0);
306			break;
307		case OP_WB_ZR:
308			ecore_init_fill(sc, addr, 0, op->zero.len, 1);
309			break;
310		case OP_ZP:
311			ecore_init_wr_zp(sc, addr, len,
312					 op->arr_wr.data_off);
313			break;
314		case OP_WR_64:
315			ecore_init_wr_64(sc, addr, data, len);
316			break;
317		case OP_IF_MODE_AND:
318			/* if any of the flags doesn't match, skip the
319			 * conditional block.
320			 */
321			if ((INIT_MODE_FLAGS(sc) &
322				op->if_mode.mode_bit_map) !=
323				op->if_mode.mode_bit_map)
324				op_idx += op->if_mode.cmd_offset;
325			break;
326		case OP_IF_MODE_OR:
327			/* if all the flags don't match, skip the conditional
328			 * block.
329			 */
330			if ((INIT_MODE_FLAGS(sc) &
331				op->if_mode.mode_bit_map) == 0)
332				op_idx += op->if_mode.cmd_offset;
333			break;
334		    /* the following opcodes are unused at the moment. */
335		case OP_IF_PHASE:
336		case OP_RT:
337		case OP_DELAY:
338		case OP_VERIFY:
339		default:
340			/* Should never get here! */
341
342			break;
343		}
344	}
345}
346
347
348/****************************************************************************
349* PXP Arbiter
350****************************************************************************/
351/*
352 * This code configures the PCI read/write arbiter
353 * which implements a weighted round robin
354 * between the virtual queues in the chip.
355 *
356 * The values were derived for each PCI max payload and max request size.
357 * since max payload and max request size are only known at run time,
358 * this is done as a separate init stage.
359 */
360
361#define NUM_WR_Q			13
362#define NUM_RD_Q			29
363#define MAX_RD_ORD			3
364#define MAX_WR_ORD			2
365
366/* configuration for one arbiter queue */
367struct arb_line {
368	int l;
369	int add;
370	int ubound;
371};
372
373/* derived configuration for each read queue for each max request size */
374static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
375/* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
376	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
377	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
378	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
379	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
380	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
381	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
382	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
383	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
384/* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
385	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
386	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
387	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
388	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
389	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
390	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
391	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
392	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
393	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
394/* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
395	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
396	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
397	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
398	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
399	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
400	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
401	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
402	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
403	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
404};
405
406/* derived configuration for each write queue for each max request size */
407static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
408/* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
409	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
410	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
411	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
412	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
413	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
414	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
415	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
416	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
417/* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
418	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
419	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
420	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
421};
422
423/* register addresses for read queues */
424static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
425/* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
426		PXP2_REG_RQ_BW_RD_UBOUND0},
427	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
428		PXP2_REG_PSWRQ_BW_UB1},
429	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
430		PXP2_REG_PSWRQ_BW_UB2},
431	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
432		PXP2_REG_PSWRQ_BW_UB3},
433	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
434		PXP2_REG_RQ_BW_RD_UBOUND4},
435	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
436		PXP2_REG_RQ_BW_RD_UBOUND5},
437	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
438		PXP2_REG_PSWRQ_BW_UB6},
439	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
440		PXP2_REG_PSWRQ_BW_UB7},
441	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
442		PXP2_REG_PSWRQ_BW_UB8},
443/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
444		PXP2_REG_PSWRQ_BW_UB9},
445	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
446		PXP2_REG_PSWRQ_BW_UB10},
447	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
448		PXP2_REG_PSWRQ_BW_UB11},
449	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
450		PXP2_REG_RQ_BW_RD_UBOUND12},
451	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
452		PXP2_REG_RQ_BW_RD_UBOUND13},
453	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
454		PXP2_REG_RQ_BW_RD_UBOUND14},
455	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
456		PXP2_REG_RQ_BW_RD_UBOUND15},
457	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
458		PXP2_REG_RQ_BW_RD_UBOUND16},
459	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
460		PXP2_REG_RQ_BW_RD_UBOUND17},
461	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
462		PXP2_REG_RQ_BW_RD_UBOUND18},
463/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
464		PXP2_REG_RQ_BW_RD_UBOUND19},
465	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
466		PXP2_REG_RQ_BW_RD_UBOUND20},
467	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
