1/*-
2 * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
3 *
4 * Eric Davis        <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano     <zambrano@broadcom.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#define BXE_DRIVER_VERSION "1.78.75"
38
39#include "bxe.h"
40#include "ecore_sp.h"
41#include "ecore_init.h"
42#include "ecore_init_ops.h"
43
44#include "57710_int_offsets.h"
45#include "57711_int_offsets.h"
46#include "57712_int_offsets.h"
47
48/*
49 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
50 * explicitly here for older kernels that don't include this changeset.
51 */
52#ifndef CTLTYPE_U64
53#define CTLTYPE_U64      CTLTYPE_QUAD
54#define sysctl_handle_64 sysctl_handle_quad
55#endif
56
57/*
58 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
59 * here as zero(0) for older kernels that don't include this changeset
60 * thereby masking the functionality.
61 */
62#ifndef CSUM_TCP_IPV6
63#define CSUM_TCP_IPV6 0
64#define CSUM_UDP_IPV6 0
65#endif
66
67/*
68 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
69 * for older kernels that don't include this changeset.
70 */
71#if __FreeBSD_version < 900035
72#define pci_find_cap pci_find_extcap
73#endif
74
75#define BXE_DEF_SB_ATT_IDX 0x0001
76#define BXE_DEF_SB_IDX     0x0002
77
78/*
79 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
80 * function HW initialization.
81 */
82#define FLR_WAIT_USEC     10000 /* 10 msecs */
83#define FLR_WAIT_INTERVAL 50    /* usecs */
84#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
85
86struct pbf_pN_buf_regs {
87    int pN;
88    uint32_t init_crd;
89    uint32_t crd;
90    uint32_t crd_freed;
91};
92
93struct pbf_pN_cmd_regs {
94    int pN;
95    uint32_t lines_occup;
96    uint32_t lines_freed;
97};
98
99/*
100 * PCI Device ID Table used by bxe_probe().
101 */
102#define BXE_DEVDESC_MAX 64
103static struct bxe_device_type bxe_devs[] = {
104    {
105        BRCM_VENDORID,
106        CHIP_NUM_57710,
107        PCI_ANY_ID, PCI_ANY_ID,
108        "Broadcom NetXtreme II BCM57710 10GbE"
109    },
110    {
111        BRCM_VENDORID,
112        CHIP_NUM_57711,
113        PCI_ANY_ID, PCI_ANY_ID,
114        "Broadcom NetXtreme II BCM57711 10GbE"
115    },
116    {
117        BRCM_VENDORID,
118        CHIP_NUM_57711E,
119        PCI_ANY_ID, PCI_ANY_ID,
120        "Broadcom NetXtreme II BCM57711E 10GbE"
121    },
122    {
123        BRCM_VENDORID,
124        CHIP_NUM_57712,
125        PCI_ANY_ID, PCI_ANY_ID,
126        "Broadcom NetXtreme II BCM57712 10GbE"
127    },
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_MF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "Broadcom NetXtreme II BCM57712 MF 10GbE"
133    },
134#if 0
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57712_VF,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "Broadcom NetXtreme II BCM57712 VF 10GbE"
140    },
141#endif
142    {
143        BRCM_VENDORID,
144        CHIP_NUM_57800,
145        PCI_ANY_ID, PCI_ANY_ID,
146        "Broadcom NetXtreme II BCM57800 10GbE"
147    },
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_MF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "Broadcom NetXtreme II BCM57800 MF 10GbE"
153    },
154#if 0
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57800_VF,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "Broadcom NetXtreme II BCM57800 VF 10GbE"
160    },
161#endif
162    {
163        BRCM_VENDORID,
164        CHIP_NUM_57810,
165        PCI_ANY_ID, PCI_ANY_ID,
166        "Broadcom NetXtreme II BCM57810 10GbE"
167    },
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_MF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "Broadcom NetXtreme II BCM57810 MF 10GbE"
173    },
174#if 0
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57810_VF,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "Broadcom NetXtreme II BCM57810 VF 10GbE"
180    },
181#endif
182    {
183        BRCM_VENDORID,
184        CHIP_NUM_57811,
185        PCI_ANY_ID, PCI_ANY_ID,
186        "Broadcom NetXtreme II BCM57811 10GbE"
187    },
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_MF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "Broadcom NetXtreme II BCM57811 MF 10GbE"
193    },
194#if 0
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57811_VF,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "Broadcom NetXtreme II BCM57811 VF 10GbE"
200    },
201#endif
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_4_10,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "Broadcom NetXtreme II BCM57840 4x10GbE"
207    },
208#if 0
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_2_20,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "Broadcom NetXtreme II BCM57840 2x20GbE"
214    },
215#endif
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_MF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "Broadcom NetXtreme II BCM57840 MF 10GbE"
221    },
222#if 0
223    {
224        BRCM_VENDORID,
225        CHIP_NUM_57840_VF,
226        PCI_ANY_ID, PCI_ANY_ID,
227        "Broadcom NetXtreme II BCM57840 VF 10GbE"
228    },
229#endif
230    {
231        0, 0, 0, 0, NULL
232    }
233};
234
235MALLOC_DECLARE(M_BXE_ILT);
236MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
237
238/*
239 * FreeBSD device entry points.
240 */
241static int bxe_probe(device_t);
242static int bxe_attach(device_t);
243static int bxe_detach(device_t);
244static int bxe_shutdown(device_t);
245
246/*
247 * FreeBSD KLD module/device interface event handler method.
248 */
249static device_method_t bxe_methods[] = {
250    /* Device interface (device_if.h) */
251    DEVMETHOD(device_probe,     bxe_probe),
252    DEVMETHOD(device_attach,    bxe_attach),
253    DEVMETHOD(device_detach,    bxe_detach),
254    DEVMETHOD(device_shutdown,  bxe_shutdown),
255#if 0
256    DEVMETHOD(device_suspend,   bxe_suspend),
257    DEVMETHOD(device_resume,    bxe_resume),
258#endif
259    /* Bus interface (bus_if.h) */
260    DEVMETHOD(bus_print_child,  bus_generic_print_child),
261    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
262    KOBJMETHOD_END
263};
264
265/*
266 * FreeBSD KLD Module data declaration
267 */
268static driver_t bxe_driver = {
269    "bxe",                   /* module name */
270    bxe_methods,             /* event handler */
271    sizeof(struct bxe_softc) /* extra data */
272};
273
274/*
275 * FreeBSD dev class is needed to manage dev instances and
276 * to associate with a bus type
277 */
278static devclass_t bxe_devclass;
279
280MODULE_DEPEND(bxe, pci, 1, 1, 1);
281MODULE_DEPEND(bxe, ether, 1, 1, 1);
282DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
283
284/* resources needed for unloading a previously loaded device */
285
286#define BXE_PREV_WAIT_NEEDED 1
287struct mtx bxe_prev_mtx;
288MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
289struct bxe_prev_list_node {
290    LIST_ENTRY(bxe_prev_list_node) node;
291    uint8_t bus;
292    uint8_t slot;
293    uint8_t path;
294    uint8_t aer; /* XXX automatic error recovery */
295    uint8_t undi;
296};
297static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
298
299static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
300
301/* Tunable device values... */
302
303SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
304
305/* Debug */
306unsigned long bxe_debug = 0;
307TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
308SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
309             &bxe_debug, 0, "Debug logging mode");
310
311/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
312static int bxe_interrupt_mode = INTR_MODE_MSIX;
313TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
314SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
315           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
316
317/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
318static int bxe_queue_count = 4;
319TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
320SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
321           &bxe_queue_count, 0, "Multi-Queue queue count");
322
323/* max number of buffers per queue (default RX_BD_USABLE) */
324static int bxe_max_rx_bufs = 0;
325TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
326SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
327           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
328
329/* Host interrupt coalescing RX tick timer (usecs) */
330static int bxe_hc_rx_ticks = 25;
331TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
332SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
333           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
334
335/* Host interrupt coalescing TX tick timer (usecs) */
336static int bxe_hc_tx_ticks = 50;
337TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
338SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
339           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
340
341/* Maximum number of Rx packets to process at a time */
342static int bxe_rx_budget = 0xffffffff;
343TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
344SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
345           &bxe_rx_budget, 0, "Rx processing budget");
346
347/* Maximum LRO aggregation size */
348static int bxe_max_aggregation_size = 0;
349TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
350SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
351           &bxe_max_aggregation_size, 0, "max aggregation size");
352
353/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
354static int bxe_mrrs = -1;
355TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
356SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
357           &bxe_mrrs, 0, "PCIe maximum read request size");
358
359/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
360static int bxe_autogreeen = 0;
361TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
362SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
363           &bxe_autogreeen, 0, "AutoGrEEEn support");
364
365/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
366static int bxe_udp_rss = 0;
367TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
368SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
369           &bxe_udp_rss, 0, "UDP RSS support");
370
371
372#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
373
374#define STATS_OFFSET32(stat_name)                   \
375    (offsetof(struct bxe_eth_stats, stat_name) / 4)
376
377#define Q_STATS_OFFSET32(stat_name)                   \
378    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
379
380static const struct {
381    uint32_t offset;
382    uint32_t size;
383    uint32_t flags;
384#define STATS_FLAGS_PORT  1
385#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
386#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
387    char string[STAT_NAME_LEN];
388} bxe_eth_stats_arr[] = {
389    { STATS_OFFSET32(total_bytes_received_hi),
390                8, STATS_FLAGS_BOTH, "rx_bytes" },
391    { STATS_OFFSET32(error_bytes_received_hi),
392                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
393    { STATS_OFFSET32(total_unicast_packets_received_hi),
394                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
395    { STATS_OFFSET32(total_multicast_packets_received_hi),
396                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
397    { STATS_OFFSET32(total_broadcast_packets_received_hi),
398                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
399    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
400                8, STATS_FLAGS_PORT, "rx_crc_errors" },
401    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
402                8, STATS_FLAGS_PORT, "rx_align_errors" },
403    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
404                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
405    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
406                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
407    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
408                8, STATS_FLAGS_PORT, "rx_fragments" },
409    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
410                8, STATS_FLAGS_PORT, "rx_jabbers" },
411    { STATS_OFFSET32(no_buff_discard_hi),
412                8, STATS_FLAGS_BOTH, "rx_discards" },
413    { STATS_OFFSET32(mac_filter_discard),
414                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
415    { STATS_OFFSET32(mf_tag_discard),
416                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
417    { STATS_OFFSET32(pfc_frames_received_hi),
418                8, STATS_FLAGS_PORT, "pfc_frames_received" },
419    { STATS_OFFSET32(pfc_frames_sent_hi),
420                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
421    { STATS_OFFSET32(brb_drop_hi),
422                8, STATS_FLAGS_PORT, "rx_brb_discard" },
423    { STATS_OFFSET32(brb_truncate_hi),
424                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
425    { STATS_OFFSET32(pause_frames_received_hi),
426                8, STATS_FLAGS_PORT, "rx_pause_frames" },
427    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
428                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
429    { STATS_OFFSET32(nig_timer_max),
430                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
431    { STATS_OFFSET32(total_bytes_transmitted_hi),
432                8, STATS_FLAGS_BOTH, "tx_bytes" },
433    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
434                8, STATS_FLAGS_PORT, "tx_error_bytes" },
435    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
436                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
437    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
438                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
439    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
440                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
441    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
442                8, STATS_FLAGS_PORT, "tx_mac_errors" },
443    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
444                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
445    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
446                8, STATS_FLAGS_PORT, "tx_single_collisions" },
447    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
448                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
449    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
450                8, STATS_FLAGS_PORT, "tx_deferred" },
451    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
452                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
453    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
454                8, STATS_FLAGS_PORT, "tx_late_collisions" },
455    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
456                8, STATS_FLAGS_PORT, "tx_total_collisions" },
457    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
458                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
459    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
460                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
461    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
462                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
463    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
464                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
465    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
466                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
467    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
468                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
469    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
470                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
471    { STATS_OFFSET32(pause_frames_sent_hi),
472                8, STATS_FLAGS_PORT, "tx_pause_frames" },
473    { STATS_OFFSET32(total_tpa_aggregations_hi),
474                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
475    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
476                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
477    { STATS_OFFSET32(total_tpa_bytes_hi),
478                8, STATS_FLAGS_FUNC, "tpa_bytes"},
479#if 0
480    { STATS_OFFSET32(recoverable_error),
481                4, STATS_FLAGS_FUNC, "recoverable_errors" },
482    { STATS_OFFSET32(unrecoverable_error),
483                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
484#endif
485    { STATS_OFFSET32(eee_tx_lpi),
486                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
487    { STATS_OFFSET32(rx_calls),
488                4, STATS_FLAGS_FUNC, "rx_calls"},
489    { STATS_OFFSET32(rx_pkts),
490                4, STATS_FLAGS_FUNC, "rx_pkts"},
491    { STATS_OFFSET32(rx_tpa_pkts),
492                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
493    { STATS_OFFSET32(rx_soft_errors),
494                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
495    { STATS_OFFSET32(rx_hw_csum_errors),
496                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
497    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
498                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
499    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
500                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
501    { STATS_OFFSET32(rx_budget_reached),
502                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
503    { STATS_OFFSET32(tx_pkts),
504                4, STATS_FLAGS_FUNC, "tx_pkts"},
505    { STATS_OFFSET32(tx_soft_errors),
506                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
507    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
508                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
509    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
510                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
511    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
512                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
513    { STATS_OFFSET32(tx_ofld_frames_lso),
514                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
515    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
516                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
517    { STATS_OFFSET32(tx_encap_failures),
518                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
519    { STATS_OFFSET32(tx_hw_queue_full),
520                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
521    { STATS_OFFSET32(tx_hw_max_queue_depth),
522                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
523    { STATS_OFFSET32(tx_dma_mapping_failure),
524                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
525    { STATS_OFFSET32(tx_max_drbr_queue_depth),
526                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
527    { STATS_OFFSET32(tx_window_violation_std),
528                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
529    { STATS_OFFSET32(tx_window_violation_tso),
530                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
531#if 0
532    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
533                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
534    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
535                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
536#endif
537    { STATS_OFFSET32(tx_chain_lost_mbuf),
538                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
539    { STATS_OFFSET32(tx_frames_deferred),
540                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
541    { STATS_OFFSET32(tx_queue_xoff),
542                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
543    { STATS_OFFSET32(mbuf_defrag_attempts),
544                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
545    { STATS_OFFSET32(mbuf_defrag_failures),
546                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
547    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
548                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
549    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
550                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
551    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
552                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
553    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
554                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
555    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
556                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
557    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
558                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
559    { STATS_OFFSET32(mbuf_alloc_tx),
560                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
561    { STATS_OFFSET32(mbuf_alloc_rx),
562                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
563    { STATS_OFFSET32(mbuf_alloc_sge),
564                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
565    { STATS_OFFSET32(mbuf_alloc_tpa),
566                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
567};
568
569static const struct {
570    uint32_t offset;
571    uint32_t size;
572    char string[STAT_NAME_LEN];
573} bxe_eth_q_stats_arr[] = {
574    { Q_STATS_OFFSET32(total_bytes_received_hi),
575                8, "rx_bytes" },
576    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
577                8, "rx_ucast_packets" },
578    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
579                8, "rx_mcast_packets" },
580    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
581                8, "rx_bcast_packets" },
582    { Q_STATS_OFFSET32(no_buff_discard_hi),
583                8, "rx_discards" },
584    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
585                8, "tx_bytes" },
586    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
587                8, "tx_ucast_packets" },
588    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
589                8, "tx_mcast_packets" },
590    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
591                8, "tx_bcast_packets" },
592    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
593                8, "tpa_aggregations" },
594    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
595                8, "tpa_aggregated_frames"},
596    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
597                8, "tpa_bytes"},
598    { Q_STATS_OFFSET32(rx_calls),
599                4, "rx_calls"},
600    { Q_STATS_OFFSET32(rx_pkts),
601                4, "rx_pkts"},
602    { Q_STATS_OFFSET32(rx_tpa_pkts),
603                4, "rx_tpa_pkts"},
604    { Q_STATS_OFFSET32(rx_soft_errors),
605                4, "rx_soft_errors"},
606    { Q_STATS_OFFSET32(rx_hw_csum_errors),
607                4, "rx_hw_csum_errors"},
608    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
609                4, "rx_ofld_frames_csum_ip"},
610    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
611                4, "rx_ofld_frames_csum_tcp_udp"},
612    { Q_STATS_OFFSET32(rx_budget_reached),
613                4, "rx_budget_reached"},
614    { Q_STATS_OFFSET32(tx_pkts),
615                4, "tx_pkts"},
616    { Q_STATS_OFFSET32(tx_soft_errors),
617                4, "tx_soft_errors"},
618    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
619                4, "tx_ofld_frames_csum_ip"},
620    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
621                4, "tx_ofld_frames_csum_tcp"},
622    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
623                4, "tx_ofld_frames_csum_udp"},
624    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
625                4, "tx_ofld_frames_lso"},
626    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
627                4, "tx_ofld_frames_lso_hdr_splits"},
628    { Q_STATS_OFFSET32(tx_encap_failures),
629                4, "tx_encap_failures"},
630    { Q_STATS_OFFSET32(tx_hw_queue_full),
631                4, "tx_hw_queue_full"},
632    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
633                4, "tx_hw_max_queue_depth"},
634    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
635                4, "tx_dma_mapping_failure"},
636    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
637                4, "tx_max_drbr_queue_depth"},
638    { Q_STATS_OFFSET32(tx_window_violation_std),
639                4, "tx_window_violation_std"},
640    { Q_STATS_OFFSET32(tx_window_violation_tso),
641                4, "tx_window_violation_tso"},
642#if 0
643    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
644                4, "tx_unsupported_tso_request_ipv6"},
645    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
646                4, "tx_unsupported_tso_request_not_tcp"},
647#endif
648    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
649                4, "tx_chain_lost_mbuf"},
650    { Q_STATS_OFFSET32(tx_frames_deferred),
651                4, "tx_frames_deferred"},
652    { Q_STATS_OFFSET32(tx_queue_xoff),
653                4, "tx_queue_xoff"},
654    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
655                4, "mbuf_defrag_attempts"},
656    { Q_STATS_OFFSET32(mbuf_defrag_failures),
657                4, "mbuf_defrag_failures"},
658    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
659                4, "mbuf_rx_bd_alloc_failed"},
660    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
661                4, "mbuf_rx_bd_mapping_failed"},
662    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
663                4, "mbuf_rx_tpa_alloc_failed"},
664    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
665                4, "mbuf_rx_tpa_mapping_failed"},
666    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
667                4, "mbuf_rx_sge_alloc_failed"},
668    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
669                4, "mbuf_rx_sge_mapping_failed"},
670    { Q_STATS_OFFSET32(mbuf_alloc_tx),
671                4, "mbuf_alloc_tx"},
672    { Q_STATS_OFFSET32(mbuf_alloc_rx),
673                4, "mbuf_alloc_rx"},
674    { Q_STATS_OFFSET32(mbuf_alloc_sge),
675                4, "mbuf_alloc_sge"},
676    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
677                4, "mbuf_alloc_tpa"}
678};
679
680#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
681#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
682
683
684static void    bxe_cmng_fns_init(struct bxe_softc *sc,
685                                 uint8_t          read_cfg,
686                                 uint8_t          cmng_type);
687static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
688static void    storm_memset_cmng(struct bxe_softc *sc,
689                                 struct cmng_init *cmng,
690                                 uint8_t          port);
691static void    bxe_set_reset_global(struct bxe_softc *sc);
692static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
693static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
694                                 int              engine);
695static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
696static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
697                                   uint8_t          *global,
698                                   uint8_t          print);
699static void    bxe_int_disable(struct bxe_softc *sc);
700static int     bxe_release_leader_lock(struct bxe_softc *sc);
701static void    bxe_pf_disable(struct bxe_softc *sc);
702static void    bxe_free_fp_buffers(struct bxe_softc *sc);
703static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
704                                      struct bxe_fastpath *fp,
705                                      uint16_t            rx_bd_prod,
706                                      uint16_t            rx_cq_prod,
707                                      uint16_t            rx_sge_prod);
708static void    bxe_link_report_locked(struct bxe_softc *sc);
709static void    bxe_link_report(struct bxe_softc *sc);
710static void    bxe_link_status_update(struct bxe_softc *sc);
711static void    bxe_periodic_callout_func(void *xsc);
712static void    bxe_periodic_start(struct bxe_softc *sc);
713static void    bxe_periodic_stop(struct bxe_softc *sc);
714static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
715                                    uint16_t prev_index,
716                                    uint16_t index);
717static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
718                                     int                 queue);
719static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
720                                     uint16_t            index);
721static uint8_t bxe_txeof(struct bxe_softc *sc,
722                         struct bxe_fastpath *fp);
723static void    bxe_task_fp(struct bxe_fastpath *fp);
724static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
725                                     struct mbuf      *m,
726                                     uint8_t          contents);
727static int     bxe_alloc_mem(struct bxe_softc *sc);
728static void    bxe_free_mem(struct bxe_softc *sc);
729static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
730static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
731static int     bxe_interrupt_attach(struct bxe_softc *sc);
732static void    bxe_interrupt_detach(struct bxe_softc *sc);
733static void    bxe_set_rx_mode(struct bxe_softc *sc);
734static int     bxe_init_locked(struct bxe_softc *sc);
735static int     bxe_stop_locked(struct bxe_softc *sc);
736static __noinline int bxe_nic_load(struct bxe_softc *sc,
737                                   int              load_mode);
738static __noinline int bxe_nic_unload(struct bxe_softc *sc,
739                                     uint32_t         unload_mode,
740                                     uint8_t          keep_link);
741
742static void bxe_handle_sp_tq(void *context, int pending);
743static void bxe_handle_rx_mode_tq(void *context, int pending);
744static void bxe_handle_fp_tq(void *context, int pending);
745
746
747/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
748uint32_t
749calc_crc32(uint8_t  *crc32_packet,
750           uint32_t crc32_length,
751           uint32_t crc32_seed,
752           uint8_t  complement)
753{
754   uint32_t byte         = 0;
755   uint32_t bit          = 0;
756   uint8_t  msb          = 0;
757   uint32_t temp         = 0;
758   uint32_t shft         = 0;
759   uint8_t  current_byte = 0;
760   uint32_t crc32_result = crc32_seed;
761   const uint32_t CRC32_POLY = 0x1edc6f41;
762
763   if ((crc32_packet == NULL) ||
764       (crc32_length == 0) ||
765       ((crc32_length % 8) != 0))
766    {
767        return (crc32_result);
768    }
769
770    for (byte = 0; byte < crc32_length; byte = byte + 1)
771    {
772        current_byte = crc32_packet[byte];
773        for (bit = 0; bit < 8; bit = bit + 1)
774        {
775            /* msb = crc32_result[31]; */
776            msb = (uint8_t)(crc32_result >> 31);
777
778            crc32_result = crc32_result << 1;
779
780            /* it (msb != current_byte[bit]) */
781            if (msb != (0x1 & (current_byte >> bit)))
782            {
783                crc32_result = crc32_result ^ CRC32_POLY;
784                /* crc32_result[0] = 1 */
785                crc32_result |= 1;
786            }
787        }
788    }
789
790    /* Last step is to:
791     * 1. "mirror" every bit
792     * 2. swap the 4 bytes
793     * 3. complement each bit
794     */
795
796    /* Mirror */
797    temp = crc32_result;
798    shft = sizeof(crc32_result) * 8 - 1;
799
800    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
801    {
802        temp <<= 1;
803        temp |= crc32_result & 1;
804        shft-- ;
805    }
806
807    /* temp[31-bit] = crc32_result[bit] */
808    temp <<= shft;
809
810    /* Swap */
811    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
812    {
813        uint32_t t0, t1, t2, t3;
814        t0 = (0x000000ff & (temp >> 24));
815        t1 = (0x0000ff00 & (temp >> 8));
816        t2 = (0x00ff0000 & (temp << 8));
817        t3 = (0xff000000 & (temp << 24));
818        crc32_result = t0 | t1 | t2 | t3;
819    }
820
821    /* Complement */
822    if (complement)
823    {
824        crc32_result = ~crc32_result;
825    }
826
827    return (crc32_result);
828}
829
830int
831bxe_test_bit(int                    nr,
832             volatile unsigned long *addr)
833{
834    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
835}
836
837void
838bxe_set_bit(unsigned int           nr,
839            volatile unsigned long *addr)
840{
841    atomic_set_acq_long(addr, (1 << nr));
842}
843
844void
845bxe_clear_bit(int                    nr,
846              volatile unsigned long *addr)
847{
848    atomic_clear_acq_long(addr, (1 << nr));
849}
850
851int
852bxe_test_and_set_bit(int                    nr,
853                       volatile unsigned long *addr)
854{
855    unsigned long x;
856    nr = (1 << nr);
857    do {
858        x = *addr;
859    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
860    // if (x & nr) bit_was_set; else bit_was_not_set;
861    return (x & nr);
862}
863
864int
865bxe_test_and_clear_bit(int                    nr,
866                       volatile unsigned long *addr)
867{
868    unsigned long x;
869    nr = (1 << nr);
870    do {
871        x = *addr;
872    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
873    // if (x & nr) bit_was_set; else bit_was_not_set;
874    return (x & nr);
875}
876
877int
878bxe_cmpxchg(volatile int *addr,
879            int          old,
880            int          new)
881{
882    int x;
883    do {
884        x = *addr;
885    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
886    return (x);
887}
888
889/*
890 * Get DMA memory from the OS.
891 *
892 * Validates that the OS has provided DMA buffers in response to a
893 * bus_dmamap_load call and saves the physical address of those buffers.
894 * When the callback is used the OS will return 0 for the mapping function
895 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
896 * failures back to the caller.
897 *
898 * Returns:
899 *   Nothing.
900 */
901static void
902bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
903{
904    struct bxe_dma *dma = arg;
905
906    if (error) {
907        dma->paddr = 0;
908        dma->nseg  = 0;
909        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
910    } else {
911        dma->paddr = segs->ds_addr;
912        dma->nseg  = nseg;
913#if 0
914        BLOGD(dma->sc, DBG_LOAD,,
915              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
916              dma->msg, dma->vaddr, (void *)dma->paddr,
917              dma->nseg, dma->size);
918#endif
919    }
920}
921
922/*
923 * Allocate a block of memory and map it for DMA. No partial completions
924 * allowed and release any resources acquired if we can't acquire all
925 * resources.
926 *
927 * Returns:
928 *   0 = Success, !0 = Failure
929 */
930int
931bxe_dma_alloc(struct bxe_softc *sc,
932              bus_size_t       size,
933              struct bxe_dma   *dma,
934              const char       *msg)
935{
936    int rc;
937
938    if (dma->size > 0) {
939        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
940              (unsigned long)dma->size);
941        return (1);
942    }
943
944    memset(dma, 0, sizeof(*dma)); /* sanity */
945    dma->sc   = sc;
946    dma->size = size;
947    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
948
949    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
950                            BCM_PAGE_SIZE,      /* alignment */
951                            0,                  /* boundary limit */
952                            BUS_SPACE_MAXADDR,  /* restricted low */
953                            BUS_SPACE_MAXADDR,  /* restricted hi */
954                            NULL,               /* addr filter() */
955                            NULL,               /* addr filter() arg */
956                            size,               /* max map size */
957                            1,                  /* num discontinuous */
958                            size,               /* max seg size */
959                            BUS_DMA_ALLOCNOW,   /* flags */
960                            NULL,               /* lock() */
961                            NULL,               /* lock() arg */
962                            &dma->tag);         /* returned dma tag */
963    if (rc != 0) {
964        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
965        memset(dma, 0, sizeof(*dma));
966        return (1);
967    }
968
969    rc = bus_dmamem_alloc(dma->tag,
970                          (void **)&dma->vaddr,
971                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
972                          &dma->map);
973    if (rc != 0) {
974        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
975        bus_dma_tag_destroy(dma->tag);
976        memset(dma, 0, sizeof(*dma));
977        return (1);
978    }
979
980    rc = bus_dmamap_load(dma->tag,
981                         dma->map,
982                         dma->vaddr,
983                         size,
984                         bxe_dma_map_addr, /* BLOGD in here */
985                         dma,
986                         BUS_DMA_NOWAIT);
987    if (rc != 0) {
988        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
989        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
990        bus_dma_tag_destroy(dma->tag);
991        memset(dma, 0, sizeof(*dma));
992        return (1);
993    }
994
995    return (0);
996}
997
998void
999bxe_dma_free(struct bxe_softc *sc,
1000             struct bxe_dma   *dma)
1001{
1002    if (dma->size > 0) {
1003#if 0
1004        BLOGD(sc, DBG_LOAD,
1005              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
1006              dma->msg, dma->vaddr, (void *)dma->paddr,
1007              dma->nseg, dma->size);
1008#endif
1009
1010        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1011
1012        bus_dmamap_sync(dma->tag, dma->map,
1013                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1014        bus_dmamap_unload(dma->tag, dma->map);
1015        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1016        bus_dma_tag_destroy(dma->tag);
1017    }
1018
1019    memset(dma, 0, sizeof(*dma));
1020}
1021
1022/*
1023 * These indirect read and write routines are only during init.
1024 * The locking is handled by the MCP.
1025 */
1026
1027void
1028bxe_reg_wr_ind(struct bxe_softc *sc,
1029               uint32_t         addr,
1030               uint32_t         val)
1031{
1032    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1033    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1034    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1035}
1036
1037uint32_t
1038bxe_reg_rd_ind(struct bxe_softc *sc,
1039               uint32_t         addr)
1040{
1041    uint32_t val;
1042
1043    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1044    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1045    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1046
1047    return (val);
1048}
1049
1050#if 0
1051void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1052{
1053    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1054
1055    switch (dmae->opcode & DMAE_COMMAND_DST) {
1056    case DMAE_CMD_DST_PCI:
1057        if (src_type == DMAE_CMD_SRC_PCI)
1058            DP(msglvl, "DMAE: opcode 0x%08x\n"
1059               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1060               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1061               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1062               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1063               dmae->comp_addr_hi, dmae->comp_addr_lo,
1064               dmae->comp_val);
1065        else
1066            DP(msglvl, "DMAE: opcode 0x%08x\n"
1067               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1068               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1069               dmae->opcode, dmae->src_addr_lo >> 2,
1070               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1071               dmae->comp_addr_hi, dmae->comp_addr_lo,
1072               dmae->comp_val);
1073        break;
1074    case DMAE_CMD_DST_GRC:
1075        if (src_type == DMAE_CMD_SRC_PCI)
1076            DP(msglvl, "DMAE: opcode 0x%08x\n"
1077               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1078               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1079               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1080               dmae->len, dmae->dst_addr_lo >> 2,
1081               dmae->comp_addr_hi, dmae->comp_addr_lo,
1082               dmae->comp_val);
1083        else
1084            DP(msglvl, "DMAE: opcode 0x%08x\n"
1085               "src [%08x], len [%d*4], dst [%08x]\n"
1086               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1087               dmae->opcode, dmae->src_addr_lo >> 2,
1088               dmae->len, dmae->dst_addr_lo >> 2,
1089               dmae->comp_addr_hi, dmae->comp_addr_lo,
1090               dmae->comp_val);
1091        break;
1092    default:
1093        if (src_type == DMAE_CMD_SRC_PCI)
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        else
1101            DP(msglvl, "DMAE: opcode 0x%08x\n"
1102               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1103               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1104               dmae->opcode, dmae->src_addr_lo >> 2,
1105               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1106               dmae->comp_val);
1107        break;
1108    }
1109
1110}
1111#endif
1112
1113static int
1114bxe_acquire_hw_lock(struct bxe_softc *sc,
1115                    uint32_t         resource)
1116{
1117    uint32_t lock_status;
1118    uint32_t resource_bit = (1 << resource);
1119    int func = SC_FUNC(sc);
1120    uint32_t hw_lock_control_reg;
1121    int cnt;
1122
1123    /* validate the resource is within range */
1124    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1125        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1126        return (-1);
1127    }
1128
1129    if (func <= 5) {
1130        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1131    } else {
1132        hw_lock_control_reg =
1133                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1134    }
1135
1136    /* validate the resource is not already taken */
1137    lock_status = REG_RD(sc, hw_lock_control_reg);
1138    if (lock_status & resource_bit) {
1139        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1140              lock_status, resource_bit);
1141        return (-1);
1142    }
1143
1144    /* try every 5ms for 5 seconds */
1145    for (cnt = 0; cnt < 1000; cnt++) {
1146        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1147        lock_status = REG_RD(sc, hw_lock_control_reg);
1148        if (lock_status & resource_bit) {
1149            return (0);
1150        }
1151        DELAY(5000);
1152    }
1153
1154    BLOGE(sc, "Resource lock timeout!\n");
1155    return (-1);
1156}
1157
1158static int
1159bxe_release_hw_lock(struct bxe_softc *sc,
1160                    uint32_t         resource)
1161{
1162    uint32_t lock_status;
1163    uint32_t resource_bit = (1 << resource);
1164    int func = SC_FUNC(sc);
1165    uint32_t hw_lock_control_reg;
1166
1167    /* validate the resource is within range */
1168    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1169        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1170        return (-1);
1171    }
1172
1173    if (func <= 5) {
1174        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1175    } else {
1176        hw_lock_control_reg =
1177                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1178    }
1179
1180    /* validate the resource is currently taken */
1181    lock_status = REG_RD(sc, hw_lock_control_reg);
1182    if (!(lock_status & resource_bit)) {
1183        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1184              lock_status, resource_bit);
1185        return (-1);
1186    }
1187
1188    REG_WR(sc, hw_lock_control_reg, resource_bit);
1189    return (0);
1190}
1191
1192/*
1193 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1194 * had we done things the other way around, if two pfs from the same port
1195 * would attempt to access nvram at the same time, we could run into a
1196 * scenario such as:
1197 * pf A takes the port lock.
1198 * pf B succeeds in taking the same lock since they are from the same port.
1199 * pf A takes the per pf misc lock. Performs eeprom access.
1200 * pf A finishes. Unlocks the per pf misc lock.
1201 * Pf B takes the lock and proceeds to perform it's own access.
1202 * pf A unlocks the per port lock, while pf B is still working (!).
1203 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1204 * access corrupted by pf B).*
1205 */
1206static int
1207bxe_acquire_nvram_lock(struct bxe_softc *sc)
1208{
1209    int port = SC_PORT(sc);
1210    int count, i;
1211    uint32_t val = 0;
1212
1213    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1214    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1215
1216    /* adjust timeout for emulation/FPGA */
1217    count = NVRAM_TIMEOUT_COUNT;
1218    if (CHIP_REV_IS_SLOW(sc)) {
1219        count *= 100;
1220    }
1221
1222    /* request access to nvram interface */
1223    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1224           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1225
1226    for (i = 0; i < count*10; i++) {
1227        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1228        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1229            break;
1230        }
1231
1232        DELAY(5);
1233    }
1234
1235    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1236        BLOGE(sc, "Cannot get access to nvram interface\n");
1237        return (-1);
1238    }
1239
1240    return (0);
1241}
1242
1243static int
1244bxe_release_nvram_lock(struct bxe_softc *sc)
1245{
1246    int port = SC_PORT(sc);
1247    int count, i;
1248    uint32_t val = 0;
1249
1250    /* adjust timeout for emulation/FPGA */
1251    count = NVRAM_TIMEOUT_COUNT;
1252    if (CHIP_REV_IS_SLOW(sc)) {
1253        count *= 100;
1254    }
1255
1256    /* relinquish nvram interface */
1257    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1258           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1259
1260    for (i = 0; i < count*10; i++) {
1261        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1262        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1263            break;
1264        }
1265
1266        DELAY(5);
1267    }
1268
1269    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1270        BLOGE(sc, "Cannot free access to nvram interface\n");
1271        return (-1);
1272    }
1273
1274    /* release HW lock: protect against other PFs in PF Direct Assignment */
1275    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1276
1277    return (0);
1278}
1279
1280static void
1281bxe_enable_nvram_access(struct bxe_softc *sc)
1282{
1283    uint32_t val;
1284
1285    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1286
1287    /* enable both bits, even on read */
1288    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1289           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1290}
1291
1292static void
1293bxe_disable_nvram_access(struct bxe_softc *sc)
1294{
1295    uint32_t val;
1296
1297    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1298
1299    /* disable both bits, even after read */
1300    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1301           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1302                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1303}
1304
1305static int
1306bxe_nvram_read_dword(struct bxe_softc *sc,
1307                     uint32_t         offset,
1308                     uint32_t         *ret_val,
1309                     uint32_t         cmd_flags)
1310{
1311    int count, i, rc;
1312    uint32_t val;
1313
1314    /* build the command word */
1315    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1316
1317    /* need to clear DONE bit separately */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1319
1320    /* address of the NVRAM to read from */
1321    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1322           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1323
1324    /* issue a read command */
1325    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1326
1327    /* adjust timeout for emulation/FPGA */
1328    count = NVRAM_TIMEOUT_COUNT;
1329    if (CHIP_REV_IS_SLOW(sc)) {
1330        count *= 100;
1331    }
1332
1333    /* wait for completion */
1334    *ret_val = 0;
1335    rc = -1;
1336    for (i = 0; i < count; i++) {
1337        DELAY(5);
1338        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1339
1340        if (val & MCPR_NVM_COMMAND_DONE) {
1341            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1342            /* we read nvram data in cpu order
1343             * but ethtool sees it as an array of bytes
1344             * converting to big-endian will do the work
1345             */
1346            *ret_val = htobe32(val);
1347            rc = 0;
1348            break;
1349        }
1350    }
1351
1352    if (rc == -1) {
1353        BLOGE(sc, "nvram read timeout expired\n");
1354    }
1355
1356    return (rc);
1357}
1358
1359static int
1360bxe_nvram_read(struct bxe_softc *sc,
1361               uint32_t         offset,
1362               uint8_t          *ret_buf,
1363               int              buf_size)
1364{
1365    uint32_t cmd_flags;
1366    uint32_t val;
1367    int rc;
1368
1369    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1370        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1371              offset, buf_size);
1372        return (-1);
1373    }
1374
1375    if ((offset + buf_size) > sc->devinfo.flash_size) {
1376        BLOGE(sc, "Invalid parameter, "
1377                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1378              offset, buf_size, sc->devinfo.flash_size);
1379        return (-1);
1380    }
1381
1382    /* request access to nvram interface */
1383    rc = bxe_acquire_nvram_lock(sc);
1384    if (rc) {
1385        return (rc);
1386    }
1387
1388    /* enable access to nvram interface */
1389    bxe_enable_nvram_access(sc);
1390
1391    /* read the first word(s) */
1392    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1393    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1394        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1395        memcpy(ret_buf, &val, 4);
1396
1397        /* advance to the next dword */
1398        offset += sizeof(uint32_t);
1399        ret_buf += sizeof(uint32_t);
1400        buf_size -= sizeof(uint32_t);
1401        cmd_flags = 0;
1402    }
1403
1404    if (rc == 0) {
1405        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1406        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1407        memcpy(ret_buf, &val, 4);
1408    }
1409
1410    /* disable access to nvram interface */
1411    bxe_disable_nvram_access(sc);
1412    bxe_release_nvram_lock(sc);
1413
1414    return (rc);
1415}
1416
1417static int
1418bxe_nvram_write_dword(struct bxe_softc *sc,
1419                      uint32_t         offset,
1420                      uint32_t         val,
1421                      uint32_t         cmd_flags)
1422{
1423    int count, i, rc;
1424
1425    /* build the command word */
1426    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1427
1428    /* need to clear DONE bit separately */
1429    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1430
1431    /* write the data */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1433
1434    /* address of the NVRAM to write to */
1435    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1436           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1437
1438    /* issue the write command */
1439    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1440
1441    /* adjust timeout for emulation/FPGA */
1442    count = NVRAM_TIMEOUT_COUNT;
1443    if (CHIP_REV_IS_SLOW(sc)) {
1444        count *= 100;
1445    }
1446
1447    /* wait for completion */
1448    rc = -1;
1449    for (i = 0; i < count; i++) {
1450        DELAY(5);
1451        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1452        if (val & MCPR_NVM_COMMAND_DONE) {
1453            rc = 0;
1454            break;
1455        }
1456    }
1457
1458    if (rc == -1) {
1459        BLOGE(sc, "nvram write timeout expired\n");
1460    }
1461
1462    return (rc);
1463}
1464
1465#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1466
1467static int
1468bxe_nvram_write1(struct bxe_softc *sc,
1469                 uint32_t         offset,
1470                 uint8_t          *data_buf,
1471                 int              buf_size)
1472{
1473    uint32_t cmd_flags;
1474    uint32_t align_offset;
1475    uint32_t val;
1476    int rc;
1477
1478    if ((offset + buf_size) > sc->devinfo.flash_size) {
1479        BLOGE(sc, "Invalid parameter, "
1480                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1481              offset, buf_size, sc->devinfo.flash_size);
1482        return (-1);
1483    }
1484
1485    /* request access to nvram interface */
1486    rc = bxe_acquire_nvram_lock(sc);
1487    if (rc) {
1488        return (rc);
1489    }
1490
1491    /* enable access to nvram interface */
1492    bxe_enable_nvram_access(sc);
1493
1494    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1495    align_offset = (offset & ~0x03);
1496    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1497
1498    if (rc == 0) {
1499        val &= ~(0xff << BYTE_OFFSET(offset));
1500        val |= (*data_buf << BYTE_OFFSET(offset));
1501
1502        /* nvram data is returned as an array of bytes
1503         * convert it back to cpu order
1504         */
1505        val = be32toh(val);
1506
1507        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1508    }
1509
1510    /* disable access to nvram interface */
1511    bxe_disable_nvram_access(sc);
1512    bxe_release_nvram_lock(sc);
1513
1514    return (rc);
1515}
1516
1517static int
1518bxe_nvram_write(struct bxe_softc *sc,
1519                uint32_t         offset,
1520                uint8_t          *data_buf,
1521                int              buf_size)
1522{
1523    uint32_t cmd_flags;
1524    uint32_t val;
1525    uint32_t written_so_far;
1526    int rc;
1527
1528    if (buf_size == 1) {
1529        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1530    }
1531
1532    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1533        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1534              offset, buf_size);
1535        return (-1);
1536    }
1537
1538    if (buf_size == 0) {
1539        return (0); /* nothing to do */
1540    }
1541
1542    if ((offset + buf_size) > sc->devinfo.flash_size) {
1543        BLOGE(sc, "Invalid parameter, "
1544                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1545              offset, buf_size, sc->devinfo.flash_size);
1546        return (-1);
1547    }
1548
1549    /* request access to nvram interface */
1550    rc = bxe_acquire_nvram_lock(sc);
1551    if (rc) {
1552        return (rc);
1553    }
1554
1555    /* enable access to nvram interface */
1556    bxe_enable_nvram_access(sc);
1557
1558    written_so_far = 0;
1559    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1560    while ((written_so_far < buf_size) && (rc == 0)) {
1561        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1562            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1563        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1564            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1565        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1566            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1567        }
1568
1569        memcpy(&val, data_buf, 4);
1570
1571        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1572
1573        /* advance to the next dword */
1574        offset += sizeof(uint32_t);
1575        data_buf += sizeof(uint32_t);
1576        written_so_far += sizeof(uint32_t);
1577        cmd_flags = 0;
1578    }
1579
1580    /* disable access to nvram interface */
1581    bxe_disable_nvram_access(sc);
1582    bxe_release_nvram_lock(sc);
1583
1584    return (rc);
1585}
1586
1587/* copy command into DMAE command memory and set DMAE command Go */
1588void
1589bxe_post_dmae(struct bxe_softc    *sc,
1590              struct dmae_command *dmae,
1591              int                 idx)
1592{
1593    uint32_t cmd_offset;
1594    int i;
1595
1596    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1597    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1598        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1599    }
1600
1601    REG_WR(sc, dmae_reg_go_c[idx], 1);
1602}
1603
1604uint32_t
1605bxe_dmae_opcode_add_comp(uint32_t opcode,
1606                         uint8_t  comp_type)
1607{
1608    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1609                      DMAE_COMMAND_C_TYPE_ENABLE));
1610}
1611
1612uint32_t
1613bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1614{
1615    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1616}
1617
1618uint32_t
1619bxe_dmae_opcode(struct bxe_softc *sc,
1620                uint8_t          src_type,
1621                uint8_t          dst_type,
1622                uint8_t          with_comp,
1623                uint8_t          comp_type)
1624{
1625    uint32_t opcode = 0;
1626
1627    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1628               (dst_type << DMAE_COMMAND_DST_SHIFT));
1629
1630    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1631
1632    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1633
1634    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1635               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1636
1637    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1638
1639#ifdef __BIG_ENDIAN
1640    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1641#else
1642    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1643#endif
1644
1645    if (with_comp) {
1646        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1647    }
1648
1649    return (opcode);
1650}
1651
1652static void
1653bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1654                        struct dmae_command *dmae,
1655                        uint8_t             src_type,
1656                        uint8_t             dst_type)
1657{
1658    memset(dmae, 0, sizeof(struct dmae_command));
1659
1660    /* set the opcode */
1661    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1662                                   TRUE, DMAE_COMP_PCI);
1663
1664    /* fill in the completion parameters */
1665    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1666    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1667    dmae->comp_val     = DMAE_COMP_VAL;
1668}
1669
1670/* issue a DMAE command over the init channel and wait for completion */
1671static int
1672bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1673                         struct dmae_command *dmae)
1674{
1675    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1676    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1677
1678    BXE_DMAE_LOCK(sc);
1679
1680    /* reset completion */
1681    *wb_comp = 0;
1682
1683    /* post the command on the channel used for initializations */
1684    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1685
1686    /* wait for completion */
1687    DELAY(5);
1688
1689    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1690        if (!timeout ||
1691            (sc->recovery_state != BXE_RECOVERY_DONE &&
1692             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1693            BLOGE(sc, "DMAE timeout!\n");
1694            BXE_DMAE_UNLOCK(sc);
1695            return (DMAE_TIMEOUT);
1696        }
1697
1698        timeout--;
1699        DELAY(50);
1700    }
1701
1702    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1703        BLOGE(sc, "DMAE PCI error!\n");
1704        BXE_DMAE_UNLOCK(sc);
1705        return (DMAE_PCI_ERROR);
1706    }
1707
1708    BXE_DMAE_UNLOCK(sc);
1709    return (0);
1710}
1711
1712void
1713bxe_read_dmae(struct bxe_softc *sc,
1714              uint32_t         src_addr,
1715              uint32_t         len32)
1716{
1717    struct dmae_command dmae;
1718    uint32_t *data;
1719    int i, rc;
1720
1721    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1722
1723    if (!sc->dmae_ready) {
1724        data = BXE_SP(sc, wb_data[0]);
1725
1726        for (i = 0; i < len32; i++) {
1727            data[i] = (CHIP_IS_E1(sc)) ?
1728                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1729                          REG_RD(sc, (src_addr + (i * 4)));
1730        }
1731
1732        return;
1733    }
1734
1735    /* set opcode and fixed command fields */
1736    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1737
1738    /* fill in addresses and len */
1739    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1740    dmae.src_addr_hi = 0;
1741    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1742    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1743    dmae.len         = len32;
1744
1745    /* issue the command and wait for completion */
1746    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1747        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1748    };
1749}
1750
1751void
1752bxe_write_dmae(struct bxe_softc *sc,
1753               bus_addr_t       dma_addr,
1754               uint32_t         dst_addr,
1755               uint32_t         len32)
1756{
1757    struct dmae_command dmae;
1758    int rc;
1759
1760    if (!sc->dmae_ready) {
1761        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1762
1763        if (CHIP_IS_E1(sc)) {
1764            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1765        } else {
1766            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1767        }
1768
1769        return;
1770    }
1771
1772    /* set opcode and fixed command fields */
1773    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1774
1775    /* fill in addresses and len */
1776    dmae.src_addr_lo = U64_LO(dma_addr);
1777    dmae.src_addr_hi = U64_HI(dma_addr);
1778    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1779    dmae.dst_addr_hi = 0;
1780    dmae.len         = len32;
1781
1782    /* issue the command and wait for completion */
1783    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1784        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1785    }
1786}
1787
1788void
1789bxe_write_dmae_phys_len(struct bxe_softc *sc,
1790                        bus_addr_t       phys_addr,
1791                        uint32_t         addr,
1792                        uint32_t         len)
1793{
1794    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1795    int offset = 0;
1796
1797    while (len > dmae_wr_max) {
1798        bxe_write_dmae(sc,
1799                       (phys_addr + offset), /* src DMA address */
1800                       (addr + offset),      /* dst GRC address */
1801                       dmae_wr_max);
1802        offset += (dmae_wr_max * 4);
1803        len -= dmae_wr_max;
1804    }
1805
1806    bxe_write_dmae(sc,
1807                   (phys_addr + offset), /* src DMA address */
1808                   (addr + offset),      /* dst GRC address */
1809                   len);
1810}
1811
1812void
1813bxe_set_ctx_validation(struct bxe_softc   *sc,
1814                       struct eth_context *cxt,
1815                       uint32_t           cid)
1816{
1817    /* ustorm cxt validation */
1818    cxt->ustorm_ag_context.cdu_usage =
1819        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1820            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1821    /* xcontext validation */
1822    cxt->xstorm_ag_context.cdu_reserved =
1823        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1824            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1825}
1826
1827static void
1828bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1829                            uint8_t          port,
1830                            uint8_t          fw_sb_id,
1831                            uint8_t          sb_index,
1832                            uint8_t          ticks)
1833{
1834    uint32_t addr =
1835        (BAR_CSTRORM_INTMEM +
1836         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1837
1838    REG_WR8(sc, addr, ticks);
1839
1840    BLOGD(sc, DBG_LOAD,
1841          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1842          port, fw_sb_id, sb_index, ticks);
1843}
1844
1845static void
1846bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1847                            uint8_t          port,
1848                            uint16_t         fw_sb_id,
1849                            uint8_t          sb_index,
1850                            uint8_t          disable)
1851{
1852    uint32_t enable_flag =
1853        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1854    uint32_t addr =
1855        (BAR_CSTRORM_INTMEM +
1856         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1857    uint8_t flags;
1858
1859    /* clear and set */
1860    flags = REG_RD8(sc, addr);
1861    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1862    flags |= enable_flag;
1863    REG_WR8(sc, addr, flags);
1864
1865    BLOGD(sc, DBG_LOAD,
1866          "port %d fw_sb_id %d sb_index %d disable %d\n",
1867          port, fw_sb_id, sb_index, disable);
1868}
1869
1870void
1871bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1872                             uint8_t          fw_sb_id,
1873                             uint8_t          sb_index,
1874                             uint8_t          disable,
1875                             uint16_t         usec)
1876{
1877    int port = SC_PORT(sc);
1878    uint8_t ticks = (usec / 4); /* XXX ??? */
1879
1880    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1881
1882    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1883    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1884}
1885
1886void
1887elink_cb_udelay(struct bxe_softc *sc,
1888                uint32_t         usecs)
1889{
1890    DELAY(usecs);
1891}
1892
1893uint32_t
1894elink_cb_reg_read(struct bxe_softc *sc,
1895                  uint32_t         reg_addr)
1896{
1897    return (REG_RD(sc, reg_addr));
1898}
1899
1900void
1901elink_cb_reg_write(struct bxe_softc *sc,
1902                   uint32_t         reg_addr,
1903                   uint32_t         val)
1904{
1905    REG_WR(sc, reg_addr, val);
1906}
1907
1908void
1909elink_cb_reg_wb_write(struct bxe_softc *sc,
1910                      uint32_t         offset,
1911                      uint32_t         *wb_write,
1912                      uint16_t         len)
1913{
1914    REG_WR_DMAE(sc, offset, wb_write, len);
1915}
1916
1917void
1918elink_cb_reg_wb_read(struct bxe_softc *sc,
1919                     uint32_t         offset,
1920                     uint32_t         *wb_write,
1921                     uint16_t         len)
1922{
1923    REG_RD_DMAE(sc, offset, wb_write, len);
1924}
1925
1926uint8_t
1927elink_cb_path_id(struct bxe_softc *sc)
1928{
1929    return (SC_PATH(sc));
1930}
1931
1932void
1933elink_cb_event_log(struct bxe_softc     *sc,
1934                   const elink_log_id_t elink_log_id,
1935                   ...)
1936{
1937    /* XXX */
1938#if 0
1939    //va_list ap;
1940    va_start(ap, elink_log_id);
1941    _XXX_(sc, lm_log_id, ap);
1942    va_end(ap);
1943#endif
1944    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1945}
1946
1947static int
1948bxe_set_spio(struct bxe_softc *sc,
1949             int              spio,
1950             uint32_t         mode)
1951{
1952    uint32_t spio_reg;
1953
1954    /* Only 2 SPIOs are configurable */
1955    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1956        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1957        return (-1);
1958    }
1959
1960    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1961
1962    /* read SPIO and mask except the float bits */
1963    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1964
1965    switch (mode) {
1966    case MISC_SPIO_OUTPUT_LOW:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1968        /* clear FLOAT and set CLR */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1971        break;
1972
1973    case MISC_SPIO_OUTPUT_HIGH:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1975        /* clear FLOAT and set SET */
1976        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1977        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1978        break;
1979
1980    case MISC_SPIO_INPUT_HI_Z:
1981        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1982        /* set FLOAT */
1983        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1984        break;
1985
1986    default:
1987        break;
1988    }
1989
1990    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1991    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1992
1993    return (0);
1994}
1995
1996static int
1997bxe_gpio_read(struct bxe_softc *sc,
1998              int              gpio_num,
1999              uint8_t          port)
2000{
2001    /* The GPIO should be swapped if swap register is set and active */
2002    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2003                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2004    int gpio_shift = (gpio_num +
2005                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2006    uint32_t gpio_mask = (1 << gpio_shift);
2007    uint32_t gpio_reg;
2008
2009    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2010        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2011        return (-1);
2012    }
2013
2014    /* read GPIO value */
2015    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2016
2017    /* get the requested pin value */
2018    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2019}
2020
2021static int
2022bxe_gpio_write(struct bxe_softc *sc,
2023               int              gpio_num,
2024               uint32_t         mode,
2025               uint8_t          port)
2026{
2027    /* The GPIO should be swapped if swap register is set and active */
2028    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2029                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2030    int gpio_shift = (gpio_num +
2031                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2032    uint32_t gpio_mask = (1 << gpio_shift);
2033    uint32_t gpio_reg;
2034
2035    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2036        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2037        return (-1);
2038    }
2039
2040    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2041
2042    /* read GPIO and mask except the float bits */
2043    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2044
2045    switch (mode) {
2046    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2047        BLOGD(sc, DBG_PHY,
2048              "Set GPIO %d (shift %d) -> output low\n",
2049              gpio_num, gpio_shift);
2050        /* clear FLOAT and set CLR */
2051        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2052        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2053        break;
2054
2055    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2056        BLOGD(sc, DBG_PHY,
2057              "Set GPIO %d (shift %d) -> output high\n",
2058              gpio_num, gpio_shift);
2059        /* clear FLOAT and set SET */
2060        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2061        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2062        break;
2063
2064    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2065        BLOGD(sc, DBG_PHY,
2066              "Set GPIO %d (shift %d) -> input\n",
2067              gpio_num, gpio_shift);
2068        /* set FLOAT */
2069        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2070        break;
2071
2072    default:
2073        break;
2074    }
2075
2076    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2077    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2078
2079    return (0);
2080}
2081
2082static int
2083bxe_gpio_mult_write(struct bxe_softc *sc,
2084                    uint8_t          pins,
2085                    uint32_t         mode)
2086{
2087    uint32_t gpio_reg;
2088
2089    /* any port swapping should be handled by caller */
2090
2091    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093    /* read GPIO and mask except the float bits */
2094    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2095    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2096    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2097    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2098
2099    switch (mode) {
2100    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2101        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2102        /* set CLR */
2103        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2104        break;
2105
2106    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2107        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2108        /* set SET */
2109        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2110        break;
2111
2112    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2113        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2114        /* set FLOAT */
2115        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2116        break;
2117
2118    default:
2119        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2120        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2121        return (-1);
2122    }
2123
2124    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2125    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2126
2127    return (0);
2128}
2129
2130static int
2131bxe_gpio_int_write(struct bxe_softc *sc,
2132                   int              gpio_num,
2133                   uint32_t         mode,
2134                   uint8_t          port)
2135{
2136    /* The GPIO should be swapped if swap register is set and active */
2137    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2138                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2139    int gpio_shift = (gpio_num +
2140                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2141    uint32_t gpio_mask = (1 << gpio_shift);
2142    uint32_t gpio_reg;
2143
2144    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2145        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2146        return (-1);
2147    }
2148
2149    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2150
2151    /* read GPIO int */
2152    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2153
2154    switch (mode) {
2155    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2156        BLOGD(sc, DBG_PHY,
2157              "Clear GPIO INT %d (shift %d) -> output low\n",
2158              gpio_num, gpio_shift);
2159        /* clear SET and set CLR */
2160        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2161        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2162        break;
2163
2164    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2165        BLOGD(sc, DBG_PHY,
2166              "Set GPIO INT %d (shift %d) -> output high\n",
2167              gpio_num, gpio_shift);
2168        /* clear CLR and set SET */
2169        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2170        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2171        break;
2172
2173    default:
2174        break;
2175    }
2176
2177    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2178    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2179
2180    return (0);
2181}
2182
2183uint32_t
2184elink_cb_gpio_read(struct bxe_softc *sc,
2185                   uint16_t         gpio_num,
2186                   uint8_t          port)
2187{
2188    return (bxe_gpio_read(sc, gpio_num, port));
2189}
2190
2191uint8_t
2192elink_cb_gpio_write(struct bxe_softc *sc,
2193                    uint16_t         gpio_num,
2194                    uint8_t          mode, /* 0=low 1=high */
2195                    uint8_t          port)
2196{
2197    return (bxe_gpio_write(sc, gpio_num, mode, port));
2198}
2199
2200uint8_t
2201elink_cb_gpio_mult_write(struct bxe_softc *sc,
2202                         uint8_t          pins,
2203                         uint8_t          mode) /* 0=low 1=high */
2204{
2205    return (bxe_gpio_mult_write(sc, pins, mode));
2206}
2207
2208uint8_t
2209elink_cb_gpio_int_write(struct bxe_softc *sc,
2210                        uint16_t         gpio_num,
2211                        uint8_t          mode, /* 0=low 1=high */
2212                        uint8_t          port)
2213{
2214    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2215}
2216
2217void
2218elink_cb_notify_link_changed(struct bxe_softc *sc)
2219{
2220    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2221                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2222}
2223
2224/* send the MCP a request, block until there is a reply */
2225uint32_t
2226elink_cb_fw_command(struct bxe_softc *sc,
2227                    uint32_t         command,
2228                    uint32_t         param)
2229{
2230    int mb_idx = SC_FW_MB_IDX(sc);
2231    uint32_t seq;
2232    uint32_t rc = 0;
2233    uint32_t cnt = 1;
2234    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2235
2236    BXE_FWMB_LOCK(sc);
2237
2238    seq = ++sc->fw_seq;
2239    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2240    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2241
2242    BLOGD(sc, DBG_PHY,
2243          "wrote command 0x%08x to FW MB param 0x%08x\n",
2244          (command | seq), param);
2245
2246    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2247    do {
2248        DELAY(delay * 1000);
2249        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2250    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2251
2252    BLOGD(sc, DBG_PHY,
2253          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2254          cnt*delay, rc, seq);
2255
2256    /* is this a reply to our command? */
2257    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2258        rc &= FW_MSG_CODE_MASK;
2259    } else {
2260        /* Ruh-roh! */
2261        BLOGE(sc, "FW failed to respond!\n");
2262        // XXX bxe_fw_dump(sc);
2263        rc = 0;
2264    }
2265
2266    BXE_FWMB_UNLOCK(sc);
2267    return (rc);
2268}
2269
2270static uint32_t
2271bxe_fw_command(struct bxe_softc *sc,
2272               uint32_t         command,
2273               uint32_t         param)
2274{
2275    return (elink_cb_fw_command(sc, command, param));
2276}
2277
2278static void
2279__storm_memset_dma_mapping(struct bxe_softc *sc,
2280                           uint32_t         addr,
2281                           bus_addr_t       mapping)
2282{
2283    REG_WR(sc, addr, U64_LO(mapping));
2284    REG_WR(sc, (addr + 4), U64_HI(mapping));
2285}
2286
2287static void
2288storm_memset_spq_addr(struct bxe_softc *sc,
2289                      bus_addr_t       mapping,
2290                      uint16_t         abs_fid)
2291{
2292    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2293                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2294    __storm_memset_dma_mapping(sc, addr, mapping);
2295}
2296
2297static void
2298storm_memset_vf_to_pf(struct bxe_softc *sc,
2299                      uint16_t         abs_fid,
2300                      uint16_t         pf_id)
2301{
2302    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2303    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2304    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2305    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2306}
2307
2308static void
2309storm_memset_func_en(struct bxe_softc *sc,
2310                     uint16_t         abs_fid,
2311                     uint8_t          enable)
2312{
2313    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2314    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2315    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2316    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2317}
2318
2319static void
2320storm_memset_eq_data(struct bxe_softc       *sc,
2321                     struct event_ring_data *eq_data,
2322                     uint16_t               pfid)
2323{
2324    uint32_t addr;
2325    size_t size;
2326
2327    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2328    size = sizeof(struct event_ring_data);
2329    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2330}
2331
2332static void
2333storm_memset_eq_prod(struct bxe_softc *sc,
2334                     uint16_t         eq_prod,
2335                     uint16_t         pfid)
2336{
2337    uint32_t addr = (BAR_CSTRORM_INTMEM +
2338                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2339    REG_WR16(sc, addr, eq_prod);
2340}
2341
2342/*
2343 * Post a slowpath command.
2344 *
2345 * A slowpath command is used to propogate a configuration change through
2346 * the controller in a controlled manner, allowing each STORM processor and
2347 * other H/W blocks to phase in the change.  The commands sent on the
2348 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2349 * completion of the ramrod will occur in different ways.  Here's a
2350 * breakdown of ramrods and how they complete:
2351 *
2352 * RAMROD_CMD_ID_ETH_PORT_SETUP
2353 *   Used to setup the leading connection on a port.  Completes on the
2354 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2355 *
2356 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2357 *   Used to setup an additional connection on a port.  Completes on the
2358 *   RCQ of the multi-queue/RSS connection being initialized.
2359 *
2360 * RAMROD_CMD_ID_ETH_STAT_QUERY
2361 *   Used to force the storm processors to update the statistics database
2362 *   in host memory.  This ramrod is send on the leading connection CID and
2363 *   completes as an index increment of the CSTORM on the default status
2364 *   block.
2365 *
2366 * RAMROD_CMD_ID_ETH_UPDATE
2367 *   Used to update the state of the leading connection, usually to udpate
2368 *   the RSS indirection table.  Completes on the RCQ of the leading
2369 *   connection. (Not currently used under FreeBSD until OS support becomes
2370 *   available.)
2371 *
2372 * RAMROD_CMD_ID_ETH_HALT
2373 *   Used when tearing down a connection prior to driver unload.  Completes
2374 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2375 *   use this on the leading connection.
2376 *
2377 * RAMROD_CMD_ID_ETH_SET_MAC
2378 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2379 *   the RCQ of the leading connection.
2380 *
2381 * RAMROD_CMD_ID_ETH_CFC_DEL
2382 *   Used when tearing down a conneciton prior to driver unload.  Completes
2383 *   on the RCQ of the leading connection (since the current connection
2384 *   has been completely removed from controller memory).
2385 *
2386 * RAMROD_CMD_ID_ETH_PORT_DEL
2387 *   Used to tear down the leading connection prior to driver unload,
2388 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2389 *   default status block.
2390 *
2391 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2392 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2393 *   RSS connection that is being offloaded.  (Not currently used under
2394 *   FreeBSD.)
2395 *
2396 * There can only be one command pending per function.
2397 *
2398 * Returns:
2399 *   0 = Success, !0 = Failure.
2400 */
2401
2402/* must be called under the spq lock */
2403static inline
2404struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2405{
2406    struct eth_spe *next_spe = sc->spq_prod_bd;
2407
2408    if (sc->spq_prod_bd == sc->spq_last_bd) {
2409        /* wrap back to the first eth_spq */
2410        sc->spq_prod_bd = sc->spq;
2411        sc->spq_prod_idx = 0;
2412    } else {
2413        sc->spq_prod_bd++;
2414        sc->spq_prod_idx++;
2415    }
2416
2417    return (next_spe);
2418}
2419
2420/* must be called under the spq lock */
2421static inline
2422void bxe_sp_prod_update(struct bxe_softc *sc)
2423{
2424    int func = SC_FUNC(sc);
2425
2426    /*
2427     * Make sure that BD data is updated before writing the producer.
2428     * BD data is written to the memory, the producer is read from the
2429     * memory, thus we need a full memory barrier to ensure the ordering.
2430     */
2431    mb();
2432
2433    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2434             sc->spq_prod_idx);
2435
2436    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2437                      BUS_SPACE_BARRIER_WRITE);
2438}
2439
2440/**
2441 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2442 *
2443 * @cmd:      command to check
2444 * @cmd_type: command type
2445 */
2446static inline
2447int bxe_is_contextless_ramrod(int cmd,
2448                              int cmd_type)
2449{
2450    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2451        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2452        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2453        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2454        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2455        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2456        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2457        return (TRUE);
2458    } else {
2459        return (FALSE);
2460    }
2461}
2462
2463/**
2464 * bxe_sp_post - place a single command on an SP ring
2465 *
2466 * @sc:         driver handle
2467 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2468 * @cid:        SW CID the command is related to
2469 * @data_hi:    command private data address (high 32 bits)
2470 * @data_lo:    command private data address (low 32 bits)
2471 * @cmd_type:   command type (e.g. NONE, ETH)
2472 *
2473 * SP data is handled as if it's always an address pair, thus data fields are
2474 * not swapped to little endian in upper functions. Instead this function swaps
2475 * data as if it's two uint32 fields.
2476 */
2477int
2478bxe_sp_post(struct bxe_softc *sc,
2479            int              command,
2480            int              cid,
2481            uint32_t         data_hi,
2482            uint32_t         data_lo,
2483            int              cmd_type)
2484{
2485    struct eth_spe *spe;
2486    uint16_t type;
2487    int common;
2488
2489    common = bxe_is_contextless_ramrod(command, cmd_type);
2490
2491    BXE_SP_LOCK(sc);
2492
2493    if (common) {
2494        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2495            BLOGE(sc, "EQ ring is full!\n");
2496            BXE_SP_UNLOCK(sc);
2497            return (-1);
2498        }
2499    } else {
2500        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2501            BLOGE(sc, "SPQ ring is full!\n");
2502            BXE_SP_UNLOCK(sc);
2503            return (-1);
2504        }
2505    }
2506
2507    spe = bxe_sp_get_next(sc);
2508
2509    /* CID needs port number to be encoded int it */
2510    spe->hdr.conn_and_cmd_data =
2511        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2512
2513    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2514
2515    /* TBD: Check if it works for VFs */
2516    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2517             SPE_HDR_FUNCTION_ID);
2518
2519    spe->hdr.type = htole16(type);
2520
2521    spe->data.update_data_addr.hi = htole32(data_hi);
2522    spe->data.update_data_addr.lo = htole32(data_lo);
2523
2524    /*
2525     * It's ok if the actual decrement is issued towards the memory
2526     * somewhere between the lock and unlock. Thus no more explict
2527     * memory barrier is needed.
2528     */
2529    if (common) {
2530        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2531    } else {
2532        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2533    }
2534
2535    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2536    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2537          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2538    BLOGD(sc, DBG_SP,
2539          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2540          sc->spq_prod_idx,
2541          (uint32_t)U64_HI(sc->spq_dma.paddr),
2542          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2543          command,
2544          common,
2545          HW_CID(sc, cid),
2546          data_hi,
2547          data_lo,
2548          type,
2549          atomic_load_acq_long(&sc->cq_spq_left),
2550          atomic_load_acq_long(&sc->eq_spq_left));
2551
2552    bxe_sp_prod_update(sc);
2553
2554    BXE_SP_UNLOCK(sc);
2555    return (0);
2556}
2557
2558/**
2559 * bxe_debug_print_ind_table - prints the indirection table configuration.
2560 *
2561 * @sc: driver hanlde
2562 * @p:  pointer to rss configuration
2563 */
2564#if 0
2565static void
2566bxe_debug_print_ind_table(struct bxe_softc               *sc,
2567                          struct ecore_config_rss_params *p)
2568{
2569    int i;
2570
2571    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2572    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2573    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2574        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2575
2576        /* Print 4 bytes in a line */
2577        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2578            (((i + 1) & 0x3) == 0)) {
2579            BLOGD(sc, DBG_LOAD, "\n");
2580            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2581        }
2582    }
2583
2584    BLOGD(sc, DBG_LOAD, "\n");
2585}
2586#endif
2587
2588/*
2589 * FreeBSD Device probe function.
2590 *
2591 * Compares the device found to the driver's list of supported devices and
2592 * reports back to the bsd loader whether this is the right driver for the device.
2593 * This is the driver entry function called from the "kldload" command.
2594 *
2595 * Returns:
2596 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2597 */
2598static int
2599bxe_probe(device_t dev)
2600{
2601    struct bxe_softc *sc;
2602    struct bxe_device_type *t;
2603    char *descbuf;
2604    uint16_t did, sdid, svid, vid;
2605
2606    /* Find our device structure */
2607    sc = device_get_softc(dev);
2608    sc->dev = dev;
2609    t = bxe_devs;
2610
2611    /* Get the data for the device to be probed. */
2612    vid  = pci_get_vendor(dev);
2613    did  = pci_get_device(dev);
2614    svid = pci_get_subvendor(dev);
2615    sdid = pci_get_subdevice(dev);
2616
2617    BLOGD(sc, DBG_LOAD,
2618          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2619          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2620
2621    /* Look through the list of known devices for a match. */
2622    while (t->bxe_name != NULL) {
2623        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2624            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2625            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2626            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2627            if (descbuf == NULL)
2628                return (ENOMEM);
2629
2630            /* Print out the device identity. */
2631            snprintf(descbuf, BXE_DEVDESC_MAX,
2632                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2633                     (((pci_read_config(dev, PCIR_REVID, 4) &
2634                        0xf0) >> 4) + 'A'),
2635                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2636                     BXE_DRIVER_VERSION);
2637
2638            device_set_desc_copy(dev, descbuf);
2639            free(descbuf, M_TEMP);
2640            return (BUS_PROBE_DEFAULT);
2641        }
2642        t++;
2643    }
2644
2645    return (ENXIO);
2646}
2647
2648static void
2649bxe_init_mutexes(struct bxe_softc *sc)
2650{
2651#ifdef BXE_CORE_LOCK_SX
2652    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2653             "bxe%d_core_lock", sc->unit);
2654    sx_init(&sc->core_sx, sc->core_sx_name);
2655#else
2656    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2657             "bxe%d_core_lock", sc->unit);
2658    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2659#endif
2660
2661    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2662             "bxe%d_sp_lock", sc->unit);
2663    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2664
2665    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2666             "bxe%d_dmae_lock", sc->unit);
2667    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2668
2669    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2670             "bxe%d_phy_lock", sc->unit);
2671    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2672
2673    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2674             "bxe%d_fwmb_lock", sc->unit);
2675    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2676
2677    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2678             "bxe%d_print_lock", sc->unit);
2679    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2680
2681    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2682             "bxe%d_stats_lock", sc->unit);
2683    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2684
2685    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2686             "bxe%d_mcast_lock", sc->unit);
2687    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2688}
2689
2690static void
2691bxe_release_mutexes(struct bxe_softc *sc)
2692{
2693#ifdef BXE_CORE_LOCK_SX
2694    sx_destroy(&sc->core_sx);
2695#else
2696    if (mtx_initialized(&sc->core_mtx)) {
2697        mtx_destroy(&sc->core_mtx);
2698    }
2699#endif
2700
2701    if (mtx_initialized(&sc->sp_mtx)) {
2702        mtx_destroy(&sc->sp_mtx);
2703    }
2704
2705    if (mtx_initialized(&sc->dmae_mtx)) {
2706        mtx_destroy(&sc->dmae_mtx);
2707    }
2708
2709    if (mtx_initialized(&sc->port.phy_mtx)) {
2710        mtx_destroy(&sc->port.phy_mtx);
2711    }
2712
2713    if (mtx_initialized(&sc->fwmb_mtx)) {
2714        mtx_destroy(&sc->fwmb_mtx);
2715    }
2716
2717    if (mtx_initialized(&sc->print_mtx)) {
2718        mtx_destroy(&sc->print_mtx);
2719    }
2720
2721    if (mtx_initialized(&sc->stats_mtx)) {
2722        mtx_destroy(&sc->stats_mtx);
2723    }
2724
2725    if (mtx_initialized(&sc->mcast_mtx)) {
2726        mtx_destroy(&sc->mcast_mtx);
2727    }
2728}
2729
2730static void
2731bxe_tx_disable(struct bxe_softc* sc)
2732{
2733    struct ifnet *ifp = sc->ifnet;
2734
2735    /* tell the stack the driver is stopped and TX queue is full */
2736    if (ifp != NULL) {
2737        ifp->if_drv_flags = 0;
2738    }
2739}
2740
2741static void
2742bxe_drv_pulse(struct bxe_softc *sc)
2743{
2744    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2745             sc->fw_drv_pulse_wr_seq);
2746}
2747
2748static inline int
2749bxe_has_tx_work_unload(struct bxe_fastpath *fp)
2750{
2751    mb(); /* consumer and producer can change */
2752    return (fp->tx_pkt_prod != fp->tx_pkt_cons);
2753}
2754
2755static inline uint16_t
2756bxe_tx_avail(struct bxe_softc *sc,
2757             struct bxe_fastpath *fp)
2758{
2759    int16_t  used;
2760    uint16_t prod;
2761    uint16_t cons;
2762
2763    prod = fp->tx_bd_prod;
2764    cons = fp->tx_bd_cons;
2765
2766    used = SUB_S16(prod, cons);
2767
2768#if 0
2769    KASSERT((used < 0), ("used tx bds < 0"));
2770    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2771    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2772            ("invalid number of tx bds used"));
2773#endif
2774
2775    return (int16_t)(sc->tx_ring_size) - used;
2776}
2777
2778static inline int
2779bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2780{
2781    uint16_t hw_cons;
2782
2783    mb(); /* status block fields can change */
2784    hw_cons = le16toh(*fp->tx_cons_sb);
2785    return (hw_cons != fp->tx_pkt_cons);
2786}
2787
2788static inline uint8_t
2789bxe_has_tx_work(struct bxe_fastpath *fp)
2790{
2791    /* expand this for multi-cos if ever supported */
2792    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2793}
2794
2795static inline int
2796bxe_has_rx_work(struct bxe_fastpath *fp)
2797{
2798    uint16_t rx_cq_cons_sb;
2799
2800    mb(); /* status block fields can change */
2801    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2802    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2803        rx_cq_cons_sb++;
2804    return (fp->rx_cq_cons != rx_cq_cons_sb);
2805}
2806
2807static void
2808bxe_sp_event(struct bxe_softc    *sc,
2809             struct bxe_fastpath *fp,
2810             union eth_rx_cqe    *rr_cqe)
2811{
2812    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2813    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2814    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2815    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2816
2817    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2818          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2819
2820#if 0
2821    /*
2822     * If cid is within VF range, replace the slowpath object with the
2823     * one corresponding to this VF
2824     */
2825    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2826        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2827    }
2828#endif
2829
2830    switch (command) {
2831    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2832        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2833        drv_cmd = ECORE_Q_CMD_UPDATE;
2834        break;
2835
2836    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2837        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2838        drv_cmd = ECORE_Q_CMD_SETUP;
2839        break;
2840
2841    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2842        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2843        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2844        break;
2845
2846    case (RAMROD_CMD_ID_ETH_HALT):
2847        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2848        drv_cmd = ECORE_Q_CMD_HALT;
2849        break;
2850
2851    case (RAMROD_CMD_ID_ETH_TERMINATE):
2852        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2853        drv_cmd = ECORE_Q_CMD_TERMINATE;
2854        break;
2855
2856    case (RAMROD_CMD_ID_ETH_EMPTY):
2857        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2858        drv_cmd = ECORE_Q_CMD_EMPTY;
2859        break;
2860
2861    default:
2862        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2863              command, fp->index);
2864        return;
2865    }
2866
2867    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2868        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2869        /*
2870         * q_obj->complete_cmd() failure means that this was
2871         * an unexpected completion.
2872         *
2873         * In this case we don't want to increase the sc->spq_left
2874         * because apparently we haven't sent this command the first
2875         * place.
2876         */
2877        // bxe_panic(sc, ("Unexpected SP completion\n"));
2878        return;
2879    }
2880
2881#if 0
2882    /* SRIOV: reschedule any 'in_progress' operations */
2883    bxe_iov_sp_event(sc, cid, TRUE);
2884#endif
2885
2886    atomic_add_acq_long(&sc->cq_spq_left, 1);
2887
2888    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2889          atomic_load_acq_long(&sc->cq_spq_left));
2890
2891#if 0
2892    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2893        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2894        /*
2895         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2896         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2897         * prevent case that both bits are cleared. At the end of load/unload
2898         * driver checks that sp_state is cleared and this order prevents
2899         * races.
2900         */
2901        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2902        wmb();
2903        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2904
2905        /* schedule the sp task as MCP ack is required */
2906        bxe_schedule_sp_task(sc);
2907    }
2908#endif
2909}
2910
2911/*
2912 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2913 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2914 * the current aggregation queue as in-progress.
2915 */
2916static void
2917bxe_tpa_start(struct bxe_softc            *sc,
2918              struct bxe_fastpath         *fp,
2919              uint16_t                    queue,
2920              uint16_t                    cons,
2921              uint16_t                    prod,
2922              struct eth_fast_path_rx_cqe *cqe)
2923{
2924    struct bxe_sw_rx_bd tmp_bd;
2925    struct bxe_sw_rx_bd *rx_buf;
2926    struct eth_rx_bd *rx_bd;
2927    int max_agg_queues;
2928    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2929    uint16_t index;
2930
2931    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2932                       "cons=%d prod=%d\n",
2933          fp->index, queue, cons, prod);
2934
2935    max_agg_queues = MAX_AGG_QS(sc);
2936
2937    KASSERT((queue < max_agg_queues),
2938            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2939             fp->index, queue, max_agg_queues));
2940
2941    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2942            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2943             fp->index, queue));
2944
2945    /* copy the existing mbuf and mapping from the TPA pool */
2946    tmp_bd = tpa_info->bd;
2947
2948    if (tmp_bd.m == NULL) {
2949        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2950              fp->index, queue);
2951        /* XXX Error handling? */
2952        return;
2953    }
2954
2955    /* change the TPA queue to the start state */
2956    tpa_info->state            = BXE_TPA_STATE_START;
2957    tpa_info->placement_offset = cqe->placement_offset;
2958    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2959    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2960    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2961
2962    fp->rx_tpa_queue_used |= (1 << queue);
2963
2964    /*
2965     * If all the buffer descriptors are filled with mbufs then fill in
2966     * the current consumer index with a new BD. Else if a maximum Rx
2967     * buffer limit is imposed then fill in the next producer index.
2968     */
2969    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2970                prod : cons;
2971
2972    /* move the received mbuf and mapping to TPA pool */
2973    tpa_info->bd = fp->rx_mbuf_chain[cons];
2974
2975    /* release any existing RX BD mbuf mappings */
2976    if (cons != index) {
2977        rx_buf = &fp->rx_mbuf_chain[cons];
2978
2979        if (rx_buf->m_map != NULL) {
2980            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2981                            BUS_DMASYNC_POSTREAD);
2982            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2983        }
2984
2985        /*
2986         * We get here when the maximum number of rx buffers is less than
2987         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2988         * it out here without concern of a memory leak.
2989         */
2990        fp->rx_mbuf_chain[cons].m = NULL;
2991    }
2992
2993    /* update the Rx SW BD with the mbuf info from the TPA pool */
2994    fp->rx_mbuf_chain[index] = tmp_bd;
2995
2996    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2997    rx_bd = &fp->rx_chain[index];
2998    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2999    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
3000}
3001
3002/*
3003 * When a TPA aggregation is completed, loop through the individual mbufs
3004 * of the aggregation, combining them into a single mbuf which will be sent
3005 * up the stack. Refill all freed SGEs with mbufs as we go along.
3006 */
3007static int
3008bxe_fill_frag_mbuf(struct bxe_softc          *sc,
3009                   struct bxe_fastpath       *fp,
3010                   struct bxe_sw_tpa_info    *tpa_info,
3011                   uint16_t                  queue,
3012                   uint16_t                  pages,
3013                   struct mbuf               *m,
3014			       struct eth_end_agg_rx_cqe *cqe,
3015                   uint16_t                  cqe_idx)
3016{
3017    struct mbuf *m_frag;
3018    uint32_t frag_len, frag_size, i;
3019    uint16_t sge_idx;
3020    int rc = 0;
3021    int j;
3022
3023    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3024
3025    BLOGD(sc, DBG_LRO,
3026          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3027          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3028
3029    /* make sure the aggregated frame is not too big to handle */
3030    if (pages > 8 * PAGES_PER_SGE) {
3031        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3032                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3033              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3034              tpa_info->len_on_bd, frag_size);
3035        bxe_panic(sc, ("sge page count error\n"));
3036        return (EINVAL);
3037    }
3038
3039    /*
3040     * Scan through the scatter gather list pulling individual mbufs into a
3041     * single mbuf for the host stack.
3042     */
3043    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3044        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3045
3046        /*
3047         * Firmware gives the indices of the SGE as if the ring is an array
3048         * (meaning that the "next" element will consume 2 indices).
3049         */
3050        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3051
3052        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3053                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3054              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3055
3056        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3057
3058        /* allocate a new mbuf for the SGE */
3059        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3060        if (rc) {
3061            /* Leave all remaining SGEs in the ring! */
3062            return (rc);
3063        }
3064
3065        /* update the fragment length */
3066        m_frag->m_len = frag_len;
3067
3068        /* concatenate the fragment to the head mbuf */
3069        m_cat(m, m_frag);
3070        fp->eth_q_stats.mbuf_alloc_sge--;
3071
3072        /* update the TPA mbuf size and remaining fragment size */
3073        m->m_pkthdr.len += frag_len;
3074        frag_size -= frag_len;
3075    }
3076
3077    BLOGD(sc, DBG_LRO,
3078          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3079          fp->index, queue, frag_size);
3080
3081    return (rc);
3082}
3083
3084static inline void
3085bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3086{
3087    int i, j;
3088
3089    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3090        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3091
3092        for (j = 0; j < 2; j++) {
3093            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3094            idx--;
3095        }
3096    }
3097}
3098
3099static inline void
3100bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3101{
3102    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3103    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3104
3105    /*
3106     * Clear the two last indices in the page to 1. These are the indices that
3107     * correspond to the "next" element, hence will never be indicated and
3108     * should be removed from the calculations.
3109     */
3110    bxe_clear_sge_mask_next_elems(fp);
3111}
3112
3113static inline void
3114bxe_update_last_max_sge(struct bxe_fastpath *fp,
3115                        uint16_t            idx)
3116{
3117    uint16_t last_max = fp->last_max_sge;
3118
3119    if (SUB_S16(idx, last_max) > 0) {
3120        fp->last_max_sge = idx;
3121    }
3122}
3123
3124static inline void
3125bxe_update_sge_prod(struct bxe_softc          *sc,
3126                    struct bxe_fastpath       *fp,
3127                    uint16_t                  sge_len,
3128                    struct eth_end_agg_rx_cqe *cqe)
3129{
3130    uint16_t last_max, last_elem, first_elem;
3131    uint16_t delta = 0;
3132    uint16_t i;
3133
3134    if (!sge_len) {
3135        return;
3136    }
3137
3138    /* first mark all used pages */
3139    for (i = 0; i < sge_len; i++) {
3140        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3141                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3142    }
3143
3144    BLOGD(sc, DBG_LRO,
3145          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3146          fp->index, sge_len - 1,
3147          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3148
3149    /* assume that the last SGE index is the biggest */
3150    bxe_update_last_max_sge(fp,
3151                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3152
3153    last_max = RX_SGE(fp->last_max_sge);
3154    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3155    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3156
3157    /* if ring is not full */
3158    if (last_elem + 1 != first_elem) {
3159        last_elem++;
3160    }
3161
3162    /* now update the prod */
3163    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3164        if (__predict_true(fp->sge_mask[i])) {
3165            break;
3166        }
3167
3168        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3169        delta += BIT_VEC64_ELEM_SZ;
3170    }
3171
3172    if (delta > 0) {
3173        fp->rx_sge_prod += delta;
3174        /* clear page-end entries */
3175        bxe_clear_sge_mask_next_elems(fp);
3176    }
3177
3178    BLOGD(sc, DBG_LRO,
3179          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3180          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3181}
3182
3183/*
3184 * The aggregation on the current TPA queue has completed. Pull the individual
3185 * mbuf fragments together into a single mbuf, perform all necessary checksum
3186 * calculations, and send the resuting mbuf to the stack.
3187 */
3188static void
3189bxe_tpa_stop(struct bxe_softc          *sc,
3190             struct bxe_fastpath       *fp,
3191             struct bxe_sw_tpa_info    *tpa_info,
3192             uint16_t                  queue,
3193             uint16_t                  pages,
3194			 struct eth_end_agg_rx_cqe *cqe,
3195             uint16_t                  cqe_idx)
3196{
3197    struct ifnet *ifp = sc->ifnet;
3198    struct mbuf *m;
3199    int rc = 0;
3200
3201    BLOGD(sc, DBG_LRO,
3202          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3203          fp->index, queue, tpa_info->placement_offset,
3204          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3205
3206    m = tpa_info->bd.m;
3207
3208    /* allocate a replacement before modifying existing mbuf */
3209    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3210    if (rc) {
3211        /* drop the frame and log an error */
3212        fp->eth_q_stats.rx_soft_errors++;
3213        goto bxe_tpa_stop_exit;
3214    }
3215
3216    /* we have a replacement, fixup the current mbuf */
3217    m_adj(m, tpa_info->placement_offset);
3218    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3219
3220    /* mark the checksums valid (taken care of by the firmware) */
3221    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3222    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3223    m->m_pkthdr.csum_data = 0xffff;
3224    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3225                               CSUM_IP_VALID   |
3226                               CSUM_DATA_VALID |
3227                               CSUM_PSEUDO_HDR);
3228
3229    /* aggregate all of the SGEs into a single mbuf */
3230    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3231    if (rc) {
3232        /* drop the packet and log an error */
3233        fp->eth_q_stats.rx_soft_errors++;
3234        m_freem(m);
3235    } else {
3236        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3237            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3238            m->m_flags |= M_VLANTAG;
3239        }
3240
3241        /* assign packet to this interface interface */
3242        m->m_pkthdr.rcvif = ifp;
3243
3244#if __FreeBSD_version >= 800000
3245        /* specify what RSS queue was used for this flow */
3246        m->m_pkthdr.flowid = fp->index;
3247        m->m_flags |= M_FLOWID;
3248#endif
3249
3250        ifp->if_ipackets++;
3251        fp->eth_q_stats.rx_tpa_pkts++;
3252
3253        /* pass the frame to the stack */
3254        (*ifp->if_input)(ifp, m);
3255    }
3256
3257    /* we passed an mbuf up the stack or dropped the frame */
3258    fp->eth_q_stats.mbuf_alloc_tpa--;
3259
3260bxe_tpa_stop_exit:
3261
3262    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3263    fp->rx_tpa_queue_used &= ~(1 << queue);
3264}
3265
3266static uint8_t
3267bxe_rxeof(struct bxe_softc    *sc,
3268          struct bxe_fastpath *fp)
3269{
3270    struct ifnet *ifp = sc->ifnet;
3271    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3272    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3273    int rx_pkts = 0;
3274    int rc;
3275
3276    BXE_FP_RX_LOCK(fp);
3277
3278    /* CQ "next element" is of the size of the regular element */
3279    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3280    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3281        hw_cq_cons++;
3282    }
3283
3284    bd_cons = fp->rx_bd_cons;
3285    bd_prod = fp->rx_bd_prod;
3286    bd_prod_fw = bd_prod;
3287    sw_cq_cons = fp->rx_cq_cons;
3288    sw_cq_prod = fp->rx_cq_prod;
3289
3290    /*
3291     * Memory barrier necessary as speculative reads of the rx
3292     * buffer can be ahead of the index in the status block
3293     */
3294    rmb();
3295
3296    BLOGD(sc, DBG_RX,
3297          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3298          fp->index, hw_cq_cons, sw_cq_cons);
3299
3300    while (sw_cq_cons != hw_cq_cons) {
3301        struct bxe_sw_rx_bd *rx_buf = NULL;
3302        union eth_rx_cqe *cqe;
3303        struct eth_fast_path_rx_cqe *cqe_fp;
3304        uint8_t cqe_fp_flags;
3305        enum eth_rx_cqe_type cqe_fp_type;
3306        uint16_t len, pad;
3307        struct mbuf *m = NULL;
3308
3309        comp_ring_cons = RCQ(sw_cq_cons);
3310        bd_prod = RX_BD(bd_prod);
3311        bd_cons = RX_BD(bd_cons);
3312
3313        cqe          = &fp->rcq_chain[comp_ring_cons];
3314        cqe_fp       = &cqe->fast_path_cqe;
3315        cqe_fp_flags = cqe_fp->type_error_flags;
3316        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3317
3318        BLOGD(sc, DBG_RX,
3319              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3320              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3321              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3322              fp->index,
3323              hw_cq_cons,
3324              sw_cq_cons,
3325              bd_prod,
3326              bd_cons,
3327              CQE_TYPE(cqe_fp_flags),
3328              cqe_fp_flags,
3329              cqe_fp->status_flags,
3330              le32toh(cqe_fp->rss_hash_result),
3331              le16toh(cqe_fp->vlan_tag),
3332              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3333
3334        /* is this a slowpath msg? */
3335        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3336            bxe_sp_event(sc, fp, cqe);
3337            goto next_cqe;
3338        }
3339
3340        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3341
3342        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3343            struct bxe_sw_tpa_info *tpa_info;
3344            uint16_t frag_size, pages;
3345            uint8_t queue;
3346
3347#if 0
3348            /* sanity check */
3349            if (!fp->tpa_enable &&
3350                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3351                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3352                      CQE_TYPE(cqe_fp_type));
3353            }
3354#endif
3355
3356            if (CQE_TYPE_START(cqe_fp_type)) {
3357                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3358                              bd_cons, bd_prod, cqe_fp);
3359                m = NULL; /* packet not ready yet */
3360                goto next_rx;
3361            }
3362
3363            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3364                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3365
3366            queue = cqe->end_agg_cqe.queue_index;
3367            tpa_info = &fp->rx_tpa_info[queue];
3368
3369            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3370                  fp->index, queue);
3371
3372            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3373                         tpa_info->len_on_bd);
3374            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3375
3376            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3377                         &cqe->end_agg_cqe, comp_ring_cons);
3378
3379            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3380
3381            goto next_cqe;
3382        }
3383
3384        /* non TPA */
3385
3386        /* is this an error packet? */
3387        if (__predict_false(cqe_fp_flags &
3388                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3389            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3390            fp->eth_q_stats.rx_soft_errors++;
3391            goto next_rx;
3392        }
3393
3394        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3395        pad = cqe_fp->placement_offset;
3396
3397        m = rx_buf->m;
3398
3399        if (__predict_false(m == NULL)) {
3400            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3401                  bd_cons, fp->index);
3402            goto next_rx;
3403        }
3404
3405        /* XXX double copy if packet length under a threshold */
3406
3407        /*
3408         * If all the buffer descriptors are filled with mbufs then fill in
3409         * the current consumer index with a new BD. Else if a maximum Rx
3410         * buffer limit is imposed then fill in the next producer index.
3411         */
3412        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3413                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3414                                      bd_prod : bd_cons);
3415        if (rc != 0) {
3416            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3417                  fp->index, rc);
3418            fp->eth_q_stats.rx_soft_errors++;
3419
3420            if (sc->max_rx_bufs != RX_BD_USABLE) {
3421                /* copy this consumer index to the producer index */
3422                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3423                       sizeof(struct bxe_sw_rx_bd));
3424                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3425            }
3426
3427            goto next_rx;
3428        }
3429
3430        /* current mbuf was detached from the bd */
3431        fp->eth_q_stats.mbuf_alloc_rx--;
3432
3433        /* we allocated a replacement mbuf, fixup the current one */
3434        m_adj(m, pad);
3435        m->m_pkthdr.len = m->m_len = len;
3436
3437        /* assign packet to this interface interface */
3438        m->m_pkthdr.rcvif = ifp;
3439
3440        /* assume no hardware checksum has complated */
3441        m->m_pkthdr.csum_flags = 0;
3442
3443        /* validate checksum if offload enabled */
3444        if (ifp->if_capenable & IFCAP_RXCSUM) {
3445            /* check for a valid IP frame */
3446            if (!(cqe->fast_path_cqe.status_flags &
3447                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3448                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3449                if (__predict_false(cqe_fp_flags &
3450                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3451                    fp->eth_q_stats.rx_hw_csum_errors++;
3452                } else {
3453                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3454                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3455                }
3456            }
3457
3458            /* check for a valid TCP/UDP frame */
3459            if (!(cqe->fast_path_cqe.status_flags &
3460                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3461                if (__predict_false(cqe_fp_flags &
3462                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3463                    fp->eth_q_stats.rx_hw_csum_errors++;
3464                } else {
3465                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3466                    m->m_pkthdr.csum_data = 0xFFFF;
3467                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3468                                               CSUM_PSEUDO_HDR);
3469                }
3470            }
3471        }
3472
3473        /* if there is a VLAN tag then flag that info */
3474        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3475            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3476            m->m_flags |= M_VLANTAG;
3477        }
3478
3479#if __FreeBSD_version >= 800000
3480        /* specify what RSS queue was used for this flow */
3481        m->m_pkthdr.flowid = fp->index;
3482        m->m_flags |= M_FLOWID;
3483#endif
3484
3485next_rx:
3486
3487        bd_cons    = RX_BD_NEXT(bd_cons);
3488        bd_prod    = RX_BD_NEXT(bd_prod);
3489        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3490
3491        /* pass the frame to the stack */
3492        if (__predict_true(m != NULL)) {
3493            ifp->if_ipackets++;
3494            rx_pkts++;
3495            (*ifp->if_input)(ifp, m);
3496        }
3497
3498next_cqe:
3499
3500        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3501        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3502
3503        /* limit spinning on the queue */
3504        if (rx_pkts == sc->rx_budget) {
3505            fp->eth_q_stats.rx_budget_reached++;
3506            break;
3507        }
3508    } /* while work to do */
3509
3510    fp->rx_bd_cons = bd_cons;
3511    fp->rx_bd_prod = bd_prod_fw;
3512    fp->rx_cq_cons = sw_cq_cons;
3513    fp->rx_cq_prod = sw_cq_prod;
3514
3515    /* Update producers */
3516    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3517
3518    fp->eth_q_stats.rx_pkts += rx_pkts;
3519    fp->eth_q_stats.rx_calls++;
3520
3521    BXE_FP_RX_UNLOCK(fp);
3522
3523    return (sw_cq_cons != hw_cq_cons);
3524}
3525
3526static uint16_t
3527bxe_free_tx_pkt(struct bxe_softc    *sc,
3528                struct bxe_fastpath *fp,
3529                uint16_t            idx)
3530{
3531    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3532    struct eth_tx_start_bd *tx_start_bd;
3533    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3534    uint16_t new_cons;
3535    int nbd;
3536
3537    /* unmap the mbuf from non-paged memory */
3538    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3539
3540    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3541    nbd = le16toh(tx_start_bd->nbd) - 1;
3542
3543#if 0
3544    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3545        bxe_panic(sc, ("BAD nbd!\n"));
3546    }
3547#endif
3548
3549    new_cons = (tx_buf->first_bd + nbd);
3550
3551#if 0
3552    struct eth_tx_bd *tx_data_bd;
3553
3554    /*
3555     * The following code doesn't do anything but is left here
3556     * for clarity on what the new value of new_cons skipped.