468		PXP2_REG_RQ_BW_RD_UBOUND22},
469	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
470		PXP2_REG_RQ_BW_RD_UBOUND23},
471	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
472		PXP2_REG_RQ_BW_RD_UBOUND24},
473	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
474		PXP2_REG_RQ_BW_RD_UBOUND25},
475	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
476		PXP2_REG_RQ_BW_RD_UBOUND26},
477	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
478		PXP2_REG_RQ_BW_RD_UBOUND27},
479	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
480		PXP2_REG_PSWRQ_BW_UB28}
481};
482
483/* register addresses for write queues */
484static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
485/* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
486		PXP2_REG_PSWRQ_BW_UB1},
487	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
488		PXP2_REG_PSWRQ_BW_UB2},
489	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
490		PXP2_REG_PSWRQ_BW_UB3},
491	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
492		PXP2_REG_PSWRQ_BW_UB6},
493	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
494		PXP2_REG_PSWRQ_BW_UB7},
495	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
496		PXP2_REG_PSWRQ_BW_UB8},
497	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
498		PXP2_REG_PSWRQ_BW_UB9},
499	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
500		PXP2_REG_PSWRQ_BW_UB10},
501	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
502		PXP2_REG_PSWRQ_BW_UB11},
503/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
504		PXP2_REG_PSWRQ_BW_UB28},
505	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
506		PXP2_REG_RQ_BW_WR_UBOUND29},
507	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
508		PXP2_REG_RQ_BW_WR_UBOUND30}
509};
510
511static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
512			       int w_order)
513{
514	uint32_t val, i;
515
516	if (r_order > MAX_RD_ORD) {
517		ECORE_MSG(sc, "read order of %d  order adjusted to %d\n",
518			   r_order, MAX_RD_ORD);
519		r_order = MAX_RD_ORD;
520	}
521	if (w_order > MAX_WR_ORD) {
522		ECORE_MSG(sc, "write order of %d  order adjusted to %d\n",
523			   w_order, MAX_WR_ORD);
524		w_order = MAX_WR_ORD;
525	}
526	if (CHIP_REV_IS_FPGA(sc)) {
527		ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
528		w_order = 0;
529	}
530	ECORE_MSG(sc, "read order %d  write order %d\n", r_order, w_order);
531
532	for (i = 0; i < NUM_RD_Q-1; i++) {
533		REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
534		REG_WR(sc, read_arb_addr[i].add,
535		       read_arb_data[i][r_order].add);
536		REG_WR(sc, read_arb_addr[i].ubound,
537		       read_arb_data[i][r_order].ubound);
538	}
539
540	for (i = 0; i < NUM_WR_Q-1; i++) {
541		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
542		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
543
544			REG_WR(sc, write_arb_addr[i].l,
545			       write_arb_data[i][w_order].l);
546
547			REG_WR(sc, write_arb_addr[i].add,
548			       write_arb_data[i][w_order].add);
549
550			REG_WR(sc, write_arb_addr[i].ubound,
551			       write_arb_data[i][w_order].ubound);
552		} else {
553
554			val = REG_RD(sc, write_arb_addr[i].l);
555			REG_WR(sc, write_arb_addr[i].l,
556			       val | (write_arb_data[i][w_order].l << 10));
557
558			val = REG_RD(sc, write_arb_addr[i].add);
559			REG_WR(sc, write_arb_addr[i].add,
560			       val | (write_arb_data[i][w_order].add << 10));
561
562			val = REG_RD(sc, write_arb_addr[i].ubound);
563			REG_WR(sc, write_arb_addr[i].ubound,
564			       val | (write_arb_data[i][w_order].ubound << 7));
565		}
566	}
567
568	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
569	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
570	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
571	REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
572
573	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
574	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
575	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
576	REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
577
578	REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
579	REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
580	REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
581	REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
582
583	if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
584		REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
585
586	if (CHIP_IS_E3(sc))
587		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
588	else if (CHIP_IS_E2(sc))
589		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
590	else
591		REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
592
593	if (!CHIP_IS_E1(sc)) {
594		/*    MPS      w_order     optimal TH      presently TH
595		 *    128         0             0               2
596		 *    256         1             1               3
597		 *    >=512       2             2               3
598		 */
599		/* DMAE is special */
600		if (!CHIP_IS_E1H(sc)) {
601			/* E2 can use optimal TH */
602			val = w_order;
603			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
604		} else {
605			val = ((w_order == 0) ? 2 : 3);
606			REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
607		}
608
609		REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
610		REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
611		REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
612		REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
613		REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
614		REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
615		REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
616		REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
617		REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
618		REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
619	}
620
621	/* Validate number of tags suppoted by device */
622#define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
623	val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
624	val &= 0xFF;
625	if (val <= 0x20)
626		REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
627}
628
629/****************************************************************************
630* ILT management
631****************************************************************************/
632/*
633 * This codes hides the low level HW interaction for ILT management and
634 * configuration. The API consists of a shadow ILT table which is set by the
635 * driver and a set of routines to use it to configure the HW.