3557     */
3558
3559    /* get the next bd */
3560    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3561
3562    /* skip the parse bd */
3563    --nbd;
3564    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3565
3566    /* skip the TSO split header bd since they have no mapping */
3567    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3568        --nbd;
3569        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3570    }
3571
3572    /* now free frags */
3573    while (nbd > 0) {
3574        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3575        if (--nbd) {
3576            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3577        }
3578    }
3579#endif
3580
3581    /* free the mbuf */
3582    if (__predict_true(tx_buf->m != NULL)) {
3583        m_freem(tx_buf->m);
3584        fp->eth_q_stats.mbuf_alloc_tx--;
3585    } else {
3586        fp->eth_q_stats.tx_chain_lost_mbuf++;
3587    }
3588
3589    tx_buf->m = NULL;
3590    tx_buf->first_bd = 0;
3591
3592    return (new_cons);
3593}
3594
3595/* transmit timeout watchdog */
3596static int
3597bxe_watchdog(struct bxe_softc    *sc,
3598             struct bxe_fastpath *fp)
3599{
3600    BXE_FP_TX_LOCK(fp);
3601
3602    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3603        BXE_FP_TX_UNLOCK(fp);
3604        return (0);
3605    }
3606
3607    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3608
3609    BXE_FP_TX_UNLOCK(fp);
3610
3611    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3612    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3613
3614    return (-1);
3615}
3616
3617/* processes transmit completions */
3618static uint8_t
3619bxe_txeof(struct bxe_softc    *sc,
3620          struct bxe_fastpath *fp)
3621{
3622    struct ifnet *ifp = sc->ifnet;
3623    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3624    uint16_t tx_bd_avail;
3625
3626    BXE_FP_TX_LOCK_ASSERT(fp);
3627
3628    bd_cons = fp->tx_bd_cons;
3629    hw_cons = le16toh(*fp->tx_cons_sb);
3630    sw_cons = fp->tx_pkt_cons;
3631
3632    while (sw_cons != hw_cons) {
3633        pkt_cons = TX_BD(sw_cons);
3634
3635        BLOGD(sc, DBG_TX,
3636              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3637              fp->index, hw_cons, sw_cons, pkt_cons);
3638
3639        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3640
3641        sw_cons++;
3642    }
3643
3644    fp->tx_pkt_cons = sw_cons;
3645    fp->tx_bd_cons  = bd_cons;
3646
3647    BLOGD(sc, DBG_TX,
3648          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3649          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3650
3651    mb();
3652
3653    tx_bd_avail = bxe_tx_avail(sc, fp);
3654
3655    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3656        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3657    } else {
3658        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3659    }
3660
3661    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3662        /* reset the watchdog timer if there are pending transmits */
3663        fp->watchdog_timer = BXE_TX_TIMEOUT;
3664        return (TRUE);
3665    } else {
3666        /* clear watchdog when there are no pending transmits */
3667        fp->watchdog_timer = 0;
3668        return (FALSE);
3669    }
3670}
3671
3672static void
3673bxe_drain_tx_queues(struct bxe_softc *sc)
3674{
3675    struct bxe_fastpath *fp;
3676    int i, count;
3677
3678    /* wait until all TX fastpath tasks have completed */
3679    for (i = 0; i < sc->num_queues; i++) {
3680        fp = &sc->fp[i];
3681
3682        count = 1000;
3683
3684        while (bxe_has_tx_work(fp)) {
3685
3686            BXE_FP_TX_LOCK(fp);
3687            bxe_txeof(sc, fp);
3688            BXE_FP_TX_UNLOCK(fp);
3689
3690            if (count == 0) {
3691                BLOGE(sc, "Timeout waiting for fp[%d] "
3692                          "transmits to complete!\n", i);
3693                bxe_panic(sc, ("tx drain failure\n"));
3694                return;
3695            }
3696
3697            count--;
3698            DELAY(1000);
3699            rmb();
3700        }
3701    }
3702
3703    return;
3704}
3705
3706static int
3707bxe_del_all_macs(struct bxe_softc          *sc,
3708                 struct ecore_vlan_mac_obj *mac_obj,
3709                 int                       mac_type,
3710                 uint8_t                   wait_for_comp)
3711{
3712    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3713    int rc;
3714
3715    /* wait for completion of requested */
3716    if (wait_for_comp) {
3717        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3718    }
3719
3720    /* Set the mac type of addresses we want to clear */
3721    bxe_set_bit(mac_type, &vlan_mac_flags);
3722
3723    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3724    if (rc < 0) {
3725        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3726    }
3727
3728    return (rc);
3729}
3730
3731static int
3732bxe_fill_accept_flags(struct bxe_softc *sc,
3733                      uint32_t         rx_mode,
3734                      unsigned long    *rx_accept_flags,
3735                      unsigned long    *tx_accept_flags)
3736{
3737    /* Clear the flags first */
3738    *rx_accept_flags = 0;
3739    *tx_accept_flags = 0;
3740
3741    switch (rx_mode) {
3742    case BXE_RX_MODE_NONE:
3743        /*
3744         * 'drop all' supersedes any accept flags that may have been
3745         * passed to the function.
3746         */
3747        break;
3748
3749    case BXE_RX_MODE_NORMAL:
3750        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3751        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3752        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3753
3754        /* internal switching mode */
3755        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3756        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3757        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3758
3759        break;
3760
3761    case BXE_RX_MODE_ALLMULTI:
3762        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3763        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3764        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3765
3766        /* internal switching mode */
3767        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3768        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3769        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3770
3771        break;
3772
3773    case BXE_RX_MODE_PROMISC:
3774        /*
3775         * According to deffinition of SI mode, iface in promisc mode
3776         * should receive matched and unmatched (in resolution of port)
3777         * unicast packets.
3778         */
3779        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3780        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3781        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3782        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3783
3784        /* internal switching mode */
3785        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3786        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3787
3788        if (IS_MF_SI(sc)) {
3789            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3790        } else {
3791            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3792        }
3793
3794        break;
3795
3796    default:
3797        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3798        return (-1);
3799    }
3800
3801    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3802    if (rx_mode != BXE_RX_MODE_NONE) {
3803        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3804        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3805    }
3806
3807    return (0);
3808}
3809
3810static int
3811bxe_set_q_rx_mode(struct bxe_softc *sc,
3812                  uint8_t          cl_id,
3813                  unsigned long    rx_mode_flags,
3814                  unsigned long    rx_accept_flags,
3815                  unsigned long    tx_accept_flags,
3816                  unsigned long    ramrod_flags)
3817{
3818    struct ecore_rx_mode_ramrod_params ramrod_param;
3819    int rc;
3820
3821    memset(&ramrod_param, 0, sizeof(ramrod_param));
3822
3823    /* Prepare ramrod parameters */
3824    ramrod_param.cid = 0;
3825    ramrod_param.cl_id = cl_id;
3826    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3827    ramrod_param.func_id = SC_FUNC(sc);
3828
3829    ramrod_param.pstate = &sc->sp_state;
3830    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3831
3832    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3833    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3834
3835    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3836
3837    ramrod_param.ramrod_flags = ramrod_flags;
3838    ramrod_param.rx_mode_flags = rx_mode_flags;
3839
3840    ramrod_param.rx_accept_flags = rx_accept_flags;
3841    ramrod_param.tx_accept_flags = tx_accept_flags;
3842
3843    rc = ecore_config_rx_mode(sc, &ramrod_param);
3844    if (rc < 0) {
3845        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3846        return (rc);
3847    }
3848
3849    return (0);
3850}
3851
3852static int
3853bxe_set_storm_rx_mode(struct bxe_softc *sc)
3854{
3855    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3856    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3857    int rc;
3858
3859    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3860                               &tx_accept_flags);
3861    if (rc) {
3862        return (rc);
3863    }
3864
3865    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3866    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3867
3868    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3869    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3870                              rx_accept_flags, tx_accept_flags,
3871                              ramrod_flags));
3872}
3873
3874/* returns the "mcp load_code" according to global load_count array */
3875static int
3876bxe_nic_load_no_mcp(struct bxe_softc *sc)
3877{
3878    int path = SC_PATH(sc);
3879    int port = SC_PORT(sc);
3880
3881    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3882          path, load_count[path][0], load_count[path][1],
3883          load_count[path][2]);
3884    load_count[path][0]++;
3885    load_count[path][1 + port]++;
3886    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3887          path, load_count[path][0], load_count[path][1],
3888          load_count[path][2]);
3889    if (load_count[path][0] == 1) {
3890        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3891    } else if (load_count[path][1 + port] == 1) {
3892        return (FW_MSG_CODE_DRV_LOAD_PORT);
3893    } else {
3894        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3895    }
3896}
3897
3898/* returns the "mcp load_code" according to global load_count array */
3899static int
3900bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3901{
3902    int port = SC_PORT(sc);
3903    int path = SC_PATH(sc);
3904
3905    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3906          path, load_count[path][0], load_count[path][1],
3907          load_count[path][2]);
3908    load_count[path][0]--;
3909    load_count[path][1 + port]--;
3910    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3911          path, load_count[path][0], load_count[path][1],
3912          load_count[path][2]);
3913    if (load_count[path][0] == 0) {
3914        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3915    } else if (load_count[path][1 + port] == 0) {
3916        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3917    } else {
3918        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3919    }
3920}
3921
3922/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3923static uint32_t
3924bxe_send_unload_req(struct bxe_softc *sc,
3925                    int              unload_mode)
3926{
3927    uint32_t reset_code = 0;
3928#if 0
3929    int port = SC_PORT(sc);
3930    int path = SC_PATH(sc);
3931#endif
3932
3933    /* Select the UNLOAD request mode */
3934    if (unload_mode == UNLOAD_NORMAL) {
3935        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3936    }
3937#if 0
3938    else if (sc->flags & BXE_NO_WOL_FLAG) {
3939        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3940    } else if (sc->wol) {
3941        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3942        uint8_t *mac_addr = sc->dev->dev_addr;
3943        uint32_t val;
3944        uint16_t pmc;
3945
3946        /*
3947         * The mac address is written to entries 1-4 to
3948         * preserve entry 0 which is used by the PMF
3949         */
3950        uint8_t entry = (SC_VN(sc) + 1)*8;
3951
3952        val = (mac_addr[0] << 8) | mac_addr[1];
3953        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3954
3955        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3956              (mac_addr[4] << 8) | mac_addr[5];
3957        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3958
3959        /* Enable the PME and clear the status */
3960        pmc = pci_read_config(sc->dev,
3961                              (sc->devinfo.pcie_pm_cap_reg +
3962                               PCIR_POWER_STATUS),
3963                              2);
3964        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3965        pci_write_config(sc->dev,
3966                         (sc->devinfo.pcie_pm_cap_reg +
3967                          PCIR_POWER_STATUS),
3968                         pmc, 4);
3969
3970        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3971    }
3972#endif
3973    else {
3974        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3975    }
3976
3977    /* Send the request to the MCP */
3978    if (!BXE_NOMCP(sc)) {
3979        reset_code = bxe_fw_command(sc, reset_code, 0);
3980    } else {
3981        reset_code = bxe_nic_unload_no_mcp(sc);
3982    }
3983
3984    return (reset_code);
3985}
3986
3987/* send UNLOAD_DONE command to the MCP */
3988static void
3989bxe_send_unload_done(struct bxe_softc *sc,
3990                     uint8_t          keep_link)
3991{
3992    uint32_t reset_param =
3993        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3994
3995    /* Report UNLOAD_DONE to MCP */
3996    if (!BXE_NOMCP(sc)) {
3997        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3998    }
3999}
4000
4001static int
4002bxe_func_wait_started(struct bxe_softc *sc)
4003{
4004    int tout = 50;
4005
4006    if (!sc->port.pmf) {
4007        return (0);
4008    }
4009
4010    /*
4011     * (assumption: No Attention from MCP at this stage)
4012     * PMF probably in the middle of TX disable/enable transaction
4013     * 1. Sync IRS for default SB
4014     * 2. Sync SP queue - this guarantees us that attention handling started
4015     * 3. Wait, that TX disable/enable transaction completes
4016     *
4017     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4018     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4019     * received completion for the transaction the state is TX_STOPPED.
4020     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4021     * transaction.
4022     */
4023
4024    /* XXX make sure default SB ISR is done */
4025    /* need a way to synchronize an irq (intr_mtx?) */
4026
4027    /* XXX flush any work queues */
4028
4029    while (ecore_func_get_state(sc, &sc->func_obj) !=
4030           ECORE_F_STATE_STARTED && tout--) {
4031        DELAY(20000);
4032    }
4033
4034    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4035        /*
4036         * Failed to complete the transaction in a "good way"
4037         * Force both transactions with CLR bit.
4038         */
4039        struct ecore_func_state_params func_params = { NULL };
4040
4041        BLOGE(sc, "Unexpected function state! "
4042                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4043
4044        func_params.f_obj = &sc->func_obj;
4045        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4046
4047        /* STARTED-->TX_STOPPED */
4048        func_params.cmd = ECORE_F_CMD_TX_STOP;
4049        ecore_func_state_change(sc, &func_params);
4050
4051        /* TX_STOPPED-->STARTED */
4052        func_params.cmd = ECORE_F_CMD_TX_START;
4053        return (ecore_func_state_change(sc, &func_params));
4054    }
4055
4056    return (0);
4057}
4058
4059static int
4060bxe_stop_queue(struct bxe_softc *sc,
4061               int              index)
4062{
4063    struct bxe_fastpath *fp = &sc->fp[index];
4064    struct ecore_queue_state_params q_params = { NULL };
4065    int rc;
4066
4067    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4068
4069    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4070    /* We want to wait for completion in this context */
4071    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4072
4073    /* Stop the primary connection: */
4074
4075    /* ...halt the connection */
4076    q_params.cmd = ECORE_Q_CMD_HALT;
4077    rc = ecore_queue_state_change(sc, &q_params);
4078    if (rc) {
4079        return (rc);
4080    }
4081
4082    /* ...terminate the connection */
4083    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4084    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4085    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4086    rc = ecore_queue_state_change(sc, &q_params);
4087    if (rc) {
4088        return (rc);
4089    }
4090
4091    /* ...delete cfc entry */
4092    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4093    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4094    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4095    return (ecore_queue_state_change(sc, &q_params));
4096}
4097
4098/* wait for the outstanding SP commands */
4099static inline uint8_t
4100bxe_wait_sp_comp(struct bxe_softc *sc,
4101                 unsigned long    mask)
4102{
4103    unsigned long tmp;
4104    int tout = 5000; /* wait for 5 secs tops */
4105
4106    while (tout--) {
4107        mb();
4108        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4109            return (TRUE);
4110        }
4111
4112        DELAY(1000);
4113    }
4114
4115    mb();
4116
4117    tmp = atomic_load_acq_long(&sc->sp_state);
4118    if (tmp & mask) {
4119        BLOGE(sc, "Filtering completion timed out: "
4120                  "sp_state 0x%lx, mask 0x%lx\n",
4121              tmp, mask);
4122        return (FALSE);
4123    }
4124
4125    return (FALSE);
4126}
4127
4128static int
4129bxe_func_stop(struct bxe_softc *sc)
4130{
4131    struct ecore_func_state_params func_params = { NULL };
4132    int rc;
4133
4134    /* prepare parameters for function state transitions */
4135    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4136    func_params.f_obj = &sc->func_obj;
4137    func_params.cmd = ECORE_F_CMD_STOP;
4138
4139    /*
4140     * Try to stop the function the 'good way'. If it fails (in case
4141     * of a parity error during bxe_chip_cleanup()) and we are
4142     * not in a debug mode, perform a state transaction in order to
4143     * enable further HW_RESET transaction.
4144     */
4145    rc = ecore_func_state_change(sc, &func_params);
4146    if (rc) {
4147        BLOGE(sc, "FUNC_STOP ramrod failed. "
4148                  "Running a dry transaction\n");
4149        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4150        return (ecore_func_state_change(sc, &func_params));
4151    }
4152
4153    return (0);
4154}
4155
4156static int
4157bxe_reset_hw(struct bxe_softc *sc,
4158             uint32_t         load_code)
4159{
4160    struct ecore_func_state_params func_params = { NULL };
4161
4162    /* Prepare parameters for function state transitions */
4163    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4164
4165    func_params.f_obj = &sc->func_obj;
4166    func_params.cmd = ECORE_F_CMD_HW_RESET;
4167
4168    func_params.params.hw_init.load_phase = load_code;
4169
4170    return (ecore_func_state_change(sc, &func_params));
4171}
4172
4173static void
4174bxe_int_disable_sync(struct bxe_softc *sc,
4175                     int              disable_hw)
4176{
4177    if (disable_hw) {
4178        /* prevent the HW from sending interrupts */
4179        bxe_int_disable(sc);
4180    }
4181
4182    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4183    /* make sure all ISRs are done */
4184
4185    /* XXX make sure sp_task is not running */
4186    /* cancel and flush work queues */
4187}
4188
4189static void
4190bxe_chip_cleanup(struct bxe_softc *sc,
4191                 uint32_t         unload_mode,
4192                 uint8_t          keep_link)
4193{
4194    int port = SC_PORT(sc);
4195    struct ecore_mcast_ramrod_params rparam = { NULL };
4196    uint32_t reset_code;
4197    int i, rc = 0;
4198
4199    bxe_drain_tx_queues(sc);
4200
4201    /* give HW time to discard old tx messages */
4202    DELAY(1000);
4203
4204    /* Clean all ETH MACs */
4205    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4206    if (rc < 0) {
4207        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4208    }
4209
4210    /* Clean up UC list  */
4211    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4212    if (rc < 0) {
4213        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4214    }
4215
4216    /* Disable LLH */
4217    if (!CHIP_IS_E1(sc)) {
4218        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4219    }
4220
4221    /* Set "drop all" to stop Rx */
4222
4223    /*
4224     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4225     * a race between the completion code and this code.
4226     */
4227    BXE_MCAST_LOCK(sc);
4228
4229    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4230        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4231    } else {
4232        bxe_set_storm_rx_mode(sc);
4233    }
4234
4235    /* Clean up multicast configuration */
4236    rparam.mcast_obj = &sc->mcast_obj;
4237    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4238    if (rc < 0) {
4239        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4240    }
4241
4242    BXE_MCAST_UNLOCK(sc);
4243
4244    // XXX bxe_iov_chip_cleanup(sc);
4245
4246    /*
4247     * Send the UNLOAD_REQUEST to the MCP. This will return if
4248     * this function should perform FUNCTION, PORT, or COMMON HW
4249     * reset.
4250     */
4251    reset_code = bxe_send_unload_req(sc, unload_mode);
4252
4253    /*
4254     * (assumption: No Attention from MCP at this stage)
4255     * PMF probably in the middle of TX disable/enable transaction
4256     */
4257    rc = bxe_func_wait_started(sc);
4258    if (rc) {
4259        BLOGE(sc, "bxe_func_wait_started failed\n");
4260    }
4261
4262    /*
4263     * Close multi and leading connections
4264     * Completions for ramrods are collected in a synchronous way
4265     */
4266    for (i = 0; i < sc->num_queues; i++) {
4267        if (bxe_stop_queue(sc, i)) {
4268            goto unload_error;
4269        }
4270    }
4271
4272    /*
4273     * If SP settings didn't get completed so far - something
4274     * very wrong has happen.
4275     */
4276    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4277        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4278    }
4279
4280unload_error:
4281
4282    rc = bxe_func_stop(sc);
4283    if (rc) {
4284        BLOGE(sc, "Function stop failed!\n");
4285    }
4286
4287    /* disable HW interrupts */
4288    bxe_int_disable_sync(sc, TRUE);
4289
4290    /* detach interrupts */
4291    bxe_interrupt_detach(sc);
4292
4293    /* Reset the chip */
4294    rc = bxe_reset_hw(sc, reset_code);
4295    if (rc) {
4296        BLOGE(sc, "Hardware reset failed\n");
4297    }
4298
4299    /* Report UNLOAD_DONE to MCP */
4300    bxe_send_unload_done(sc, keep_link);
4301}
4302
4303static void
4304bxe_disable_close_the_gate(struct bxe_softc *sc)
4305{
4306    uint32_t val;
4307    int port = SC_PORT(sc);
4308
4309    BLOGD(sc, DBG_LOAD,
4310          "Disabling 'close the gates'\n");
4311
4312    if (CHIP_IS_E1(sc)) {
4313        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4314                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4315        val = REG_RD(sc, addr);
4316        val &= ~(0x300);
4317        REG_WR(sc, addr, val);
4318    } else {
4319        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4320        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4321                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4322        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4323    }
4324}
4325
4326/*
4327 * Cleans the object that have internal lists without sending
4328 * ramrods. Should be run when interrutps are disabled.
4329 */
4330static void
4331bxe_squeeze_objects(struct bxe_softc *sc)
4332{
4333    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4334    struct ecore_mcast_ramrod_params rparam = { NULL };
4335    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4336    int rc;
4337
4338    /* Cleanup MACs' object first... */
4339
4340    /* Wait for completion of requested */
4341    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4342    /* Perform a dry cleanup */
4343    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4344
4345    /* Clean ETH primary MAC */
4346    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4347    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4348                             &ramrod_flags);
4349    if (rc != 0) {
4350        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4351    }
4352
4353    /* Cleanup UC list */
4354    vlan_mac_flags = 0;
4355    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4356    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4357                             &ramrod_flags);
4358    if (rc != 0) {
4359        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4360    }
4361
4362    /* Now clean mcast object... */
4363
4364    rparam.mcast_obj = &sc->mcast_obj;
4365    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4366
4367    /* Add a DEL command... */
4368    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4369    if (rc < 0) {
4370        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4371    }
4372
4373    /* now wait until all pending commands are cleared */
4374
4375    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4376    while (rc != 0) {
4377        if (rc < 0) {
4378            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4379            return;
4380        }
4381
4382        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4383    }
4384}
4385
4386/* stop the controller */
4387static __noinline int
4388bxe_nic_unload(struct bxe_softc *sc,
4389               uint32_t         unload_mode,
4390               uint8_t          keep_link)
4391{
4392    uint8_t global = FALSE;
4393    uint32_t val;
4394
4395    BXE_CORE_LOCK_ASSERT(sc);
4396
4397    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4398
4399    /* mark driver as unloaded in shmem2 */
4400    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4401        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4402        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4403                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4404    }
4405
4406    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4407        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4408        /*
4409         * We can get here if the driver has been unloaded
4410         * during parity error recovery and is either waiting for a
4411         * leader to complete or for other functions to unload and
4412         * then ifconfig down has been issued. In this case we want to
4413         * unload and let other functions to complete a recovery
4414         * process.
4415         */
4416        sc->recovery_state = BXE_RECOVERY_DONE;
4417        sc->is_leader = 0;
4418        bxe_release_leader_lock(sc);
4419        mb();
4420
4421        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4422        BLOGE(sc, "Can't unload in closed or error state\n");
4423        return (-1);
4424    }
4425
4426    /*
4427     * Nothing to do during unload if previous bxe_nic_load()
4428     * did not completed succesfully - all resourses are released.
4429     */
4430    if ((sc->state == BXE_STATE_CLOSED) ||
4431        (sc->state == BXE_STATE_ERROR)) {
4432        return (0);
4433    }
4434
4435    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4436    mb();
4437
4438    /* stop tx */
4439    bxe_tx_disable(sc);
4440
4441    sc->rx_mode = BXE_RX_MODE_NONE;
4442    /* XXX set rx mode ??? */
4443
4444    if (IS_PF(sc)) {
4445        /* set ALWAYS_ALIVE bit in shmem */
4446        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4447
4448        bxe_drv_pulse(sc);
4449
4450        bxe_stats_handle(sc, STATS_EVENT_STOP);
4451        bxe_save_statistics(sc);
4452    }
4453
4454    /* wait till consumers catch up with producers in all queues */
4455    bxe_drain_tx_queues(sc);
4456
4457    /* if VF indicate to PF this function is going down (PF will delete sp
4458     * elements and clear initializations
4459     */
4460    if (IS_VF(sc)) {
4461        ; /* bxe_vfpf_close_vf(sc); */
4462    } else if (unload_mode != UNLOAD_RECOVERY) {
4463        /* if this is a normal/close unload need to clean up chip */
4464        bxe_chip_cleanup(sc, unload_mode, keep_link);
4465    } else {
4466        /* Send the UNLOAD_REQUEST to the MCP */
4467        bxe_send_unload_req(sc, unload_mode);
4468
4469        /*
4470         * Prevent transactions to host from the functions on the
4471         * engine that doesn't reset global blocks in case of global
4472         * attention once gloabl blocks are reset and gates are opened
4473         * (the engine which leader will perform the recovery
4474         * last).
4475         */
4476        if (!CHIP_IS_E1x(sc)) {
4477            bxe_pf_disable(sc);
4478        }
4479
4480        /* disable HW interrupts */
4481        bxe_int_disable_sync(sc, TRUE);
4482
4483        /* detach interrupts */
4484        bxe_interrupt_detach(sc);
4485
4486        /* Report UNLOAD_DONE to MCP */
4487        bxe_send_unload_done(sc, FALSE);
4488    }
4489
4490    /*
4491     * At this stage no more interrupts will arrive so we may safely clean
4492     * the queue'able objects here in case they failed to get cleaned so far.
4493     */
4494    if (IS_PF(sc)) {
4495        bxe_squeeze_objects(sc);
4496    }
4497
4498    /* There should be no more pending SP commands at this stage */
4499    sc->sp_state = 0;
4500
4501    sc->port.pmf = 0;
4502
4503    bxe_free_fp_buffers(sc);
4504
4505    if (IS_PF(sc)) {
4506        bxe_free_mem(sc);
4507    }
4508
4509    bxe_free_fw_stats_mem(sc);
4510
4511    sc->state = BXE_STATE_CLOSED;
4512
4513    /*
4514     * Check if there are pending parity attentions. If there are - set
4515     * RECOVERY_IN_PROGRESS.
4516     */
4517    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4518        bxe_set_reset_in_progress(sc);
4519
4520        /* Set RESET_IS_GLOBAL if needed */
4521        if (global) {
4522            bxe_set_reset_global(sc);
4523        }
4524    }
4525
4526    /*
4527     * The last driver must disable a "close the gate" if there is no
4528     * parity attention or "process kill" pending.
4529     */
4530    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4531        bxe_reset_is_done(sc, SC_PATH(sc))) {
4532        bxe_disable_close_the_gate(sc);
4533    }
4534
4535    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4536
4537    return (0);
4538}
4539
4540/*
4541 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4542 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4543 */
4544static int
4545bxe_ifmedia_update(struct ifnet *ifp)
4546{
4547    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4548    struct ifmedia *ifm;
4549
4550    ifm = &sc->ifmedia;
4551
4552    /* We only support Ethernet media type. */
4553    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4554        return (EINVAL);
4555    }
4556
4557    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4558    case IFM_AUTO:
4559         break;
4560    case IFM_10G_CX4:
4561    case IFM_10G_SR:
4562    case IFM_10G_T:
4563    case IFM_10G_TWINAX:
4564    default:
4565        /* We don't support changing the media type. */
4566        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4567              IFM_SUBTYPE(ifm->ifm_media));
4568        return (EINVAL);
4569    }
4570
4571    return (0);
4572}
4573
4574/*
4575 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4576 */
4577static void
4578bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4579{
4580    struct bxe_softc *sc = ifp->if_softc;
4581
4582    /* Report link down if the driver isn't running. */
4583    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4584        ifmr->ifm_active |= IFM_NONE;
4585        return;
4586    }
4587
4588    /* Setup the default interface info. */
4589    ifmr->ifm_status = IFM_AVALID;
4590    ifmr->ifm_active = IFM_ETHER;
4591
4592    if (sc->link_vars.link_up) {
4593        ifmr->ifm_status |= IFM_ACTIVE;
4594    } else {
4595        ifmr->ifm_active |= IFM_NONE;
4596        return;
4597    }
4598
4599    ifmr->ifm_active |= sc->media;
4600
4601    if (sc->link_vars.duplex == DUPLEX_FULL) {
4602        ifmr->ifm_active |= IFM_FDX;
4603    } else {
4604        ifmr->ifm_active |= IFM_HDX;
4605    }
4606}
4607
4608static int
4609bxe_ioctl_nvram(struct bxe_softc *sc,
4610                uint32_t         priv_op,
4611                struct ifreq     *ifr)
4612{
4613    struct bxe_nvram_data nvdata_base;
4614    struct bxe_nvram_data *nvdata;
4615    int len;
4616    int error = 0;
4617
4618    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4619
4620    len = (sizeof(struct bxe_nvram_data) +
4621           nvdata_base.len -
4622           sizeof(uint32_t));
4623
4624    if (len > sizeof(struct bxe_nvram_data)) {
4625        if ((nvdata = (struct bxe_nvram_data *)
4626                 malloc(len, M_DEVBUF,
4627                        (M_NOWAIT | M_ZERO))) == NULL) {
4628            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4629            return (1);
4630        }
4631        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4632    } else {
4633        nvdata = &nvdata_base;
4634    }
4635
4636    if (priv_op == BXE_IOC_RD_NVRAM) {
4637        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4638              nvdata->offset, nvdata->len);
4639        error = bxe_nvram_read(sc,
4640                               nvdata->offset,
4641                               (uint8_t *)nvdata->value,
4642                               nvdata->len);
4643        copyout(nvdata, ifr->ifr_data, len);
4644    } else { /* BXE_IOC_WR_NVRAM */
4645        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4646              nvdata->offset, nvdata->len);
4647        copyin(ifr->ifr_data, nvdata, len);
4648        error = bxe_nvram_write(sc,
4649                                nvdata->offset,
4650                                (uint8_t *)nvdata->value,
4651                                nvdata->len);
4652    }
4653
4654    if (len > sizeof(struct bxe_nvram_data)) {
4655        free(nvdata, M_DEVBUF);
4656    }
4657
4658    return (error);
4659}
4660
4661static int
4662bxe_ioctl_stats_show(struct bxe_softc *sc,
4663                     uint32_t         priv_op,
4664                     struct ifreq     *ifr)
4665{
4666    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4667    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4668    caddr_t p_tmp;
4669    uint32_t *offset;
4670    int i;
4671
4672    switch (priv_op)
4673    {
4674    case BXE_IOC_STATS_SHOW_NUM:
4675        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4676        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4677            BXE_NUM_ETH_STATS;
4678        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4679            STAT_NAME_LEN;
4680        return (0);
4681
4682    case BXE_IOC_STATS_SHOW_STR:
4683        memset(ifr->ifr_data, 0, str_size);
4684        p_tmp = ifr->ifr_data;
4685        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4686            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4687            p_tmp += STAT_NAME_LEN;
4688        }
4689        return (0);
4690
4691    case BXE_IOC_STATS_SHOW_CNT:
4692        memset(ifr->ifr_data, 0, stats_size);
4693        p_tmp = ifr->ifr_data;
4694        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4695            offset = ((uint32_t *)&sc->eth_stats +
4696                      bxe_eth_stats_arr[i].offset);
4697            switch (bxe_eth_stats_arr[i].size) {
4698            case 4:
4699                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4700                break;
4701            case 8:
4702                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4703                break;
4704            default:
4705                *((uint64_t *)p_tmp) = 0;
4706            }
4707            p_tmp += sizeof(uint64_t);
4708        }
4709        return (0);
4710
4711    default:
4712        return (-1);
4713    }
4714}
4715
4716static void
4717bxe_handle_chip_tq(void *context,
4718                   int  pending)
4719{
4720    struct bxe_softc *sc = (struct bxe_softc *)context;
4721    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4722
4723    switch (work)
4724    {
4725    case CHIP_TQ_START:
4726        if ((sc->ifnet->if_flags & IFF_UP) &&
4727            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4728            /* start the interface */
4729            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4730            BXE_CORE_LOCK(sc);
4731            bxe_init_locked(sc);
4732            BXE_CORE_UNLOCK(sc);
4733        }
4734        break;
4735
4736    case CHIP_TQ_STOP:
4737        if (!(sc->ifnet->if_flags & IFF_UP) &&
4738            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4739            /* bring down the interface */
4740            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4741            bxe_periodic_stop(sc);
4742            BXE_CORE_LOCK(sc);
4743            bxe_stop_locked(sc);
4744            BXE_CORE_UNLOCK(sc);
4745        }
4746        break;
4747
4748    case CHIP_TQ_REINIT:
4749        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4750            /* restart the interface */
4751            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4752            bxe_periodic_stop(sc);
4753            BXE_CORE_LOCK(sc);
4754            bxe_stop_locked(sc);
4755            bxe_init_locked(sc);
4756            BXE_CORE_UNLOCK(sc);
4757        }
4758        break;
4759
4760    default:
4761        break;
4762    }
4763}
4764
4765/*
4766 * Handles any IOCTL calls from the operating system.
4767 *
4768 * Returns:
4769 *   0 = Success, >0 Failure
4770 */
4771static int
4772bxe_ioctl(struct ifnet *ifp,
4773          u_long       command,
4774          caddr_t      data)
4775{
4776    struct bxe_softc *sc = ifp->if_softc;
4777    struct ifreq *ifr = (struct ifreq *)data;
4778    struct bxe_nvram_data *nvdata;
4779    uint32_t priv_op;
4780    int mask = 0;
4781    int reinit = 0;
4782    int error = 0;
4783
4784    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4785    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4786
4787    switch (command)
4788    {
4789    case SIOCSIFMTU:
4790        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4791              ifr->ifr_mtu);
4792
4793        if (sc->mtu == ifr->ifr_mtu) {
4794            /* nothing to change */
4795            break;
4796        }
4797
4798        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4799            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4800                  ifr->ifr_mtu, mtu_min, mtu_max);
4801            error = EINVAL;
4802            break;
4803        }
4804
4805        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4806                             (unsigned long)ifr->ifr_mtu);
4807        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4808                              (unsigned long)ifr->ifr_mtu);
4809
4810        reinit = 1;
4811        break;
4812
4813    case SIOCSIFFLAGS:
4814        /* toggle the interface state up or down */
4815        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4816
4817        /* check if the interface is up */
4818        if (ifp->if_flags & IFF_UP) {
4819            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4820                /* set the receive mode flags */
4821                bxe_set_rx_mode(sc);
4822            } else {
4823                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4824                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4825            }
4826        } else {
4827            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4828                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4829                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4830            }
4831        }
4832
4833        break;
4834
4835    case SIOCADDMULTI:
4836    case SIOCDELMULTI:
4837        /* add/delete multicast addresses */
4838        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4839
4840        /* check if the interface is up */
4841        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4842            /* set the receive mode flags */
4843            bxe_set_rx_mode(sc);
4844        }
4845
4846        break;
4847
4848    case SIOCSIFCAP:
4849        /* find out which capabilities have changed */
4850        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4851
4852        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4853              mask);
4854
4855        /* toggle the LRO capabilites enable flag */
4856        if (mask & IFCAP_LRO) {
4857            ifp->if_capenable ^= IFCAP_LRO;
4858            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4859                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4860            reinit = 1;
4861        }
4862
4863        /* toggle the TXCSUM checksum capabilites enable flag */
4864        if (mask & IFCAP_TXCSUM) {
4865            ifp->if_capenable ^= IFCAP_TXCSUM;
4866            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4867                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4868            if (ifp->if_capenable & IFCAP_TXCSUM) {
4869                ifp->if_hwassist = (CSUM_IP       |
4870                                    CSUM_TCP      |
4871                                    CSUM_UDP      |
4872                                    CSUM_TSO      |
4873                                    CSUM_TCP_IPV6 |
4874                                    CSUM_UDP_IPV6);
4875            } else {
4876                ifp->if_hwassist = 0;
4877            }
4878        }
4879
4880        /* toggle the RXCSUM checksum capabilities enable flag */
4881        if (mask & IFCAP_RXCSUM) {
4882            ifp->if_capenable ^= IFCAP_RXCSUM;
4883            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4884                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4885            if (ifp->if_capenable & IFCAP_RXCSUM) {
4886                ifp->if_hwassist = (CSUM_IP       |
4887                                    CSUM_TCP      |
4888                                    CSUM_UDP      |
4889                                    CSUM_TSO      |
4890                                    CSUM_TCP_IPV6 |
4891                                    CSUM_UDP_IPV6);
4892            } else {
4893                ifp->if_hwassist = 0;
4894            }
4895        }
4896
4897        /* toggle TSO4 capabilities enabled flag */
4898        if (mask & IFCAP_TSO4) {
4899            ifp->if_capenable ^= IFCAP_TSO4;
4900            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4901                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle TSO6 capabilities enabled flag */
4905        if (mask & IFCAP_TSO6) {
4906            ifp->if_capenable ^= IFCAP_TSO6;
4907            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4908                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4909        }
4910
4911        /* toggle VLAN_HWTSO capabilities enabled flag */
4912        if (mask & IFCAP_VLAN_HWTSO) {
4913            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4914            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4915                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4916        }
4917
4918        /* toggle VLAN_HWCSUM capabilities enabled flag */
4919        if (mask & IFCAP_VLAN_HWCSUM) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_MTU capabilities enable flag */
4926        if (mask & IFCAP_VLAN_MTU) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4933        if (mask & IFCAP_VLAN_HWTAGGING) {
4934            /* XXX investigate this... */
4935            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4936            error = EINVAL;
4937        }
4938
4939        /* toggle VLAN_HWFILTER capabilities enabled flag */
4940        if (mask & IFCAP_VLAN_HWFILTER) {
4941            /* XXX investigate this... */
4942            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4943            error = EINVAL;
4944        }
4945
4946        /* XXX not yet...
4947         * IFCAP_WOL_MAGIC
4948         */
4949
4950        break;
4951
4952    case SIOCSIFMEDIA:
4953    case SIOCGIFMEDIA:
4954        /* set/get interface media */
4955        BLOGD(sc, DBG_IOCTL,
4956              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4957              (command & 0xff));
4958        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4959        break;
4960
4961    case SIOCGPRIVATE_0:
4962        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4963
4964        switch (priv_op)
4965        {
4966        case BXE_IOC_RD_NVRAM:
4967        case BXE_IOC_WR_NVRAM:
4968            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4969            BLOGD(sc, DBG_IOCTL,
4970                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4971                  nvdata->offset, nvdata->len);
4972            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4973            break;
4974
4975        case BXE_IOC_STATS_SHOW_NUM:
4976        case BXE_IOC_STATS_SHOW_STR:
4977        case BXE_IOC_STATS_SHOW_CNT:
4978            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4979                  priv_op);
4980            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4981            break;
4982
4983        default:
4984            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4985            error = EINVAL;
4986            break;
4987        }
4988
4989        break;
4990
4991    default:
4992        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4993              (command & 0xff));
4994        error = ether_ioctl(ifp, command, data);
4995        break;
4996    }
4997
4998    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4999        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
5000              "Re-initializing hardware from IOCTL change\n");
5001        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
5002        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
5003    }
5004
5005    return (error);
5006}
5007
5008static __noinline void
5009bxe_dump_mbuf(struct bxe_softc *sc,
5010              struct mbuf      *m,
5011              uint8_t          contents)
5012{
5013    char * type;
5014
5015    if (!(sc->debug & DBG_MBUF)) {
5016        return;
5017    }
5018
5019    if (m == NULL) {
5020        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5021        return;
5022    }
5023
5024    while (m) {
5025        BLOGD(sc, DBG_MBUF,
5026              "mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5027              m, m->m_len, m->m_flags,
5028              "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
5029
5030        if (m->m_flags & M_PKTHDR) {
5031             BLOGD(sc, DBG_MBUF,
5032                   "- m_pkthdr: len=%d flags=0x%b csum_flags=%b\n",
5033                   m->m_pkthdr.len, m->m_flags,
5034                   "\20\12M_BCAST\13M_MCAST\14M_FRAG"
5035                   "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
5036                   "\22M_PROMISC\23M_NOFREE",
5037                   (int)m->m_pkthdr.csum_flags,
5038                   "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
5039                   "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
5040                   "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
5041                   "\14CSUM_PSEUDO_HDR");
5042        }
5043
5044        if (m->m_flags & M_EXT) {
5045            switch (m->m_ext.ext_type) {
5046            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5047            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5048            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5049            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5050            case EXT_PACKET:     type = "EXT_PACKET";     break;
5051            case EXT_MBUF:       type = "EXT_MBUF";       break;
5052            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5053            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5054            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5055            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5056            default:             type = "UNKNOWN";        break;
5057            }
5058
5059            BLOGD(sc, DBG_MBUF,
5060                  "- m_ext: %p ext_size=%d, type=%s\n",
5061                  m->m_ext.ext_buf, m->m_ext.ext_size, type);
5062        }
5063
5064        if (contents) {
5065            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5066        }
5067
5068        m = m->m_next;
5069    }
5070}
5071
5072/*
5073 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5074 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5075 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5076 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5077 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5078 */
5079static int
5080bxe_chktso_window(struct bxe_softc  *sc,
5081                  int               nsegs,
5082                  bus_dma_segment_t *segs,
5083                  struct mbuf       *m)
5084{
5085    uint32_t num_wnds, wnd_size, wnd_sum;
5086    int32_t frag_idx, wnd_idx;
5087    unsigned short lso_mss;
5088    int defrag;
5089
5090    defrag = 0;
5091    wnd_sum = 0;
5092    wnd_size = 10;
5093    num_wnds = nsegs - wnd_size;
5094    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5095
5096    /*
5097     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5098     * first window sum of data while skipping the first assuming it is the
5099     * header in FreeBSD.
5100     */
5101    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5102        wnd_sum += htole16(segs[frag_idx].ds_len);
5103    }
5104
5105    /* check the first 10 bd window size */
5106    if (wnd_sum < lso_mss) {
5107        return (1);
5108    }
5109
5110    /* run through the windows */
5111    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5112        /* subtract the first mbuf->m_len of the last wndw(-header) */
5113        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5114        /* add the next mbuf len to the len of our new window */
5115        wnd_sum += htole16(segs[frag_idx].ds_len);
5116        if (wnd_sum < lso_mss) {
5117            return (1);
5118        }
5119    }
5120
5121    return (0);
5122}
5123
5124static uint8_t
5125bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5126                    struct mbuf         *m,
5127                    uint32_t            *parsing_data)
5128{
5129    struct ether_vlan_header *eh = NULL;
5130    struct ip *ip4 = NULL;
5131    struct ip6_hdr *ip6 = NULL;
5132    caddr_t ip = NULL;
5133    struct tcphdr *th = NULL;
5134    int e_hlen, ip_hlen, l4_off;
5135    uint16_t proto;
5136
5137    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5138        /* no L4 checksum offload needed */
5139        return (0);
5140    }
5141
5142    /* get the Ethernet header */
5143    eh = mtod(m, struct ether_vlan_header *);
5144
5145    /* handle VLAN encapsulation if present */
5146    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5147        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5148        proto  = ntohs(eh->evl_proto);
5149    } else {
5150        e_hlen = ETHER_HDR_LEN;
5151        proto  = ntohs(eh->evl_encap_proto);
5152    }
5153
5154    switch (proto) {
5155    case ETHERTYPE_IP:
5156        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5157        ip4 = (m->m_len < sizeof(struct ip)) ?
5158                  (struct ip *)m->m_next->m_data :
5159                  (struct ip *)(m->m_data + e_hlen);
5160        /* ip_hl is number of 32-bit words */
5161        ip_hlen = (ip4->ip_hl << 2);
5162        ip = (caddr_t)ip4;
5163        break;
5164    case ETHERTYPE_IPV6:
5165        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5166        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5167                  (struct ip6_hdr *)m->m_next->m_data :
5168                  (struct ip6_hdr *)(m->m_data + e_hlen);
5169        /* XXX cannot support offload with IPv6 extensions */
5170        ip_hlen = sizeof(struct ip6_hdr);
5171        ip = (caddr_t)ip6;
5172        break;
5173    default:
5174        /* We can't offload in this case... */
5175        /* XXX error stat ??? */
5176        return (0);
5177    }
5178
5179    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5180    l4_off = (e_hlen + ip_hlen);
5181
5182    *parsing_data |=
5183        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5184         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5185
5186    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5187                                  CSUM_TSO |
5188                                  CSUM_TCP_IPV6)) {
5189        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5190        th = (struct tcphdr *)(ip + ip_hlen);
5191        /* th_off is number of 32-bit words */
5192        *parsing_data |= ((th->th_off <<
5193                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5194                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5195        return (l4_off + (th->th_off << 2)); /* entire header length */
5196    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5197                                         CSUM_UDP_IPV6)) {
5198        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5199        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5200    } else {
5201        /* XXX error stat ??? */
5202        return (0);
5203    }
5204}
5205
5206static uint8_t
5207bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5208                 struct mbuf                *m,
5209                 struct eth_tx_parse_bd_e1x *pbd)
5210{
5211    struct ether_vlan_header *eh = NULL;
5212    struct ip *ip4 = NULL;
5213    struct ip6_hdr *ip6 = NULL;
5214    caddr_t ip = NULL;
5215    struct tcphdr *th = NULL;
5216    struct udphdr *uh = NULL;
5217    int e_hlen, ip_hlen;
5218    uint16_t proto;
5219    uint8_t hlen;
5220    uint16_t tmp_csum;
5221    uint32_t *tmp_uh;
5222
5223    /* get the Ethernet header */
5224    eh = mtod(m, struct ether_vlan_header *);
5225
5226    /* handle VLAN encapsulation if present */
5227    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5228        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5229        proto  = ntohs(eh->evl_proto);
5230    } else {
5231        e_hlen = ETHER_HDR_LEN;
5232        proto  = ntohs(eh->evl_encap_proto);
5233    }
5234
5235    switch (proto) {
5236    case ETHERTYPE_IP:
5237        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5238        ip4 = (m->m_len < sizeof(struct ip)) ?
5239                  (struct ip *)m->m_next->m_data :
5240                  (struct ip *)(m->m_data + e_hlen);
5241        /* ip_hl is number of 32-bit words */
5242        ip_hlen = (ip4->ip_hl << 1);
5243        ip = (caddr_t)ip4;
5244        break;
5245    case ETHERTYPE_IPV6:
5246        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5247        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5248                  (struct ip6_hdr *)m->m_next->m_data :
5249                  (struct ip6_hdr *)(m->m_data + e_hlen);
5250        /* XXX cannot support offload with IPv6 extensions */
5251        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5252        ip = (caddr_t)ip6;
5253        break;
5254    default:
5255        /* We can't offload in this case... */
5256        /* XXX error stat ??? */
5257        return (0);
5258    }
5259
5260    hlen = (e_hlen >> 1);
5261
5262    /* note that rest of global_data is indirectly zeroed here */
5263    if (m->m_flags & M_VLANTAG) {
5264        pbd->global_data =
5265            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5266    } else {
5267        pbd->global_data = htole16(hlen);
5268    }
5269
5270    pbd->ip_hlen_w = ip_hlen;
5271
5272    hlen += pbd->ip_hlen_w;
5273
5274    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5275
5276    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5277                                  CSUM_TSO |
5278                                  CSUM_TCP_IPV6)) {
5279        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5280        /* th_off is number of 32-bit words */
5281        hlen += (uint16_t)(th->th_off << 1);
5282    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5283                                         CSUM_UDP_IPV6)) {
5284        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5285        hlen += (sizeof(struct udphdr) / 2);
5286    } else {
5287        /* valid case as only CSUM_IP was set */
5288        return (0);
5289    }
5290
5291    pbd->total_hlen_w = htole16(hlen);
5292
5293    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5294                                  CSUM_TSO |
5295                                  CSUM_TCP_IPV6)) {
5296        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5297        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5298    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5299                                         CSUM_UDP_IPV6)) {
5300        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5301
5302        /*
5303         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5304         * checksums and does not know anything about the UDP header and where
5305         * the checksum field is located. It only knows about TCP. Therefore
5306         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5307         * offload. Since the checksum field offset for TCP is 16 bytes and
5308         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5309         * bytes less than the start of the UDP header. This allows the
5310         * hardware to write the checksum in the correct spot. But the
5311         * hardware will compute a checksum which includes the last 10 bytes
5312         * of the IP header. To correct this we tweak the stack computed
5313         * pseudo checksum by folding in the calculation of the inverse
5314         * checksum for those final 10 bytes of the IP header. This allows
5315         * the correct checksum to be computed by the hardware.
5316         */
5317
5318        /* set pointer 10 bytes before UDP header */
5319        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5320
5321        /* calculate a pseudo header checksum over the first 10 bytes */
5322        tmp_csum = in_pseudo(*tmp_uh,
5323                             *(tmp_uh + 1),
5324                             *(uint16_t *)(tmp_uh + 2));
5325
5326        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5327    }
5328
5329    return (hlen * 2); /* entire header length, number of bytes */
5330}
5331
5332static void
5333bxe_set_pbd_lso_e2(struct mbuf *m,
5334                   uint32_t    *parsing_data)
5335{
5336    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5337                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5338                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5339
5340    /* XXX test for IPv6 with extension header... */
5341#if 0
5342    struct ip6_hdr *ip6;
5343    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5344        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5345#endif
5346}
5347
5348static void
5349bxe_set_pbd_lso(struct mbuf                *m,
5350                struct eth_tx_parse_bd_e1x *pbd)
5351{
5352    struct ether_vlan_header *eh = NULL;
5353    struct ip *ip = NULL;
5354    struct tcphdr *th = NULL;
5355    int e_hlen;
5356
5357    /* get the Ethernet header */
5358    eh = mtod(m, struct ether_vlan_header *);
5359
5360    /* handle VLAN encapsulation if present */
5361    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5362                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5363
5364    /* get the IP and TCP header, with LSO entire header in first mbuf */
5365    /* XXX assuming IPv4 */
5366    ip = (struct ip *)(m->m_data + e_hlen);
5367    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5368
5369    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5370    pbd->tcp_send_seq = ntohl(th->th_seq);
5371    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5372
5373#if 1
5374        /* XXX IPv4 */
5375        pbd->ip_id = ntohs(ip->ip_id);
5376        pbd->tcp_pseudo_csum =
5377            ntohs(in_pseudo(ip->ip_src.s_addr,
5378                            ip->ip_dst.s_addr,
5379                            htons(IPPROTO_TCP)));
5380#else
5381        /* XXX IPv6 */
5382        pbd->tcp_pseudo_csum =
5383            ntohs(in_pseudo(&ip6->ip6_src,
5384                            &ip6->ip6_dst,
5385                            htons(IPPROTO_TCP)));
5386#endif
5387
5388    pbd->global_data |=
5389        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5390}
5391
5392/*
5393 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5394 * visible to the controller.
5395 *
5396 * If an mbuf is submitted to this routine and cannot be given to the
5397 * controller (e.g. it has too many fragments) then the function may free
5398 * the mbuf and return to the caller.
5399 *
5400 * Returns:
5401 *   0 = Success, !0 = Failure
5402 *   Note the side effect that an mbuf may be freed if it causes a problem.
5403 */
5404static int
5405bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5406{
5407    bus_dma_segment_t segs[32];
5408    struct mbuf *m0;
5409    struct bxe_sw_tx_bd *tx_buf;
5410    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5411    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5412    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5413    struct eth_tx_bd *tx_data_bd;
5414    struct eth_tx_bd *tx_total_pkt_size_bd;
5415    struct eth_tx_start_bd *tx_start_bd;
5416    uint16_t bd_prod, pkt_prod, total_pkt_size;
5417    uint8_t mac_type;
5418    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5419    struct bxe_softc *sc;
5420    uint16_t tx_bd_avail;
5421    struct ether_vlan_header *eh;
5422    uint32_t pbd_e2_parsing_data = 0;
5423    uint8_t hlen = 0;
5424    int tmp_bd;
5425    int i;
5426
5427    sc = fp->sc;
5428
5429    M_ASSERTPKTHDR(*m_head);
5430
5431    m0 = *m_head;
5432    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5433    tx_start_bd = NULL;
5434    tx_data_bd = NULL;
5435    tx_total_pkt_size_bd = NULL;
5436
5437    /* get the H/W pointer for packets and BDs */
5438    pkt_prod = fp->tx_pkt_prod;
5439    bd_prod = fp->tx_bd_prod;
5440
5441    mac_type = UNICAST_ADDRESS;
5442
5443    /* map the mbuf into the next open DMAable memory */
5444    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5445    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5446                                    tx_buf->m_map, m0,
5447                                    segs, &nsegs, BUS_DMA_NOWAIT);
5448
5449    /* mapping errors */
5450    if(__predict_false(error != 0)) {
5451        fp->eth_q_stats.tx_dma_mapping_failure++;
5452        if (error == ENOMEM) {
5453            /* resource issue, try again later */
5454            rc = ENOMEM;
5455        } else if (error == EFBIG) {
5456            /* possibly recoverable with defragmentation */
5457            fp->eth_q_stats.mbuf_defrag_attempts++;
5458            m0 = m_defrag(*m_head, M_DONTWAIT);
5459            if (m0 == NULL) {
5460                fp->eth_q_stats.mbuf_defrag_failures++;
5461                rc = ENOBUFS;
5462            } else {
5463                /* defrag successful, try mapping again */
5464                *m_head = m0;
5465                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5466                                                tx_buf->m_map, m0,
5467                                                segs, &nsegs, BUS_DMA_NOWAIT);
5468                if (error) {
5469                    fp->eth_q_stats.tx_dma_mapping_failure++;
5470                    rc = error;
5471                }
5472            }
5473        } else {
5474            /* unknown, unrecoverable mapping error */
5475            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5476            bxe_dump_mbuf(sc, m0, FALSE);
5477            rc = error;
5478        }
5479
5480        goto bxe_tx_encap_continue;
5481    }
5482
5483    tx_bd_avail = bxe_tx_avail(sc, fp);
5484
5485    /* make sure there is enough room in the send queue */
5486    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5487        /* Recoverable, try again later. */
5488        fp->eth_q_stats.tx_hw_queue_full++;
5489        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5490        rc = ENOMEM;
5491        goto bxe_tx_encap_continue;
5492    }
5493
5494    /* capture the current H/W TX chain high watermark */
5495    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5496                        (TX_BD_USABLE - tx_bd_avail))) {
5497        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5498    }
5499
5500    /* make sure it fits in the packet window */
5501    if (__predict_false(nsegs > 12)) {
5502        /*
5503         * The mbuf may be to big for the controller to handle. If the frame
5504         * is a TSO frame we'll need to do an additional check.
5505         */
5506        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5507            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5508                goto bxe_tx_encap_continue; /* OK to send */
5509            } else {
5510                fp->eth_q_stats.tx_window_violation_tso++;
5511            }
5512        } else {
5513            fp->eth_q_stats.tx_window_violation_std++;
5514        }
5515
5516        /* XXX I don't like this, change to double copy packet */
5517
5518        /* no sense trying to defrag again, just drop the frame */
5519        rc = ENODEV;
5520    }
5521
5522bxe_tx_encap_continue:
5523
5524    /* Check for errors */
5525    if (rc) {
5526        if (rc == ENOMEM) {
5527            /* recoverable try again later  */
5528        } else {
5529            fp->eth_q_stats.tx_soft_errors++;
5530            fp->eth_q_stats.mbuf_alloc_tx--;
5531            m_freem(*m_head);
5532            *m_head = NULL;
5533        }
5534
5535        return (rc);
5536    }
5537
5538    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5539    if (m0->m_flags & M_BCAST) {
5540        mac_type = BROADCAST_ADDRESS;
5541    } else if (m0->m_flags & M_MCAST) {
5542        mac_type = MULTICAST_ADDRESS;
5543    }
5544
5545    /* store the mbuf into the mbuf ring */
5546    tx_buf->m        = m0;
5547    tx_buf->first_bd = fp->tx_bd_prod;
5548    tx_buf->flags    = 0;
5549
5550    /* prepare the first transmit (start) BD for the mbuf */
5551    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5552
5553    BLOGD(sc, DBG_TX,
5554          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5555          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5556
5557    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5558    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5559    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5560    total_pkt_size += tx_start_bd->nbytes;
5561    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5562
5563    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5564
5565    /* all frames have at least Start BD + Parsing BD */
5566    nbds = nsegs + 1;
5567    tx_start_bd->nbd = htole16(nbds);
5568
5569    if (m0->m_flags & M_VLANTAG) {
5570        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5571        tx_start_bd->bd_flags.as_bitfield |=
5572            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5573    } else {
5574        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5575        if (IS_VF(sc)) {
5576            /* map ethernet header to find type and header length */
5577            eh = mtod(m0, struct ether_vlan_header *);
5578            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5579        } else {
5580            /* used by FW for packet accounting */
5581            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5582#if 0
5583            /*
5584             * If NPAR-SD is active then FW should do the tagging regardless
5585             * of value of priority. Otherwise, if priority indicates this is
5586             * a control packet we need to indicate to FW to avoid tagging.
5587             */
5588            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5589                SET_FLAG(tx_start_bd->general_data,
5590                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5591            }
5592#endif
5593        }
5594    }
5595
5596    /*
5597     * add a parsing BD from the chain. The parsing BD is always added
5598     * though it is only used for TSO and chksum
5599     */
5600    bd_prod = TX_BD_NEXT(bd_prod);
5601
5602    if (m0->m_pkthdr.csum_flags) {
5603        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5604            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5605            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5606        }
5607
5608        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5609            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5610                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5611        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5612            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5613                                                  ETH_TX_BD_FLAGS_IS_UDP |
5614                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5615        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5616                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5617            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5618        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5619            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5620                                                  ETH_TX_BD_FLAGS_IS_UDP);
5621        }
5622    }
5623
5624    if (!CHIP_IS_E1x(sc)) {
5625        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5626        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5627
5628        if (m0->m_pkthdr.csum_flags) {
5629            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5630        }
5631
5632#if 0
5633        /*
5634         * Add the MACs to the parsing BD if the module param was
5635         * explicitly set, if this is a vf, or in switch independent
5636         * mode.
5637         */
5638        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5639            eh = mtod(m0, struct ether_vlan_header *);
5640            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5641                                &pbd_e2->data.mac_addr.src_mid,
5642                                &pbd_e2->data.mac_addr.src_lo,
5643                                eh->evl_shost);
5644            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5645                                &pbd_e2->data.mac_addr.dst_mid,
5646                                &pbd_e2->data.mac_addr.dst_lo,
5647                                eh->evl_dhost);
5648        }
5649#endif
5650
5651        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5652                 mac_type);
5653    } else {
5654        uint16_t global_data = 0;
5655
5656        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5657        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5658
5659        if (m0->m_pkthdr.csum_flags) {
5660            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5661        }
5662
5663        SET_FLAG(global_data,
5664                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5665        pbd_e1x->global_data |= htole16(global_data);
5666    }
5667
5668    /* setup the parsing BD with TSO specific info */
5669    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5670        fp->eth_q_stats.tx_ofld_frames_lso++;
5671        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5672
5673        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5674            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5675
5676            /* split the first BD into header/data making the fw job easy */
5677            nbds++;
5678            tx_start_bd->nbd = htole16(nbds);
5679
5680            bd_prod = TX_BD_NEXT(bd_prod);
5681
5682            /* new transmit BD after the tx_parse_bd */
5683            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5684            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5685            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5686            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5687            if (tx_total_pkt_size_bd == NULL) {
5688                tx_total_pkt_size_bd = tx_data_bd;
5689            }
5690
5691            BLOGD(sc, DBG_TX,
5692                  "TSO split header size is %d (%x:%x) nbds %d\n",
5693                  le16toh(tx_start_bd->nbytes),
5694                  le32toh(tx_start_bd->addr_hi),
5695                  le32toh(tx_start_bd->addr_lo),
5696                  nbds);
5697        }
5698
5699        if (!CHIP_IS_E1x(sc)) {
5700            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5701        } else {
5702            bxe_set_pbd_lso(m0, pbd_e1x);
5703        }
5704    }
5705
5706    if (pbd_e2_parsing_data) {
5707        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5708    }
5709
5710    /* prepare remaining BDs, start tx bd contains first seg/frag */
5711    for (i = 1; i < nsegs ; i++) {
5712        bd_prod = TX_BD_NEXT(bd_prod);
5713        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5714        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5715        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5716        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5717        if (tx_total_pkt_size_bd == NULL) {
5718            tx_total_pkt_size_bd = tx_data_bd;
5719        }
5720        total_pkt_size += tx_data_bd->nbytes;
5721    }
5722
5723    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5724
5725    if (tx_total_pkt_size_bd != NULL) {
5726        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5727    }
5728
5729    if (__predict_false(sc->debug & DBG_TX)) {
5730        tmp_bd = tx_buf->first_bd;
5731        for (i = 0; i < nbds; i++)
5732        {
5733            if (i == 0) {
5734                BLOGD(sc, DBG_TX,
5735                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5736                      "bd_flags=0x%x hdr_nbds=%d\n",
5737                      tx_start_bd,
5738                      tmp_bd,
5739                      le16toh(tx_start_bd->nbd),
5740                      le16toh(tx_start_bd->vlan_or_ethertype),
5741                      tx_start_bd->bd_flags.as_bitfield,
5742                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5743            } else if (i == 1) {
5744                if (pbd_e1x) {
5745                    BLOGD(sc, DBG_TX,
5746                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5747                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5748                          "tcp_seq=%u total_hlen_w=%u\n",
5749                          pbd_e1x,
5750                          tmp_bd,
5751                          pbd_e1x->global_data,
5752                          pbd_e1x->ip_hlen_w,
5753                          pbd_e1x->ip_id,
5754                          pbd_e1x->lso_mss,
5755                          pbd_e1x->tcp_flags,
5756                          pbd_e1x->tcp_pseudo_csum,
5757                          pbd_e1x->tcp_send_seq,
5758                          le16toh(pbd_e1x->total_hlen_w));
5759                } else { /* if (pbd_e2) */
5760                    BLOGD(sc, DBG_TX,
5761                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5762                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5763                          pbd_e2,
5764                          tmp_bd,
5765                          pbd_e2->data.mac_addr.dst_hi,
5766                          pbd_e2->data.mac_addr.dst_mid,
5767                          pbd_e2->data.mac_addr.dst_lo,
5768                          pbd_e2->data.mac_addr.src_hi,
5769                          pbd_e2->data.mac_addr.src_mid,
5770                          pbd_e2->data.mac_addr.src_lo,
5771                          pbd_e2->parsing_data);
5772                }
5773            }
5774
5775            if (i != 1) { /* skip parse db as it doesn't hold data */
5776                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5777                BLOGD(sc, DBG_TX,
5778                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5779                      tx_data_bd,
5780                      tmp_bd,
5781                      le16toh(tx_data_bd->nbytes),
5782                      le32toh(tx_data_bd->addr_hi),
5783                      le32toh(tx_data_bd->addr_lo));
5784            }
5785
5786            tmp_bd = TX_BD_NEXT(tmp_bd);
5787        }
5788    }
5789
5790    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5791
5792    /* update TX BD producer index value for next TX */
5793    bd_prod = TX_BD_NEXT(bd_prod);
5794
5795    /*
5796     * If the chain of tx_bd's describing this frame is adjacent to or spans
5797     * an eth_tx_next_bd element then we need to increment the nbds value.
5798     */
5799    if (TX_BD_IDX(bd_prod) < nbds) {
5800        nbds++;
5801    }
5802
5803    /* don't allow reordering of writes for nbd and packets */
5804    mb();
5805
5806    fp->tx_db.data.prod += nbds;
5807
5808    /* producer points to the next free tx_bd at this point */
5809    fp->tx_pkt_prod++;
5810    fp->tx_bd_prod = bd_prod;
5811
5812    DOORBELL(sc, fp->index, fp->tx_db.raw);
5813
5814    fp->eth_q_stats.tx_pkts++;
5815
5816    /* Prevent speculative reads from getting ahead of the status block. */
5817    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5818                      0, 0, BUS_SPACE_BARRIER_READ);
5819
5820    /* Prevent speculative reads from getting ahead of the doorbell. */
5821    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5822                      0, 0, BUS_SPACE_BARRIER_READ);
5823
5824    return (0);
5825}
5826
5827static void
5828bxe_tx_start_locked(struct bxe_softc    *sc,
5829                    struct ifnet        *ifp,
5830                    struct bxe_fastpath *fp)
5831{
5832    struct mbuf *m = NULL;
5833    int tx_count = 0;
5834    uint16_t tx_bd_avail;
5835
5836    BXE_FP_TX_LOCK_ASSERT(fp);
5837
5838    /* keep adding entries while there are frames to send */
5839    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5840
5841        /*
5842         * check for any frames to send
5843         * dequeue can still be NULL even if queue is not empty
5844         */
5845        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5846        if (__predict_false(m == NULL)) {
5847            break;
5848        }
5849
5850        /* the mbuf now belongs to us */
5851        fp->eth_q_stats.mbuf_alloc_tx++;
5852
5853        /*
5854         * Put the frame into the transmit ring. If we don't have room,
5855         * place the mbuf back at the head of the TX queue, set the
5856         * OACTIVE flag, and wait for the NIC to drain the chain.
5857         */
5858        if (__predict_false(bxe_tx_encap(fp, &m))) {
5859            fp->eth_q_stats.tx_encap_failures++;
5860            if (m != NULL) {
5861                /* mark the TX queue as full and return the frame */
5862                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5863                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5864                fp->eth_q_stats.mbuf_alloc_tx--;
5865                fp->eth_q_stats.tx_queue_xoff++;
5866            }
5867
5868            /* stop looking for more work */
5869            break;
5870        }
5871
5872        /* the frame was enqueued successfully */
5873        tx_count++;
5874
5875        /* send a copy of the frame to any BPF listeners. */
5876        BPF_MTAP(ifp, m);
5877
5878        tx_bd_avail = bxe_tx_avail(sc, fp);
5879
5880        /* handle any completions if we're running low */
5881        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5882            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5883            bxe_txeof(sc, fp);
5884            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5885                break;
5886            }
5887        }
5888    }
5889
5890    /* all TX packets were dequeued and/or the tx ring is full */
5891    if (tx_count > 0) {
5892        /* reset the TX watchdog timeout timer */
5893        fp->watchdog_timer = BXE_TX_TIMEOUT;
5894    }
5895}
5896
5897/* Legacy (non-RSS) dispatch routine */
5898static void
5899bxe_tx_start(struct ifnet *ifp)
5900{
5901    struct bxe_softc *sc;
5902    struct bxe_fastpath *fp;
5903
5904    sc = ifp->if_softc;
5905
5906    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5907        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5908        return;
5909    }
5910
5911    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5912        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5913        return;
5914    }
5915
5916    if (!sc->link_vars.link_up) {
5917        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5918        return;
5919    }
5920
5921    fp = &sc->fp[0];
5922
5923    BXE_FP_TX_LOCK(fp);
5924    bxe_tx_start_locked(sc, ifp, fp);
5925    BXE_FP_TX_UNLOCK(fp);
5926}
5927
5928#if __FreeBSD_version >= 800000
5929
5930static int
5931bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5932                       struct ifnet        *ifp,
5933                       struct bxe_fastpath *fp,
5934                       struct mbuf         *m)
5935{
5936    struct buf_ring *tx_br = fp->tx_br;
5937    struct mbuf *next;
5938    int depth, rc, tx_count;
5939    uint16_t tx_bd_avail;
5940
5941    rc = tx_count = 0;
5942
5943    if (!tx_br) {
5944        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5945        return (EINVAL);
5946    }
5947
5948    /* fetch the depth of the driver queue */
5949    depth = drbr_inuse(ifp, tx_br);
5950    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5951        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5952    }
5953
5954    BXE_FP_TX_LOCK_ASSERT(fp);
5955
5956    if (m == NULL) {
5957        /* no new work, check for pending frames */
5958        next = drbr_dequeue(ifp, tx_br);
5959    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5960        /* have both new and pending work, maintain packet order */
5961        rc = drbr_enqueue(ifp, tx_br, m);
5962        if (rc != 0) {
5963            fp->eth_q_stats.tx_soft_errors++;
5964            goto bxe_tx_mq_start_locked_exit;
5965        }
5966        next = drbr_dequeue(ifp, tx_br);
5967    } else {
5968        /* new work only and nothing pending */
5969        next = m;
5970    }
5971
5972    /* keep adding entries while there are frames to send */
5973    while (next != NULL) {
5974
5975        /* the mbuf now belongs to us */
5976        fp->eth_q_stats.mbuf_alloc_tx++;
5977
5978        /*
5979         * Put the frame into the transmit ring. If we don't have room,
5980         * place the mbuf back at the head of the TX queue, set the
5981         * OACTIVE flag, and wait for the NIC to drain the chain.
5982         */
5983        rc = bxe_tx_encap(fp, &next);
5984        if (__predict_false(rc != 0)) {
5985            fp->eth_q_stats.tx_encap_failures++;
5986            if (next != NULL) {
5987                /* mark the TX queue as full and save the frame */
5988                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5989                /* XXX this may reorder the frame */
5990                rc = drbr_enqueue(ifp, tx_br, next);
5991                fp->eth_q_stats.mbuf_alloc_tx--;
5992                fp->eth_q_stats.tx_frames_deferred++;
5993            }
5994
5995            /* stop looking for more work */
5996            break;
5997        }
5998
5999        /* the transmit frame was enqueued successfully */
6000        tx_count++;
6001
6002        /* send a copy of the frame to any BPF listeners */
6003        BPF_MTAP(ifp, next);
6004
6005        tx_bd_avail = bxe_tx_avail(sc, fp);
6006
6007        /* handle any completions if we're running low */
6008        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6009            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6010            bxe_txeof(sc, fp);
6011            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6012                break;
6013            }
6014        }
6015
6016        next = drbr_dequeue(ifp, tx_br);
6017    }
6018
6019    /* all TX packets were dequeued and/or the tx ring is full */
6020    if (tx_count > 0) {
6021        /* reset the TX watchdog timeout timer */
6022        fp->watchdog_timer = BXE_TX_TIMEOUT;
6023    }
6024
6025bxe_tx_mq_start_locked_exit:
6026
6027    return (rc);
6028}
6029
6030/* Multiqueue (TSS) dispatch routine. */
6031static int
6032bxe_tx_mq_start(struct ifnet *ifp,
6033                struct mbuf  *m)
6034{
6035    struct bxe_softc *sc = ifp->if_softc;
6036    struct bxe_fastpath *fp;
6037    int fp_index, rc;
6038
6039    fp_index = 0; /* default is the first queue */
6040
6041    /* change the queue if using flow ID */
6042    if ((m->m_flags & M_FLOWID) != 0) {
6043        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6044    }
6045
6046    fp = &sc->fp[fp_index];
6047
6048    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6049        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6050        return (ENETDOWN);
6051    }
6052
6053    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6054        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6055        return (EBUSY);
6056    }
6057
6058    if (!sc->link_vars.link_up) {
6059        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6060        return (ENETDOWN);
6061    }
6062
6063    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6064
6065    BXE_FP_TX_LOCK(fp);
6066    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6067    BXE_FP_TX_UNLOCK(fp);
6068
6069    return (rc);
6070}
6071
6072static void
6073bxe_mq_flush(struct ifnet *ifp)
6074{
6075    struct bxe_softc *sc = ifp->if_softc;
6076    struct bxe_fastpath *fp;
6077    struct mbuf *m;
6078    int i;
6079
6080    for (i = 0; i < sc->num_queues; i++) {
6081        fp = &sc->fp[i];
6082
6083        if (fp->state != BXE_FP_STATE_OPEN) {
6084            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6085                  fp->index, fp->state);
6086            continue;
6087        }
6088
6089        if (fp->tx_br != NULL) {
6090            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6091            BXE_FP_TX_LOCK(fp);
6092            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6093                m_freem(m);
6094            }
6095            BXE_FP_TX_UNLOCK(fp);
6096        }
6097    }
6098
6099    if_qflush(ifp);
6100}
6101
6102#endif /* FreeBSD_version >= 800000 */
6103
6104static uint16_t
6105bxe_cid_ilt_lines(struct bxe_softc *sc)
6106{
6107    if (IS_SRIOV(sc)) {
6108        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6109    }
6110    return (L2_ILT_LINES(sc));
6111}
6112
6113static void
6114bxe_ilt_set_info(struct bxe_softc *sc)
6115{
6116    struct ilt_client_info *ilt_client;
6117    struct ecore_ilt *ilt = sc->ilt;
6118    uint16_t line = 0;
6119
6120    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6121    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6122
6123    /* CDU */
6124    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6125    ilt_client->client_num = ILT_CLIENT_CDU;
6126    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6127    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6128    ilt_client->start = line;
6129    line += bxe_cid_ilt_lines(sc);
6130
6131    if (CNIC_SUPPORT(sc)) {
6132        line += CNIC_ILT_LINES;
6133    }
6134
6135    ilt_client->end = (line - 1);
6136
6137    BLOGD(sc, DBG_LOAD,
6138          "ilt client[CDU]: start %d, end %d, "
6139          "psz 0x%x, flags 0x%x, hw psz %d\n",
6140          ilt_client->start, ilt_client->end,
6141          ilt_client->page_size,
6142          ilt_client->flags,
6143          ilog2(ilt_client->page_size >> 12));
6144
6145    /* QM */
6146    if (QM_INIT(sc->qm_cid_count)) {
6147        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6148        ilt_client->client_num = ILT_CLIENT_QM;
6149        ilt_client->page_size = QM_ILT_PAGE_SZ;
6150        ilt_client->flags = 0;
6151        ilt_client->start = line;
6152
6153        /* 4 bytes for each cid */
6154        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6155                             QM_ILT_PAGE_SZ);
6156
6157        ilt_client->end = (line - 1);
6158
6159        BLOGD(sc, DBG_LOAD,
6160              "ilt client[QM]: start %d, end %d, "
6161              "psz 0x%x, flags 0x%x, hw psz %d\n",
6162              ilt_client->start, ilt_client->end,
6163              ilt_client->page_size, ilt_client->flags,
6164              ilog2(ilt_client->page_size >> 12));
6165    }
6166
6167    if (CNIC_SUPPORT(sc)) {
6168        /* SRC */
6169        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6170        ilt_client->client_num = ILT_CLIENT_SRC;
6171        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6172        ilt_client->flags = 0;
6173        ilt_client->start = line;
6174        line += SRC_ILT_LINES;
6175        ilt_client->end = (line - 1);
6176
6177        BLOGD(sc, DBG_LOAD,
6178              "ilt client[SRC]: start %d, end %d, "
6179              "psz 0x%x, flags 0x%x, hw psz %d\n",
6180              ilt_client->start, ilt_client->end,
6181              ilt_client->page_size, ilt_client->flags,
6182              ilog2(ilt_client->page_size >> 12));
6183
6184        /* TM */
6185        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6186        ilt_client->client_num = ILT_CLIENT_TM;
6187        ilt_client->page_size = TM_ILT_PAGE_SZ;
6188        ilt_client->flags = 0;
6189        ilt_client->start = line;
6190        line += TM_ILT_LINES;
6191        ilt_client->end = (line - 1);
6192
6193        BLOGD(sc, DBG_LOAD,
6194              "ilt client[TM]: start %d, end %d, "
6195              "psz 0x%x, flags 0x%x, hw psz %d\n",
6196              ilt_client->start, ilt_client->end,
6197              ilt_client->page_size, ilt_client->flags,
6198              ilog2(ilt_client->page_size >> 12));
6199    }
6200
6201    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6202}
6203
6204static void
6205bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6206{
6207    int i;
6208
6209    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6210
6211    for (i = 0; i < sc->num_queues; i++) {
6212        /* get the Rx buffer size for RX frames */
6213        sc->fp[i].rx_buf_size =
6214            (IP_HEADER_ALIGNMENT_PADDING +
6215             ETH_OVERHEAD +
6216             sc->mtu);
6217
6218        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6219              i, sc->fp[i].rx_buf_size);
6220
6221        /* get the mbuf allocation size for RX frames */
6222        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6223            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6224        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6225            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6226        } else {
6227            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6228        }
6229
6230        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6231              i, sc->fp[i].mbuf_alloc_size);
6232    }
6233}
6234
6235static int
6236bxe_alloc_ilt_mem(struct bxe_softc *sc)
6237{
6238    int rc = 0;
6239
6240    if ((sc->ilt =
6241         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6242                                    M_BXE_ILT,
6243                                    (M_NOWAIT | M_ZERO))) == NULL) {
6244        rc = 1;
6245    }
6246
6247    return (rc);
6248}
6249
6250static int
6251bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6252{
6253    int rc = 0;
6254
6255    if ((sc->ilt->lines =
6256         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6257                                    M_BXE_ILT,
6258                                    (M_NOWAIT | M_ZERO))) == NULL) {
6259        rc = 1;
6260    }
6261
6262    return (rc);
6263}
6264
6265static void
6266bxe_free_ilt_mem(struct bxe_softc *sc)
6267{
6268    if (sc->ilt != NULL) {
6269        free(sc->ilt, M_BXE_ILT);
6270        sc->ilt = NULL;
6271    }
6272}
6273
6274static void
6275bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6276{
6277    if (sc->ilt->lines != NULL) {
6278        free(sc->ilt->lines, M_BXE_ILT);
6279        sc->ilt->lines = NULL;
6280    }
6281}
6282
6283static void
6284bxe_free_mem(struct bxe_softc *sc)
6285{
6286    int i;
6287
6288#if 0
6289    if (!CONFIGURE_NIC_MODE(sc)) {
6290        /* free searcher T2 table */
6291        bxe_dma_free(sc, &sc->t2);
6292    }
6293#endif
6294
6295    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6296        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6297        sc->context[i].vcxt = NULL;
6298        sc->context[i].size = 0;
6299    }
6300
6301    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6302
6303    bxe_free_ilt_lines_mem(sc);
6304
6305#if 0
6306    bxe_iov_free_mem(sc);
6307#endif
6308}
6309
6310static int
6311bxe_alloc_mem(struct bxe_softc *sc)
6312{
6313    int context_size;
6314    int allocated;
6315    int i;
6316
6317#if 0
6318    if (!CONFIGURE_NIC_MODE(sc)) {
6319        /* allocate searcher T2 table */
6320        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6321                          &sc->t2, "searcher t2 table") != 0) {
6322            return (-1);
6323        }
6324    }
6325#endif
6326
6327    /*
6328     * Allocate memory for CDU context:
6329     * This memory is allocated separately and not in the generic ILT
6330     * functions because CDU differs in few aspects:
6331     * 1. There can be multiple entities allocating memory for context -
6332     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6333     * its own ILT lines.
6334     * 2. Since CDU page-size is not a single 4KB page (which is the case
6335     * for the other ILT clients), to be efficient we want to support
6336     * allocation of sub-page-size in the last entry.
6337     * 3. Context pointers are used by the driver to pass to FW / update
6338     * the context (for the other ILT clients the pointers are used just to
6339     * free the memory during unload).
6340     */
6341    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6342    for (i = 0, allocated = 0; allocated < context_size; i++) {
6343        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6344                                  (context_size - allocated));
6345
6346        if (bxe_dma_alloc(sc, sc->context[i].size,
6347                          &sc->context[i].vcxt_dma,
6348                          "cdu context") != 0) {
6349            bxe_free_mem(sc);
6350            return (-1);
6351        }
6352
6353        sc->context[i].vcxt =
6354            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6355
6356        allocated += sc->context[i].size;
6357    }
6358
6359    bxe_alloc_ilt_lines_mem(sc);
6360
6361    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6362          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6363    {
6364        for (i = 0; i < 4; i++) {
6365            BLOGD(sc, DBG_LOAD,
6366                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6367                  i,
6368                  sc->ilt->clients[i].page_size,
6369                  sc->ilt->clients[i].start,
6370                  sc->ilt->clients[i].end,
6371                  sc->ilt->clients[i].client_num,
6372                  sc->ilt->clients[i].flags);
6373        }
6374    }
6375    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6376        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6377        bxe_free_mem(sc);
6378        return (-1);
6379    }
6380
6381#if 0
6382    if (bxe_iov_alloc_mem(sc)) {
6383        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6384        bxe_free_mem(sc);
6385        return (-1);
6386    }
6387#endif
6388
6389    return (0);
6390}
6391
6392static void
6393bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6394{
6395    struct bxe_softc *sc;
6396    int i;
6397
6398    sc = fp->sc;
6399
6400    if (fp->rx_mbuf_tag == NULL) {
6401        return;
6402    }
6403
6404    /* free all mbufs and unload all maps */
6405    for (i = 0; i < RX_BD_TOTAL; i++) {
6406        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6407            bus_dmamap_sync(fp->rx_mbuf_tag,
6408                            fp->rx_mbuf_chain[i].m_map,
6409                            BUS_DMASYNC_POSTREAD);
6410            bus_dmamap_unload(fp->rx_mbuf_tag,
6411                              fp->rx_mbuf_chain[i].m_map);
6412        }
6413
6414        if (fp->rx_mbuf_chain[i].m != NULL) {
6415            m_freem(fp->rx_mbuf_chain[i].m);
6416            fp->rx_mbuf_chain[i].m = NULL;
6417            fp->eth_q_stats.mbuf_alloc_rx--;
6418        }
6419    }
6420}
6421
6422static void
6423bxe_free_tpa_pool(struct bxe_fastpath *fp)
6424{
6425    struct bxe_softc *sc;
6426    int i, max_agg_queues;
6427
6428    sc = fp->sc;
6429
6430    if (fp->rx_mbuf_tag == NULL) {
6431        return;
6432    }
6433
6434    max_agg_queues = MAX_AGG_QS(sc);
6435
6436    /* release all mbufs and unload all DMA maps in the TPA pool */
6437    for (i = 0; i < max_agg_queues; i++) {
6438        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6439            bus_dmamap_sync(fp->rx_mbuf_tag,
6440                            fp->rx_tpa_info[i].bd.m_map,
6441                            BUS_DMASYNC_POSTREAD);
6442            bus_dmamap_unload(fp->rx_mbuf_tag,
6443                              fp->rx_tpa_info[i].bd.m_map);
6444        }
6445
6446        if (fp->rx_tpa_info[i].bd.m != NULL) {
6447            m_freem(fp->rx_tpa_info[i].bd.m);
6448            fp->rx_tpa_info[i].bd.m = NULL;
6449            fp->eth_q_stats.mbuf_alloc_tpa--;
6450        }
6451    }
6452}
6453
6454static void
6455bxe_free_sge_chain(struct bxe_fastpath *fp)
6456{
6457    struct bxe_softc *sc;
6458    int i;
6459
6460    sc = fp->sc;
6461
6462    if (fp->rx_sge_mbuf_tag == NULL) {
6463        return;
6464    }
6465
6466    /* rree all mbufs and unload all maps */
6467    for (i = 0; i < RX_SGE_TOTAL; i++) {
6468        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6469            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6470                            fp->rx_sge_mbuf_chain[i].m_map,
6471                            BUS_DMASYNC_POSTREAD);
6472            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6473                              fp->rx_sge_mbuf_chain[i].m_map);
6474        }
6475
6476        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6477            m_freem(fp->rx_sge_mbuf_chain[i].m);
6478            fp->rx_sge_mbuf_chain[i].m = NULL;
6479            fp->eth_q_stats.mbuf_alloc_sge--;
6480        }
6481    }
6482}
6483
6484static void
6485bxe_free_fp_buffers(struct bxe_softc *sc)
6486{
6487    struct bxe_fastpath *fp;
6488    int i;
6489
6490    for (i = 0; i < sc->num_queues; i++) {
6491        fp = &sc->fp[i];
6492
6493#if __FreeBSD_version >= 800000
6494        if (fp->tx_br != NULL) {
6495            struct mbuf *m;
6496            /* just in case bxe_mq_flush() wasn't called */
6497            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6498                m_freem(m);
6499            }
6500            buf_ring_free(fp->tx_br, M_DEVBUF);
6501            fp->tx_br = NULL;
6502        }
6503#endif
6504
6505        /* free all RX buffers */
6506        bxe_free_rx_bd_chain(fp);
6507        bxe_free_tpa_pool(fp);
6508        bxe_free_sge_chain(fp);
6509
6510        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6511            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6512                  fp->eth_q_stats.mbuf_alloc_rx);
6513        }
6514
6515        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6516            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6517                  fp->eth_q_stats.mbuf_alloc_sge);
6518        }
6519
6520        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6521            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6522                  fp->eth_q_stats.mbuf_alloc_tpa);
6523        }
6524
6525        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6526            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6527                  fp->eth_q_stats.mbuf_alloc_tx);
6528        }
6529
6530        /* XXX verify all mbufs were reclaimed */
6531
6532        if (mtx_initialized(&fp->tx_mtx)) {
6533            mtx_destroy(&fp->tx_mtx);
6534        }
6535
6536        if (mtx_initialized(&fp->rx_mtx)) {
6537            mtx_destroy(&fp->rx_mtx);
6538        }
6539    }
6540}
6541
6542static int
6543bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6544                     uint16_t            prev_index,
6545                     uint16_t            index)
6546{
6547    struct bxe_sw_rx_bd *rx_buf;
6548    struct eth_rx_bd *rx_bd;
6549    bus_dma_segment_t segs[1];
6550    bus_dmamap_t map;
6551    struct mbuf *m;
6552    int nsegs, rc;
6553
6554    rc = 0;
6555
6556    /* allocate the new RX BD mbuf */
6557    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6558    if (__predict_false(m == NULL)) {
6559        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6560        return (ENOBUFS);
6561    }
6562
6563    fp->eth_q_stats.mbuf_alloc_rx++;
6564
6565    /* initialize the mbuf buffer length */
6566    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6567
6568    /* map the mbuf into non-paged pool */
6569    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6570                                 fp->rx_mbuf_spare_map,
6571                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6572    if (__predict_false(rc != 0)) {
6573        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6574        m_freem(m);
6575        fp->eth_q_stats.mbuf_alloc_rx--;
6576        return (rc);
6577    }
6578
6579    /* all mbufs must map to a single segment */
6580    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6581
6582    /* release any existing RX BD mbuf mappings */
6583
6584    if (prev_index != index) {
6585        rx_buf = &fp->rx_mbuf_chain[prev_index];
6586
6587        if (rx_buf->m_map != NULL) {
6588            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6589                            BUS_DMASYNC_POSTREAD);
6590            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6591        }
6592
6593        /*
6594         * We only get here from bxe_rxeof() when the maximum number
6595         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6596         * holds the mbuf in the prev_index so it's OK to NULL it out
6597         * here without concern of a memory leak.
6598         */
6599        fp->rx_mbuf_chain[prev_index].m = NULL;
6600    }
6601
6602    rx_buf = &fp->rx_mbuf_chain[index];
6603
6604    if (rx_buf->m_map != NULL) {
6605        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6606                        BUS_DMASYNC_POSTREAD);
6607        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6608    }
6609
6610    /* save the mbuf and mapping info for a future packet */
6611    map = (prev_index != index) ?
6612              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6613    rx_buf->m_map = fp->rx_mbuf_spare_map;
6614    fp->rx_mbuf_spare_map = map;
6615    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6616                    BUS_DMASYNC_PREREAD);
6617    rx_buf->m = m;
6618
6619    rx_bd = &fp->rx_chain[index];
6620    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6621    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6622
6623    return (rc);
6624}
6625
6626static int
6627bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6628                      int                 queue)
6629{
6630    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6631    bus_dma_segment_t segs[1];
6632    bus_dmamap_t map;
6633    struct mbuf *m;
6634    int nsegs;
6635    int rc = 0;
6636
6637    /* allocate the new TPA mbuf */
6638    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6639    if (__predict_false(m == NULL)) {
6640        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6641        return (ENOBUFS);
6642    }
6643
6644    fp->eth_q_stats.mbuf_alloc_tpa++;
6645
6646    /* initialize the mbuf buffer length */
6647    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6648
6649    /* map the mbuf into non-paged pool */
6650    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6651                                 fp->rx_tpa_info_mbuf_spare_map,
6652                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6653    if (__predict_false(rc != 0)) {
6654        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6655        m_free(m);
6656        fp->eth_q_stats.mbuf_alloc_tpa--;
6657        return (rc);
6658    }
6659
6660    /* all mbufs must map to a single segment */
6661    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6662
6663    /* release any existing TPA mbuf mapping */
6664    if (tpa_info->bd.m_map != NULL) {
6665        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6666                        BUS_DMASYNC_POSTREAD);
6667        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6668    }
6669
6670    /* save the mbuf and mapping info for the TPA mbuf */
6671    map = tpa_info->bd.m_map;
6672    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6673    fp->rx_tpa_info_mbuf_spare_map = map;
6674    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6675                    BUS_DMASYNC_PREREAD);
6676    tpa_info->bd.m = m;
6677    tpa_info->seg = segs[0];
6678
6679    return (rc);
6680}
6681
6682/*
6683 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6684 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6685 * chain.
6686 */
6687static int
6688bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6689                      uint16_t            index)
6690{
6691    struct bxe_sw_rx_bd *sge_buf;
6692    struct eth_rx_sge *sge;
6693    bus_dma_segment_t segs[1];
6694    bus_dmamap_t map;
6695    struct mbuf *m;
6696    int nsegs;
6697    int rc = 0;
6698
6699    /* allocate a new SGE mbuf */
6700    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6701    if (__predict_false(m == NULL)) {
6702        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6703        return (ENOMEM);
6704    }
6705
6706    fp->eth_q_stats.mbuf_alloc_sge++;
6707
6708    /* initialize the mbuf buffer length */
6709    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6710
6711    /* map the SGE mbuf into non-paged pool */
6712    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6713                                 fp->rx_sge_mbuf_spare_map,
6714                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6715    if (__predict_false(rc != 0)) {
6716        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6717        m_freem(m);
6718        fp->eth_q_stats.mbuf_alloc_sge--;
6719        return (rc);
6720    }
6721
6722    /* all mbufs must map to a single segment */
6723    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6724
6725    sge_buf = &fp->rx_sge_mbuf_chain[index];
6726
6727    /* release any existing SGE mbuf mapping */
6728    if (sge_buf->m_map != NULL) {
6729        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6730                        BUS_DMASYNC_POSTREAD);
6731        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6732    }
6733
6734    /* save the mbuf and mapping info for a future packet */
6735    map = sge_buf->m_map;
6736    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6737    fp->rx_sge_mbuf_spare_map = map;
6738    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6739                    BUS_DMASYNC_PREREAD);
6740    sge_buf->m = m;
6741
6742    sge = &fp->rx_sge_chain[index];
6743    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6744    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6745
6746    return (rc);
6747}
6748
6749static __noinline int
6750bxe_alloc_fp_buffers(struct bxe_softc *sc)
6751{
6752    struct bxe_fastpath *fp;
6753    int i, j, rc = 0;
6754    int ring_prod, cqe_ring_prod;
6755    int max_agg_queues;
6756
6757    for (i = 0; i < sc->num_queues; i++) {
6758        fp = &sc->fp[i];
6759
6760#if __FreeBSD_version >= 800000
6761        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6762                                   M_DONTWAIT, &fp->tx_mtx);
6763        if (fp->tx_br == NULL) {
6764            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6765            goto bxe_alloc_fp_buffers_error;
6766        }
6767#endif
6768
6769        ring_prod = cqe_ring_prod = 0;
6770        fp->rx_bd_cons = 0;
6771        fp->rx_cq_cons = 0;
6772
6773        /* allocate buffers for the RX BDs in RX BD chain */
6774        for (j = 0; j < sc->max_rx_bufs; j++) {
6775            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6776            if (rc != 0) {
6777                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6778                      i, rc);
6779                goto bxe_alloc_fp_buffers_error;
6780            }
6781
6782            ring_prod     = RX_BD_NEXT(ring_prod);
6783            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6784        }
6785
6786        fp->rx_bd_prod = ring_prod;
6787        fp->rx_cq_prod = cqe_ring_prod;
6788        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6789
6790        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6791            max_agg_queues = MAX_AGG_QS(sc);
6792
6793            fp->tpa_enable = TRUE;
6794
6795            /* fill the TPA pool */
6796            for (j = 0; j < max_agg_queues; j++) {
6797                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6798                if (rc != 0) {
6799                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6800                          i, j);
6801                    fp->tpa_enable = FALSE;
6802                    goto bxe_alloc_fp_buffers_error;
6803                }
6804
6805                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6806            }
6807
6808            if (fp->tpa_enable) {
6809                /* fill the RX SGE chain */
6810                ring_prod = 0;
6811                for (j = 0; j < RX_SGE_USABLE; j++) {
6812                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6813                    if (rc != 0) {
6814                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6815                              i, ring_prod);
6816                        fp->tpa_enable = FALSE;
6817                        ring_prod = 0;
6818                        goto bxe_alloc_fp_buffers_error;
6819                    }
6820
6821                    ring_prod = RX_SGE_NEXT(ring_prod);
6822                }
6823
6824                fp->rx_sge_prod = ring_prod;
6825            }
6826        }
6827    }
6828
6829    return (0);
6830
6831bxe_alloc_fp_buffers_error:
6832
6833    /* unwind what was already allocated */
6834    bxe_free_rx_bd_chain(fp);
6835    bxe_free_tpa_pool(fp);
6836    bxe_free_sge_chain(fp);
6837
6838    return (ENOBUFS);
6839}
6840
6841static void
6842bxe_free_fw_stats_mem(struct bxe_softc *sc)
6843{
6844    bxe_dma_free(sc, &sc->fw_stats_dma);
6845
6846    sc->fw_stats_num = 0;
6847
6848    sc->fw_stats_req_size = 0;
6849    sc->fw_stats_req = NULL;
6850    sc->fw_stats_req_mapping = 0;
6851
6852    sc->fw_stats_data_size = 0;
6853    sc->fw_stats_data = NULL;
6854    sc->fw_stats_data_mapping = 0;
6855}
6856
6857static int
6858bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6859{
6860    uint8_t num_queue_stats;
6861    int num_groups;
6862
6863    /* number of queues for statistics is number of eth queues */
6864    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6865
6866    /*
6867     * Total number of FW statistics requests =
6868     *   1 for port stats + 1 for PF stats + num of queues
6869     */
6870    sc->fw_stats_num = (2 + num_queue_stats);
6871
6872    /*
6873     * Request is built from stats_query_header and an array of
6874     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6875     * rules. The real number or requests is configured in the
6876     * stats_query_header.
6877     */
6878    num_groups =
6879        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6880         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6881
6882    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6883          sc->fw_stats_num, num_groups);
6884
6885    sc->fw_stats_req_size =
6886        (sizeof(struct stats_query_header) +
6887         (num_groups * sizeof(struct stats_query_cmd_group)));
6888
6889    /*
6890     * Data for statistics requests + stats_counter.
6891     * stats_counter holds per-STORM counters that are incremented when
6892     * STORM has finished with the current request. Memory for FCoE
6893     * offloaded statistics are counted anyway, even if they will not be sent.
6894     * VF stats are not accounted for here as the data of VF stats is stored
6895     * in memory allocated by the VF, not here.
6896     */
6897    sc->fw_stats_data_size =
6898        (sizeof(struct stats_counter) +
6899         sizeof(struct per_port_stats) +
6900         sizeof(struct per_pf_stats) +
6901         /* sizeof(struct fcoe_statistics_params) + */
6902         (sizeof(struct per_queue_stats) * num_queue_stats));
6903
6904    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6905                      &sc->fw_stats_dma, "fw stats") != 0) {
6906        bxe_free_fw_stats_mem(sc);
6907        return (-1);
6908    }
6909
6910    /* set up the shortcuts */
6911
6912    sc->fw_stats_req =
6913        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6914    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6915
6916    sc->fw_stats_data =
6917        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6918                                     sc->fw_stats_req_size);
6919    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6920                                 sc->fw_stats_req_size);
6921
6922    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6923          (uintmax_t)sc->fw_stats_req_mapping);
6924
6925    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6926          (uintmax_t)sc->fw_stats_data_mapping);
6927
6928    return (0);
6929}
6930
6931/*
6932 * Bits map:
6933 * 0-7  - Engine0 load counter.
6934 * 8-15 - Engine1 load counter.
6935 * 16   - Engine0 RESET_IN_PROGRESS bit.
6936 * 17   - Engine1 RESET_IN_PROGRESS bit.
6937 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6938 *        function on the engine
6939 * 19   - Engine1 ONE_IS_LOADED.
6940 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6941 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6942 *        for just the one belonging to its engine).
6943 */
6944#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6945#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6946#define BXE_PATH0_LOAD_CNT_SHIFT  0
6947#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6948#define BXE_PATH1_LOAD_CNT_SHIFT  8
6949#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6950#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6951#define BXE_GLOBAL_RESET_BIT      0x00040000
6952
6953/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6954static void
6955bxe_set_reset_global(struct bxe_softc *sc)
6956{
6957    uint32_t val;
6958    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6959    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6960    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6961    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6962}
6963
6964/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6965static void
6966bxe_clear_reset_global(struct bxe_softc *sc)
6967{
6968    uint32_t val;
6969    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6970    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6971    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6972    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6973}
6974
6975/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6976static uint8_t
6977bxe_reset_is_global(struct bxe_softc *sc)
6978{
6979    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6980    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6981    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6982}
6983
6984/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6985static void
6986bxe_set_reset_done(struct bxe_softc *sc)
6987{
6988    uint32_t val;
6989    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6990                                 BXE_PATH0_RST_IN_PROG_BIT;
6991
6992    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6993
6994    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6995    /* Clear the bit */
6996    val &= ~bit;
6997    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6998
6999    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7000}
7001
7002/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7003static void
7004bxe_set_reset_in_progress(struct bxe_softc *sc)
7005{
7006    uint32_t val;
7007    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7008                                 BXE_PATH0_RST_IN_PROG_BIT;
7009
7010    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7011
7012    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7013    /* Set the bit */
7014    val |= bit;
7015    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7016
7017    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7018}
7019
7020/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7021static uint8_t
7022bxe_reset_is_done(struct bxe_softc *sc,
7023                  int              engine)
7024{
7025    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7026    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7027                            BXE_PATH0_RST_IN_PROG_BIT;
7028
7029    /* return false if bit is set */
7030    return (val & bit) ? FALSE : TRUE;
7031}
7032
7033/* get the load status for an engine, should be run under rtnl lock */
7034static uint8_t
7035bxe_get_load_status(struct bxe_softc *sc,
7036                    int              engine)
7037{
7038    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7039                             BXE_PATH0_LOAD_CNT_MASK;
7040    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7041                              BXE_PATH0_LOAD_CNT_SHIFT;
7042    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7043
7044    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7045
7046    val = ((val & mask) >> shift);
7047
7048    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7049
7050    return (val != 0);
7051}
7052
7053/* set pf load mark */
7054/* XXX needs to be under rtnl lock */
7055static void
7056bxe_set_pf_load(struct bxe_softc *sc)
7057{
7058    uint32_t val;
7059    uint32_t val1;
7060    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7061                                  BXE_PATH0_LOAD_CNT_MASK;
7062    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7063                                   BXE_PATH0_LOAD_CNT_SHIFT;
7064
7065    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7066
7067    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7068    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7069
7070    /* get the current counter value */
7071    val1 = ((val & mask) >> shift);
7072
7073    /* set bit of this PF */
7074    val1 |= (1 << SC_ABS_FUNC(sc));
7075
7076    /* clear the old value */
7077    val &= ~mask;
7078
7079    /* set the new one */
7080    val |= ((val1 << shift) & mask);
7081
7082    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7083
7084    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7085}
7086
7087/* clear pf load mark */
7088/* XXX needs to be under rtnl lock */
7089static uint8_t
7090bxe_clear_pf_load(struct bxe_softc *sc)
7091{
7092    uint32_t val1, val;
7093    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7094                                  BXE_PATH0_LOAD_CNT_MASK;
7095    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7096                                   BXE_PATH0_LOAD_CNT_SHIFT;
7097
7098    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7099    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7100    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7101
7102    /* get the current counter value */
7103    val1 = (val & mask) >> shift;
7104
7105    /* clear bit of that PF */
7106    val1 &= ~(1 << SC_ABS_FUNC(sc));
7107
7108    /* clear the old value */
7109    val &= ~mask;
7110
7111    /* set the new one */
7112    val |= ((val1 << shift) & mask);
7113
7114    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7115    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7116    return (val1 != 0);
7117}
7118
7119/* send load requrest to mcp and analyze response */
7120static int
7121bxe_nic_load_request(struct bxe_softc *sc,
7122                     uint32_t         *load_code)
7123{
7124    /* init fw_seq */
7125    sc->fw_seq =
7126        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7127         DRV_MSG_SEQ_NUMBER_MASK);
7128
7129    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7130
7131    /* get the current FW pulse sequence */
7132    sc->fw_drv_pulse_wr_seq =
7133        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7134         DRV_PULSE_SEQ_MASK);
7135
7136    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7137          sc->fw_drv_pulse_wr_seq);
7138
7139    /* load request */
7140    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7141                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7142
7143    /* if the MCP fails to respond we must abort */
7144    if (!(*load_code)) {
7145        BLOGE(sc, "MCP response failure!\n");
7146        return (-1);
7147    }
7148
7149    /* if MCP refused then must abort */
7150    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7151        BLOGE(sc, "MCP refused load request\n");
7152        return (-1);
7153    }
7154
7155    return (0);
7156}
7157
7158/*
7159 * Check whether another PF has already loaded FW to chip. In virtualized
7160 * environments a pf from anoth VM may have already initialized the device
7161 * including loading FW.