636 *
637 */
638
639/* ILT HW init operations */
640
641/* ILT memory management operations */
642#define ILT_MEMOP_ALLOC		0
643#define ILT_MEMOP_FREE		1
644
645/* the phys address is shifted right 12 bits and has an added
646 * 1=valid bit added to the 53rd bit
647 * then since this is a wide register(TM)
648 * we split it into two 32 bit writes
649 */
650#define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
651#define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
652#define ILT_RANGE(f, l)		(((l) << 10) | f)
653
654static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
655				 struct ilt_line *line, uint32_t size, uint8_t memop)
656{
657	if (memop == ILT_MEMOP_FREE) {
658		ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
659		return 0;
660	}
661	ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
662	if (!line->page)
663		return -1;
664	line->size = size;
665	return 0;
666}
667
668
669static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
670				   uint8_t memop)
671{
672	int i, rc;
673	struct ecore_ilt *ilt = SC_ILT(sc);
674	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
675
676	if (!ilt || !ilt->lines)
677		return -1;
678
679	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
680		return 0;
681
682	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
683		rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
684					   ilt_cli->page_size, memop);
685	}
686	return rc;
687}
688
689static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
690{
691	int rc = 0;
692
693	if (CONFIGURE_NIC_MODE(sc))
694		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
695	if (!rc)
696		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
697
698	return rc;
699}
700
701static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
702{
703	int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
704	if (!rc)
705		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
706	if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
707		rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
708
709	return rc;
710}
711
712static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
713			      ecore_dma_addr_t page_mapping)
714{
715	uint32_t reg;
716
717	if (CHIP_IS_E1(sc))
718		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
719	else
720		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
721
722	ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
723}
724
725static void ecore_ilt_line_init_op(struct bxe_softc *sc,
726				   struct ecore_ilt *ilt, int idx, uint8_t initop)
727{
728	ecore_dma_addr_t	null_mapping;
729	int abs_idx = ilt->start_line + idx;
730
731
732	switch (initop) {
733	case INITOP_INIT:
734		/* set in the init-value array */
735	case INITOP_SET:
736		ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
737		break;
738	case INITOP_CLEAR:
739		null_mapping = 0;
740		ecore_ilt_line_wr(sc, abs_idx, null_mapping);
741		break;
742	}
743}
744
745static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
746				      struct ilt_client_info *ilt_cli,
747				      uint32_t ilt_start, uint8_t initop)
748{
749	uint32_t start_reg = 0;
750	uint32_t end_reg = 0;
751
752	/* The boundary is either SET or INIT,
753	   CLEAR => SET and for now SET ~~ INIT */
754
755	/* find the appropriate regs */
756	if (CHIP_IS_E1(sc)) {
757		switch (ilt_cli->client_num) {
758		case ILT_CLIENT_CDU:
759			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
760			break;
761		case ILT_CLIENT_QM:
762			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
763			break;
764		case ILT_CLIENT_SRC:
765			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
766			break;
767		case ILT_CLIENT_TM:
768			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
769			break;
770		}
771		REG_WR(sc, start_reg + SC_FUNC(sc)*4,
772		       ILT_RANGE((ilt_start + ilt_cli->start),
773				 (ilt_start + ilt_cli->end)));
774	} else {
775		switch (ilt_cli->client_num) {
776		case ILT_CLIENT_CDU:
777			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
778			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
779			break;
780		case ILT_CLIENT_QM:
781			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
782			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
783			break;
784		case ILT_CLIENT_SRC:
785			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
786			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
787			break;
788		case ILT_CLIENT_TM:
789			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
790			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
791			break;
792		}
793		REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
794		REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
795	}
796}
797
798static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
799					 struct ecore_ilt *ilt,
800					 struct ilt_client_info *ilt_cli,
801					 uint8_t initop)
802{
803	int i;
804
805	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
806		return;
807
808	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
809		ecore_ilt_line_init_op(sc, ilt, i, initop);
810
811	/* init/clear the ILT boundries */