7162 */
7163static int
7164bxe_nic_load_analyze_req(struct bxe_softc *sc,
7165                         uint32_t         load_code)
7166{
7167    uint32_t my_fw, loaded_fw;
7168
7169    /* is another pf loaded on this engine? */
7170    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7171        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7172        /* build my FW version dword */
7173        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7174                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7175                 (BCM_5710_FW_REVISION_VERSION << 16) +
7176                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7177
7178        /* read loaded FW from chip */
7179        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7180        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7181              loaded_fw, my_fw);
7182
7183        /* abort nic load if version mismatch */
7184        if (my_fw != loaded_fw) {
7185            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7186                  loaded_fw, my_fw);
7187            return (-1);
7188        }
7189    }
7190
7191    return (0);
7192}
7193
7194/* mark PMF if applicable */
7195static void
7196bxe_nic_load_pmf(struct bxe_softc *sc,
7197                 uint32_t         load_code)
7198{
7199    uint32_t ncsi_oem_data_addr;
7200
7201    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7202        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7203        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7204        /*
7205         * Barrier here for ordering between the writing to sc->port.pmf here
7206         * and reading it from the periodic task.
7207         */
7208        sc->port.pmf = 1;
7209        mb();
7210    } else {
7211        sc->port.pmf = 0;
7212    }
7213
7214    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7215
7216    /* XXX needed? */
7217    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7218        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7219            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7220            if (ncsi_oem_data_addr) {
7221                REG_WR(sc,
7222                       (ncsi_oem_data_addr +
7223                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7224                       0);
7225            }
7226        }
7227    }
7228}
7229
7230static void
7231bxe_read_mf_cfg(struct bxe_softc *sc)
7232{
7233    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7234    int abs_func;
7235    int vn;
7236
7237    if (BXE_NOMCP(sc)) {
7238        return; /* what should be the default bvalue in this case */
7239    }
7240
7241    /*
7242     * The formula for computing the absolute function number is...
7243     * For 2 port configuration (4 functions per port):
7244     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7245     * For 4 port configuration (2 functions per port):
7246     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7247     */
7248    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7249        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7250        if (abs_func >= E1H_FUNC_MAX) {
7251            break;
7252        }
7253        sc->devinfo.mf_info.mf_config[vn] =
7254            MFCFG_RD(sc, func_mf_config[abs_func].config);
7255    }
7256
7257    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7258        FUNC_MF_CFG_FUNC_DISABLED) {
7259        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7260        sc->flags |= BXE_MF_FUNC_DIS;
7261    } else {
7262        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7263        sc->flags &= ~BXE_MF_FUNC_DIS;
7264    }
7265}
7266
7267/* acquire split MCP access lock register */
7268static int bxe_acquire_alr(struct bxe_softc *sc)
7269{
7270    uint32_t j, val;
7271
7272    for (j = 0; j < 1000; j++) {
7273        val = (1UL << 31);
7274        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7275        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7276        if (val & (1L << 31))
7277            break;
7278
7279        DELAY(5000);
7280    }
7281
7282    if (!(val & (1L << 31))) {
7283        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7284        return (-1);
7285    }
7286
7287    return (0);
7288}
7289
7290/* release split MCP access lock register */
7291static void bxe_release_alr(struct bxe_softc *sc)
7292{
7293    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7294}
7295
7296static void
7297bxe_fan_failure(struct bxe_softc *sc)
7298{
7299    int port = SC_PORT(sc);
7300    uint32_t ext_phy_config;
7301
7302    /* mark the failure */
7303    ext_phy_config =
7304        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7305
7306    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7307    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7308    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7309             ext_phy_config);
7310
7311    /* log the failure */
7312    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7313              "the card to prevent permanent damage. "
7314              "Please contact OEM Support for assistance\n");
7315
7316    /* XXX */
7317#if 1
7318    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7319#else
7320    /*
7321     * Schedule device reset (unload)
7322     * This is due to some boards consuming sufficient power when driver is
7323     * up to overheat if fan fails.
7324     */
7325    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7326    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7327#endif
7328}
7329
7330/* this function is called upon a link interrupt */
7331static void
7332bxe_link_attn(struct bxe_softc *sc)
7333{
7334    uint32_t pause_enabled = 0;
7335    struct host_port_stats *pstats;
7336    int cmng_fns;
7337
7338    /* Make sure that we are synced with the current statistics */
7339    bxe_stats_handle(sc, STATS_EVENT_STOP);
7340
7341    elink_link_update(&sc->link_params, &sc->link_vars);
7342
7343    if (sc->link_vars.link_up) {
7344
7345        /* dropless flow control */
7346        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7347            pause_enabled = 0;
7348
7349            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7350                pause_enabled = 1;
7351            }
7352
7353            REG_WR(sc,
7354                   (BAR_USTRORM_INTMEM +
7355                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7356                   pause_enabled);
7357        }
7358
7359        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7360            pstats = BXE_SP(sc, port_stats);
7361            /* reset old mac stats */
7362            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7363        }
7364
7365        if (sc->state == BXE_STATE_OPEN) {
7366            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7367        }
7368    }
7369
7370    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7371        cmng_fns = bxe_get_cmng_fns_mode(sc);
7372
7373        if (cmng_fns != CMNG_FNS_NONE) {
7374            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7375            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7376        } else {
7377            /* rate shaping and fairness are disabled */
7378            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7379        }
7380    }
7381
7382    bxe_link_report_locked(sc);
7383
7384    if (IS_MF(sc)) {
7385        ; // XXX bxe_link_sync_notify(sc);
7386    }
7387}
7388
7389static void
7390bxe_attn_int_asserted(struct bxe_softc *sc,
7391                      uint32_t         asserted)
7392{
7393    int port = SC_PORT(sc);
7394    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7395                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7396    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7397                                        NIG_REG_MASK_INTERRUPT_PORT0;
7398    uint32_t aeu_mask;
7399    uint32_t nig_mask = 0;
7400    uint32_t reg_addr;
7401    uint32_t igu_acked;
7402    uint32_t cnt;
7403
7404    if (sc->attn_state & asserted) {
7405        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7406    }
7407
7408    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7409
7410    aeu_mask = REG_RD(sc, aeu_addr);
7411
7412    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7413          aeu_mask, asserted);
7414
7415    aeu_mask &= ~(asserted & 0x3ff);
7416
7417    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7418
7419    REG_WR(sc, aeu_addr, aeu_mask);
7420
7421    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7422
7423    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7424    sc->attn_state |= asserted;
7425    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7426
7427    if (asserted & ATTN_HARD_WIRED_MASK) {
7428        if (asserted & ATTN_NIG_FOR_FUNC) {
7429
7430            BXE_PHY_LOCK(sc);
7431
7432            /* save nig interrupt mask */
7433            nig_mask = REG_RD(sc, nig_int_mask_addr);
7434
7435            /* If nig_mask is not set, no need to call the update function */
7436            if (nig_mask) {
7437                REG_WR(sc, nig_int_mask_addr, 0);
7438
7439                bxe_link_attn(sc);
7440            }
7441
7442            /* handle unicore attn? */
7443        }
7444
7445        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7446            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7447        }
7448
7449        if (asserted & GPIO_2_FUNC) {
7450            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7451        }
7452
7453        if (asserted & GPIO_3_FUNC) {
7454            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7455        }
7456
7457        if (asserted & GPIO_4_FUNC) {
7458            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7459        }
7460
7461        if (port == 0) {
7462            if (asserted & ATTN_GENERAL_ATTN_1) {
7463                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7464                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7465            }
7466            if (asserted & ATTN_GENERAL_ATTN_2) {
7467                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7468                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7469            }
7470            if (asserted & ATTN_GENERAL_ATTN_3) {
7471                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7472                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7473            }
7474        } else {
7475            if (asserted & ATTN_GENERAL_ATTN_4) {
7476                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7477                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7478            }
7479            if (asserted & ATTN_GENERAL_ATTN_5) {
7480                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7481                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7482            }
7483            if (asserted & ATTN_GENERAL_ATTN_6) {
7484                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7485                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7486            }
7487        }
7488    } /* hardwired */
7489
7490    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7491        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7492    } else {
7493        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7494    }
7495
7496    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7497          asserted,
7498          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7499    REG_WR(sc, reg_addr, asserted);
7500
7501    /* now set back the mask */
7502    if (asserted & ATTN_NIG_FOR_FUNC) {
7503        /*
7504         * Verify that IGU ack through BAR was written before restoring
7505         * NIG mask. This loop should exit after 2-3 iterations max.
7506         */
7507        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7508            cnt = 0;
7509
7510            do {
7511                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7512            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7513                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7514
7515            if (!igu_acked) {
7516                BLOGE(sc, "Failed to verify IGU ack on time\n");
7517            }
7518
7519            mb();
7520        }
7521
7522        REG_WR(sc, nig_int_mask_addr, nig_mask);
7523
7524        BXE_PHY_UNLOCK(sc);
7525    }
7526}
7527
7528static void
7529bxe_print_next_block(struct bxe_softc *sc,
7530                     int              idx,
7531                     const char       *blk)
7532{
7533    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7534}
7535
7536static int
7537bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7538                              uint32_t         sig,
7539                              int              par_num,
7540                              uint8_t          print)
7541{
7542    uint32_t cur_bit = 0;
7543    int i = 0;
7544
7545    for (i = 0; sig; i++) {
7546        cur_bit = ((uint32_t)0x1 << i);
7547        if (sig & cur_bit) {
7548            switch (cur_bit) {
7549            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7550                if (print)
7551                    bxe_print_next_block(sc, par_num++, "BRB");
7552                break;
7553            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7554                if (print)
7555                    bxe_print_next_block(sc, par_num++, "PARSER");
7556                break;
7557            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7558                if (print)
7559                    bxe_print_next_block(sc, par_num++, "TSDM");
7560                break;
7561            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7562                if (print)
7563                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7564                break;
7565            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7566                if (print)
7567                    bxe_print_next_block(sc, par_num++, "TCM");
7568                break;
7569            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7570                if (print)
7571                    bxe_print_next_block(sc, par_num++, "TSEMI");
7572                break;
7573            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7574                if (print)
7575                    bxe_print_next_block(sc, par_num++, "XPB");
7576                break;
7577            }
7578
7579            /* Clear the bit */
7580            sig &= ~cur_bit;
7581        }
7582    }
7583
7584    return (par_num);
7585}
7586
7587static int
7588bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7589                              uint32_t         sig,
7590                              int              par_num,
7591                              uint8_t          *global,
7592                              uint8_t          print)
7593{
7594    int i = 0;
7595    uint32_t cur_bit = 0;
7596    for (i = 0; sig; i++) {
7597        cur_bit = ((uint32_t)0x1 << i);
7598        if (sig & cur_bit) {
7599            switch (cur_bit) {
7600            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7601                if (print)
7602                    bxe_print_next_block(sc, par_num++, "PBF");
7603                break;
7604            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7605                if (print)
7606                    bxe_print_next_block(sc, par_num++, "QM");
7607                break;
7608            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7609                if (print)
7610                    bxe_print_next_block(sc, par_num++, "TM");
7611                break;
7612            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7613                if (print)
7614                    bxe_print_next_block(sc, par_num++, "XSDM");
7615                break;
7616            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7617                if (print)
7618                    bxe_print_next_block(sc, par_num++, "XCM");
7619                break;
7620            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7621                if (print)
7622                    bxe_print_next_block(sc, par_num++, "XSEMI");
7623                break;
7624            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7625                if (print)
7626                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7627                break;
7628            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7629                if (print)
7630                    bxe_print_next_block(sc, par_num++, "NIG");
7631                break;
7632            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7633                if (print)
7634                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7635                *global = TRUE;
7636                break;
7637            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7638                if (print)
7639                    bxe_print_next_block(sc, par_num++, "DEBUG");
7640                break;
7641            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7642                if (print)
7643                    bxe_print_next_block(sc, par_num++, "USDM");
7644                break;
7645            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7646                if (print)
7647                    bxe_print_next_block(sc, par_num++, "UCM");
7648                break;
7649            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7650                if (print)
7651                    bxe_print_next_block(sc, par_num++, "USEMI");
7652                break;
7653            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7654                if (print)
7655                    bxe_print_next_block(sc, par_num++, "UPB");
7656                break;
7657            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7658                if (print)
7659                    bxe_print_next_block(sc, par_num++, "CSDM");
7660                break;
7661            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7662                if (print)
7663                    bxe_print_next_block(sc, par_num++, "CCM");
7664                break;
7665            }
7666
7667            /* Clear the bit */
7668            sig &= ~cur_bit;
7669        }
7670    }
7671
7672    return (par_num);
7673}
7674
7675static int
7676bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7677                              uint32_t         sig,
7678                              int              par_num,
7679                              uint8_t          print)
7680{
7681    uint32_t cur_bit = 0;
7682    int i = 0;
7683
7684    for (i = 0; sig; i++) {
7685        cur_bit = ((uint32_t)0x1 << i);
7686        if (sig & cur_bit) {
7687            switch (cur_bit) {
7688            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7689                if (print)
7690                    bxe_print_next_block(sc, par_num++, "CSEMI");
7691                break;
7692            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7693                if (print)
7694                    bxe_print_next_block(sc, par_num++, "PXP");
7695                break;
7696            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7697                if (print)
7698                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7699                break;
7700            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7701                if (print)
7702                    bxe_print_next_block(sc, par_num++, "CFC");
7703                break;
7704            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7705                if (print)
7706                    bxe_print_next_block(sc, par_num++, "CDU");
7707                break;
7708            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7709                if (print)
7710                    bxe_print_next_block(sc, par_num++, "DMAE");
7711                break;
7712            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7713                if (print)
7714                    bxe_print_next_block(sc, par_num++, "IGU");
7715                break;
7716            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7717                if (print)
7718                    bxe_print_next_block(sc, par_num++, "MISC");
7719                break;
7720            }
7721
7722            /* Clear the bit */
7723            sig &= ~cur_bit;
7724        }
7725    }
7726
7727    return (par_num);
7728}
7729
7730static int
7731bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7732                              uint32_t         sig,
7733                              int              par_num,
7734                              uint8_t          *global,
7735                              uint8_t          print)
7736{
7737    uint32_t cur_bit = 0;
7738    int i = 0;
7739
7740    for (i = 0; sig; i++) {
7741        cur_bit = ((uint32_t)0x1 << i);
7742        if (sig & cur_bit) {
7743            switch (cur_bit) {
7744            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7745                if (print)
7746                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7747                *global = TRUE;
7748                break;
7749            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7750                if (print)
7751                    bxe_print_next_block(sc, par_num++,
7752                              "MCP UMP RX");
7753                *global = TRUE;
7754                break;
7755            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7756                if (print)
7757                    bxe_print_next_block(sc, par_num++,
7758                              "MCP UMP TX");
7759                *global = TRUE;
7760                break;
7761            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7762                if (print)
7763                    bxe_print_next_block(sc, par_num++,
7764                              "MCP SCPAD");
7765                *global = TRUE;
7766                break;
7767            }
7768
7769            /* Clear the bit */
7770            sig &= ~cur_bit;
7771        }
7772    }
7773
7774    return (par_num);
7775}
7776
7777static int
7778bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7779                              uint32_t         sig,
7780                              int              par_num,
7781                              uint8_t          print)
7782{
7783    uint32_t cur_bit = 0;
7784    int i = 0;
7785
7786    for (i = 0; sig; i++) {
7787        cur_bit = ((uint32_t)0x1 << i);
7788        if (sig & cur_bit) {
7789            switch (cur_bit) {
7790            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7791                if (print)
7792                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7793                break;
7794            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7795                if (print)
7796                    bxe_print_next_block(sc, par_num++, "ATC");
7797                break;
7798            }
7799
7800            /* Clear the bit */
7801            sig &= ~cur_bit;
7802        }
7803    }
7804
7805    return (par_num);
7806}
7807
7808static uint8_t
7809bxe_parity_attn(struct bxe_softc *sc,
7810                uint8_t          *global,
7811                uint8_t          print,
7812                uint32_t         *sig)
7813{
7814    int par_num = 0;
7815
7816    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7817        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7818        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7819        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7820        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7821        BLOGE(sc, "Parity error: HW block parity attention:\n"
7822                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7823              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7824              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7825              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7826              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7827              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7828
7829        if (print)
7830            BLOGI(sc, "Parity errors detected in blocks: ");
7831
7832        par_num =
7833            bxe_check_blocks_with_parity0(sc, sig[0] &
7834                                          HW_PRTY_ASSERT_SET_0,
7835                                          par_num, print);
7836        par_num =
7837            bxe_check_blocks_with_parity1(sc, sig[1] &
7838                                          HW_PRTY_ASSERT_SET_1,
7839                                          par_num, global, print);
7840        par_num =
7841            bxe_check_blocks_with_parity2(sc, sig[2] &
7842                                          HW_PRTY_ASSERT_SET_2,
7843                                          par_num, print);
7844        par_num =
7845            bxe_check_blocks_with_parity3(sc, sig[3] &
7846                                          HW_PRTY_ASSERT_SET_3,
7847                                          par_num, global, print);
7848        par_num =
7849            bxe_check_blocks_with_parity4(sc, sig[4] &
7850                                          HW_PRTY_ASSERT_SET_4,
7851                                          par_num, print);
7852
7853        if (print)
7854            BLOGI(sc, "\n");
7855
7856        return (TRUE);
7857    }
7858
7859    return (FALSE);
7860}
7861
7862static uint8_t
7863bxe_chk_parity_attn(struct bxe_softc *sc,
7864                    uint8_t          *global,
7865                    uint8_t          print)
7866{
7867    struct attn_route attn = { {0} };
7868    int port = SC_PORT(sc);
7869
7870    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7871    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7872    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7873    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7874
7875    if (!CHIP_IS_E1x(sc))
7876        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7877
7878    return (bxe_parity_attn(sc, global, print, attn.sig));
7879}
7880
7881static void
7882bxe_attn_int_deasserted4(struct bxe_softc *sc,
7883                         uint32_t         attn)
7884{
7885    uint32_t val;
7886
7887    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7888        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7889        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7890        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7891            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7892        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7893            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7894        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7895            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7896        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7897            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7898        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7899            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7900        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7901            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7902        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7903            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7908    }
7909
7910    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7911        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7912        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7913        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7914            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7915        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7916            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7917        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7918            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7919        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7920            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7921        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7922            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7923        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7924            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7925    }
7926
7927    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7928                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7929        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7930              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7931                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7932    }
7933}
7934
7935static void
7936bxe_e1h_disable(struct bxe_softc *sc)
7937{
7938    int port = SC_PORT(sc);
7939
7940    bxe_tx_disable(sc);
7941
7942    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7943}
7944
7945static void
7946bxe_e1h_enable(struct bxe_softc *sc)
7947{
7948    int port = SC_PORT(sc);
7949
7950    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7951
7952    // XXX bxe_tx_enable(sc);
7953}
7954
7955/*
7956 * called due to MCP event (on pmf):
7957 *   reread new bandwidth configuration
7958 *   configure FW
7959 *   notify others function about the change
7960 */
7961static void
7962bxe_config_mf_bw(struct bxe_softc *sc)
7963{
7964    if (sc->link_vars.link_up) {
7965        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7966        // XXX bxe_link_sync_notify(sc);
7967    }
7968
7969    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7970}
7971
7972static void
7973bxe_set_mf_bw(struct bxe_softc *sc)
7974{
7975    bxe_config_mf_bw(sc);
7976    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7977}
7978
7979static void
7980bxe_handle_eee_event(struct bxe_softc *sc)
7981{
7982    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7983    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7984}
7985
7986#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7987
7988static void
7989bxe_drv_info_ether_stat(struct bxe_softc *sc)
7990{
7991    struct eth_stats_info *ether_stat =
7992        &sc->sp->drv_info_to_mcp.ether_stat;
7993
7994    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7995            ETH_STAT_INFO_VERSION_LEN);
7996
7997    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7998    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7999                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8000                                          ether_stat->mac_local + MAC_PAD,
8001                                          MAC_PAD, ETH_ALEN);
8002
8003    ether_stat->mtu_size = sc->mtu;
8004
8005    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8006    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8007        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8008    }
8009
8010    // XXX ether_stat->feature_flags |= ???;
8011
8012    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8013
8014    ether_stat->txq_size = sc->tx_ring_size;
8015    ether_stat->rxq_size = sc->rx_ring_size;
8016}
8017
8018static void
8019bxe_handle_drv_info_req(struct bxe_softc *sc)
8020{
8021    enum drv_info_opcode op_code;
8022    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8023
8024    /* if drv_info version supported by MFW doesn't match - send NACK */
8025    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8026        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8027        return;
8028    }
8029
8030    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8031               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8032
8033    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8034
8035    switch (op_code) {
8036    case ETH_STATS_OPCODE:
8037        bxe_drv_info_ether_stat(sc);
8038        break;
8039    case FCOE_STATS_OPCODE:
8040    case ISCSI_STATS_OPCODE:
8041    default:
8042        /* if op code isn't supported - send NACK */
8043        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8044        return;
8045    }
8046
8047    /*
8048     * If we got drv_info attn from MFW then these fields are defined in
8049     * shmem2 for sure
8050     */
8051    SHMEM2_WR(sc, drv_info_host_addr_lo,
8052              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8053    SHMEM2_WR(sc, drv_info_host_addr_hi,
8054              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8055
8056    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8057}
8058
8059static void
8060bxe_dcc_event(struct bxe_softc *sc,
8061              uint32_t         dcc_event)
8062{
8063    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8064
8065    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8066        /*
8067         * This is the only place besides the function initialization
8068         * where the sc->flags can change so it is done without any
8069         * locks
8070         */
8071        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8072            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8073            sc->flags |= BXE_MF_FUNC_DIS;
8074            bxe_e1h_disable(sc);
8075        } else {
8076            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8077            sc->flags &= ~BXE_MF_FUNC_DIS;
8078            bxe_e1h_enable(sc);
8079        }
8080        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8081    }
8082
8083    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8084        bxe_config_mf_bw(sc);
8085        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8086    }
8087
8088    /* Report results to MCP */
8089    if (dcc_event)
8090        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8091    else
8092        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8093}
8094
8095static void
8096bxe_pmf_update(struct bxe_softc *sc)
8097{
8098    int port = SC_PORT(sc);
8099    uint32_t val;
8100
8101    sc->port.pmf = 1;
8102    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8103
8104    /*
8105     * We need the mb() to ensure the ordering between the writing to
8106     * sc->port.pmf here and reading it from the bxe_periodic_task().
8107     */
8108    mb();
8109
8110    /* queue a periodic task */
8111    // XXX schedule task...
8112
8113    // XXX bxe_dcbx_pmf_update(sc);
8114
8115    /* enable nig attention */
8116    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8117    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8118        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8119        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8120    } else if (!CHIP_IS_E1x(sc)) {
8121        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8122        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8123    }
8124
8125    bxe_stats_handle(sc, STATS_EVENT_PMF);
8126}
8127
8128static int
8129bxe_mc_assert(struct bxe_softc *sc)
8130{
8131    char last_idx;
8132    int i, rc = 0;
8133    uint32_t row0, row1, row2, row3;
8134
8135    /* XSTORM */
8136    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8137    if (last_idx)
8138        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8139
8140    /* print the asserts */
8141    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8142
8143        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8144        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8145        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8146        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8147
8148        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8149            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8150                  i, row3, row2, row1, row0);
8151            rc++;
8152        } else {
8153            break;
8154        }
8155    }
8156
8157    /* TSTORM */
8158    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8159    if (last_idx) {
8160        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8161    }
8162
8163    /* print the asserts */
8164    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8165
8166        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8167        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8168        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8169        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8170
8171        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8172            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8173                  i, row3, row2, row1, row0);
8174            rc++;
8175        } else {
8176            break;
8177        }
8178    }
8179
8180    /* CSTORM */
8181    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8182    if (last_idx) {
8183        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8184    }
8185
8186    /* print the asserts */
8187    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8188
8189        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8190        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8191        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8192        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8193
8194        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8195            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8196                  i, row3, row2, row1, row0);
8197            rc++;
8198        } else {
8199            break;
8200        }
8201    }
8202
8203    /* USTORM */
8204    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8205    if (last_idx) {
8206        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8207    }
8208
8209    /* print the asserts */
8210    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8211
8212        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8213        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8214        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8215        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8216
8217        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8218            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8219                  i, row3, row2, row1, row0);
8220            rc++;
8221        } else {
8222            break;
8223        }
8224    }
8225
8226    return (rc);
8227}
8228
8229static void
8230bxe_attn_int_deasserted3(struct bxe_softc *sc,
8231                         uint32_t         attn)
8232{
8233    int func = SC_FUNC(sc);
8234    uint32_t val;
8235
8236    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8237
8238        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8239
8240            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8241            bxe_read_mf_cfg(sc);
8242            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8243                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8244            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8245
8246            if (val & DRV_STATUS_DCC_EVENT_MASK)
8247                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8248
8249            if (val & DRV_STATUS_SET_MF_BW)
8250                bxe_set_mf_bw(sc);
8251
8252            if (val & DRV_STATUS_DRV_INFO_REQ)
8253                bxe_handle_drv_info_req(sc);
8254
8255#if 0
8256            if (val & DRV_STATUS_VF_DISABLED)
8257                bxe_vf_handle_flr_event(sc);
8258#endif
8259
8260            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8261                bxe_pmf_update(sc);
8262
8263#if 0
8264            if (sc->port.pmf &&
8265                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8266                (sc->dcbx_enabled > 0))
8267                /* start dcbx state machine */
8268                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8269#endif
8270
8271#if 0
8272            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8273                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8274#endif
8275
8276            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8277                bxe_handle_eee_event(sc);
8278
8279            if (sc->link_vars.periodic_flags &
8280                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8281                /* sync with link */
8282                BXE_PHY_LOCK(sc);
8283                sc->link_vars.periodic_flags &=
8284                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8285                BXE_PHY_UNLOCK(sc);
8286                if (IS_MF(sc))
8287                    ; // XXX bxe_link_sync_notify(sc);
8288                bxe_link_report(sc);
8289            }
8290
8291            /*
8292             * Always call it here: bxe_link_report() will
8293             * prevent the link indication duplication.
8294             */
8295            bxe_link_status_update(sc);
8296
8297        } else if (attn & BXE_MC_ASSERT_BITS) {
8298
8299            BLOGE(sc, "MC assert!\n");
8300            bxe_mc_assert(sc);
8301            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8302            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8303            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8304            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8305            bxe_panic(sc, ("MC assert!\n"));
8306
8307        } else if (attn & BXE_MCP_ASSERT) {
8308
8309            BLOGE(sc, "MCP assert!\n");
8310            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8311            // XXX bxe_fw_dump(sc);
8312
8313        } else {
8314            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8315        }
8316    }
8317
8318    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8319        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8320        if (attn & BXE_GRC_TIMEOUT) {
8321            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8322            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8323        }
8324        if (attn & BXE_GRC_RSV) {
8325            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8326            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8327        }
8328        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8329    }
8330}
8331
8332static void
8333bxe_attn_int_deasserted2(struct bxe_softc *sc,
8334                         uint32_t         attn)
8335{
8336    int port = SC_PORT(sc);
8337    int reg_offset;
8338    uint32_t val0, mask0, val1, mask1;
8339    uint32_t val;
8340
8341    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8342        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8343        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8344        /* CFC error attention */
8345        if (val & 0x2) {
8346            BLOGE(sc, "FATAL error from CFC\n");
8347        }
8348    }
8349
8350    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8351        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8352        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8353        /* RQ_USDMDP_FIFO_OVERFLOW */
8354        if (val & 0x18000) {
8355            BLOGE(sc, "FATAL error from PXP\n");
8356        }
8357
8358        if (!CHIP_IS_E1x(sc)) {
8359            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8360            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8361        }
8362    }
8363
8364#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8365#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8366
8367    if (attn & AEU_PXP2_HW_INT_BIT) {
8368        /*  CQ47854 workaround do not panic on
8369         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8370         */
8371        if (!CHIP_IS_E1x(sc)) {
8372            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8373            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8374            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8375            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8376            /*
8377             * If the olny PXP2_EOP_ERROR_BIT is set in
8378             * STS0 and STS1 - clear it
8379             *
8380             * probably we lose additional attentions between
8381             * STS0 and STS_CLR0, in this case user will not
8382             * be notified about them
8383             */
8384            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8385                !(val1 & mask1))
8386                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8387
8388            /* print the register, since no one can restore it */
8389            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8390
8391            /*
8392             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8393             * then notify
8394             */
8395            if (val0 & PXP2_EOP_ERROR_BIT) {
8396                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8397
8398                /*
8399                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8400                 * set then clear attention from PXP2 block without panic
8401                 */
8402                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8403                    ((val1 & mask1) == 0))
8404                    attn &= ~AEU_PXP2_HW_INT_BIT;
8405            }
8406        }
8407    }
8408
8409    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8410        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8411                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8412
8413        val = REG_RD(sc, reg_offset);
8414        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8415        REG_WR(sc, reg_offset, val);
8416
8417        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8418              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8419        bxe_panic(sc, ("HW block attention set2\n"));
8420    }
8421}
8422
8423static void
8424bxe_attn_int_deasserted1(struct bxe_softc *sc,
8425                         uint32_t         attn)
8426{
8427    int port = SC_PORT(sc);
8428    int reg_offset;
8429    uint32_t val;
8430
8431    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8432        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8433        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8434        /* DORQ discard attention */
8435        if (val & 0x2) {
8436            BLOGE(sc, "FATAL error from DORQ\n");
8437        }
8438    }
8439
8440    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8441        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8442                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8443
8444        val = REG_RD(sc, reg_offset);
8445        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8446        REG_WR(sc, reg_offset, val);
8447
8448        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8449              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8450        bxe_panic(sc, ("HW block attention set1\n"));
8451    }
8452}
8453
8454static void
8455bxe_attn_int_deasserted0(struct bxe_softc *sc,
8456                         uint32_t         attn)
8457{
8458    int port = SC_PORT(sc);
8459    int reg_offset;
8460    uint32_t val;
8461
8462    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8463                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8464
8465    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8466        val = REG_RD(sc, reg_offset);
8467        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8468        REG_WR(sc, reg_offset, val);
8469
8470        BLOGW(sc, "SPIO5 hw attention\n");
8471
8472        /* Fan failure attention */
8473        elink_hw_reset_phy(&sc->link_params);
8474        bxe_fan_failure(sc);
8475    }
8476
8477    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8478        BXE_PHY_LOCK(sc);
8479        elink_handle_module_detect_int(&sc->link_params);
8480        BXE_PHY_UNLOCK(sc);
8481    }
8482
8483    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8484        val = REG_RD(sc, reg_offset);
8485        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8486        REG_WR(sc, reg_offset, val);
8487
8488        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8489                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8490    }
8491}
8492
8493static void
8494bxe_attn_int_deasserted(struct bxe_softc *sc,
8495                        uint32_t         deasserted)
8496{
8497    struct attn_route attn;
8498    struct attn_route *group_mask;
8499    int port = SC_PORT(sc);
8500    int index;
8501    uint32_t reg_addr;
8502    uint32_t val;
8503    uint32_t aeu_mask;
8504    uint8_t global = FALSE;
8505
8506    /*
8507     * Need to take HW lock because MCP or other port might also
8508     * try to handle this event.
8509     */
8510    bxe_acquire_alr(sc);
8511
8512    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8513        /* XXX
8514         * In case of parity errors don't handle attentions so that
8515         * other function would "see" parity errors.
8516         */
8517        sc->recovery_state = BXE_RECOVERY_INIT;
8518        // XXX schedule a recovery task...
8519        /* disable HW interrupts */
8520        bxe_int_disable(sc);
8521        bxe_release_alr(sc);
8522        return;
8523    }
8524
8525    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8526    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8527    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8528    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8529    if (!CHIP_IS_E1x(sc)) {
8530        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8531    } else {
8532        attn.sig[4] = 0;
8533    }
8534
8535    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8536          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8537
8538    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8539        if (deasserted & (1 << index)) {
8540            group_mask = &sc->attn_group[index];
8541
8542            BLOGD(sc, DBG_INTR,
8543                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8544                  group_mask->sig[0], group_mask->sig[1],
8545                  group_mask->sig[2], group_mask->sig[3],
8546                  group_mask->sig[4]);
8547
8548            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8549            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8550            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8551            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8552            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8553        }
8554    }
8555
8556    bxe_release_alr(sc);
8557
8558    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8559        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8560                    COMMAND_REG_ATTN_BITS_CLR);
8561    } else {
8562        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8563    }
8564
8565    val = ~deasserted;
8566    BLOGD(sc, DBG_INTR,
8567          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8568          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8569    REG_WR(sc, reg_addr, val);
8570
8571    if (~sc->attn_state & deasserted) {
8572        BLOGE(sc, "IGU error\n");
8573    }
8574
8575    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8576                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8577
8578    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8579
8580    aeu_mask = REG_RD(sc, reg_addr);
8581
8582    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8583          aeu_mask, deasserted);
8584    aeu_mask |= (deasserted & 0x3ff);
8585    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8586
8587    REG_WR(sc, reg_addr, aeu_mask);
8588    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8589
8590    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8591    sc->attn_state &= ~deasserted;
8592    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8593}
8594
8595static void
8596bxe_attn_int(struct bxe_softc *sc)
8597{
8598    /* read local copy of bits */
8599    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8600    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8601    uint32_t attn_state = sc->attn_state;
8602
8603    /* look for changed bits */
8604    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8605    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8606
8607    BLOGD(sc, DBG_INTR,
8608          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8609          attn_bits, attn_ack, asserted, deasserted);
8610
8611    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8612        BLOGE(sc, "BAD attention state\n");
8613    }
8614
8615    /* handle bits that were raised */
8616    if (asserted) {
8617        bxe_attn_int_asserted(sc, asserted);
8618    }
8619
8620    if (deasserted) {
8621        bxe_attn_int_deasserted(sc, deasserted);
8622    }
8623}
8624
8625static uint16_t
8626bxe_update_dsb_idx(struct bxe_softc *sc)
8627{
8628    struct host_sp_status_block *def_sb = sc->def_sb;
8629    uint16_t rc = 0;
8630
8631    mb(); /* status block is written to by the chip */
8632
8633    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8634        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8635        rc |= BXE_DEF_SB_ATT_IDX;
8636    }
8637
8638    if (sc->def_idx != def_sb->sp_sb.running_index) {
8639        sc->def_idx = def_sb->sp_sb.running_index;
8640        rc |= BXE_DEF_SB_IDX;
8641    }
8642
8643    mb();
8644
8645    return (rc);
8646}
8647
8648static inline struct ecore_queue_sp_obj *
8649bxe_cid_to_q_obj(struct bxe_softc *sc,
8650                 uint32_t         cid)
8651{
8652    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8653    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8654}
8655
8656static void
8657bxe_handle_mcast_eqe(struct bxe_softc *sc)
8658{
8659    struct ecore_mcast_ramrod_params rparam;
8660    int rc;
8661
8662    memset(&rparam, 0, sizeof(rparam));
8663
8664    rparam.mcast_obj = &sc->mcast_obj;
8665
8666    BXE_MCAST_LOCK(sc);
8667
8668    /* clear pending state for the last command */
8669    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8670
8671    /* if there are pending mcast commands - send them */
8672    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8673        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8674        if (rc < 0) {
8675            BLOGD(sc, DBG_SP,
8676                  "ERROR: Failed to send pending mcast commands (%d)\n",
8677                  rc);
8678        }
8679    }
8680
8681    BXE_MCAST_UNLOCK(sc);
8682}
8683
8684static void
8685bxe_handle_classification_eqe(struct bxe_softc      *sc,
8686                              union event_ring_elem *elem)
8687{
8688    unsigned long ramrod_flags = 0;
8689    int rc = 0;
8690    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8691    struct ecore_vlan_mac_obj *vlan_mac_obj;
8692
8693    /* always push next commands out, don't wait here */
8694    bit_set(&ramrod_flags, RAMROD_CONT);
8695
8696    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8697    case ECORE_FILTER_MAC_PENDING:
8698        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8699        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8700        break;
8701
8702    case ECORE_FILTER_MCAST_PENDING:
8703        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8704        /*
8705         * This is only relevant for 57710 where multicast MACs are
8706         * configured as unicast MACs using the same ramrod.
8707         */
8708        bxe_handle_mcast_eqe(sc);
8709        return;
8710
8711    default:
8712        BLOGE(sc, "Unsupported classification command: %d\n",
8713              elem->message.data.eth_event.echo);
8714        return;
8715    }
8716
8717    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8718
8719    if (rc < 0) {
8720        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8721    } else if (rc > 0) {
8722        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8723    }
8724}
8725
8726static void
8727bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8728                       union event_ring_elem *elem)
8729{
8730    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8731
8732    /* send rx_mode command again if was requested */
8733    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8734                               &sc->sp_state)) {
8735        bxe_set_storm_rx_mode(sc);
8736    }
8737#if 0
8738    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8739                                    &sc->sp_state)) {
8740        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8741    }
8742    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8743                                    &sc->sp_state)) {
8744        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8745    }
8746#endif
8747}
8748
8749static void
8750bxe_update_eq_prod(struct bxe_softc *sc,
8751                   uint16_t         prod)
8752{
8753    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8754    wmb(); /* keep prod updates ordered */
8755}
8756
8757static void
8758bxe_eq_int(struct bxe_softc *sc)
8759{
8760    uint16_t hw_cons, sw_cons, sw_prod;
8761    union event_ring_elem *elem;
8762    uint8_t echo;
8763    uint32_t cid;
8764    uint8_t opcode;
8765    int spqe_cnt = 0;
8766    struct ecore_queue_sp_obj *q_obj;
8767    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8768    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8769
8770    hw_cons = le16toh(*sc->eq_cons_sb);
8771
8772    /*
8773     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8774     * when we get to the next-page we need to adjust so the loop
8775     * condition below will be met. The next element is the size of a
8776     * regular element and hence incrementing by 1
8777     */
8778    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8779        hw_cons++;
8780    }
8781
8782    /*
8783     * This function may never run in parallel with itself for a
8784     * specific sc and no need for a read memory barrier here.
8785     */
8786    sw_cons = sc->eq_cons;
8787    sw_prod = sc->eq_prod;
8788
8789    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8790          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8791
8792    for (;
8793         sw_cons != hw_cons;
8794         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8795
8796        elem = &sc->eq[EQ_DESC(sw_cons)];
8797
8798#if 0
8799        int rc;
8800        rc = bxe_iov_eq_sp_event(sc, elem);
8801        if (!rc) {
8802            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8803            goto next_spqe;
8804        }
8805#endif
8806
8807        /* elem CID originates from FW, actually LE */
8808        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8809        opcode = elem->message.opcode;
8810
8811        /* handle eq element */
8812        switch (opcode) {
8813#if 0
8814        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8815            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8816            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8817            continue;
8818#endif
8819
8820        case EVENT_RING_OPCODE_STAT_QUERY:
8821            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8822                  sc->stats_comp++);
8823            /* nothing to do with stats comp */
8824            goto next_spqe;
8825
8826        case EVENT_RING_OPCODE_CFC_DEL:
8827            /* handle according to cid range */
8828            /* we may want to verify here that the sc state is HALTING */
8829            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8830            q_obj = bxe_cid_to_q_obj(sc, cid);
8831            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8832                break;
8833            }
8834            goto next_spqe;
8835
8836        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8837            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8838            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8839                break;
8840            }
8841            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8842            goto next_spqe;
8843
8844        case EVENT_RING_OPCODE_START_TRAFFIC:
8845            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8846            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8847                break;
8848            }
8849            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8850            goto next_spqe;
8851
8852        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8853            echo = elem->message.data.function_update_event.echo;
8854            if (echo == SWITCH_UPDATE) {
8855                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8856                if (f_obj->complete_cmd(sc, f_obj,
8857                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8858                    break;
8859                }
8860            }
8861            else {
8862                BLOGD(sc, DBG_SP,
8863                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8864#if 0
8865                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8866                /*
8867                 * We will perform the queues update from the sp_core_task as
8868                 * all queue SP operations should run with CORE_LOCK.
8869                 */
8870                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8871                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8872#endif
8873            }
8874            goto next_spqe;
8875
8876#if 0
8877        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8878            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8879            bxe_after_afex_vif_lists(sc, elem);
8880            goto next_spqe;
8881#endif
8882
8883        case EVENT_RING_OPCODE_FORWARD_SETUP:
8884            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8885            if (q_obj->complete_cmd(sc, q_obj,
8886                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8887                break;
8888            }
8889            goto next_spqe;
8890
8891        case EVENT_RING_OPCODE_FUNCTION_START:
8892            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8893            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8894                break;
8895            }
8896            goto next_spqe;
8897
8898        case EVENT_RING_OPCODE_FUNCTION_STOP:
8899            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8900            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8901                break;
8902            }
8903            goto next_spqe;
8904        }
8905
8906        switch (opcode | sc->state) {
8907        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8908        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8909            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8910            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8911            rss_raw->clear_pending(rss_raw);
8912            break;
8913
8914        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8915        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8916        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8917        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8918        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8919        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8920            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8921            bxe_handle_classification_eqe(sc, elem);
8922            break;
8923
8924        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8925        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8926        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8927            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8928            bxe_handle_mcast_eqe(sc);
8929            break;
8930
8931        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8932        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8933        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8934            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8935            bxe_handle_rx_mode_eqe(sc, elem);
8936            break;
8937
8938        default:
8939            /* unknown event log error and continue */
8940            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8941                  elem->message.opcode, sc->state);
8942        }
8943
8944next_spqe:
8945        spqe_cnt++;
8946    } /* for */
8947
8948    mb();
8949    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8950
8951    sc->eq_cons = sw_cons;
8952    sc->eq_prod = sw_prod;
8953
8954    /* make sure that above mem writes were issued towards the memory */
8955    wmb();
8956
8957    /* update producer */
8958    bxe_update_eq_prod(sc, sc->eq_prod);
8959}
8960
8961static void
8962bxe_handle_sp_tq(void *context,
8963                 int  pending)
8964{
8965    struct bxe_softc *sc = (struct bxe_softc *)context;
8966    uint16_t status;
8967
8968    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8969
8970    /* what work needs to be performed? */
8971    status = bxe_update_dsb_idx(sc);
8972
8973    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8974
8975    /* HW attentions */
8976    if (status & BXE_DEF_SB_ATT_IDX) {
8977        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8978        bxe_attn_int(sc);
8979        status &= ~BXE_DEF_SB_ATT_IDX;
8980    }
8981
8982    /* SP events: STAT_QUERY and others */
8983    if (status & BXE_DEF_SB_IDX) {
8984        /* handle EQ completions */
8985        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8986        bxe_eq_int(sc);
8987        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8988                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
8989        status &= ~BXE_DEF_SB_IDX;
8990    }
8991
8992    /* if status is non zero then something went wrong */
8993    if (__predict_false(status)) {
8994        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8995    }
8996
8997    /* ack status block only if something was actually handled */
8998    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8999               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9000
9001    /*
9002     * Must be called after the EQ processing (since eq leads to sriov
9003     * ramrod completion flows).
9004     * This flow may have been scheduled by the arrival of a ramrod
9005     * completion, or by the sriov code rescheduling itself.
9006     */
9007    // XXX bxe_iov_sp_task(sc);
9008
9009#if 0
9010    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9011    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9012                               &sc->sp_state)) {
9013        bxe_link_report(sc);
9014        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9015    }
9016#endif
9017}
9018
9019static void
9020bxe_handle_fp_tq(void *context,
9021                 int  pending)
9022{
9023    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9024    struct bxe_softc *sc = fp->sc;
9025    uint8_t more_tx = FALSE;
9026    uint8_t more_rx = FALSE;
9027
9028    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9029
9030    /* XXX
9031     * IFF_DRV_RUNNING state can't be checked here since we process
9032     * slowpath events on a client queue during setup. Instead
9033     * we need to add a "process/continue" flag here that the driver
9034     * can use to tell the task here not to do anything.
9035     */
9036#if 0
9037    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9038        return;
9039    }
9040#endif
9041
9042    /* update the fastpath index */
9043    bxe_update_fp_sb_idx(fp);
9044
9045    /* XXX add loop here if ever support multiple tx CoS */
9046    /* fp->txdata[cos] */
9047    if (bxe_has_tx_work(fp)) {
9048        BXE_FP_TX_LOCK(fp);
9049        more_tx = bxe_txeof(sc, fp);
9050        BXE_FP_TX_UNLOCK(fp);
9051    }
9052
9053    if (bxe_has_rx_work(fp)) {
9054        more_rx = bxe_rxeof(sc, fp);
9055    }
9056
9057    if (more_rx /*|| more_tx*/) {
9058        /* still more work to do */
9059        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9060        return;
9061    }
9062
9063    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9064               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9065}
9066
9067static void
9068bxe_task_fp(struct bxe_fastpath *fp)
9069{
9070    struct bxe_softc *sc = fp->sc;
9071    uint8_t more_tx = FALSE;
9072    uint8_t more_rx = FALSE;
9073
9074    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9075
9076    /* update the fastpath index */
9077    bxe_update_fp_sb_idx(fp);
9078
9079    /* XXX add loop here if ever support multiple tx CoS */
9080    /* fp->txdata[cos] */
9081    if (bxe_has_tx_work(fp)) {
9082        BXE_FP_TX_LOCK(fp);
9083        more_tx = bxe_txeof(sc, fp);
9084        BXE_FP_TX_UNLOCK(fp);
9085    }
9086
9087    if (bxe_has_rx_work(fp)) {
9088        more_rx = bxe_rxeof(sc, fp);
9089    }
9090
9091    if (more_rx /*|| more_tx*/) {
9092        /* still more work to do, bail out if this ISR and process later */
9093        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9094        return;
9095    }
9096
9097    /*
9098     * Here we write the fastpath index taken before doing any tx or rx work.
9099     * It is very well possible other hw events occurred up to this point and
9100     * they were actually processed accordingly above. Since we're going to
9101     * write an older fastpath index, an interrupt is coming which we might
9102     * not do any work in.
9103     */
9104    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9105               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9106}
9107
9108/*
9109 * Legacy interrupt entry point.
9110 *
9111 * Verifies that the controller generated the interrupt and
9112 * then calls a separate routine to handle the various
9113 * interrupt causes: link, RX, and TX.
9114 */
9115static void
9116bxe_intr_legacy(void *xsc)
9117{
9118    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9119    struct bxe_fastpath *fp;
9120    uint16_t status, mask;
9121    int i;
9122
9123    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9124
9125#if 0
9126    /* Don't handle any interrupts if we're not ready. */
9127    if (__predict_false(sc->intr_sem != 0)) {
9128        return;
9129    }
9130#endif
9131
9132    /*
9133     * 0 for ustorm, 1 for cstorm
9134     * the bits returned from ack_int() are 0-15
9135     * bit 0 = attention status block
9136     * bit 1 = fast path status block
9137     * a mask of 0x2 or more = tx/rx event
9138     * a mask of 1 = slow path event
9139     */
9140
9141    status = bxe_ack_int(sc);
9142
9143    /* the interrupt is not for us */
9144    if (__predict_false(status == 0)) {
9145        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9146        return;
9147    }
9148
9149    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9150
9151    FOR_EACH_ETH_QUEUE(sc, i) {
9152        fp = &sc->fp[i];
9153        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9154        if (status & mask) {
9155            /* acknowledge and disable further fastpath interrupts */
9156            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9157            bxe_task_fp(fp);
9158            status &= ~mask;
9159        }
9160    }
9161
9162#if 0
9163    if (CNIC_SUPPORT(sc)) {
9164        mask = 0x2;
9165        if (status & (mask | 0x1)) {
9166            ...
9167            status &= ~mask;
9168        }
9169    }
9170#endif
9171
9172    if (__predict_false(status & 0x1)) {
9173        /* acknowledge and disable further slowpath interrupts */
9174        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9175
9176        /* schedule slowpath handler */
9177        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9178
9179        status &= ~0x1;
9180    }
9181
9182    if (__predict_false(status)) {
9183        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9184    }
9185}
9186
9187/* slowpath interrupt entry point */
9188static void
9189bxe_intr_sp(void *xsc)
9190{
9191    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9192
9193    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9194
9195    /* acknowledge and disable further slowpath interrupts */
9196    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9197
9198    /* schedule slowpath handler */
9199    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9200}
9201
9202/* fastpath interrupt entry point */
9203static void
9204bxe_intr_fp(void *xfp)
9205{
9206    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9207    struct bxe_softc *sc = fp->sc;
9208
9209    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9210
9211    BLOGD(sc, DBG_INTR,
9212          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9213          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9214
9215#if 0
9216    /* Don't handle any interrupts if we're not ready. */
9217    if (__predict_false(sc->intr_sem != 0)) {
9218        return;
9219    }
9220#endif
9221
9222    /* acknowledge and disable further fastpath interrupts */
9223    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9224
9225    bxe_task_fp(fp);
9226}
9227
9228/* Release all interrupts allocated by the driver. */
9229static void
9230bxe_interrupt_free(struct bxe_softc *sc)
9231{
9232    int i;
9233
9234    switch (sc->interrupt_mode) {
9235    case INTR_MODE_INTX:
9236        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9237        if (sc->intr[0].resource != NULL) {
9238            bus_release_resource(sc->dev,
9239                                 SYS_RES_IRQ,
9240                                 sc->intr[0].rid,
9241                                 sc->intr[0].resource);
9242        }
9243        break;
9244    case INTR_MODE_MSI:
9245        for (i = 0; i < sc->intr_count; i++) {
9246            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9247            if (sc->intr[i].resource && sc->intr[i].rid) {
9248                bus_release_resource(sc->dev,
9249                                     SYS_RES_IRQ,
9250                                     sc->intr[i].rid,
9251                                     sc->intr[i].resource);
9252            }
9253        }
9254        pci_release_msi(sc->dev);
9255        break;
9256    case INTR_MODE_MSIX:
9257        for (i = 0; i < sc->intr_count; i++) {
9258            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9259            if (sc->intr[i].resource && sc->intr[i].rid) {
9260                bus_release_resource(sc->dev,
9261                                     SYS_RES_IRQ,
9262                                     sc->intr[i].rid,
9263                                     sc->intr[i].resource);
9264            }
9265        }
9266        pci_release_msi(sc->dev);
9267        break;
9268    default:
9269        /* nothing to do as initial allocation failed */
9270        break;
9271    }
9272}
9273
9274/*
9275 * This function determines and allocates the appropriate
9276 * interrupt based on system capabilites and user request.
9277 *
9278 * The user may force a particular interrupt mode, specify
9279 * the number of receive queues, specify the method for
9280 * distribuitng received frames to receive queues, or use
9281 * the default settings which will automatically select the
9282 * best supported combination.  In addition, the OS may or
9283 * may not support certain combinations of these settings.
9284 * This routine attempts to reconcile the settings requested
9285 * by the user with the capabilites available from the system
9286 * to select the optimal combination of features.
9287 *
9288 * Returns:
9289 *   0 = Success, !0 = Failure.
9290 */
9291static int
9292bxe_interrupt_alloc(struct bxe_softc *sc)
9293{
9294    int msix_count = 0;
9295    int msi_count = 0;
9296    int num_requested = 0;
9297    int num_allocated = 0;
9298    int rid, i, j;
9299    int rc;
9300
9301    /* get the number of available MSI/MSI-X interrupts from the OS */
9302    if (sc->interrupt_mode > 0) {
9303        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9304            msix_count = pci_msix_count(sc->dev);
9305        }
9306
9307        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9308            msi_count = pci_msi_count(sc->dev);
9309        }
9310
9311        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9312              msi_count, msix_count);
9313    }
9314
9315    do { /* try allocating MSI-X interrupt resources (at least 2) */
9316        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9317            break;
9318        }
9319
9320        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9321            (msix_count < 2)) {
9322            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9323            break;
9324        }
9325
9326        /* ask for the necessary number of MSI-X vectors */
9327        num_requested = min((sc->num_queues + 1), msix_count);
9328
9329        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9330
9331        num_allocated = num_requested;
9332        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9333            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9334            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9335            break;
9336        }
9337
9338        if (num_allocated < 2) { /* possible? */
9339            BLOGE(sc, "MSI-X allocation less than 2!\n");
9340            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9341            pci_release_msi(sc->dev);
9342            break;
9343        }
9344
9345        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9346              num_requested, num_allocated);
9347
9348        /* best effort so use the number of vectors allocated to us */
9349        sc->intr_count = num_allocated;
9350        sc->num_queues = num_allocated - 1;
9351
9352        rid = 1; /* initial resource identifier */
9353
9354        /* allocate the MSI-X vectors */
9355        for (i = 0; i < num_allocated; i++) {
9356            sc->intr[i].rid = (rid + i);
9357
9358            if ((sc->intr[i].resource =
9359                 bus_alloc_resource_any(sc->dev,
9360                                        SYS_RES_IRQ,
9361                                        &sc->intr[i].rid,
9362                                        RF_ACTIVE)) == NULL) {
9363                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9364                      i, (rid + i));
9365
9366                for (j = (i - 1); j >= 0; j--) {
9367                    bus_release_resource(sc->dev,
9368                                         SYS_RES_IRQ,
9369                                         sc->intr[j].rid,
9370                                         sc->intr[j].resource);
9371                }
9372
9373                sc->intr_count = 0;
9374                sc->num_queues = 0;
9375                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9376                pci_release_msi(sc->dev);
9377                break;
9378            }
9379
9380            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9381        }
9382    } while (0);
9383
9384    do { /* try allocating MSI vector resources (at least 2) */
9385        if (sc->interrupt_mode != INTR_MODE_MSI) {
9386            break;
9387        }
9388
9389        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9390            (msi_count < 2)) {
9391            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9392            break;
9393        }
9394
9395        /* ask for the necessary number of MSI vectors */
9396        num_requested = min((sc->num_queues + 1), msi_count);
9397
9398        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9399
9400        num_allocated = num_requested;
9401        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9402            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9403            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9404            break;
9405        }
9406
9407        if (num_allocated < 2) { /* possible? */
9408            BLOGE(sc, "MSI allocation less than 2!\n");
9409            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9410            pci_release_msi(sc->dev);
9411            break;
9412        }
9413
9414        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9415              num_requested, num_allocated);
9416
9417        /* best effort so use the number of vectors allocated to us */
9418        sc->intr_count = num_allocated;
9419        sc->num_queues = num_allocated - 1;
9420
9421        rid = 1; /* initial resource identifier */
9422
9423        /* allocate the MSI vectors */
9424        for (i = 0; i < num_allocated; i++) {
9425            sc->intr[i].rid = (rid + i);
9426
9427            if ((sc->intr[i].resource =
9428                 bus_alloc_resource_any(sc->dev,
9429                                        SYS_RES_IRQ,
9430                                        &sc->intr[i].rid,
9431                                        RF_ACTIVE)) == NULL) {
9432                BLOGE(sc, "Failed to map MSI[%d] (rid=%d)!\n",
9433                      i, (rid + i));
9434
9435                for (j = (i - 1); j >= 0; j--) {
9436                    bus_release_resource(sc->dev,
9437                                         SYS_RES_IRQ,
9438                                         sc->intr[j].rid,
9439                                         sc->intr[j].resource);
9440                }
9441
9442                sc->intr_count = 0;
9443                sc->num_queues = 0;
9444                sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9445                pci_release_msi(sc->dev);
9446                break;
9447            }
9448
9449            BLOGD(sc, DBG_LOAD, "Mapped MSI[%d] (rid=%d)\n", i, (rid + i));
9450        }
9451    } while (0);
9452
9453    do { /* try allocating INTx vector resources */
9454        if (sc->interrupt_mode != INTR_MODE_INTX) {
9455            break;
9456        }
9457
9458        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9459
9460        /* only one vector for INTx */
9461        sc->intr_count = 1;
9462        sc->num_queues = 1;
9463
9464        rid = 0; /* initial resource identifier */
9465
9466        sc->intr[0].rid = rid;
9467
9468        if ((sc->intr[0].resource =
9469             bus_alloc_resource_any(sc->dev,
9470                                    SYS_RES_IRQ,
9471                                    &sc->intr[0].rid,
9472                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9473            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9474            sc->intr_count = 0;
9475            sc->num_queues = 0;
9476            sc->interrupt_mode = -1; /* Failed! */
9477            break;
9478        }
9479
9480        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9481    } while (0);
9482
9483    if (sc->interrupt_mode == -1) {
9484        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9485        rc = 1;
9486    } else {
9487        BLOGD(sc, DBG_LOAD,
9488              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9489              sc->interrupt_mode, sc->num_queues);
9490        rc = 0;
9491    }
9492
9493    return (rc);
9494}
9495
9496static void
9497bxe_interrupt_detach(struct bxe_softc *sc)
9498{
9499    struct bxe_fastpath *fp;
9500    int i;
9501
9502    /* release interrupt resources */
9503    for (i = 0; i < sc->intr_count; i++) {
9504        if (sc->intr[i].resource && sc->intr[i].tag) {
9505            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9506            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9507        }
9508    }
9509
9510    for (i = 0; i < sc->num_queues; i++) {
9511        fp = &sc->fp[i];
9512        if (fp->tq) {
9513            taskqueue_drain(fp->tq, &fp->tq_task);
9514            taskqueue_free(fp->tq);
9515            fp->tq = NULL;
9516        }
9517    }
9518
9519    if (sc->rx_mode_tq) {
9520        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9521        taskqueue_free(sc->rx_mode_tq);
9522        sc->rx_mode_tq = NULL;
9523    }
9524
9525    if (sc->sp_tq) {
9526        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9527        taskqueue_free(sc->sp_tq);
9528        sc->sp_tq = NULL;
9529    }
9530}
9531
9532/*
9533 * Enables interrupts and attach to the ISR.
9534 *
9535 * When using multiple MSI/MSI-X vectors the first vector
9536 * is used for slowpath operations while all remaining
9537 * vectors are used for fastpath operations.  If only a
9538 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9539 * ISR must look for both slowpath and fastpath completions.
9540 */
9541static int
9542bxe_interrupt_attach(struct bxe_softc *sc)
9543{
9544    struct bxe_fastpath *fp;
9545    int rc = 0;
9546    int i;
9547
9548    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9549             "bxe%d_sp_tq", sc->unit);
9550    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9551    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9552                                      taskqueue_thread_enqueue,
9553                                      &sc->sp_tq);
9554    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9555                            "%s", sc->sp_tq_name);
9556
9557    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9558             "bxe%d_rx_mode_tq", sc->unit);
9559    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9560    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9561                                           taskqueue_thread_enqueue,
9562                                           &sc->rx_mode_tq);
9563    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9564                            "%s", sc->rx_mode_tq_name);
9565
9566    for (i = 0; i < sc->num_queues; i++) {
9567        fp = &sc->fp[i];
9568        snprintf(fp->tq_name, sizeof(fp->tq_name),
9569                 "bxe%d_fp%d_tq", sc->unit, i);
9570        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9571        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9572                                       taskqueue_thread_enqueue,
9573                                       &fp->tq);
9574        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9575                                "%s", fp->tq_name);
9576    }
9577
9578    /* setup interrupt handlers */
9579    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9580        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9581
9582        /*
9583         * Setup the interrupt handler. Note that we pass the driver instance
9584         * to the interrupt handler for the slowpath.
9585         */
9586        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9587                                 (INTR_TYPE_NET | INTR_MPSAFE),
9588                                 NULL, bxe_intr_sp, sc,
9589                                 &sc->intr[0].tag)) != 0) {
9590            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9591            goto bxe_interrupt_attach_exit;
9592        }
9593
9594        bus_describe_intr(sc->dev, sc->intr[0].resource,
9595                          sc->intr[0].tag, "sp");
9596
9597        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9598
9599        /* initialize the fastpath vectors (note the first was used for sp) */
9600        for (i = 0; i < sc->num_queues; i++) {
9601            fp = &sc->fp[i];
9602            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9603
9604            /*
9605             * Setup the interrupt handler. Note that we pass the
9606             * fastpath context to the interrupt handler in this
9607             * case.
9608             */
9609            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9610                                     (INTR_TYPE_NET | INTR_MPSAFE),
9611                                     NULL, bxe_intr_fp, fp,
9612                                     &sc->intr[i + 1].tag)) != 0) {
9613                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9614                      (i + 1), rc);
9615                goto bxe_interrupt_attach_exit;
9616            }
9617
9618            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9619                              sc->intr[i + 1].tag, "fp%02d", i);
9620
9621            /* bind the fastpath instance to a cpu */
9622            if (sc->num_queues > 1) {
9623                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9624            }
9625
9626            fp->state = BXE_FP_STATE_IRQ;
9627        }
9628    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9629        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI[0] vector.\n");
9630
9631        /*
9632         * Setup the interrupt handler. Note that we pass the driver instance
9633         * to the interrupt handler for the slowpath.
9634         */
9635        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9636                                 (INTR_TYPE_NET | INTR_MPSAFE),
9637                                 NULL, bxe_intr_sp, sc,
9638                                 &sc->intr[0].tag)) != 0) {
9639            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9640            goto bxe_interrupt_attach_exit;
9641        }
9642
9643        bus_describe_intr(sc->dev, sc->intr[0].resource,
9644                          sc->intr[0].tag, "sp");
9645
9646        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9647
9648        /* initialize the fastpath vectors (note the first was used for sp) */
9649        for (i = 0; i < sc->num_queues; i++) {
9650            fp = &sc->fp[i];
9651            BLOGD(sc, DBG_LOAD, "Enabling MSI[%d] vector\n", (i + 1));
9652
9653            /*
9654             * Setup the interrupt handler. Note that we pass the
9655             * fastpath context to the interrupt handler in this
9656             * case.
9657             */
9658            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9659                                     (INTR_TYPE_NET | INTR_MPSAFE),
9660                                     NULL, bxe_intr_fp, fp,
9661                                     &sc->intr[i + 1].tag)) != 0) {
9662                BLOGE(sc, "Failed to allocate MSI[%d] vector (%d)\n",
9663                      (i + 1), rc);
9664                goto bxe_interrupt_attach_exit;
9665            }
9666
9667            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9668                              sc->intr[i + 1].tag, "fp%02d", i);
9669
9670            /* bind the fastpath instance to a cpu */
9671            if (sc->num_queues > 1) {
9672                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9673            }
9674
9675            fp->state = BXE_FP_STATE_IRQ;
9676        }
9677    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9678        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9679
9680        /*
9681         * Setup the interrupt handler. Note that we pass the
9682         * driver instance to the interrupt handler which
9683         * will handle both the slowpath and fastpath.
9684         */
9685        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9686                                 (INTR_TYPE_NET | INTR_MPSAFE),
9687                                 NULL, bxe_intr_legacy, sc,
9688                                 &sc->intr[0].tag)) != 0) {
9689            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9690            goto bxe_interrupt_attach_exit;
9691        }
9692    }
9693
9694bxe_interrupt_attach_exit:
9695
9696    return (rc);
9697}
9698
9699static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9700static int  bxe_init_hw_common(struct bxe_softc *sc);
9701static int  bxe_init_hw_port(struct bxe_softc *sc);
9702static int  bxe_init_hw_func(struct bxe_softc *sc);
9703static void bxe_reset_common(struct bxe_softc *sc);
9704static void bxe_reset_port(struct bxe_softc *sc);
9705static void bxe_reset_func(struct bxe_softc *sc);
9706static int  bxe_gunzip_init(struct bxe_softc *sc);
9707static void bxe_gunzip_end(struct bxe_softc *sc);
9708static int  bxe_init_firmware(struct bxe_softc *sc);
9709static void bxe_release_firmware(struct bxe_softc *sc);
9710
9711static struct
9712ecore_func_sp_drv_ops bxe_func_sp_drv = {
9713    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9714    .init_hw_cmn      = bxe_init_hw_common,
9715    .init_hw_port     = bxe_init_hw_port,
9716    .init_hw_func     = bxe_init_hw_func,
9717
9718    .reset_hw_cmn     = bxe_reset_common,
9719    .reset_hw_port    = bxe_reset_port,
9720    .reset_hw_func    = bxe_reset_func,
9721
9722    .gunzip_init      = bxe_gunzip_init,
9723    .gunzip_end       = bxe_gunzip_end,
9724
9725    .init_fw          = bxe_init_firmware,
9726    .release_fw       = bxe_release_firmware,
9727};
9728
9729static void
9730bxe_init_func_obj(struct bxe_softc *sc)
9731{
9732    sc->dmae_ready = 0;
9733
9734    ecore_init_func_obj(sc,
9735                        &sc->func_obj,
9736                        BXE_SP(sc, func_rdata),
9737                        BXE_SP_MAPPING(sc, func_rdata),
9738                        BXE_SP(sc, func_afex_rdata),
9739                        BXE_SP_MAPPING(sc, func_afex_rdata),
9740                        &bxe_func_sp_drv);
9741}
9742
9743static int
9744bxe_init_hw(struct bxe_softc *sc,
9745            uint32_t         load_code)
9746{
9747    struct ecore_func_state_params func_params = { NULL };
9748    int rc;
9749
9750    /* prepare the parameters for function state transitions */
9751    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9752
9753    func_params.f_obj = &sc->func_obj;
9754    func_params.cmd = ECORE_F_CMD_HW_INIT;
9755
9756    func_params.params.hw_init.load_phase = load_code;
9757
9758    /*
9759     * Via a plethora of function pointers, we will eventually reach
9760     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9761     */
9762    rc = ecore_func_state_change(sc, &func_params);
9763
9764    return (rc);
9765}
9766
9767static void
9768bxe_fill(struct bxe_softc *sc,
9769         uint32_t         addr,
9770         int              fill,
9771         uint32_t         len)
9772{
9773    uint32_t i;
9774
9775    if (!(len % 4) && !(addr % 4)) {
9776        for (i = 0; i < len; i += 4) {
9777            REG_WR(sc, (addr + i), fill);
9778        }
9779    } else {
9780        for (i = 0; i < len; i++) {
9781            REG_WR8(sc, (addr + i), fill);
9782        }
9783    }
9784}
9785
9786/* writes FP SP data to FW - data_size in dwords */
9787static void
9788bxe_wr_fp_sb_data(struct bxe_softc *sc,
9789                  int              fw_sb_id,
9790                  uint32_t         *sb_data_p,
9791                  uint32_t         data_size)
9792{
9793    int index;
9794
9795    for (index = 0; index < data_size; index++) {
9796        REG_WR(sc,
9797               (BAR_CSTRORM_INTMEM +
9798                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9799                (sizeof(uint32_t) * index)),
9800               *(sb_data_p + index));
9801    }
9802}
9803
9804static void
9805bxe_zero_fp_sb(struct bxe_softc *sc,
9806               int              fw_sb_id)
9807{
9808    struct hc_status_block_data_e2 sb_data_e2;
9809    struct hc_status_block_data_e1x sb_data_e1x;
9810    uint32_t *sb_data_p;
9811    uint32_t data_size = 0;
9812
9813    if (!CHIP_IS_E1x(sc)) {
9814        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9815        sb_data_e2.common.state = SB_DISABLED;
9816        sb_data_e2.common.p_func.vf_valid = FALSE;
9817        sb_data_p = (uint32_t *)&sb_data_e2;
9818        data_size = (sizeof(struct hc_status_block_data_e2) /
9819                     sizeof(uint32_t));
9820    } else {
9821        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9822        sb_data_e1x.common.state = SB_DISABLED;
9823        sb_data_e1x.common.p_func.vf_valid = FALSE;
9824        sb_data_p = (uint32_t *)&sb_data_e1x;
9825        data_size = (sizeof(struct hc_status_block_data_e1x) /
9826                     sizeof(uint32_t));
9827    }
9828
9829    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9830
9831    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9832             0, CSTORM_STATUS_BLOCK_SIZE);
9833    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9834             0, CSTORM_SYNC_BLOCK_SIZE);
9835}
9836
9837static void
9838bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9839                  struct hc_sp_status_block_data *sp_sb_data)
9840{
9841    int i;
9842
9843    for (i = 0;
9844         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9845         i++) {
9846        REG_WR(sc,
9847               (BAR_CSTRORM_INTMEM +
9848                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9849                (i * sizeof(uint32_t))),
9850               *((uint32_t *)sp_sb_data + i));
9851    }
9852}
9853
9854static void
9855bxe_zero_sp_sb(struct bxe_softc *sc)
9856{
9857    struct hc_sp_status_block_data sp_sb_data;
9858
9859    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9860
9861    sp_sb_data.state           = SB_DISABLED;
9862    sp_sb_data.p_func.vf_valid = FALSE;
9863
9864    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9865
9866    bxe_fill(sc,
9867             (BAR_CSTRORM_INTMEM +
9868              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9869              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9870    bxe_fill(sc,
9871             (BAR_CSTRORM_INTMEM +
9872              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9873              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9874}
9875
9876static void
9877bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9878                             int                       igu_sb_id,
9879                             int                       igu_seg_id)
9880{
9881    hc_sm->igu_sb_id      = igu_sb_id;
9882    hc_sm->igu_seg_id     = igu_seg_id;
9883    hc_sm->timer_value    = 0xFF;
9884    hc_sm->time_to_expire = 0xFFFFFFFF;
9885}
9886
9887static void
9888bxe_map_sb_state_machines(struct hc_index_data *index_data)
9889{
9890    /* zero out state machine indices */
9891
9892    /* rx indices */
9893    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9894
9895    /* tx indices */
9896    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9897    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9898    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9899    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9900
9901    /* map indices */
9902
9903    /* rx indices */
9904    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9905        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9906
9907    /* tx indices */
9908    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9909        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9910    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9911        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9912    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9913        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9914    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9915        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9916}
9917
9918static void
9919bxe_init_sb(struct bxe_softc *sc,
9920            bus_addr_t       busaddr,
9921            int              vfid,
9922            uint8_t          vf_valid,
9923            int              fw_sb_id,
9924            int              igu_sb_id)
9925{
9926    struct hc_status_block_data_e2  sb_data_e2;
9927    struct hc_status_block_data_e1x sb_data_e1x;
9928    struct hc_status_block_sm       *hc_sm_p;
9929    uint32_t *sb_data_p;
9930    int igu_seg_id;
9931    int data_size;
9932
9933    if (CHIP_INT_MODE_IS_BC(sc)) {
9934        igu_seg_id = HC_SEG_ACCESS_NORM;
9935    } else {
9936        igu_seg_id = IGU_SEG_ACCESS_NORM;
9937    }
9938
9939    bxe_zero_fp_sb(sc, fw_sb_id);
9940
9941    if (!CHIP_IS_E1x(sc)) {
9942        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9943        sb_data_e2.common.state = SB_ENABLED;
9944        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9945        sb_data_e2.common.p_func.vf_id = vfid;
9946        sb_data_e2.common.p_func.vf_valid = vf_valid;
9947        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9948        sb_data_e2.common.same_igu_sb_1b = TRUE;
9949        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9950        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9951        hc_sm_p = sb_data_e2.common.state_machine;
9952        sb_data_p = (uint32_t *)&sb_data_e2;
9953        data_size = (sizeof(struct hc_status_block_data_e2) /
9954                     sizeof(uint32_t));
9955        bxe_map_sb_state_machines(sb_data_e2.index_data);
9956    } else {
9957        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9958        sb_data_e1x.common.state = SB_ENABLED;
9959        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9960        sb_data_e1x.common.p_func.vf_id = 0xff;
9961        sb_data_e1x.common.p_func.vf_valid = FALSE;
9962        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9963        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9964        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9965        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9966        hc_sm_p = sb_data_e1x.common.state_machine;
9967        sb_data_p = (uint32_t *)&sb_data_e1x;
9968        data_size = (sizeof(struct hc_status_block_data_e1x) /
9969                     sizeof(uint32_t));
9970        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9971    }
9972
9973    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9974    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9975
9976    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9977
9978    /* write indices to HW - PCI guarantees endianity of regpairs */
9979    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9980}
9981
9982static inline uint8_t
9983bxe_fp_qzone_id(struct bxe_fastpath *fp)
9984{
9985    if (CHIP_IS_E1x(fp->sc)) {
9986        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9987    } else {
9988        return (fp->cl_id);
9989    }
9990}
9991
9992static inline uint32_t
9993bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9994                           struct bxe_fastpath *fp)
9995{
9996    uint32_t offset = BAR_USTRORM_INTMEM;
9997
9998#if 0
9999    if (IS_VF(sc)) {
10000        return (PXP_VF_ADDR_USDM_QUEUES_START +
10001                (sc->acquire_resp.resc.hw_qid[fp->index] *
10002                 sizeof(struct ustorm_queue_zone_data)));
10003    } else
10004#endif
10005    if (!CHIP_IS_E1x(sc)) {
10006        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
10007    } else {
10008        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
10009    }
10010
10011    return (offset);
10012}
10013
10014static void
10015bxe_init_eth_fp(struct bxe_softc *sc,
10016                int              idx)
10017{
10018    struct bxe_fastpath *fp = &sc->fp[idx];
10019    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
10020    unsigned long q_type = 0;
10021    int cos;
10022
10023    fp->sc    = sc;
10024    fp->index = idx;
10025
10026    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
10027             "bxe%d_fp%d_tx_lock", sc->unit, idx);
10028    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
10029
10030    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10031             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10032    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10033
10034    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10035    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10036
10037    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10038                    (SC_L_ID(sc) + idx) :
10039                    /* want client ID same as IGU SB ID for non-E1 */
10040                    fp->igu_sb_id;
10041    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10042
10043    /* setup sb indices */
10044    if (!CHIP_IS_E1x(sc)) {
10045        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10046        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10047    } else {
10048        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10049        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10050    }
10051
10052    /* init shortcut */
10053    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10054
10055    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10056
10057    /*
10058     * XXX If multiple CoS is ever supported then each fastpath structure
10059     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10060     */
10061    for (cos = 0; cos < sc->max_cos; cos++) {
10062        cids[cos] = idx;
10063    }
10064    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10065
10066    /* nothing more for a VF to do */
10067    if (IS_VF(sc)) {
10068        return;
10069    }
10070
10071    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10072                fp->fw_sb_id, fp->igu_sb_id);
10073
10074    bxe_update_fp_sb_idx(fp);
10075
10076    /* Configure Queue State object */
10077    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10078    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10079
10080    ecore_init_queue_obj(sc,
10081                         &sc->sp_objs[idx].q_obj,
10082                         fp->cl_id,
10083                         cids,
10084                         sc->max_cos,
10085                         SC_FUNC(sc),
10086                         BXE_SP(sc, q_rdata),
10087                         BXE_SP_MAPPING(sc, q_rdata),
10088                         q_type);
10089
10090    /* configure classification DBs */
10091    ecore_init_mac_obj(sc,
10092                       &sc->sp_objs[idx].mac_obj,
10093                       fp->cl_id,
10094                       idx,
10095                       SC_FUNC(sc),
10096                       BXE_SP(sc, mac_rdata),
10097                       BXE_SP_MAPPING(sc, mac_rdata),
10098                       ECORE_FILTER_MAC_PENDING,
10099                       &sc->sp_state,
10100                       ECORE_OBJ_TYPE_RX_TX,
10101                       &sc->macs_pool);
10102
10103    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10104          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10105}
10106
10107static inline void
10108bxe_update_rx_prod(struct bxe_softc    *sc,
10109                   struct bxe_fastpath *fp,
10110                   uint16_t            rx_bd_prod,
10111                   uint16_t            rx_cq_prod,
10112                   uint16_t            rx_sge_prod)
10113{
10114    struct ustorm_eth_rx_producers rx_prods = { 0 };
10115    uint32_t i;
10116
10117    /* update producers */
10118    rx_prods.bd_prod  = rx_bd_prod;
10119    rx_prods.cqe_prod = rx_cq_prod;
10120    rx_prods.sge_prod = rx_sge_prod;
10121
10122    /*
10123     * Make sure that the BD and SGE data is updated before updating the
10124     * producers since FW might read the BD/SGE right after the producer
10125     * is updated.
10126     * This is only applicable for weak-ordered memory model archs such
10127     * as IA-64. The following barrier is also mandatory since FW will
10128     * assumes BDs must have buffers.
10129     */
10130    wmb();
10131
10132    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10133        REG_WR(sc,
10134               (fp->ustorm_rx_prods_offset + (i * 4)),
10135               ((uint32_t *)&rx_prods)[i]);
10136    }
10137
10138    wmb(); /* keep prod updates ordered */
10139
10140    BLOGD(sc, DBG_RX,
10141          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10142          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10143}
10144
10145static void
10146bxe_init_rx_rings(struct bxe_softc *sc)
10147{
10148    struct bxe_fastpath *fp;
10149    int i;
10150
10151    for (i = 0; i < sc->num_queues; i++) {
10152        fp = &sc->fp[i];
10153
10154        fp->rx_bd_cons = 0;
10155
10156        /*
10157         * Activate the BD ring...
10158         * Warning, this will generate an interrupt (to the TSTORM)
10159         * so this can only be done after the chip is initialized
10160         */
10161        bxe_update_rx_prod(sc, fp,
10162                           fp->rx_bd_prod,
10163                           fp->rx_cq_prod,
10164                           fp->rx_sge_prod);
10165
10166        if (i != 0) {
10167            continue;
10168        }
10169
10170        if (CHIP_IS_E1(sc)) {
10171            REG_WR(sc,
10172                   (BAR_USTRORM_INTMEM +
10173                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10174                   U64_LO(fp->rcq_dma.paddr));
10175            REG_WR(sc,
10176                   (BAR_USTRORM_INTMEM +
10177                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10178                   U64_HI(fp->rcq_dma.paddr));
10179        }
10180    }
10181}
10182
10183static void
10184bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10185{
10186    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10187    fp->tx_db.data.zero_fill1 = 0;
10188    fp->tx_db.data.prod = 0;
10189
10190    fp->tx_pkt_prod = 0;
10191    fp->tx_pkt_cons = 0;
10192    fp->tx_bd_prod = 0;
10193    fp->tx_bd_cons = 0;
10194    fp->eth_q_stats.tx_pkts = 0;
10195}
10196
10197static inline void
10198bxe_init_tx_rings(struct bxe_softc *sc)
10199{
10200    int i;
10201
10202    for (i = 0; i < sc->num_queues; i++) {
10203#if 0
10204        uint8_t cos;
10205        for (cos = 0; cos < sc->max_cos; cos++) {
10206            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10207        }
10208#else
10209        bxe_init_tx_ring_one(&sc->fp[i]);
10210#endif
10211    }
10212}
10213
10214static void
10215bxe_init_def_sb(struct bxe_softc *sc)
10216{
10217    struct host_sp_status_block *def_sb = sc->def_sb;
10218    bus_addr_t mapping = sc->def_sb_dma.paddr;
10219    int igu_sp_sb_index;
10220    int igu_seg_id;
10221    int port = SC_PORT(sc);
10222    int func = SC_FUNC(sc);
10223    int reg_offset, reg_offset_en5;
10224    uint64_t section;
10225    int index, sindex;
10226    struct hc_sp_status_block_data sp_sb_data;
10227
10228    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10229
10230    if (CHIP_INT_MODE_IS_BC(sc)) {
10231        igu_sp_sb_index = DEF_SB_IGU_ID;
10232        igu_seg_id = HC_SEG_ACCESS_DEF;
10233    } else {
10234        igu_sp_sb_index = sc->igu_dsb_id;
10235        igu_seg_id = IGU_SEG_ACCESS_DEF;
10236    }
10237
10238    /* attentions */
10239    section = ((uint64_t)mapping +
10240               offsetof(struct host_sp_status_block, atten_status_block));
10241    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10242    sc->attn_state = 0;
10243
10244    reg_offset = (port) ?
10245                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10246                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10247    reg_offset_en5 = (port) ?
10248                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10249                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10250
10251    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10252        /* take care of sig[0]..sig[4] */
10253        for (sindex = 0; sindex < 4; sindex++) {
10254            sc->attn_group[index].sig[sindex] =
10255                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10256        }
10257
10258        if (!CHIP_IS_E1x(sc)) {
10259            /*
10260             * enable5 is separate from the rest of the registers,
10261             * and the address skip is 4 and not 16 between the
10262             * different groups
10263             */
10264            sc->attn_group[index].sig[4] =
10265                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10266        } else {
10267            sc->attn_group[index].sig[4] = 0;
10268        }
10269    }
10270
10271    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10272        reg_offset = (port) ?
10273                         HC_REG_ATTN_MSG1_ADDR_L :
10274                         HC_REG_ATTN_MSG0_ADDR_L;
10275        REG_WR(sc, reg_offset, U64_LO(section));
10276        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10277    } else if (!CHIP_IS_E1x(sc)) {
10278        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10279        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10280    }
10281
10282    section = ((uint64_t)mapping +
10283               offsetof(struct host_sp_status_block, sp_sb));
10284
10285    bxe_zero_sp_sb(sc);
10286
10287    /* PCI guarantees endianity of regpair */
10288    sp_sb_data.state           = SB_ENABLED;
10289    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10290    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10291    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10292    sp_sb_data.igu_seg_id      = igu_seg_id;
10293    sp_sb_data.p_func.pf_id    = func;
10294    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10295    sp_sb_data.p_func.vf_id    = 0xff;
10296
10297    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10298
10299    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10300}
10301
10302static void
10303bxe_init_sp_ring(struct bxe_softc *sc)
10304{
10305    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10306    sc->spq_prod_idx = 0;
10307    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10308    sc->spq_prod_bd = sc->spq;
10309    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10310}
10311
10312static void
10313bxe_init_eq_ring(struct bxe_softc *sc)
10314{
10315    union event_ring_elem *elem;
10316    int i;
10317
10318    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10319        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10320
10321        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10322                                                 BCM_PAGE_SIZE *
10323                                                 (i % NUM_EQ_PAGES)));
10324        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10325                                                 BCM_PAGE_SIZE *
10326                                                 (i % NUM_EQ_PAGES)));
10327    }
10328
10329    sc->eq_cons    = 0;
10330    sc->eq_prod    = NUM_EQ_DESC;
10331    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10332
10333    atomic_store_rel_long(&sc->eq_spq_left,
10334                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10335                               NUM_EQ_DESC) - 1));
10336}
10337
10338static void
10339bxe_init_internal_common(struct bxe_softc *sc)
10340{
10341    int i;
10342
10343    if (IS_MF_SI(sc)) {
10344        /*
10345         * In switch independent mode, the TSTORM needs to accept
10346         * packets that failed classification, since approximate match
10347         * mac addresses aren't written to NIG LLH.
10348         */
10349        REG_WR8(sc,
10350                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10351                2);
10352    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10353        REG_WR8(sc,
10354                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10355                0);
10356    }
10357
10358    /*
10359     * Zero this manually as its initialization is currently missing
10360     * in the initTool.
10361     */
10362    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10363        REG_WR(sc,
10364               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10365               0);
10366    }
10367
10368    if (!CHIP_IS_E1x(sc)) {
10369        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10370                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10371    }
10372}
10373
10374static void
10375bxe_init_internal(struct bxe_softc *sc,
10376                  uint32_t         load_code)
10377{
10378    switch (load_code) {
10379    case FW_MSG_CODE_DRV_LOAD_COMMON:
10380    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10381        bxe_init_internal_common(sc);
10382        /* no break */
10383
10384    case FW_MSG_CODE_DRV_LOAD_PORT:
10385        /* nothing to do */
10386        /* no break */
10387
10388    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10389        /* internal memory per function is initialized inside bxe_pf_init */
10390        break;
10391
10392    default:
10393        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10394        break;
10395    }
10396}
10397
10398static void
10399storm_memset_func_cfg(struct bxe_softc                         *sc,
10400                      struct tstorm_eth_function_common_config *tcfg,
10401                      uint16_t                                  abs_fid)
10402{
10403    uint32_t addr;
10404    size_t size;
10405
10406    addr = (BAR_TSTRORM_INTMEM +
10407            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10408    size = sizeof(struct tstorm_eth_function_common_config);
10409    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10410}
10411
10412static void
10413bxe_func_init(struct bxe_softc            *sc,
10414              struct bxe_func_init_params *p)
10415{
10416    struct tstorm_eth_function_common_config tcfg = { 0 };
10417
10418    if (CHIP_IS_E1x(sc)) {
10419        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10420    }
10421
10422    /* Enable the function in the FW */
10423    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10424    storm_memset_func_en(sc, p->func_id, 1);
10425
10426    /* spq */
10427    if (p->func_flgs & FUNC_FLG_SPQ) {
10428        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10429        REG_WR(sc,
10430               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10431               p->spq_prod);
10432    }
10433}
10434
10435/*
10436 * Calculates the sum of vn_min_rates.
10437 * It's needed for further normalizing of the min_rates.
10438 * Returns:
10439 *   sum of vn_min_rates.
10440 *     or
10441 *   0 - if all the min_rates are 0.
10442 * In the later case fainess algorithm should be deactivated.
10443 * If all min rates are not zero then those that are zeroes will be set to 1.
10444 */
10445static void
10446bxe_calc_vn_min(struct bxe_softc       *sc,
10447                struct cmng_init_input *input)
10448{
10449    uint32_t vn_cfg;
10450    uint32_t vn_min_rate;
10451    int all_zero = 1;
10452    int vn;
10453
10454    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10455        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10456        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10457                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10458
10459        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10460            /* skip hidden VNs */
10461            vn_min_rate = 0;
10462        } else if (!vn_min_rate) {
10463            /* If min rate is zero - set it to 100 */
10464            vn_min_rate = DEF_MIN_RATE;
10465        } else {
10466            all_zero = 0;
10467        }
10468
10469        input->vnic_min_rate[vn] = vn_min_rate;
10470    }
10471
10472    /* if ETS or all min rates are zeros - disable fairness */
10473    if (BXE_IS_ETS_ENABLED(sc)) {
10474        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10475        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10476    } else if (all_zero) {
10477        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10478        BLOGD(sc, DBG_LOAD,
10479              "Fariness disabled (all MIN values are zeroes)\n");
10480    } else {
10481        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10482    }
10483}
10484
10485static inline uint16_t
10486bxe_extract_max_cfg(struct bxe_softc *sc,
10487                    uint32_t         mf_cfg)
10488{
10489    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10490                        FUNC_MF_CFG_MAX_BW_SHIFT);
10491
10492    if (!max_cfg) {
10493        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10494        max_cfg = 100;
10495    }
10496
10497    return (max_cfg);
10498}
10499
10500static void
10501bxe_calc_vn_max(struct bxe_softc       *sc,
10502                int                    vn,
10503                struct cmng_init_input *input)
10504{
10505    uint16_t vn_max_rate;
10506    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10507    uint32_t max_cfg;
10508
10509    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10510        vn_max_rate = 0;
10511    } else {
10512        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10513
10514        if (IS_MF_SI(sc)) {
10515            /* max_cfg in percents of linkspeed */
10516            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10517        } else { /* SD modes */
10518            /* max_cfg is absolute in 100Mb units */
10519            vn_max_rate = (max_cfg * 100);
10520        }
10521    }
10522
10523    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10524
10525    input->vnic_max_rate[vn] = vn_max_rate;
10526}
10527
10528static void
10529bxe_cmng_fns_init(struct bxe_softc *sc,
10530                  uint8_t          read_cfg,
10531                  uint8_t          cmng_type)
10532{
10533    struct cmng_init_input input;
10534    int vn;
10535
10536    memset(&input, 0, sizeof(struct cmng_init_input));
10537
10538    input.port_rate = sc->link_vars.line_speed;
10539
10540    if (cmng_type == CMNG_FNS_MINMAX) {
10541        /* read mf conf from shmem */
10542        if (read_cfg) {
10543            bxe_read_mf_cfg(sc);
10544        }
10545
10546        /* get VN min rate and enable fairness if not 0 */
10547        bxe_calc_vn_min(sc, &input);
10548
10549        /* get VN max rate */
10550        if (sc->port.pmf) {
10551            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10552                bxe_calc_vn_max(sc, vn, &input);
10553            }
10554        }
10555
10556        /* always enable rate shaping and fairness */
10557        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10558
10559        ecore_init_cmng(&input, &sc->cmng);
10560        return;
10561    }
10562
10563    /* rate shaping and fairness are disabled */
10564    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10565}
10566
10567static int
10568bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10569{
10570    if (CHIP_REV_IS_SLOW(sc)) {
10571        return (CMNG_FNS_NONE);
10572    }
10573
10574    if (IS_MF(sc)) {
10575        return (CMNG_FNS_MINMAX);
10576    }
10577
10578    return (CMNG_FNS_NONE);
10579}
10580
10581static void
10582storm_memset_cmng(struct bxe_softc *sc,
10583                  struct cmng_init *cmng,
10584                  uint8_t          port)
10585{
10586    int vn;
10587    int func;
10588    uint32_t addr;
10589    size_t size;
10590
10591    addr = (BAR_XSTRORM_INTMEM +
10592            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10593    size = sizeof(struct cmng_struct_per_port);
10594    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10595
10596    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10597        func = func_by_vn(sc, vn);
10598
10599        addr = (BAR_XSTRORM_INTMEM +
10600                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10601        size = sizeof(struct rate_shaping_vars_per_vn);
10602        ecore_storm_memset_struct(sc, addr, size,
10603                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10604
10605        addr = (BAR_XSTRORM_INTMEM +
10606                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10607        size = sizeof(struct fairness_vars_per_vn);
10608        ecore_storm_memset_struct(sc, addr, size,
10609                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10610    }
10611}
10612
10613static void
10614bxe_pf_init(struct bxe_softc *sc)
10615{
10616    struct bxe_func_init_params func_init = { 0 };
10617    struct event_ring_data eq_data = { { 0 } };
10618    uint16_t flags;
10619
10620    if (!CHIP_IS_E1x(sc)) {
10621        /* reset IGU PF statistics: MSIX + ATTN */
10622        /* PF */
10623        REG_WR(sc,
10624               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10625                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10626                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10627               0);
10628        /* ATTN */
10629        REG_WR(sc,
10630               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10631                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10632                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10633                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10634               0);
10635    }
10636
10637    /* function setup flags */
10638    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10639
10640    /*
10641     * This flag is relevant for E1x only.
10642     * E2 doesn't have a TPA configuration in a function level.
10643     */
10644    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10645
10646    func_init.func_flgs = flags;
10647    func_init.pf_id     = SC_FUNC(sc);
10648    func_init.func_id   = SC_FUNC(sc);
10649    func_init.spq_map   = sc->spq_dma.paddr;
10650    func_init.spq_prod  = sc->spq_prod_idx;
10651
10652    bxe_func_init(sc, &func_init);
10653
10654    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10655
10656    /*
10657     * Congestion management values depend on the link rate.
10658     * There is no active link so initial link rate is set to 10Gbps.
10659     * When the link comes up the congestion management values are
10660     * re-calculated according to the actual link rate.
10661     */
10662    sc->link_vars.line_speed = SPEED_10000;
10663    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10664
10665    /* Only the PMF sets the HW */
10666    if (sc->port.pmf) {
10667        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10668    }
10669
10670    /* init Event Queue - PCI bus guarantees correct endainity */
10671    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10672    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10673    eq_data.producer     = sc->eq_prod;
10674    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10675    eq_data.sb_id        = DEF_SB_ID;
10676    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10677}
10678
10679static void
10680bxe_hc_int_enable(struct bxe_softc *sc)
10681{
10682    int port = SC_PORT(sc);
10683    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10684    uint32_t val = REG_RD(sc, addr);
10685    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10686    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10687                           (sc->intr_count == 1)) ? TRUE : FALSE;
10688    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10689
10690    if (msix) {
10691        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10692                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10693        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10694                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10695        if (single_msix) {
10696            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10697        }
10698    } else if (msi) {
10699        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10700        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10701                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10702                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10703    } else {
10704        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10705                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10706                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10707                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10708
10709        if (!CHIP_IS_E1(sc)) {
10710            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10711                  val, port, addr);
10712
10713            REG_WR(sc, addr, val);
10714
10715            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10716        }
10717    }
10718
10719    if (CHIP_IS_E1(sc)) {
10720        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10721    }
10722
10723    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10724          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10725
10726    REG_WR(sc, addr, val);
10727
10728    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10729    mb();
10730
10731    if (!CHIP_IS_E1(sc)) {
10732        /* init leading/trailing edge */
10733        if (IS_MF(sc)) {
10734            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10735            if (sc->port.pmf) {
10736                /* enable nig and gpio3 attention */
10737                val |= 0x1100;
10738            }
10739        } else {
10740            val = 0xffff;
10741        }
10742
10743        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10744        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10745    }
10746
10747    /* make sure that interrupts are indeed enabled from here on */
10748    mb();
10749}
10750
10751static void
10752bxe_igu_int_enable(struct bxe_softc *sc)
10753{
10754    uint32_t val;
10755    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10756    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10757                           (sc->intr_count == 1)) ? TRUE : FALSE;
10758    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10759
10760    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10761
10762    if (msix) {
10763        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10764                 IGU_PF_CONF_SINGLE_ISR_EN);
10765        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10766                IGU_PF_CONF_ATTN_BIT_EN);
10767        if (single_msix) {
10768            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10769        }
10770    } else if (msi) {
10771        val &= ~IGU_PF_CONF_INT_LINE_EN;
10772        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10773                IGU_PF_CONF_ATTN_BIT_EN |
10774                IGU_PF_CONF_SINGLE_ISR_EN);
10775    } else {
10776        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10777        val |= (IGU_PF_CONF_INT_LINE_EN |
10778                IGU_PF_CONF_ATTN_BIT_EN |
10779                IGU_PF_CONF_SINGLE_ISR_EN);
10780    }
10781
10782    /* clean previous status - need to configure igu prior to ack*/
10783    if ((!msix) || single_msix) {
10784        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10785        bxe_ack_int(sc);
10786    }
10787
10788    val |= IGU_PF_CONF_FUNC_EN;
10789
10790    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10791          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10792
10793    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10794
10795    mb();
10796
10797    /* init leading/trailing edge */
10798    if (IS_MF(sc)) {
10799        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10800        if (sc->port.pmf) {
10801            /* enable nig and gpio3 attention */
10802            val |= 0x1100;
10803        }
10804    } else {
10805        val = 0xffff;
10806    }
10807
10808    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10809    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10810
10811    /* make sure that interrupts are indeed enabled from here on */
10812    mb();
10813}
10814
10815static void
10816bxe_int_enable(struct bxe_softc *sc)
10817{
10818    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10819        bxe_hc_int_enable(sc);
10820    } else {
10821        bxe_igu_int_enable(sc);
10822    }
10823}
10824
10825static void
10826bxe_hc_int_disable(struct bxe_softc *sc)
10827{
10828    int port = SC_PORT(sc);
10829    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10830    uint32_t val = REG_RD(sc, addr);
10831
10832    /*
10833     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10834     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10835     * block
10836     */
10837    if (CHIP_IS_E1(sc)) {
10838        /*
10839         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10840         * to prevent from HC sending interrupts after we exit the function
10841         */
10842        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10843
10844        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10845                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10846                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10847    } else {
10848        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10849                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10850                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10851                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10852    }
10853
10854    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10855
10856    /* flush all outstanding writes */
10857    mb();
10858
10859    REG_WR(sc, addr, val);
10860    if (REG_RD(sc, addr) != val) {
10861        BLOGE(sc, "proper val not read from HC IGU!\n");
10862    }
10863}
10864
10865static void
10866bxe_igu_int_disable(struct bxe_softc *sc)
10867{
10868    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10869
10870    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10871             IGU_PF_CONF_INT_LINE_EN |
10872             IGU_PF_CONF_ATTN_BIT_EN);
10873
10874    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10875
10876    /* flush all outstanding writes */
10877    mb();
10878
10879    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10880    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10881        BLOGE(sc, "proper val not read from IGU!\n");
10882    }
10883}
10884
10885static void
10886bxe_int_disable(struct bxe_softc *sc)
10887{
10888    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10889        bxe_hc_int_disable(sc);
10890    } else {
10891        bxe_igu_int_disable(sc);
10892    }
10893}
10894
10895static void
10896bxe_nic_init(struct bxe_softc *sc,
10897             int              load_code)
10898{
10899    int i;
10900
10901    for (i = 0; i < sc->num_queues; i++) {
10902        bxe_init_eth_fp(sc, i);
10903    }
10904
10905    rmb(); /* ensure status block indices were read */
10906
10907    bxe_init_rx_rings(sc);
10908    bxe_init_tx_rings(sc);
10909
10910    if (IS_VF(sc)) {
10911        return;
10912    }
10913
10914    /* initialize MOD_ABS interrupts */
10915    elink_init_mod_abs_int(sc, &sc->link_vars,
10916                           sc->devinfo.chip_id,
10917                           sc->devinfo.shmem_base,
10918                           sc->devinfo.shmem2_base,
10919                           SC_PORT(sc));
10920
10921    bxe_init_def_sb(sc);
10922    bxe_update_dsb_idx(sc);
10923    bxe_init_sp_ring(sc);
10924    bxe_init_eq_ring(sc);
10925    bxe_init_internal(sc, load_code);
10926    bxe_pf_init(sc);
10927    bxe_stats_init(sc);
10928
10929    /* flush all before enabling interrupts */
10930    mb();
10931
10932    bxe_int_enable(sc);
10933
10934    /* check for SPIO5 */
10935    bxe_attn_int_deasserted0(sc,
10936                             REG_RD(sc,
10937                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10938                                     SC_PORT(sc)*4)) &
10939                             AEU_INPUTS_ATTN_BITS_SPIO5);
10940}
10941
10942static inline void
10943bxe_init_objs(struct bxe_softc *sc)
10944{
10945    /* mcast rules must be added to tx if tx switching is enabled */
10946    ecore_obj_type o_type =
10947        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10948                                         ECORE_OBJ_TYPE_RX;
10949
10950    /* RX_MODE controlling object */
10951    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10952
10953    /* multicast configuration controlling object */
10954    ecore_init_mcast_obj(sc,
10955                         &sc->mcast_obj,
10956                         sc->fp[0].cl_id,
10957                         sc->fp[0].index,
10958                         SC_FUNC(sc),
10959                         SC_FUNC(sc),
10960                         BXE_SP(sc, mcast_rdata),
10961                         BXE_SP_MAPPING(sc, mcast_rdata),
10962                         ECORE_FILTER_MCAST_PENDING,
10963                         &sc->sp_state,
10964                         o_type);
10965
10966    /* Setup CAM credit pools */
10967    ecore_init_mac_credit_pool(sc,
10968                               &sc->macs_pool,
10969                               SC_FUNC(sc),
10970                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10971                                                 VNICS_PER_PATH(sc));
10972
10973    ecore_init_vlan_credit_pool(sc,
10974                                &sc->vlans_pool,
10975                                SC_ABS_FUNC(sc) >> 1,
10976                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10977                                                  VNICS_PER_PATH(sc));
10978
10979    /* RSS configuration object */
10980    ecore_init_rss_config_obj(sc,
10981                              &sc->rss_conf_obj,
10982                              sc->fp[0].cl_id,
10983                              sc->fp[0].index,
10984                              SC_FUNC(sc),
10985                              SC_FUNC(sc),
10986                              BXE_SP(sc, rss_rdata),
10987                              BXE_SP_MAPPING(sc, rss_rdata),
10988                              ECORE_FILTER_RSS_CONF_PENDING,
10989                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10990}
10991
10992/*
10993 * Initialize the function. This must be called before sending CLIENT_SETUP
10994 * for the first client.