812	ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
813}
814
815static void ecore_ilt_client_init_op(struct bxe_softc *sc,
816				     struct ilt_client_info *ilt_cli, uint8_t initop)
817{
818	struct ecore_ilt *ilt = SC_ILT(sc);
819
820	ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
821}
822
823static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
824					int cli_num, uint8_t initop)
825{
826	struct ecore_ilt *ilt = SC_ILT(sc);
827	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
828
829	ecore_ilt_client_init_op(sc, ilt_cli, initop);
830}
831
832static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
833{
834	if (CONFIGURE_NIC_MODE(sc))
835		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
836	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
837}
838
839static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
840{
841	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
842	ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
843	if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
844		ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
845}
846
847static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
848				      uint32_t psz_reg, uint8_t initop)
849{
850	struct ecore_ilt *ilt = SC_ILT(sc);
851	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
852
853	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
854		return;
855
856	switch (initop) {
857	case INITOP_INIT:
858		/* set in the init-value array */
859	case INITOP_SET:
860		REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
861		break;
862	case INITOP_CLEAR:
863		break;
864	}
865}
866
867/*
868 * called during init common stage, ilt clients should be initialized
869 * prioir to calling this function
870 */
871static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
872{
873	ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
874				  PXP2_REG_RQ_CDU_P_SIZE, initop);
875	ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
876				  PXP2_REG_RQ_QM_P_SIZE, initop);
877	ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
878				  PXP2_REG_RQ_SRC_P_SIZE, initop);
879	ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
880				  PXP2_REG_RQ_TM_P_SIZE, initop);
881}
882
883/****************************************************************************
884* QM initializations
885****************************************************************************/
886#define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
887#define QM_INIT_MIN_CID_COUNT	31
888#define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
889
890/* called during init port stage */
891static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
892				    uint8_t initop)
893{
894	int port = SC_PORT(sc);
895
896	if (QM_INIT(qm_cid_count)) {
897		switch (initop) {
898		case INITOP_INIT:
899			/* set in the init-value array */
900		case INITOP_SET:
901			REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
902			       qm_cid_count/16 - 1);
903			break;
904		case INITOP_CLEAR:
905			break;
906		}
907	}
908}
909
910static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
911				   uint32_t base_reg, uint32_t reg)
912{
913	int i;
914	uint32_t wb_data[2] = {0, 0};
915	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
916		REG_WR(sc, base_reg + i*4,
917		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
918		ecore_init_wr_wb(sc, reg + i*8,
919				 wb_data, 2);
920	}
921}
922
923/* called during init common stage */
924static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
925				    uint8_t initop)
926{
927	if (!QM_INIT(qm_cid_count))
928		return;
929
930	switch (initop) {
931	case INITOP_INIT:
932		/* set in the init-value array */
933	case INITOP_SET:
934		ecore_qm_set_ptr_table(sc, qm_cid_count,
935				       QM_REG_BASEADDR, QM_REG_PTRTBL);
936		if (CHIP_IS_E1H(sc))
937			ecore_qm_set_ptr_table(sc, qm_cid_count,
938					       QM_REG_BASEADDR_EXT_A,
939					       QM_REG_PTRTBL_EXT_A);
940		break;
941	case INITOP_CLEAR:
942		break;
943	}
944}
945
946/****************************************************************************
947* SRC initializations
948****************************************************************************/
949#ifdef ECORE_L5
950/* called during init func stage */
951static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
952			      ecore_dma_addr_t t2_mapping, int src_cid_count)
953{
954	int i;
955	int port = SC_PORT(sc);
956
957	/* Initialize T2 */
958	for (i = 0; i < src_cid_count-1; i++)
959		t2[i].next = (uint64_t)(t2_mapping +
960			     (i+1)*sizeof(struct src_ent));
961
962	/* tell the searcher where the T2 table is */
963	REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
964
965	ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
966		    U64_LO(t2_mapping), U64_HI(t2_mapping));
967
968	ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
969		    U64_LO((uint64_t)t2_mapping +
970			   (src_cid_count-1) * sizeof(struct src_ent)),
971		    U64_HI((uint64_t)t2_mapping +
972			   (src_cid_count-1) * sizeof(struct src_ent)));
973}
974#endif
975#endif /* ECORE_INIT_OPS_H */
976