10995 */
10996static inline int
10997bxe_func_start(struct bxe_softc *sc)
10998{
10999    struct ecore_func_state_params func_params = { NULL };
11000    struct ecore_func_start_params *start_params = &func_params.params.start;
11001
11002    /* Prepare parameters for function state transitions */
11003    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
11004
11005    func_params.f_obj = &sc->func_obj;
11006    func_params.cmd = ECORE_F_CMD_START;
11007
11008    /* Function parameters */
11009    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
11010    start_params->sd_vlan_tag = OVLAN(sc);
11011
11012    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
11013        start_params->network_cos_mode = STATIC_COS;
11014    } else { /* CHIP_IS_E1X */
11015        start_params->network_cos_mode = FW_WRR;
11016    }
11017
11018    start_params->gre_tunnel_mode = 0;
11019    start_params->gre_tunnel_rss  = 0;
11020
11021    return (ecore_func_state_change(sc, &func_params));
11022}
11023
11024static int
11025bxe_set_power_state(struct bxe_softc *sc,
11026                    uint8_t          state)
11027{
11028    uint16_t pmcsr;
11029
11030    /* If there is no power capability, silently succeed */
11031    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11032        BLOGW(sc, "No power capability\n");
11033        return (0);
11034    }
11035
11036    pmcsr = pci_read_config(sc->dev,
11037                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11038                            2);
11039
11040    switch (state) {
11041    case PCI_PM_D0:
11042        pci_write_config(sc->dev,
11043                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11044                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11045
11046        if (pmcsr & PCIM_PSTAT_DMASK) {
11047            /* delay required during transition out of D3hot */
11048            DELAY(20000);
11049        }
11050
11051        break;
11052
11053    case PCI_PM_D3hot:
11054        /* XXX if there are other clients above don't shut down the power */
11055
11056        /* don't shut down the power for emulation and FPGA */
11057        if (CHIP_REV_IS_SLOW(sc)) {
11058            return (0);
11059        }
11060
11061        pmcsr &= ~PCIM_PSTAT_DMASK;
11062        pmcsr |= PCIM_PSTAT_D3;
11063
11064        if (sc->wol) {
11065            pmcsr |= PCIM_PSTAT_PMEENABLE;
11066        }
11067
11068        pci_write_config(sc->dev,
11069                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11070                         pmcsr, 4);
11071
11072        /*
11073         * No more memory access after this point until device is brought back
11074         * to D0 state.
11075         */
11076        break;
11077
11078    default:
11079        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11080        return (-1);
11081    }
11082
11083    return (0);
11084}
11085
11086
11087/* return true if succeeded to acquire the lock */
11088static uint8_t
11089bxe_trylock_hw_lock(struct bxe_softc *sc,
11090                    uint32_t         resource)
11091{
11092    uint32_t lock_status;
11093    uint32_t resource_bit = (1 << resource);
11094    int func = SC_FUNC(sc);
11095    uint32_t hw_lock_control_reg;
11096
11097    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11098
11099    /* Validating that the resource is within range */
11100    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11101        BLOGD(sc, DBG_LOAD,
11102              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11103              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11104        return (FALSE);
11105    }
11106
11107    if (func <= 5) {
11108        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11109    } else {
11110        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11111    }
11112
11113    /* try to acquire the lock */
11114    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11115    lock_status = REG_RD(sc, hw_lock_control_reg);
11116    if (lock_status & resource_bit) {
11117        return (TRUE);
11118    }
11119
11120    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11121
11122    return (FALSE);
11123}
11124
11125/*
11126 * Get the recovery leader resource id according to the engine this function
11127 * belongs to. Currently only only 2 engines is supported.
11128 */
11129static int
11130bxe_get_leader_lock_resource(struct bxe_softc *sc)
11131{
11132    if (SC_PATH(sc)) {
11133        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11134    } else {
11135        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11136    }
11137}
11138
11139/* try to acquire a leader lock for current engine */
11140static uint8_t
11141bxe_trylock_leader_lock(struct bxe_softc *sc)
11142{
11143    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11144}
11145
11146static int
11147bxe_release_leader_lock(struct bxe_softc *sc)
11148{
11149    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11150}
11151
11152/* close gates #2, #3 and #4 */
11153static void
11154bxe_set_234_gates(struct bxe_softc *sc,
11155                  uint8_t          close)
11156{
11157    uint32_t val;
11158
11159    /* gates #2 and #4a are closed/opened for "not E1" only */
11160    if (!CHIP_IS_E1(sc)) {
11161        /* #4 */
11162        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11163        /* #2 */
11164        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11165    }
11166
11167    /* #3 */
11168    if (CHIP_IS_E1x(sc)) {
11169        /* prevent interrupts from HC on both ports */
11170        val = REG_RD(sc, HC_REG_CONFIG_1);
11171        REG_WR(sc, HC_REG_CONFIG_1,
11172               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11173               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11174
11175        val = REG_RD(sc, HC_REG_CONFIG_0);
11176        REG_WR(sc, HC_REG_CONFIG_0,
11177               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11178               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11179    } else {
11180        /* Prevent incomming interrupts in IGU */
11181        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11182
11183        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11184               (!close) ?
11185               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11186               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11187    }
11188
11189    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11190          close ? "closing" : "opening");
11191
11192    wmb();
11193}
11194
11195/* poll for pending writes bit, it should get cleared in no more than 1s */
11196static int
11197bxe_er_poll_igu_vq(struct bxe_softc *sc)
11198{
11199    uint32_t cnt = 1000;
11200    uint32_t pend_bits = 0;
11201
11202    do {
11203        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11204
11205        if (pend_bits == 0) {
11206            break;
11207        }
11208
11209        DELAY(1000);
11210    } while (--cnt > 0);
11211
11212    if (cnt == 0) {
11213        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11214        return (-1);
11215    }
11216
11217    return (0);
11218}
11219
11220#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11221
11222static void
11223bxe_clp_reset_prep(struct bxe_softc *sc,
11224                   uint32_t         *magic_val)
11225{
11226    /* Do some magic... */
11227    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11228    *magic_val = val & SHARED_MF_CLP_MAGIC;
11229    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11230}
11231
11232/* restore the value of the 'magic' bit */
11233static void
11234bxe_clp_reset_done(struct bxe_softc *sc,
11235                   uint32_t         magic_val)
11236{
11237    /* Restore the 'magic' bit value... */
11238    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11239    MFCFG_WR(sc, shared_mf_config.clp_mb,
11240              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11241}
11242
11243/* prepare for MCP reset, takes care of CLP configurations */
11244static void
11245bxe_reset_mcp_prep(struct bxe_softc *sc,
11246                   uint32_t         *magic_val)
11247{
11248    uint32_t shmem;
11249    uint32_t validity_offset;
11250
11251    /* set `magic' bit in order to save MF config */
11252    if (!CHIP_IS_E1(sc)) {
11253        bxe_clp_reset_prep(sc, magic_val);
11254    }
11255
11256    /* get shmem offset */
11257    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11258    validity_offset =
11259        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11260
11261    /* Clear validity map flags */
11262    if (shmem > 0) {
11263        REG_WR(sc, shmem + validity_offset, 0);
11264    }
11265}
11266
11267#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11268#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11269
11270static void
11271bxe_mcp_wait_one(struct bxe_softc *sc)
11272{
11273    /* special handling for emulation and FPGA (10 times longer) */
11274    if (CHIP_REV_IS_SLOW(sc)) {
11275        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11276    } else {
11277        DELAY((MCP_ONE_TIMEOUT) * 1000);
11278    }
11279}
11280
11281/* initialize shmem_base and waits for validity signature to appear */
11282static int
11283bxe_init_shmem(struct bxe_softc *sc)
11284{
11285    int cnt = 0;
11286    uint32_t val = 0;
11287
11288    do {
11289        sc->devinfo.shmem_base     =
11290        sc->link_params.shmem_base =
11291            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11292
11293        if (sc->devinfo.shmem_base) {
11294            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11295            if (val & SHR_MEM_VALIDITY_MB)
11296                return (0);
11297        }
11298
11299        bxe_mcp_wait_one(sc);
11300
11301    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11302
11303    BLOGE(sc, "BAD MCP validity signature\n");
11304
11305    return (-1);
11306}
11307
11308static int
11309bxe_reset_mcp_comp(struct bxe_softc *sc,
11310                   uint32_t         magic_val)
11311{
11312    int rc = bxe_init_shmem(sc);
11313
11314    /* Restore the `magic' bit value */
11315    if (!CHIP_IS_E1(sc)) {
11316        bxe_clp_reset_done(sc, magic_val);
11317    }
11318
11319    return (rc);
11320}
11321
11322static void
11323bxe_pxp_prep(struct bxe_softc *sc)
11324{
11325    if (!CHIP_IS_E1(sc)) {
11326        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11327        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11328        wmb();
11329    }
11330}
11331
11332/*
11333 * Reset the whole chip except for:
11334 *      - PCIE core
11335 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11336 *      - IGU
11337 *      - MISC (including AEU)
11338 *      - GRC
11339 *      - RBCN, RBCP
11340 */
11341static void
11342bxe_process_kill_chip_reset(struct bxe_softc *sc,
11343                            uint8_t          global)
11344{
11345    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11346    uint32_t global_bits2, stay_reset2;
11347
11348    /*
11349     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11350     * (per chip) blocks.
11351     */
11352    global_bits2 =
11353        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11354        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11355
11356    /*
11357     * Don't reset the following blocks.
11358     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11359     *            reset, as in 4 port device they might still be owned
11360     *            by the MCP (there is only one leader per path).
11361     */
11362    not_reset_mask1 =
11363        MISC_REGISTERS_RESET_REG_1_RST_HC |
11364        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11365        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11366
11367    not_reset_mask2 =
11368        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11369        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11370        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11371        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11372        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11373        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11374        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11375        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11376        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11377        MISC_REGISTERS_RESET_REG_2_PGLC |
11378        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11379        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11380        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11381        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11382        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11383        MISC_REGISTERS_RESET_REG_2_UMAC1;
11384
11385    /*
11386     * Keep the following blocks in reset:
11387     *  - all xxMACs are handled by the elink code.
11388     */
11389    stay_reset2 =
11390        MISC_REGISTERS_RESET_REG_2_XMAC |
11391        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11392
11393    /* Full reset masks according to the chip */
11394    reset_mask1 = 0xffffffff;
11395
11396    if (CHIP_IS_E1(sc))
11397        reset_mask2 = 0xffff;
11398    else if (CHIP_IS_E1H(sc))
11399        reset_mask2 = 0x1ffff;
11400    else if (CHIP_IS_E2(sc))
11401        reset_mask2 = 0xfffff;
11402    else /* CHIP_IS_E3 */
11403        reset_mask2 = 0x3ffffff;
11404
11405    /* Don't reset global blocks unless we need to */
11406    if (!global)
11407        reset_mask2 &= ~global_bits2;
11408
11409    /*
11410     * In case of attention in the QM, we need to reset PXP
11411     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11412     * because otherwise QM reset would release 'close the gates' shortly
11413     * before resetting the PXP, then the PSWRQ would send a write
11414     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11415     * read the payload data from PSWWR, but PSWWR would not
11416     * respond. The write queue in PGLUE would stuck, dmae commands
11417     * would not return. Therefore it's important to reset the second
11418     * reset register (containing the
11419     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11420     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11421     * bit).
11422     */
11423    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11424           reset_mask2 & (~not_reset_mask2));
11425
11426    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11427           reset_mask1 & (~not_reset_mask1));
11428
11429    mb();
11430    wmb();
11431
11432    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11433           reset_mask2 & (~stay_reset2));
11434
11435    mb();
11436    wmb();
11437
11438    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11439    wmb();
11440}
11441
11442static int
11443bxe_process_kill(struct bxe_softc *sc,
11444                 uint8_t          global)
11445{
11446    int cnt = 1000;
11447    uint32_t val = 0;
11448    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11449    uint32_t tags_63_32 = 0;
11450
11451    /* Empty the Tetris buffer, wait for 1s */
11452    do {
11453        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11454        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11455        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11456        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11457        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11458        if (CHIP_IS_E3(sc)) {
11459            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11460        }
11461
11462        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11463            ((port_is_idle_0 & 0x1) == 0x1) &&
11464            ((port_is_idle_1 & 0x1) == 0x1) &&
11465            (pgl_exp_rom2 == 0xffffffff) &&
11466            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11467            break;
11468        DELAY(1000);
11469    } while (cnt-- > 0);
11470
11471    if (cnt <= 0) {
11472        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11473                  "are still outstanding read requests after 1s! "
11474                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11475                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11476              sr_cnt, blk_cnt, port_is_idle_0,
11477              port_is_idle_1, pgl_exp_rom2);
11478        return (-1);
11479    }
11480
11481    mb();
11482
11483    /* Close gates #2, #3 and #4 */
11484    bxe_set_234_gates(sc, TRUE);
11485
11486    /* Poll for IGU VQs for 57712 and newer chips */
11487    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11488        return (-1);
11489    }
11490
11491    /* XXX indicate that "process kill" is in progress to MCP */
11492
11493    /* clear "unprepared" bit */
11494    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11495    mb();
11496
11497    /* Make sure all is written to the chip before the reset */
11498    wmb();
11499
11500    /*
11501     * Wait for 1ms to empty GLUE and PCI-E core queues,
11502     * PSWHST, GRC and PSWRD Tetris buffer.
11503     */
11504    DELAY(1000);
11505
11506    /* Prepare to chip reset: */
11507    /* MCP */
11508    if (global) {
11509        bxe_reset_mcp_prep(sc, &val);
11510    }
11511
11512    /* PXP */
11513    bxe_pxp_prep(sc);
11514    mb();
11515
11516    /* reset the chip */
11517    bxe_process_kill_chip_reset(sc, global);
11518    mb();
11519
11520    /* Recover after reset: */
11521    /* MCP */
11522    if (global && bxe_reset_mcp_comp(sc, val)) {
11523        return (-1);
11524    }
11525
11526    /* XXX add resetting the NO_MCP mode DB here */
11527
11528    /* Open the gates #2, #3 and #4 */
11529    bxe_set_234_gates(sc, FALSE);
11530
11531    /* XXX
11532     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11533     * re-enable attentions
11534     */
11535
11536    return (0);
11537}
11538
11539static int
11540bxe_leader_reset(struct bxe_softc *sc)
11541{
11542    int rc = 0;
11543    uint8_t global = bxe_reset_is_global(sc);
11544    uint32_t load_code;
11545
11546    /*
11547     * If not going to reset MCP, load "fake" driver to reset HW while
11548     * driver is owner of the HW.
11549     */
11550    if (!global && !BXE_NOMCP(sc)) {
11551        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11552                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11553        if (!load_code) {
11554            BLOGE(sc, "MCP response failure, aborting\n");
11555            rc = -1;
11556            goto exit_leader_reset;
11557        }
11558
11559        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11560            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11561            BLOGE(sc, "MCP unexpected response, aborting\n");
11562            rc = -1;
11563            goto exit_leader_reset2;
11564        }
11565
11566        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11567        if (!load_code) {
11568            BLOGE(sc, "MCP response failure, aborting\n");
11569            rc = -1;
11570            goto exit_leader_reset2;
11571        }
11572    }
11573
11574    /* try to recover after the failure */
11575    if (bxe_process_kill(sc, global)) {
11576        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11577        rc = -1;
11578        goto exit_leader_reset2;
11579    }
11580
11581    /*
11582     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11583     * state.
11584     */
11585    bxe_set_reset_done(sc);
11586    if (global) {
11587        bxe_clear_reset_global(sc);
11588    }
11589
11590exit_leader_reset2:
11591
11592    /* unload "fake driver" if it was loaded */
11593    if (!global && !BXE_NOMCP(sc)) {
11594        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11595        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11596    }
11597
11598exit_leader_reset:
11599
11600    sc->is_leader = 0;
11601    bxe_release_leader_lock(sc);
11602
11603    mb();
11604    return (rc);
11605}
11606
11607/*
11608 * prepare INIT transition, parameters configured:
11609 *   - HC configuration
11610 *   - Queue's CDU context
11611 */
11612static void
11613bxe_pf_q_prep_init(struct bxe_softc               *sc,
11614                   struct bxe_fastpath            *fp,
11615                   struct ecore_queue_init_params *init_params)
11616{
11617    uint8_t cos;
11618    int cxt_index, cxt_offset;
11619
11620    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11621    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11622
11623    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11624    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11625
11626    /* HC rate */
11627    init_params->rx.hc_rate =
11628        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11629    init_params->tx.hc_rate =
11630        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11631
11632    /* FW SB ID */
11633    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11634
11635    /* CQ index among the SB indices */
11636    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11637    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11638
11639    /* set maximum number of COSs supported by this queue */
11640    init_params->max_cos = sc->max_cos;
11641
11642    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11643          fp->index, init_params->max_cos);
11644
11645    /* set the context pointers queue object */
11646    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11647        /* XXX change index/cid here if ever support multiple tx CoS */
11648        /* fp->txdata[cos]->cid */
11649        cxt_index = fp->index / ILT_PAGE_CIDS;
11650        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11651        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11652    }
11653}
11654
11655/* set flags that are common for the Tx-only and not normal connections */
11656static unsigned long
11657bxe_get_common_flags(struct bxe_softc    *sc,
11658                     struct bxe_fastpath *fp,
11659                     uint8_t             zero_stats)
11660{
11661    unsigned long flags = 0;
11662
11663    /* PF driver will always initialize the Queue to an ACTIVE state */
11664    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11665
11666    /*
11667     * tx only connections collect statistics (on the same index as the
11668     * parent connection). The statistics are zeroed when the parent
11669     * connection is initialized.
11670     */
11671
11672    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11673    if (zero_stats) {
11674        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11675    }
11676
11677    /*
11678     * tx only connections can support tx-switching, though their
11679     * CoS-ness doesn't survive the loopback
11680     */
11681    if (sc->flags & BXE_TX_SWITCHING) {
11682        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11683    }
11684
11685    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11686
11687    return (flags);
11688}
11689
11690static unsigned long
11691bxe_get_q_flags(struct bxe_softc    *sc,
11692                struct bxe_fastpath *fp,
11693                uint8_t             leading)
11694{
11695    unsigned long flags = 0;
11696
11697    if (IS_MF_SD(sc)) {
11698        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11699    }
11700
11701    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11702        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11703        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11704#if 0
11705        if (fp->mode == TPA_MODE_GRO)
11706            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11707#endif
11708    }
11709
11710    if (leading) {
11711        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11712        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11713    }
11714
11715    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11716
11717#if 0
11718    /* configure silent vlan removal */
11719    if (IS_MF_AFEX(sc)) {
11720        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11721    }
11722#endif
11723
11724    /* merge with common flags */
11725    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11726}
11727
11728static void
11729bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11730                      struct bxe_fastpath               *fp,
11731                      struct ecore_general_setup_params *gen_init,
11732                      uint8_t                           cos)
11733{
11734    gen_init->stat_id = bxe_stats_id(fp);
11735    gen_init->spcl_id = fp->cl_id;
11736    gen_init->mtu = sc->mtu;
11737    gen_init->cos = cos;
11738}
11739
11740static void
11741bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11742                 struct bxe_fastpath           *fp,
11743                 struct rxq_pause_params       *pause,
11744                 struct ecore_rxq_setup_params *rxq_init)
11745{
11746    uint8_t max_sge = 0;
11747    uint16_t sge_sz = 0;
11748    uint16_t tpa_agg_size = 0;
11749
11750    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11751        pause->sge_th_lo = SGE_TH_LO(sc);
11752        pause->sge_th_hi = SGE_TH_HI(sc);
11753
11754        /* validate SGE ring has enough to cross high threshold */
11755        if (sc->dropless_fc &&
11756            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11757            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11758            BLOGW(sc, "sge ring threshold limit\n");
11759        }
11760
11761        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11762        tpa_agg_size = (2 * sc->mtu);
11763        if (tpa_agg_size < sc->max_aggregation_size) {
11764            tpa_agg_size = sc->max_aggregation_size;
11765        }
11766
11767        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11768        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11769                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11770        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11771    }
11772
11773    /* pause - not for e1 */
11774    if (!CHIP_IS_E1(sc)) {
11775        pause->bd_th_lo = BD_TH_LO(sc);
11776        pause->bd_th_hi = BD_TH_HI(sc);
11777
11778        pause->rcq_th_lo = RCQ_TH_LO(sc);
11779        pause->rcq_th_hi = RCQ_TH_HI(sc);
11780
11781        /* validate rings have enough entries to cross high thresholds */
11782        if (sc->dropless_fc &&
11783            pause->bd_th_hi + FW_PREFETCH_CNT >
11784            sc->rx_ring_size) {
11785            BLOGW(sc, "rx bd ring threshold limit\n");
11786        }
11787
11788        if (sc->dropless_fc &&
11789            pause->rcq_th_hi + FW_PREFETCH_CNT >
11790            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11791            BLOGW(sc, "rcq ring threshold limit\n");
11792        }
11793
11794        pause->pri_map = 1;
11795    }
11796
11797    /* rxq setup */
11798    rxq_init->dscr_map   = fp->rx_dma.paddr;
11799    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11800    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11801    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11802
11803    /*
11804     * This should be a maximum number of data bytes that may be
11805     * placed on the BD (not including paddings).
11806     */
11807    rxq_init->buf_sz = (fp->rx_buf_size -
11808                        IP_HEADER_ALIGNMENT_PADDING);
11809
11810    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11811    rxq_init->tpa_agg_sz      = tpa_agg_size;
11812    rxq_init->sge_buf_sz      = sge_sz;
11813    rxq_init->max_sges_pkt    = max_sge;
11814    rxq_init->rss_engine_id   = SC_FUNC(sc);
11815    rxq_init->mcast_engine_id = SC_FUNC(sc);
11816
11817    /*
11818     * Maximum number or simultaneous TPA aggregation for this Queue.
11819     * For PF Clients it should be the maximum available number.
11820     * VF driver(s) may want to define it to a smaller value.
11821     */
11822    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11823
11824    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11825    rxq_init->fw_sb_id = fp->fw_sb_id;
11826
11827    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11828
11829    /*
11830     * configure silent vlan removal
11831     * if multi function mode is afex, then mask default vlan
11832     */
11833    if (IS_MF_AFEX(sc)) {
11834        rxq_init->silent_removal_value =
11835            sc->devinfo.mf_info.afex_def_vlan_tag;
11836        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11837    }
11838}
11839
11840static void
11841bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11842                 struct bxe_fastpath           *fp,
11843                 struct ecore_txq_setup_params *txq_init,
11844                 uint8_t                       cos)
11845{
11846    /*
11847     * XXX If multiple CoS is ever supported then each fastpath structure
11848     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11849     * fp->txdata[cos]->tx_dma.paddr;
11850     */
11851    txq_init->dscr_map     = fp->tx_dma.paddr;
11852    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11853    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11854    txq_init->fw_sb_id     = fp->fw_sb_id;
11855
11856    /*
11857     * set the TSS leading client id for TX classfication to the
11858     * leading RSS client id
11859     */
11860    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11861}
11862
11863/*
11864 * This function performs 2 steps in a queue state machine:
11865 *   1) RESET->INIT
11866 *   2) INIT->SETUP
11867 */
11868static int
11869bxe_setup_queue(struct bxe_softc    *sc,
11870                struct bxe_fastpath *fp,
11871                uint8_t             leading)
11872{
11873    struct ecore_queue_state_params q_params = { NULL };
11874    struct ecore_queue_setup_params *setup_params =
11875                        &q_params.params.setup;
11876#if 0
11877    struct ecore_queue_setup_tx_only_params *tx_only_params =
11878                        &q_params.params.tx_only;
11879    uint8_t tx_index;
11880#endif
11881    int rc;
11882
11883    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11884
11885    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11886
11887    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11888
11889    /* we want to wait for completion in this context */
11890    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11891
11892    /* prepare the INIT parameters */
11893    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11894
11895    /* Set the command */
11896    q_params.cmd = ECORE_Q_CMD_INIT;
11897
11898    /* Change the state to INIT */
11899    rc = ecore_queue_state_change(sc, &q_params);
11900    if (rc) {
11901        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11902        return (rc);
11903    }
11904
11905    BLOGD(sc, DBG_LOAD, "init complete\n");
11906
11907    /* now move the Queue to the SETUP state */
11908    memset(setup_params, 0, sizeof(*setup_params));
11909
11910    /* set Queue flags */
11911    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11912
11913    /* set general SETUP parameters */
11914    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11915                          FIRST_TX_COS_INDEX);
11916
11917    bxe_pf_rx_q_prep(sc, fp,
11918                     &setup_params->pause_params,
11919                     &setup_params->rxq_params);
11920
11921    bxe_pf_tx_q_prep(sc, fp,
11922                     &setup_params->txq_params,
11923                     FIRST_TX_COS_INDEX);
11924
11925    /* Set the command */
11926    q_params.cmd = ECORE_Q_CMD_SETUP;
11927
11928    /* change the state to SETUP */
11929    rc = ecore_queue_state_change(sc, &q_params);
11930    if (rc) {
11931        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11932        return (rc);
11933    }
11934
11935#if 0
11936    /* loop through the relevant tx-only indices */
11937    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11938         tx_index < sc->max_cos;
11939         tx_index++) {
11940        /* prepare and send tx-only ramrod*/
11941        rc = bxe_setup_tx_only(sc, fp, &q_params,
11942                               tx_only_params, tx_index, leading);
11943        if (rc) {
11944            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11945                  fp->index, tx_index);
11946            return (rc);
11947        }
11948    }
11949#endif
11950
11951    return (rc);
11952}
11953
11954static int
11955bxe_setup_leading(struct bxe_softc *sc)
11956{
11957    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11958}
11959
11960static int
11961bxe_config_rss_pf(struct bxe_softc            *sc,
11962                  struct ecore_rss_config_obj *rss_obj,
11963                  uint8_t                     config_hash)
11964{
11965    struct ecore_config_rss_params params = { NULL };
11966    int i;
11967
11968    /*
11969     * Although RSS is meaningless when there is a single HW queue we
11970     * still need it enabled in order to have HW Rx hash generated.
11971     */
11972
11973    params.rss_obj = rss_obj;
11974
11975    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11976
11977    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11978
11979    /* RSS configuration */
11980    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11981    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11982    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11983    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11984    if (rss_obj->udp_rss_v4) {
11985        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11986    }
11987    if (rss_obj->udp_rss_v6) {
11988        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11989    }
11990
11991    /* Hash bits */
11992    params.rss_result_mask = MULTI_MASK;
11993
11994    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11995
11996    if (config_hash) {
11997        /* RSS keys */
11998        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11999            params.rss_key[i] = arc4random();
12000        }
12001
12002        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
12003    }
12004
12005    return (ecore_config_rss(sc, &params));
12006}
12007
12008static int
12009bxe_config_rss_eth(struct bxe_softc *sc,
12010                   uint8_t          config_hash)
12011{
12012    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
12013}
12014
12015static int
12016bxe_init_rss_pf(struct bxe_softc *sc)
12017{
12018    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
12019    int i;
12020
12021    /*
12022     * Prepare the initial contents of the indirection table if
12023     * RSS is enabled
12024     */
12025    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
12026        sc->rss_conf_obj.ind_table[i] =
12027            (sc->fp->cl_id + (i % num_eth_queues));
12028    }
12029
12030    if (sc->udp_rss) {
12031        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12032    }
12033
12034    /*
12035     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12036     * per-port, so if explicit configuration is needed, do it only
12037     * for a PMF.
12038     *
12039     * For 57712 and newer it's a per-function configuration.
12040     */
12041    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12042}
12043
12044static int
12045bxe_set_mac_one(struct bxe_softc          *sc,
12046                uint8_t                   *mac,
12047                struct ecore_vlan_mac_obj *obj,
12048                uint8_t                   set,
12049                int                       mac_type,
12050                unsigned long             *ramrod_flags)
12051{
12052    struct ecore_vlan_mac_ramrod_params ramrod_param;
12053    int rc;
12054
12055    memset(&ramrod_param, 0, sizeof(ramrod_param));
12056
12057    /* fill in general parameters */
12058    ramrod_param.vlan_mac_obj = obj;
12059    ramrod_param.ramrod_flags = *ramrod_flags;
12060
12061    /* fill a user request section if needed */
12062    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12063        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12064
12065        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12066
12067        /* Set the command: ADD or DEL */
12068        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12069                                            ECORE_VLAN_MAC_DEL;
12070    }
12071
12072    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12073
12074    if (rc == ECORE_EXISTS) {
12075        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12076        /* do not treat adding same MAC as error */
12077        rc = 0;
12078    } else if (rc < 0) {
12079        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12080    }
12081
12082    return (rc);
12083}
12084
12085static int
12086bxe_set_eth_mac(struct bxe_softc *sc,
12087                uint8_t          set)
12088{
12089    unsigned long ramrod_flags = 0;
12090
12091    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12092
12093    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12094
12095    /* Eth MAC is set on RSS leading client (fp[0]) */
12096    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12097                            &sc->sp_objs->mac_obj,
12098                            set, ECORE_ETH_MAC, &ramrod_flags));
12099}
12100
12101#if 0
12102static void
12103bxe_update_max_mf_config(struct bxe_softc *sc,
12104                         uint32_t         value)
12105{
12106    /* load old values */
12107    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12108
12109    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12110        /* leave all but MAX value */
12111        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12112
12113        /* set new MAX value */
12114        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12115                   FUNC_MF_CFG_MAX_BW_MASK);
12116
12117        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12118    }
12119}
12120#endif
12121
12122static int
12123bxe_get_cur_phy_idx(struct bxe_softc *sc)
12124{
12125    uint32_t sel_phy_idx = 0;
12126
12127    if (sc->link_params.num_phys <= 1) {
12128        return (ELINK_INT_PHY);
12129    }
12130
12131    if (sc->link_vars.link_up) {
12132        sel_phy_idx = ELINK_EXT_PHY1;
12133        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12134        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12135            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12136             ELINK_SUPPORTED_FIBRE))
12137            sel_phy_idx = ELINK_EXT_PHY2;
12138    } else {
12139        switch (elink_phy_selection(&sc->link_params)) {
12140        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12141        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12142        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12143               sel_phy_idx = ELINK_EXT_PHY1;
12144               break;
12145        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12146        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12147               sel_phy_idx = ELINK_EXT_PHY2;
12148               break;
12149        }
12150    }
12151
12152    return (sel_phy_idx);
12153}
12154
12155static int
12156bxe_get_link_cfg_idx(struct bxe_softc *sc)
12157{
12158    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12159
12160    /*
12161     * The selected activated PHY is always after swapping (in case PHY
12162     * swapping is enabled). So when swapping is enabled, we need to reverse
12163     * the configuration
12164     */
12165
12166    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12167        if (sel_phy_idx == ELINK_EXT_PHY1)
12168            sel_phy_idx = ELINK_EXT_PHY2;
12169        else if (sel_phy_idx == ELINK_EXT_PHY2)
12170            sel_phy_idx = ELINK_EXT_PHY1;
12171    }
12172
12173    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12174}
12175
12176static void
12177bxe_set_requested_fc(struct bxe_softc *sc)
12178{
12179    /*
12180     * Initialize link parameters structure variables
12181     * It is recommended to turn off RX FC for jumbo frames
12182     * for better performance
12183     */
12184    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12185        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12186    } else {
12187        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12188    }
12189}
12190
12191static void
12192bxe_calc_fc_adv(struct bxe_softc *sc)
12193{
12194    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12195    switch (sc->link_vars.ieee_fc &
12196            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12197    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12198    default:
12199        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12200                                           ADVERTISED_Pause);
12201        break;
12202
12203    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12204        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12205                                          ADVERTISED_Pause);
12206        break;
12207
12208    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12209        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12210        break;
12211    }
12212}
12213
12214static uint16_t
12215bxe_get_mf_speed(struct bxe_softc *sc)
12216{
12217    uint16_t line_speed = sc->link_vars.line_speed;
12218    if (IS_MF(sc)) {
12219        uint16_t maxCfg =
12220            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12221
12222        /* calculate the current MAX line speed limit for the MF devices */
12223        if (IS_MF_SI(sc)) {
12224            line_speed = (line_speed * maxCfg) / 100;
12225        } else { /* SD mode */
12226            uint16_t vn_max_rate = maxCfg * 100;
12227
12228            if (vn_max_rate < line_speed) {
12229                line_speed = vn_max_rate;
12230            }
12231        }
12232    }
12233
12234    return (line_speed);
12235}
12236
12237static void
12238bxe_fill_report_data(struct bxe_softc            *sc,
12239                     struct bxe_link_report_data *data)
12240{
12241    uint16_t line_speed = bxe_get_mf_speed(sc);
12242
12243    memset(data, 0, sizeof(*data));
12244
12245    /* fill the report data with the effective line speed */
12246    data->line_speed = line_speed;
12247
12248    /* Link is down */
12249    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12250        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12251    }
12252
12253    /* Full DUPLEX */
12254    if (sc->link_vars.duplex == DUPLEX_FULL) {
12255        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12256    }
12257
12258    /* Rx Flow Control is ON */
12259    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12260        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12261    }
12262
12263    /* Tx Flow Control is ON */
12264    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12265        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12266    }
12267}
12268
12269/* report link status to OS, should be called under phy_lock */
12270static void
12271bxe_link_report_locked(struct bxe_softc *sc)
12272{
12273    struct bxe_link_report_data cur_data;
12274
12275    /* reread mf_cfg */
12276    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12277        bxe_read_mf_cfg(sc);
12278    }
12279
12280    /* Read the current link report info */
12281    bxe_fill_report_data(sc, &cur_data);
12282
12283    /* Don't report link down or exactly the same link status twice */
12284    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12285        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12286                      &sc->last_reported_link.link_report_flags) &&
12287         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12288                      &cur_data.link_report_flags))) {
12289        return;
12290    }
12291
12292    sc->link_cnt++;
12293
12294    /* report new link params and remember the state for the next time */
12295    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12296
12297    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12298                     &cur_data.link_report_flags)) {
12299        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12300        BLOGI(sc, "NIC Link is Down\n");
12301    } else {
12302        const char *duplex;
12303        const char *flow;
12304
12305        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12306                                   &cur_data.link_report_flags)) {
12307            duplex = "full";
12308        } else {
12309            duplex = "half";
12310        }
12311
12312        /*
12313         * Handle the FC at the end so that only these flags would be
12314         * possibly set. This way we may easily check if there is no FC
12315         * enabled.
12316         */
12317        if (cur_data.link_report_flags) {
12318            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12319                             &cur_data.link_report_flags) &&
12320                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12321                             &cur_data.link_report_flags)) {
12322                flow = "ON - receive & transmit";
12323            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12324                                    &cur_data.link_report_flags) &&
12325                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12326                                     &cur_data.link_report_flags)) {
12327                flow = "ON - receive";
12328            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12329                                     &cur_data.link_report_flags) &&
12330                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12331                                    &cur_data.link_report_flags)) {
12332                flow = "ON - transmit";
12333            } else {
12334                flow = "none"; /* possible? */
12335            }
12336        } else {
12337            flow = "none";
12338        }
12339
12340        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12341        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12342              cur_data.line_speed, duplex, flow);
12343    }
12344}
12345
12346static void
12347bxe_link_report(struct bxe_softc *sc)
12348{
12349    BXE_PHY_LOCK(sc);
12350    bxe_link_report_locked(sc);
12351    BXE_PHY_UNLOCK(sc);
12352}
12353
12354static void
12355bxe_link_status_update(struct bxe_softc *sc)
12356{
12357    if (sc->state != BXE_STATE_OPEN) {
12358        return;
12359    }
12360
12361#if 0
12362    /* read updated dcb configuration */
12363    if (IS_PF(sc))
12364        bxe_dcbx_pmf_update(sc);
12365#endif
12366
12367    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12368        elink_link_status_update(&sc->link_params, &sc->link_vars);
12369    } else {
12370        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12371                                  ELINK_SUPPORTED_10baseT_Full |
12372                                  ELINK_SUPPORTED_100baseT_Half |
12373                                  ELINK_SUPPORTED_100baseT_Full |
12374                                  ELINK_SUPPORTED_1000baseT_Full |
12375                                  ELINK_SUPPORTED_2500baseX_Full |
12376                                  ELINK_SUPPORTED_10000baseT_Full |
12377                                  ELINK_SUPPORTED_TP |
12378                                  ELINK_SUPPORTED_FIBRE |
12379                                  ELINK_SUPPORTED_Autoneg |
12380                                  ELINK_SUPPORTED_Pause |
12381                                  ELINK_SUPPORTED_Asym_Pause);
12382        sc->port.advertising[0] = sc->port.supported[0];
12383
12384        sc->link_params.sc                = sc;
12385        sc->link_params.port              = SC_PORT(sc);
12386        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12387        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12388        sc->link_params.req_line_speed[0] = SPEED_10000;
12389        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12390        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12391
12392        if (CHIP_REV_IS_FPGA(sc)) {
12393            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12394            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12395            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12396                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12397        } else {
12398            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12399            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12400            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12401                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12402        }
12403
12404        sc->link_vars.link_up = 1;
12405
12406        sc->link_vars.duplex    = DUPLEX_FULL;
12407        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12408
12409        if (IS_PF(sc)) {
12410            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12411            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12412            bxe_link_report(sc);
12413        }
12414    }
12415
12416    if (IS_PF(sc)) {
12417        if (sc->link_vars.link_up) {
12418            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12419        } else {
12420            bxe_stats_handle(sc, STATS_EVENT_STOP);
12421        }
12422        bxe_link_report(sc);
12423    } else {
12424        bxe_link_report(sc);
12425        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12426    }
12427}
12428
12429static int
12430bxe_initial_phy_init(struct bxe_softc *sc,
12431                     int              load_mode)
12432{
12433    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12434    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12435    struct elink_params *lp = &sc->link_params;
12436
12437    bxe_set_requested_fc(sc);
12438
12439    if (CHIP_REV_IS_SLOW(sc)) {
12440        uint32_t bond = CHIP_BOND_ID(sc);
12441        uint32_t feat = 0;
12442
12443        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12444            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12445        } else if (bond & 0x4) {
12446            if (CHIP_IS_E3(sc)) {
12447                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12448            } else {
12449                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12450            }
12451        } else if (bond & 0x8) {
12452            if (CHIP_IS_E3(sc)) {
12453                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12454            } else {
12455                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12456            }
12457        }
12458
12459        /* disable EMAC for E3 and above */
12460        if (bond & 0x2) {
12461            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12462        }
12463
12464        sc->link_params.feature_config_flags |= feat;
12465    }
12466
12467    BXE_PHY_LOCK(sc);
12468
12469    if (load_mode == LOAD_DIAG) {
12470        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12471        /* Prefer doing PHY loopback at 10G speed, if possible */
12472        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12473            if (lp->speed_cap_mask[cfg_idx] &
12474                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12475                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12476            } else {
12477                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12478            }
12479        }
12480    }
12481
12482    if (load_mode == LOAD_LOOPBACK_EXT) {
12483        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12484    }
12485
12486    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12487
12488    BXE_PHY_UNLOCK(sc);
12489
12490    bxe_calc_fc_adv(sc);
12491
12492    if (sc->link_vars.link_up) {
12493        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12494        bxe_link_report(sc);
12495    }
12496
12497    if (!CHIP_REV_IS_SLOW(sc)) {
12498        bxe_periodic_start(sc);
12499    }
12500
12501    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12502    return (rc);
12503}
12504
12505/* must be called under IF_ADDR_LOCK */
12506static int
12507bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12508                         struct ecore_mcast_ramrod_params *p)
12509{
12510    struct ifnet *ifp = sc->ifnet;
12511    int mc_count = 0;
12512    struct ifmultiaddr *ifma;
12513    struct ecore_mcast_list_elem *mc_mac;
12514
12515    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12516        if (ifma->ifma_addr->sa_family != AF_LINK) {
12517            continue;
12518        }
12519
12520        mc_count++;
12521    }
12522
12523    ECORE_LIST_INIT(&p->mcast_list);
12524    p->mcast_list_len = 0;
12525
12526    if (!mc_count) {
12527        return (0);
12528    }
12529
12530    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12531                    (M_NOWAIT | M_ZERO));
12532    if (!mc_mac) {
12533        BLOGE(sc, "Failed to allocate temp mcast list\n");
12534        return (-1);
12535    }
12536
12537    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12538        if (ifma->ifma_addr->sa_family != AF_LINK) {
12539            continue;
12540        }
12541
12542        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12543        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12544
12545        BLOGD(sc, DBG_LOAD,
12546              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12547              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12548              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12549
12550        mc_mac++;
12551    }
12552
12553    p->mcast_list_len = mc_count;
12554
12555    return (0);
12556}
12557
12558static void
12559bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12560{
12561    struct ecore_mcast_list_elem *mc_mac =
12562        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12563                               struct ecore_mcast_list_elem,
12564                               link);
12565
12566    if (mc_mac) {
12567        /* only a single free as all mc_macs are in the same heap array */
12568        free(mc_mac, M_DEVBUF);
12569    }
12570}
12571
12572static int
12573bxe_set_mc_list(struct bxe_softc *sc)
12574{
12575    struct ecore_mcast_ramrod_params rparam = { NULL };
12576    int rc = 0;
12577
12578    rparam.mcast_obj = &sc->mcast_obj;
12579
12580    BXE_MCAST_LOCK(sc);
12581
12582    /* first, clear all configured multicast MACs */
12583    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12584    if (rc < 0) {
12585        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12586        return (rc);
12587    }
12588
12589    /* configure a new MACs list */
12590    rc = bxe_init_mcast_macs_list(sc, &rparam);
12591    if (rc) {
12592        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12593        BXE_MCAST_UNLOCK(sc);
12594        return (rc);
12595    }
12596
12597    /* Now add the new MACs */
12598    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12599    if (rc < 0) {
12600        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12601    }
12602
12603    bxe_free_mcast_macs_list(&rparam);
12604
12605    BXE_MCAST_UNLOCK(sc);
12606
12607    return (rc);
12608}
12609
12610static int
12611bxe_set_uc_list(struct bxe_softc *sc)
12612{
12613    struct ifnet *ifp = sc->ifnet;
12614    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12615    struct ifaddr *ifa;
12616    unsigned long ramrod_flags = 0;
12617    int rc;
12618
12619#if __FreeBSD_version < 800000
12620    IF_ADDR_LOCK(ifp);
12621#else
12622    if_addr_rlock(ifp);
12623#endif
12624
12625    /* first schedule a cleanup up of old configuration */
12626    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12627    if (rc < 0) {
12628        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12629#if __FreeBSD_version < 800000
12630        IF_ADDR_UNLOCK(ifp);
12631#else
12632        if_addr_runlock(ifp);
12633#endif
12634        return (rc);
12635    }
12636
12637    ifa = ifp->if_addr;
12638    while (ifa) {
12639        if (ifa->ifa_addr->sa_family != AF_LINK) {
12640            ifa = TAILQ_NEXT(ifa, ifa_link);
12641            continue;
12642        }
12643
12644        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12645                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12646        if (rc == -EEXIST) {
12647            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12648            /* do not treat adding same MAC as an error */
12649            rc = 0;
12650        } else if (rc < 0) {
12651            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12652#if __FreeBSD_version < 800000
12653            IF_ADDR_UNLOCK(ifp);
12654#else
12655            if_addr_runlock(ifp);
12656#endif
12657            return (rc);
12658        }
12659
12660        ifa = TAILQ_NEXT(ifa, ifa_link);
12661    }
12662
12663#if __FreeBSD_version < 800000
12664    IF_ADDR_UNLOCK(ifp);
12665#else
12666    if_addr_runlock(ifp);
12667#endif
12668
12669    /* Execute the pending commands */
12670    bit_set(&ramrod_flags, RAMROD_CONT);
12671    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12672                            ECORE_UC_LIST_MAC, &ramrod_flags));
12673}
12674
12675static void
12676bxe_handle_rx_mode_tq(void *context,
12677                      int  pending)
12678{
12679    struct bxe_softc *sc = (struct bxe_softc *)context;
12680    struct ifnet *ifp = sc->ifnet;
12681    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12682
12683    BXE_CORE_LOCK(sc);
12684
12685    if (sc->state != BXE_STATE_OPEN) {
12686        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12687        BXE_CORE_UNLOCK(sc);
12688        return;
12689    }
12690
12691    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12692
12693    if (ifp->if_flags & IFF_PROMISC) {
12694        rx_mode = BXE_RX_MODE_PROMISC;
12695    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12696               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12697                CHIP_IS_E1(sc))) {
12698        rx_mode = BXE_RX_MODE_ALLMULTI;
12699    } else {
12700        if (IS_PF(sc)) {
12701            /* some multicasts */
12702            if (bxe_set_mc_list(sc) < 0) {
12703                rx_mode = BXE_RX_MODE_ALLMULTI;
12704            }
12705            if (bxe_set_uc_list(sc) < 0) {
12706                rx_mode = BXE_RX_MODE_PROMISC;
12707            }
12708        }
12709#if 0
12710        else {
12711            /*
12712             * Configuring mcast to a VF involves sleeping (when we
12713             * wait for the PF's response). Since this function is
12714             * called from a non sleepable context we must schedule
12715             * a work item for this purpose
12716             */
12717            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12718            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12719        }
12720#endif
12721    }
12722
12723    sc->rx_mode = rx_mode;
12724
12725    /* schedule the rx_mode command */
12726    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12727        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12728        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12729        BXE_CORE_UNLOCK(sc);
12730        return;
12731    }
12732
12733    if (IS_PF(sc)) {
12734        bxe_set_storm_rx_mode(sc);
12735    }
12736#if 0
12737    else {
12738        /*
12739         * Configuring mcast to a VF involves sleeping (when we
12740         * wait for the PF's response). Since this function is
12741         * called from a non sleepable context we must schedule
12742         * a work item for this purpose
12743         */
12744        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12745        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12746    }
12747#endif
12748
12749    BXE_CORE_UNLOCK(sc);
12750}
12751
12752static void
12753bxe_set_rx_mode(struct bxe_softc *sc)
12754{
12755    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12756}
12757
12758/* update flags in shmem */
12759static void
12760bxe_update_drv_flags(struct bxe_softc *sc,
12761                     uint32_t         flags,
12762                     uint32_t         set)
12763{
12764    uint32_t drv_flags;
12765
12766    if (SHMEM2_HAS(sc, drv_flags)) {
12767        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12768        drv_flags = SHMEM2_RD(sc, drv_flags);
12769
12770        if (set) {
12771            SET_FLAGS(drv_flags, flags);
12772        } else {
12773            RESET_FLAGS(drv_flags, flags);
12774        }
12775
12776        SHMEM2_WR(sc, drv_flags, drv_flags);
12777        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12778
12779        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12780    }
12781}
12782
12783/* periodic timer callout routine, only runs when the interface is up */
12784
12785static void
12786bxe_periodic_callout_func(void *xsc)
12787{
12788    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12789    int i;
12790
12791    if (!BXE_CORE_TRYLOCK(sc)) {
12792        /* just bail and try again next time */
12793
12794        if ((sc->state == BXE_STATE_OPEN) &&
12795            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12796            /* schedule the next periodic callout */
12797            callout_reset(&sc->periodic_callout, hz,
12798                          bxe_periodic_callout_func, sc);
12799        }
12800
12801        return;
12802    }
12803
12804    if ((sc->state != BXE_STATE_OPEN) ||
12805        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12806        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12807        BXE_CORE_UNLOCK(sc);
12808        return;
12809    }
12810
12811    /* Check for TX timeouts on any fastpath. */
12812    FOR_EACH_QUEUE(sc, i) {
12813        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12814            /* Ruh-Roh, chip was reset! */
12815            break;
12816        }
12817    }
12818
12819    if (!CHIP_REV_IS_SLOW(sc)) {
12820        /*
12821         * This barrier is needed to ensure the ordering between the writing
12822         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12823         * the reading here.
12824         */
12825        mb();
12826        if (sc->port.pmf) {
12827            BXE_PHY_LOCK(sc);
12828            elink_period_func(&sc->link_params, &sc->link_vars);
12829            BXE_PHY_UNLOCK(sc);
12830        }
12831    }
12832
12833    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12834        int mb_idx = SC_FW_MB_IDX(sc);
12835        uint32_t drv_pulse;
12836        uint32_t mcp_pulse;
12837
12838        ++sc->fw_drv_pulse_wr_seq;
12839        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12840
12841        drv_pulse = sc->fw_drv_pulse_wr_seq;
12842        bxe_drv_pulse(sc);
12843
12844        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12845                     MCP_PULSE_SEQ_MASK);
12846
12847        /*
12848         * The delta between driver pulse and mcp response should
12849         * be 1 (before mcp response) or 0 (after mcp response).
12850         */
12851        if ((drv_pulse != mcp_pulse) &&
12852            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12853            /* someone lost a heartbeat... */
12854            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12855                  drv_pulse, mcp_pulse);
12856        }
12857    }
12858
12859    /* state is BXE_STATE_OPEN */
12860    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12861
12862#if 0
12863    /* sample VF bulletin board for new posts from PF */
12864    if (IS_VF(sc)) {
12865        bxe_sample_bulletin(sc);
12866    }
12867#endif
12868
12869    BXE_CORE_UNLOCK(sc);
12870
12871    if ((sc->state == BXE_STATE_OPEN) &&
12872        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12873        /* schedule the next periodic callout */
12874        callout_reset(&sc->periodic_callout, hz,
12875                      bxe_periodic_callout_func, sc);
12876    }
12877}
12878
12879static void
12880bxe_periodic_start(struct bxe_softc *sc)
12881{
12882    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12883    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12884}
12885
12886static void
12887bxe_periodic_stop(struct bxe_softc *sc)
12888{
12889    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12890    callout_drain(&sc->periodic_callout);
12891}
12892
12893/* start the controller */
12894static __noinline int
12895bxe_nic_load(struct bxe_softc *sc,
12896             int              load_mode)
12897{
12898    uint32_t val;
12899    int load_code = 0;
12900    int i, rc = 0;
12901
12902    BXE_CORE_LOCK_ASSERT(sc);
12903
12904    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12905
12906    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12907
12908    if (IS_PF(sc)) {
12909        /* must be called before memory allocation and HW init */
12910        bxe_ilt_set_info(sc);
12911    }
12912
12913    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12914
12915    bxe_set_fp_rx_buf_size(sc);
12916
12917    if (bxe_alloc_fp_buffers(sc) != 0) {
12918        BLOGE(sc, "Failed to allocate fastpath memory\n");
12919        sc->state = BXE_STATE_CLOSED;
12920        rc = ENOMEM;
12921        goto bxe_nic_load_error0;
12922    }
12923
12924    if (bxe_alloc_mem(sc) != 0) {
12925        sc->state = BXE_STATE_CLOSED;
12926        rc = ENOMEM;
12927        goto bxe_nic_load_error0;
12928    }
12929
12930    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12931        sc->state = BXE_STATE_CLOSED;
12932        rc = ENOMEM;
12933        goto bxe_nic_load_error0;
12934    }
12935
12936    if (IS_PF(sc)) {
12937        /* set pf load just before approaching the MCP */
12938        bxe_set_pf_load(sc);
12939
12940        /* if MCP exists send load request and analyze response */
12941        if (!BXE_NOMCP(sc)) {
12942            /* attempt to load pf */
12943            if (bxe_nic_load_request(sc, &load_code) != 0) {
12944                sc->state = BXE_STATE_CLOSED;
12945                rc = ENXIO;
12946                goto bxe_nic_load_error1;
12947            }
12948
12949            /* what did the MCP say? */
12950            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12951                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12952                sc->state = BXE_STATE_CLOSED;
12953                rc = ENXIO;
12954                goto bxe_nic_load_error2;
12955            }
12956        } else {
12957            BLOGI(sc, "Device has no MCP!\n");
12958            load_code = bxe_nic_load_no_mcp(sc);
12959        }
12960
12961        /* mark PMF if applicable */
12962        bxe_nic_load_pmf(sc, load_code);
12963
12964        /* Init Function state controlling object */
12965        bxe_init_func_obj(sc);
12966
12967        /* Initialize HW */
12968        if (bxe_init_hw(sc, load_code) != 0) {
12969            BLOGE(sc, "HW init failed\n");
12970            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12971            sc->state = BXE_STATE_CLOSED;
12972            rc = ENXIO;
12973            goto bxe_nic_load_error2;
12974        }
12975    }
12976
12977    /* attach interrupts */
12978    if (bxe_interrupt_attach(sc) != 0) {
12979        sc->state = BXE_STATE_CLOSED;
12980        rc = ENXIO;
12981        goto bxe_nic_load_error2;
12982    }
12983
12984    bxe_nic_init(sc, load_code);
12985
12986    /* Init per-function objects */
12987    if (IS_PF(sc)) {
12988        bxe_init_objs(sc);
12989        // XXX bxe_iov_nic_init(sc);
12990
12991        /* set AFEX default VLAN tag to an invalid value */
12992        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12993        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12994
12995        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12996        rc = bxe_func_start(sc);
12997        if (rc) {
12998            BLOGE(sc, "Function start failed!\n");
12999            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13000            sc->state = BXE_STATE_ERROR;
13001            goto bxe_nic_load_error3;
13002        }
13003
13004        /* send LOAD_DONE command to MCP */
13005        if (!BXE_NOMCP(sc)) {
13006            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
13007            if (!load_code) {
13008                BLOGE(sc, "MCP response failure, aborting\n");
13009                sc->state = BXE_STATE_ERROR;
13010                rc = ENXIO;
13011                goto bxe_nic_load_error3;
13012            }
13013        }
13014
13015        rc = bxe_setup_leading(sc);
13016        if (rc) {
13017            BLOGE(sc, "Setup leading failed!\n");
13018            sc->state = BXE_STATE_ERROR;
13019            goto bxe_nic_load_error3;
13020        }
13021
13022        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
13023            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
13024            if (rc) {
13025                BLOGE(sc, "Queue(%d) setup failed\n", i);
13026                sc->state = BXE_STATE_ERROR;
13027                goto bxe_nic_load_error3;
13028            }
13029        }
13030
13031        rc = bxe_init_rss_pf(sc);
13032        if (rc) {
13033            BLOGE(sc, "PF RSS init failed\n");
13034            sc->state = BXE_STATE_ERROR;
13035            goto bxe_nic_load_error3;
13036        }
13037    }
13038    /* XXX VF */
13039#if 0
13040    else { /* VF */
13041        FOR_EACH_ETH_QUEUE(sc, i) {
13042            rc = bxe_vfpf_setup_q(sc, i);
13043            if (rc) {
13044                BLOGE(sc, "Queue(%d) setup failed\n", i);
13045                sc->state = BXE_STATE_ERROR;
13046                goto bxe_nic_load_error3;
13047            }
13048        }
13049    }
13050#endif
13051
13052    /* now when Clients are configured we are ready to work */
13053    sc->state = BXE_STATE_OPEN;
13054
13055    /* Configure a ucast MAC */
13056    if (IS_PF(sc)) {
13057        rc = bxe_set_eth_mac(sc, TRUE);
13058    }
13059#if 0
13060    else { /* IS_VF(sc) */
13061        rc = bxe_vfpf_set_mac(sc);
13062    }
13063#endif
13064    if (rc) {
13065        BLOGE(sc, "Setting Ethernet MAC failed\n");
13066        sc->state = BXE_STATE_ERROR;
13067        goto bxe_nic_load_error3;
13068    }
13069
13070#if 0
13071    if (IS_PF(sc) && sc->pending_max) {
13072        /* for AFEX */
13073        bxe_update_max_mf_config(sc, sc->pending_max);
13074        sc->pending_max = 0;
13075    }
13076#endif
13077
13078    if (sc->port.pmf) {
13079        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13080        if (rc) {
13081            sc->state = BXE_STATE_ERROR;
13082            goto bxe_nic_load_error3;
13083        }
13084    }
13085
13086    sc->link_params.feature_config_flags &=
13087        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13088
13089    /* start fast path */
13090
13091    /* Initialize Rx filter */
13092    bxe_set_rx_mode(sc);
13093
13094    /* start the Tx */
13095    switch (/* XXX load_mode */LOAD_OPEN) {
13096    case LOAD_NORMAL:
13097    case LOAD_OPEN:
13098        break;
13099
13100    case LOAD_DIAG:
13101    case LOAD_LOOPBACK_EXT:
13102        sc->state = BXE_STATE_DIAG;
13103        break;
13104
13105    default:
13106        break;
13107    }
13108
13109    if (sc->port.pmf) {
13110        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13111    } else {
13112        bxe_link_status_update(sc);
13113    }
13114
13115    /* start the periodic timer callout */
13116    bxe_periodic_start(sc);
13117
13118    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13119        /* mark driver is loaded in shmem2 */
13120        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13121        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13122                  (val |
13123                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13124                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13125    }
13126
13127    /* wait for all pending SP commands to complete */
13128    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13129        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13130        bxe_periodic_stop(sc);
13131        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13132        return (ENXIO);
13133    }
13134
13135#if 0
13136    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13137    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13138        bxe_dcbx_init(sc, FALSE);
13139    }
13140#endif
13141
13142    /* Tell the stack the driver is running! */
13143    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13144
13145    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13146
13147    return (0);
13148
13149bxe_nic_load_error3:
13150
13151    if (IS_PF(sc)) {
13152        bxe_int_disable_sync(sc, 1);
13153
13154        /* clean out queued objects */
13155        bxe_squeeze_objects(sc);
13156    }
13157
13158    bxe_interrupt_detach(sc);
13159
13160bxe_nic_load_error2:
13161
13162    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13163        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13164        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13165    }
13166
13167    sc->port.pmf = 0;
13168
13169bxe_nic_load_error1:
13170
13171    /* clear pf_load status, as it was already set */
13172    if (IS_PF(sc)) {
13173        bxe_clear_pf_load(sc);
13174    }
13175
13176bxe_nic_load_error0:
13177
13178    bxe_free_fw_stats_mem(sc);
13179    bxe_free_fp_buffers(sc);
13180    bxe_free_mem(sc);
13181
13182    return (rc);
13183}
13184
13185static int
13186bxe_init_locked(struct bxe_softc *sc)
13187{
13188    int other_engine = SC_PATH(sc) ? 0 : 1;
13189    uint8_t other_load_status, load_status;
13190    uint8_t global = FALSE;
13191    int rc;
13192
13193    BXE_CORE_LOCK_ASSERT(sc);
13194
13195    /* check if the driver is already running */
13196    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13197        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13198        return (0);
13199    }
13200
13201    bxe_set_power_state(sc, PCI_PM_D0);
13202
13203    /*
13204     * If parity occurred during the unload, then attentions and/or
13205     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13206     * loaded on the current engine to complete the recovery. Parity recovery
13207     * is only relevant for PF driver.
13208     */
13209    if (IS_PF(sc)) {
13210        other_load_status = bxe_get_load_status(sc, other_engine);
13211        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13212
13213        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13214            bxe_chk_parity_attn(sc, &global, TRUE)) {
13215            do {
13216                /*
13217                 * If there are attentions and they are in global blocks, set
13218                 * the GLOBAL_RESET bit regardless whether it will be this
13219                 * function that will complete the recovery or not.
13220                 */
13221                if (global) {
13222                    bxe_set_reset_global(sc);
13223                }
13224
13225                /*
13226                 * Only the first function on the current engine should try
13227                 * to recover in open. In case of attentions in global blocks
13228                 * only the first in the chip should try to recover.
13229                 */
13230                if ((!load_status && (!global || !other_load_status)) &&
13231                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13232                    BLOGI(sc, "Recovered during init\n");
13233                    break;
13234                }
13235
13236                /* recovery has failed... */
13237                bxe_set_power_state(sc, PCI_PM_D3hot);
13238                sc->recovery_state = BXE_RECOVERY_FAILED;
13239
13240                BLOGE(sc, "Recovery flow hasn't properly "
13241                          "completed yet, try again later. "
13242                          "If you still see this message after a "
13243                          "few retries then power cycle is required.\n");
13244
13245                rc = ENXIO;
13246                goto bxe_init_locked_done;
13247            } while (0);
13248        }
13249    }
13250
13251    sc->recovery_state = BXE_RECOVERY_DONE;
13252
13253    rc = bxe_nic_load(sc, LOAD_OPEN);
13254
13255bxe_init_locked_done:
13256
13257    if (rc) {
13258        /* Tell the stack the driver is NOT running! */
13259        BLOGE(sc, "Initialization failed, "
13260                  "stack notified driver is NOT running!\n");
13261        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13262    }
13263
13264    return (rc);
13265}
13266
13267static int
13268bxe_stop_locked(struct bxe_softc *sc)
13269{
13270    BXE_CORE_LOCK_ASSERT(sc);
13271    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13272}
13273
13274/*
13275 * Handles controller initialization when called from an unlocked routine.
13276 * ifconfig calls this function.
13277 *
13278 * Returns:
13279 *   void
13280 */
13281static void
13282bxe_init(void *xsc)
13283{
13284    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13285
13286    BXE_CORE_LOCK(sc);
13287    bxe_init_locked(sc);
13288    BXE_CORE_UNLOCK(sc);
13289}
13290
13291static int
13292bxe_init_ifnet(struct bxe_softc *sc)
13293{
13294    struct ifnet *ifp;
13295
13296    /* ifconfig entrypoint for media type/status reporting */
13297    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13298                 bxe_ifmedia_update,
13299                 bxe_ifmedia_status);
13300
13301    /* set the default interface values */
13302    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13303    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13304    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13305
13306    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13307
13308    /* allocate the ifnet structure */
13309    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13310        BLOGE(sc, "Interface allocation failed!\n");
13311        return (ENXIO);
13312    }
13313
13314    ifp->if_softc = sc;
13315    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13316    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13317    ifp->if_ioctl = bxe_ioctl;
13318    ifp->if_start = bxe_tx_start;
13319#if __FreeBSD_version >= 800000
13320    ifp->if_transmit = bxe_tx_mq_start;
13321    ifp->if_qflush = bxe_mq_flush;
13322#endif
13323#ifdef FreeBSD8_0
13324    ifp->if_timer = 0;
13325#endif
13326    ifp->if_init = bxe_init;
13327    ifp->if_mtu = sc->mtu;
13328    ifp->if_hwassist = (CSUM_IP       |
13329                        CSUM_TCP      |
13330                        CSUM_UDP      |
13331                        CSUM_TSO      |
13332                        CSUM_TCP_IPV6 |
13333                        CSUM_UDP_IPV6);
13334    ifp->if_capabilities =
13335#if __FreeBSD_version < 700000
13336        (IFCAP_VLAN_MTU       |
13337         IFCAP_VLAN_HWTAGGING |
13338         IFCAP_HWCSUM         |
13339         IFCAP_JUMBO_MTU      |
13340         IFCAP_LRO);
13341#else
13342        (IFCAP_VLAN_MTU       |
13343         IFCAP_VLAN_HWTAGGING |
13344         IFCAP_VLAN_HWTSO     |
13345         IFCAP_VLAN_HWFILTER  |
13346         IFCAP_VLAN_HWCSUM    |
13347         IFCAP_HWCSUM         |
13348         IFCAP_JUMBO_MTU      |
13349         IFCAP_LRO            |
13350         IFCAP_TSO4           |
13351         IFCAP_TSO6           |
13352         IFCAP_WOL_MAGIC);
13353#endif
13354    ifp->if_capenable = ifp->if_capabilities;
13355    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13356#if __FreeBSD_version < 1000025
13357    ifp->if_baudrate = 1000000000;
13358#else
13359    if_initbaudrate(ifp, IF_Gbps(10));
13360#endif
13361    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13362
13363    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13364    IFQ_SET_READY(&ifp->if_snd);
13365
13366    sc->ifnet = ifp;
13367
13368    /* attach to the Ethernet interface list */
13369    ether_ifattach(ifp, sc->link_params.mac_addr);
13370
13371    return (0);
13372}
13373
13374static void
13375bxe_deallocate_bars(struct bxe_softc *sc)
13376{
13377    int i;
13378
13379    for (i = 0; i < MAX_BARS; i++) {
13380        if (sc->bar[i].resource != NULL) {
13381            bus_release_resource(sc->dev,
13382                                 SYS_RES_MEMORY,
13383                                 sc->bar[i].rid,
13384                                 sc->bar[i].resource);
13385            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13386                  i, PCIR_BAR(i));
13387        }
13388    }
13389}
13390
13391static int
13392bxe_allocate_bars(struct bxe_softc *sc)
13393{
13394    u_int flags;
13395    int i;
13396
13397    memset(sc->bar, 0, sizeof(sc->bar));
13398
13399    for (i = 0; i < MAX_BARS; i++) {
13400
13401        /* memory resources reside at BARs 0, 2, 4 */
13402        /* Run `pciconf -lb` to see mappings */
13403        if ((i != 0) && (i != 2) && (i != 4)) {
13404            continue;
13405        }
13406
13407        sc->bar[i].rid = PCIR_BAR(i);
13408
13409        flags = RF_ACTIVE;
13410        if (i == 0) {
13411            flags |= RF_SHAREABLE;
13412        }
13413
13414        if ((sc->bar[i].resource =
13415             bus_alloc_resource_any(sc->dev,
13416                                    SYS_RES_MEMORY,
13417                                    &sc->bar[i].rid,
13418                                    flags)) == NULL) {
13419#if 0
13420            /* BAR4 doesn't exist for E1 */
13421            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13422                  i, PCIR_BAR(i));
13423#endif
13424            return (0);
13425        }
13426
13427        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13428        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13429        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13430
13431        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13432              i, PCIR_BAR(i),
13433              (void *)rman_get_start(sc->bar[i].resource),
13434              (void *)rman_get_end(sc->bar[i].resource),
13435              rman_get_size(sc->bar[i].resource),
13436              (void *)sc->bar[i].kva);
13437    }
13438
13439    return (0);
13440}
13441
13442static void
13443bxe_get_function_num(struct bxe_softc *sc)
13444{
13445    uint32_t val = 0;
13446
13447    /*
13448     * Read the ME register to get the function number. The ME register
13449     * holds the relative-function number and absolute-function number. The
13450     * absolute-function number appears only in E2 and above. Before that
13451     * these bits always contained zero, therefore we cannot blindly use them.
13452     */
13453
13454    val = REG_RD(sc, BAR_ME_REGISTER);
13455
13456    sc->pfunc_rel =
13457        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13458    sc->path_id =
13459        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13460
13461    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13462        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13463    } else {
13464        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13465    }
13466
13467    BLOGD(sc, DBG_LOAD,
13468          "Relative function %d, Absolute function %d, Path %d\n",
13469          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13470}
13471
13472static uint32_t
13473bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13474{
13475    uint32_t shmem2_size;
13476    uint32_t offset;
13477    uint32_t mf_cfg_offset_value;
13478
13479    /* Non 57712 */
13480    offset = (SHMEM_RD(sc, func_mb) +
13481              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13482
13483    /* 57712 plus */
13484    if (sc->devinfo.shmem2_base != 0) {
13485        shmem2_size = SHMEM2_RD(sc, size);
13486        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13487            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13488            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13489                offset = mf_cfg_offset_value;
13490            }
13491        }
13492    }
13493
13494    return (offset);
13495}
13496
13497static uint32_t
13498bxe_pcie_capability_read(struct bxe_softc *sc,
13499                         int    reg,
13500                         int    width)
13501{
13502    int pcie_reg;
13503
13504    /* ensure PCIe capability is enabled */
13505    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13506        if (pcie_reg != 0) {
13507            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13508            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13509        }
13510    }
13511
13512    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13513
13514    return (0);
13515}
13516
13517static uint8_t
13518bxe_is_pcie_pending(struct bxe_softc *sc)
13519{
13520    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13521            PCIM_EXP_STA_TRANSACTION_PND);
13522}
13523
13524/*
13525 * Walk the PCI capabiites list for the device to find what features are
13526 * supported. These capabilites may be enabled/disabled by firmware so it's
13527 * best to walk the list rather than make assumptions.
13528 */
13529static void
13530bxe_probe_pci_caps(struct bxe_softc *sc)
13531{
13532    uint16_t link_status;
13533    int reg;
13534
13535    /* check if PCI Power Management is enabled */
13536    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13537        if (reg != 0) {
13538            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13539
13540            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13541            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13542        }
13543    }
13544
13545    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13546
13547    /* handle PCIe 2.0 workarounds for 57710 */
13548    if (CHIP_IS_E1(sc)) {
13549        /* workaround for 57710 errata E4_57710_27462 */
13550        sc->devinfo.pcie_link_speed =
13551            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13552
13553        /* workaround for 57710 errata E4_57710_27488 */
13554        sc->devinfo.pcie_link_width =
13555            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13556        if (sc->devinfo.pcie_link_speed > 1) {
13557            sc->devinfo.pcie_link_width =
13558                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13559        }
13560    } else {
13561        sc->devinfo.pcie_link_speed =
13562            (link_status & PCIM_LINK_STA_SPEED);
13563        sc->devinfo.pcie_link_width =
13564            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13565    }
13566
13567    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13568          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13569
13570    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13571    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13572
13573    /* check if MSI capability is enabled */
13574    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13575        if (reg != 0) {
13576            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13577
13578            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13579            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13580        }
13581    }
13582
13583    /* check if MSI-X capability is enabled */
13584    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13585        if (reg != 0) {
13586            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13587
13588            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13589            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13590        }
13591    }
13592}
13593
13594static int
13595bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13596{
13597    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13598    uint32_t val;
13599
13600    /* get the outer vlan if we're in switch-dependent mode */
13601
13602    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13603    mf_info->ext_id = (uint16_t)val;
13604
13605    mf_info->multi_vnics_mode = 1;
13606
13607    if (!VALID_OVLAN(mf_info->ext_id)) {
13608        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13609        return (1);
13610    }
13611
13612    /* get the capabilities */
13613    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13614        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13615        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13616    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13617               FUNC_MF_CFG_PROTOCOL_FCOE) {
13618        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13619    } else {
13620        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13621    }
13622
13623    mf_info->vnics_per_port =
13624        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13625
13626    return (0);
13627}
13628
13629static uint32_t
13630bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13631{
13632    uint32_t retval = 0;
13633    uint32_t val;
13634
13635    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13636
13637    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13638        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13639            retval |= MF_PROTO_SUPPORT_ETHERNET;
13640        }
13641        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13642            retval |= MF_PROTO_SUPPORT_ISCSI;
13643        }
13644        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13645            retval |= MF_PROTO_SUPPORT_FCOE;
13646        }
13647    }
13648
13649    return (retval);
13650}
13651
13652static int
13653bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13654{
13655    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13656    uint32_t val;
13657
13658    /*
13659     * There is no outer vlan if we're in switch-independent mode.
13660     * If the mac is valid then assume multi-function.
13661     */
13662
13663    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13664
13665    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13666
13667    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13668
13669    mf_info->vnics_per_port =
13670        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13671
13672    return (0);
13673}
13674
13675static int
13676bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13677{
13678    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13679    uint32_t e1hov_tag;
13680    uint32_t func_config;
13681    uint32_t niv_config;
13682
13683    mf_info->multi_vnics_mode = 1;
13684
13685    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13686    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13687    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13688
13689    mf_info->ext_id =
13690        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13691                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13692
13693    mf_info->default_vlan =
13694        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13695                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13696
13697    mf_info->niv_allowed_priorities =
13698        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13699                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13700
13701    mf_info->niv_default_cos =
13702        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13703                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13704
13705    mf_info->afex_vlan_mode =
13706        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13707         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13708
13709    mf_info->niv_mba_enabled =
13710        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13711         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13712
13713    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13714
13715    mf_info->vnics_per_port =
13716        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13717
13718    return (0);
13719}
13720
13721static int
13722bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13723{
13724    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13725    uint32_t mf_cfg1;
13726    uint32_t mf_cfg2;
13727    uint32_t ovlan1;
13728    uint32_t ovlan2;
13729    uint8_t i, j;
13730
13731    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13732          SC_PORT(sc));
13733    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13734          mf_info->mf_config[SC_VN(sc)]);
13735    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13736          mf_info->multi_vnics_mode);
13737    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13738          mf_info->vnics_per_port);
13739    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13740          mf_info->ext_id);
13741    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13742          mf_info->min_bw[0], mf_info->min_bw[1],
13743          mf_info->min_bw[2], mf_info->min_bw[3]);
13744    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13745          mf_info->max_bw[0], mf_info->max_bw[1],
13746          mf_info->max_bw[2], mf_info->max_bw[3]);
13747    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13748          sc->mac_addr_str);
13749
13750    /* various MF mode sanity checks... */
13751
13752    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13753        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13754              SC_PORT(sc));
13755        return (1);
13756    }
13757
13758    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13759        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13760              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13761        return (1);
13762    }
13763
13764    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13765        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13766        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13767            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13768                  SC_VN(sc), OVLAN(sc));
13769            return (1);
13770        }
13771
13772        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13773            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13774                  mf_info->multi_vnics_mode, OVLAN(sc));
13775            return (1);
13776        }
13777
13778        /*
13779         * Verify all functions are either MF or SF mode. If MF, make sure
13780         * sure that all non-hidden functions have a valid ovlan. If SF,
13781         * make sure that all non-hidden functions have an invalid ovlan.
13782         */
13783        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13784            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13785            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13786            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13787                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13788                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13789                BLOGE(sc, "mf_mode=SD function %d MF config "
13790                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13791                      i, mf_info->multi_vnics_mode, ovlan1);
13792                return (1);
13793            }
13794        }
13795
13796        /* Verify all funcs on the same port each have a different ovlan. */
13797        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13798            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13799            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13800            /* iterate from the next function on the port to the max func */
13801            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13802                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13803                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13804                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13805                    VALID_OVLAN(ovlan1) &&
13806                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13807                    VALID_OVLAN(ovlan2) &&
13808                    (ovlan1 == ovlan2)) {
13809                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13810                              "have the same ovlan (%d)\n",
13811                          i, j, ovlan1);
13812                    return (1);
13813                }
13814            }
13815        }
13816    } /* MULTI_FUNCTION_SD */
13817
13818    return (0);
13819}
13820
13821static int
13822bxe_get_mf_cfg_info(struct bxe_softc *sc)
13823{
13824    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13825    uint32_t val, mac_upper;
13826    uint8_t i, vnic;
13827
13828    /* initialize mf_info defaults */
13829    mf_info->vnics_per_port   = 1;
13830    mf_info->multi_vnics_mode = FALSE;
13831    mf_info->path_has_ovlan   = FALSE;
13832    mf_info->mf_mode          = SINGLE_FUNCTION;
13833
13834    if (!CHIP_IS_MF_CAP(sc)) {
13835        return (0);
13836    }
13837
13838    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13839        BLOGE(sc, "Invalid mf_cfg_base!\n");
13840        return (1);
13841    }
13842
13843    /* get the MF mode (switch dependent / independent / single-function) */
13844
13845    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13846
13847    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13848    {
13849    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13850
13851        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13852
13853        /* check for legal upper mac bytes */
13854        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13855            mf_info->mf_mode = MULTI_FUNCTION_SI;
13856        } else {
13857            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13858        }
13859
13860        break;
13861
13862    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13863    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13864
13865        /* get outer vlan configuration */
13866        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13867
13868        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13869            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13870            mf_info->mf_mode = MULTI_FUNCTION_SD;
13871        } else {
13872            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13873        }
13874
13875        break;
13876
13877    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13878
13879        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13880        return (0);
13881
13882    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13883
13884        /*
13885         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13886         * and the MAC address is valid.
13887         */
13888        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13889
13890        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13891            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13892            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13893        } else {
13894            BLOGE(sc, "Invalid config for AFEX mode\n");
13895        }
13896
13897        break;
13898
13899    default:
13900
13901        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13902              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13903
13904        return (1);
13905    }
13906
13907    /* set path mf_mode (which could be different than function mf_mode) */
13908    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13909        mf_info->path_has_ovlan = TRUE;
13910    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13911        /*
13912         * Decide on path multi vnics mode. If we're not in MF mode and in
13913         * 4-port mode, this is good enough to check vnic-0 of the other port
13914         * on the same path
13915         */
13916        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13917            uint8_t other_port = !(PORT_ID(sc) & 1);
13918            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13919
13920            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13921
13922            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13923        }
13924    }
13925
13926    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13927        /* invalid MF config */
13928        if (SC_VN(sc) >= 1) {
13929            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13930            return (1);
13931        }
13932
13933        return (0);
13934    }
13935
13936    /* get the MF configuration */
13937    mf_info->mf_config[SC_VN(sc)] =
13938        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13939
13940    switch(mf_info->mf_mode)
13941    {
13942    case MULTI_FUNCTION_SD:
13943
13944        bxe_get_shmem_mf_cfg_info_sd(sc);
13945        break;
13946
13947    case MULTI_FUNCTION_SI:
13948
13949        bxe_get_shmem_mf_cfg_info_si(sc);
13950        break;
13951
13952    case MULTI_FUNCTION_AFEX:
13953
13954        bxe_get_shmem_mf_cfg_info_niv(sc);
13955        break;
13956
13957    default:
13958
13959        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13960              mf_info->mf_mode);
13961        return (1);
13962    }
13963
13964    /* get the congestion management parameters */
13965
13966    vnic = 0;
13967    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13968        /* get min/max bw */
13969        val = MFCFG_RD(sc, func_mf_config[i].config);
13970        mf_info->min_bw[vnic] =
13971            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13972        mf_info->max_bw[vnic] =
13973            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13974        vnic++;
13975    }
13976
13977    return (bxe_check_valid_mf_cfg(sc));
13978}
13979
13980static int
13981bxe_get_shmem_info(struct bxe_softc *sc)
13982{
13983    int port;
13984    uint32_t mac_hi, mac_lo, val;
13985
13986    port = SC_PORT(sc);
13987    mac_hi = mac_lo = 0;
13988
13989    sc->link_params.sc   = sc;
13990    sc->link_params.port = port;
13991
13992    /* get the hardware config info */
13993    sc->devinfo.hw_config =
13994        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13995    sc->devinfo.hw_config2 =
13996        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13997
13998    sc->link_params.hw_led_mode =
13999        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
14000         SHARED_HW_CFG_LED_MODE_SHIFT);
14001
14002    /* get the port feature config */
14003    sc->port.config =
14004        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
14005
14006    /* get the link params */
14007    sc->link_params.speed_cap_mask[0] =
14008        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
14009    sc->link_params.speed_cap_mask[1] =
14010        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
14011
14012    /* get the lane config */
14013    sc->link_params.lane_config =
14014        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
14015
14016    /* get the link config */
14017    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
14018    sc->port.link_config[ELINK_INT_PHY] = val;
14019    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
14020    sc->port.link_config[ELINK_EXT_PHY1] =
14021        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
14022
14023    /* get the override preemphasis flag and enable it or turn it off */
14024    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
14025    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
14026        sc->link_params.feature_config_flags |=
14027            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14028    } else {
14029        sc->link_params.feature_config_flags &=
14030            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14031    }
14032
14033    /* get the initial value of the link params */
14034    sc->link_params.multi_phy_config =
14035        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14036
14037    /* get external phy info */
14038    sc->port.ext_phy_config =
14039        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14040
14041    /* get the multifunction configuration */
14042    bxe_get_mf_cfg_info(sc);
14043
14044    /* get the mac address */
14045    if (IS_MF(sc)) {
14046        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14047        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14048    } else {
14049        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14050        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14051    }
14052
14053    if ((mac_lo == 0) && (mac_hi == 0)) {
14054        *sc->mac_addr_str = 0;
14055        BLOGE(sc, "No Ethernet address programmed!\n");
14056    } else {
14057        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14058        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14059        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14060        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14061        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14062        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14063        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14064                 "%02x:%02x:%02x:%02x:%02x:%02x",
14065                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14066                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14067                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14068        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14069    }
14070
14071#if 0
14072    if (!IS_MF(sc) &&
14073        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14074         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14075        sc->flags |= BXE_NO_ISCSI;
14076    }
14077    if (!IS_MF(sc) &&
14078        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14079         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14080        sc->flags |= BXE_NO_FCOE_FLAG;
14081    }
14082#endif
14083
14084    return (0);
14085}
14086
14087static void
14088bxe_get_tunable_params(struct bxe_softc *sc)
14089{
14090    /* sanity checks */
14091
14092    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14093        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14094        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14095        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14096        bxe_interrupt_mode = INTR_MODE_MSIX;
14097    }
14098
14099    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14100        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14101        bxe_queue_count = 0;
14102    }
14103
14104    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14105        if (bxe_max_rx_bufs == 0) {
14106            bxe_max_rx_bufs = RX_BD_USABLE;
14107        } else {
14108            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14109            bxe_max_rx_bufs = 2048;
14110        }
14111    }
14112
14113    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14114        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14115        bxe_hc_rx_ticks = 25;
14116    }
14117
14118    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14119        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14120        bxe_hc_tx_ticks = 50;
14121    }
14122
14123    if (bxe_max_aggregation_size == 0) {
14124        bxe_max_aggregation_size = TPA_AGG_SIZE;
14125    }
14126
14127    if (bxe_max_aggregation_size > 0xffff) {
14128        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14129              bxe_max_aggregation_size);
14130        bxe_max_aggregation_size = TPA_AGG_SIZE;
14131    }
14132
14133    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14134        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14135        bxe_mrrs = -1;
14136    }
14137
14138    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14139        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14140        bxe_autogreeen = 0;
14141    }
14142
14143    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14144        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14145        bxe_udp_rss = 0;
14146    }
14147
14148    /* pull in user settings */
14149
14150    sc->interrupt_mode       = bxe_interrupt_mode;
14151    sc->max_rx_bufs          = bxe_max_rx_bufs;
14152    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14153    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14154    sc->max_aggregation_size = bxe_max_aggregation_size;
14155    sc->mrrs                 = bxe_mrrs;
14156    sc->autogreeen           = bxe_autogreeen;
14157    sc->udp_rss              = bxe_udp_rss;
14158
14159    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14160        sc->num_queues = 1;
14161    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14162        sc->num_queues =
14163            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14164                MAX_RSS_CHAINS);
14165        if (sc->num_queues > mp_ncpus) {
14166            sc->num_queues = mp_ncpus;
14167        }
14168    }
14169
14170    BLOGD(sc, DBG_LOAD,
14171          "User Config: "
14172          "debug=0x%lx "
14173          "interrupt_mode=%d "
14174          "queue_count=%d "
14175          "hc_rx_ticks=%d "
14176          "hc_tx_ticks=%d "
14177          "rx_budget=%d "
14178          "max_aggregation_size=%d "
14179          "mrrs=%d "
14180          "autogreeen=%d "
14181          "udp_rss=%d\n",
14182          bxe_debug,
14183          sc->interrupt_mode,
14184          sc->num_queues,
14185          sc->hc_rx_ticks,
14186          sc->hc_tx_ticks,
14187          bxe_rx_budget,
14188          sc->max_aggregation_size,
14189          sc->mrrs,
14190          sc->autogreeen,
14191          sc->udp_rss);
14192}
14193
14194static void
14195bxe_media_detect(struct bxe_softc *sc)
14196{
14197    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14198    switch (sc->link_params.phy[phy_idx].media_type) {
14199    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14200    case ELINK_ETH_PHY_XFP_FIBER:
14201        BLOGI(sc, "Found 10Gb Fiber media.\n");
14202        sc->media = IFM_10G_SR;
14203        break;
14204    case ELINK_ETH_PHY_SFP_1G_FIBER:
14205        BLOGI(sc, "Found 1Gb Fiber media.\n");
14206        sc->media = IFM_1000_SX;
14207        break;
14208    case ELINK_ETH_PHY_KR:
14209    case ELINK_ETH_PHY_CX4:
14210        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14211        sc->media = IFM_10G_CX4;
14212        break;
14213    case ELINK_ETH_PHY_DA_TWINAX:
14214        BLOGI(sc, "Found 10Gb Twinax media.\n");
14215        sc->media = IFM_10G_TWINAX;
14216        break;
14217    case ELINK_ETH_PHY_BASE_T:
14218        if (sc->link_params.speed_cap_mask[0] &
14219            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14220            BLOGI(sc, "Found 10GBase-T media.\n");
14221            sc->media = IFM_10G_T;
14222        } else {
14223            BLOGI(sc, "Found 1000Base-T media.\n");
14224            sc->media = IFM_1000_T;
14225        }
14226        break;
14227    case ELINK_ETH_PHY_NOT_PRESENT:
14228        BLOGI(sc, "Media not present.\n");
14229        sc->media = 0;
14230        break;
14231    case ELINK_ETH_PHY_UNSPECIFIED:
14232    default:
14233        BLOGI(sc, "Unknown media!\n");
14234        sc->media = 0;
14235        break;
14236    }
14237}
14238
14239#define GET_FIELD(value, fname)                     \
14240    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14241#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14242#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14243
14244static int
14245bxe_get_igu_cam_info(struct bxe_softc *sc)
14246{
14247    int pfid = SC_FUNC(sc);
14248    int igu_sb_id;
14249    uint32_t val;
14250    uint8_t fid, igu_sb_cnt = 0;
14251
14252    sc->igu_base_sb = 0xff;
14253
14254    if (CHIP_INT_MODE_IS_BC(sc)) {
14255        int vn = SC_VN(sc);
14256        igu_sb_cnt = sc->igu_sb_cnt;
14257        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14258                           FP_SB_MAX_E1x);
14259        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14260                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14261        return (0);
14262    }
14263
14264    /* IGU in normal mode - read CAM */
14265    for (igu_sb_id = 0;
14266         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14267         igu_sb_id++) {
14268        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14269        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14270            continue;
14271        }
14272        fid = IGU_FID(val);
14273        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14274            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14275                continue;
14276            }
14277            if (IGU_VEC(val) == 0) {
14278                /* default status block */
14279                sc->igu_dsb_id = igu_sb_id;
14280            } else {
14281                if (sc->igu_base_sb == 0xff) {
14282                    sc->igu_base_sb = igu_sb_id;
14283                }
14284                igu_sb_cnt++;
14285            }
14286        }
14287    }
14288
14289    /*
14290     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14291     * that number of CAM entries will not be equal to the value advertised in
14292     * PCI. Driver should use the minimal value of both as the actual status
14293     * block count
14294     */
14295    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14296
14297    if (igu_sb_cnt == 0) {
14298        BLOGE(sc, "CAM configuration error\n");
14299        return (-1);
14300    }
14301
14302    return (0);
14303}
14304
14305/*
14306 * Gather various information from the device config space, the device itself,
14307 * shmem, and the user input.
14308 */
14309static int
14310bxe_get_device_info(struct bxe_softc *sc)
14311{
14312    uint32_t val;
14313    int rc;
14314
14315    /* Get the data for the device */
14316    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14317    sc->devinfo.device_id    = pci_get_device(sc->dev);
14318    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14319    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14320
14321    /* get the chip revision (chip metal comes from pci config space) */
14322    sc->devinfo.chip_id     =
14323    sc->link_params.chip_id =
14324        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14325         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14326         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14327         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14328
14329    /* force 57811 according to MISC register */
14330    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14331        if (CHIP_IS_57810(sc)) {
14332            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14333                                   (sc->devinfo.chip_id & 0x0000ffff));
14334        } else if (CHIP_IS_57810_MF(sc)) {
14335            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14336                                   (sc->devinfo.chip_id & 0x0000ffff));
14337        }
14338        sc->devinfo.chip_id |= 0x1;
14339    }
14340
14341    BLOGD(sc, DBG_LOAD,
14342          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14343          sc->devinfo.chip_id,
14344          ((sc->devinfo.chip_id >> 16) & 0xffff),
14345          ((sc->devinfo.chip_id >> 12) & 0xf),
14346          ((sc->devinfo.chip_id >>  4) & 0xff),
14347          ((sc->devinfo.chip_id >>  0) & 0xf));
14348
14349    val = (REG_RD(sc, 0x2874) & 0x55);
14350    if ((sc->devinfo.chip_id & 0x1) ||
14351        (CHIP_IS_E1(sc) && val) ||
14352        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14353        sc->flags |= BXE_ONE_PORT_FLAG;
14354        BLOGD(sc, DBG_LOAD, "single port device\n");
14355    }
14356
14357    /* set the doorbell size */
14358    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14359
14360    /* determine whether the device is in 2 port or 4 port mode */
14361    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14362    if (CHIP_IS_E2E3(sc)) {
14363        /*
14364         * Read port4mode_en_ovwr[0]:
14365         *   If 1, four port mode is in port4mode_en_ovwr[1].
14366         *   If 0, four port mode is in port4mode_en[0].
14367         */
14368        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14369        if (val & 1) {
14370            val = ((val >> 1) & 1);
14371        } else {
14372            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14373        }
14374
14375        sc->devinfo.chip_port_mode =
14376            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14377
14378        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14379    }
14380
14381    /* get the function and path info for the device */
14382    bxe_get_function_num(sc);
14383
14384    /* get the shared memory base address */
14385    sc->devinfo.shmem_base     =
14386    sc->link_params.shmem_base =
14387        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14388    sc->devinfo.shmem2_base =
14389        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14390                                  MISC_REG_GENERIC_CR_0));
14391
14392    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14393          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14394
14395    if (!sc->devinfo.shmem_base) {
14396        /* this should ONLY prevent upcoming shmem reads */
14397        BLOGI(sc, "MCP not active\n");
14398        sc->flags |= BXE_NO_MCP_FLAG;
14399        return (0);
14400    }
14401
14402    /* make sure the shared memory contents are valid */
14403    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14404    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14405        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14406        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14407        return (0);
14408    }
14409    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14410
14411    /* get the bootcode version */
14412    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14413    snprintf(sc->devinfo.bc_ver_str,
14414             sizeof(sc->devinfo.bc_ver_str),
14415             "%d.%d.%d",
14416             ((sc->devinfo.bc_ver >> 24) & 0xff),
14417             ((sc->devinfo.bc_ver >> 16) & 0xff),
14418             ((sc->devinfo.bc_ver >>  8) & 0xff));
14419    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14420
14421    /* get the bootcode shmem address */
14422    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14423    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14424
14425    /* clean indirect addresses as they're not used */
14426    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14427    if (IS_PF(sc)) {
14428        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14429        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14430        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14431        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14432        if (CHIP_IS_E1x(sc)) {
14433            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14434            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14435            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14436            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14437        }
14438
14439        /*
14440         * Enable internal target-read (in case we are probed after PF
14441         * FLR). Must be done prior to any BAR read access. Only for
14442         * 57712 and up
14443         */
14444        if (!CHIP_IS_E1x(sc)) {
14445            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14446        }
14447    }
14448
14449    /* get the nvram size */
14450    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14451    sc->devinfo.flash_size =
14452        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14453    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14454
14455    /* get PCI capabilites */
14456    bxe_probe_pci_caps(sc);
14457
14458    bxe_set_power_state(sc, PCI_PM_D0);
14459
14460    /* get various configuration parameters from shmem */
14461    bxe_get_shmem_info(sc);
14462
14463    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14464        val = pci_read_config(sc->dev,
14465                              (sc->devinfo.pcie_msix_cap_reg +
14466                               PCIR_MSIX_CTRL),
14467                              2);
14468        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14469    } else {
14470        sc->igu_sb_cnt = 1;
14471    }
14472
14473    sc->igu_base_addr = BAR_IGU_INTMEM;
14474
14475    /* initialize IGU parameters */
14476    if (CHIP_IS_E1x(sc)) {
14477        sc->devinfo.int_block = INT_BLOCK_HC;
14478        sc->igu_dsb_id = DEF_SB_IGU_ID;
14479        sc->igu_base_sb = 0;
14480    } else {
14481        sc->devinfo.int_block = INT_BLOCK_IGU;
14482
14483        /* do not allow device reset during IGU info preocessing */
14484        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14485
14486        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14487
14488        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14489            int tout = 5000;
14490
14491            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14492
14493            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14494            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14495            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14496
14497            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14498                tout--;
14499                DELAY(1000);
14500            }
14501
14502            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14503                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14504                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14505                return (-1);
14506            }
14507        }
14508
14509        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14510            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14511            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14512        } else {
14513            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14514        }
14515
14516        rc = bxe_get_igu_cam_info(sc);
14517
14518        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14519
14520        if (rc) {
14521            return (rc);
14522        }
14523    }
14524
14525    /*
14526     * Get base FW non-default (fast path) status block ID. This value is
14527     * used to initialize the fw_sb_id saved on the fp/queue structure to
14528     * determine the id used by the FW.
14529     */
14530    if (CHIP_IS_E1x(sc)) {
14531        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14532    } else {
14533        /*
14534         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14535         * the same queue are indicated on the same IGU SB). So we prefer
14536         * FW and IGU SBs to be the same value.
14537         */
14538        sc->base_fw_ndsb = sc->igu_base_sb;
14539    }
14540
14541    BLOGD(sc, DBG_LOAD,
14542          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14543          sc->igu_dsb_id, sc->igu_base_sb,
14544          sc->igu_sb_cnt, sc->base_fw_ndsb);
14545
14546    elink_phy_probe(&sc->link_params);
14547
14548    return (0);
14549}
14550
14551static void
14552bxe_link_settings_supported(struct bxe_softc *sc,
14553                            uint32_t         switch_cfg)
14554{
14555    uint32_t cfg_size = 0;
14556    uint32_t idx;
14557    uint8_t port = SC_PORT(sc);
14558
14559    /* aggregation of supported attributes of all external phys */
14560    sc->port.supported[0] = 0;
14561    sc->port.supported[1] = 0;
14562
14563    switch (sc->link_params.num_phys) {
14564    case 1:
14565        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14566        cfg_size = 1;
14567        break;
14568    case 2:
14569        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14570        cfg_size = 1;
14571        break;
14572    case 3:
14573        if (sc->link_params.multi_phy_config &
14574            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14575            sc->port.supported[1] =
14576                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14577            sc->port.supported[0] =
14578                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14579        } else {
14580            sc->port.supported[0] =
14581                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14582            sc->port.supported[1] =
14583                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14584        }
14585        cfg_size = 2;
14586        break;
14587    }
14588
14589    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14590        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14591              SHMEM_RD(sc,
14592                       dev_info.port_hw_config[port].external_phy_config),
14593              SHMEM_RD(sc,
14594                       dev_info.port_hw_config[port].external_phy_config2));
14595        return;
14596    }
14597
14598    if (CHIP_IS_E3(sc))
14599        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14600    else {
14601        switch (switch_cfg) {
14602        case ELINK_SWITCH_CFG_1G:
14603            sc->port.phy_addr =
14604                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14605            break;
14606        case ELINK_SWITCH_CFG_10G:
14607            sc->port.phy_addr =
14608                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14609            break;
14610        default:
14611            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14612                  sc->port.link_config[0]);
14613            return;
14614        }
14615    }
14616
14617    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14618
14619    /* mask what we support according to speed_cap_mask per configuration */
14620    for (idx = 0; idx < cfg_size; idx++) {
14621        if (!(sc->link_params.speed_cap_mask[idx] &
14622              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14623            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14624        }
14625
14626        if (!(sc->link_params.speed_cap_mask[idx] &
14627              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14628            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14629        }
14630
14631        if (!(sc->link_params.speed_cap_mask[idx] &
14632              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14633            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14634        }
14635
14636        if (!(sc->link_params.speed_cap_mask[idx] &
14637              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14638            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14639        }
14640
14641        if (!(sc->link_params.speed_cap_mask[idx] &
14642              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14643            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14644        }
14645
14646        if (!(sc->link_params.speed_cap_mask[idx] &
14647              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14648            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14649        }
14650
14651        if (!(sc->link_params.speed_cap_mask[idx] &
14652              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14653            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14654        }
14655
14656        if (!(sc->link_params.speed_cap_mask[idx] &
14657              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14658            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14659        }
14660    }
14661
14662    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14663          sc->port.supported[0], sc->port.supported[1]);
14664}
14665
14666static void
14667bxe_link_settings_requested(struct bxe_softc *sc)
14668{
14669    uint32_t link_config;
14670    uint32_t idx;
14671    uint32_t cfg_size = 0;
14672
14673    sc->port.advertising[0] = 0;
14674    sc->port.advertising[1] = 0;
14675
14676    switch (sc->link_params.num_phys) {
14677    case 1:
14678    case 2:
14679        cfg_size = 1;
14680        break;
14681    case 3:
14682        cfg_size = 2;
14683        break;
14684    }
14685
14686    for (idx = 0; idx < cfg_size; idx++) {
14687        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14688        link_config = sc->port.link_config[idx];
14689
14690        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14691        case PORT_FEATURE_LINK_SPEED_AUTO:
14692            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14693                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14694                sc->port.advertising[idx] |= sc->port.supported[idx];
14695                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14696                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14697                    sc->port.advertising[idx] |=
14698                        (ELINK_SUPPORTED_100baseT_Half |
14699                         ELINK_SUPPORTED_100baseT_Full);
14700            } else {
14701                /* force 10G, no AN */
14702                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14703                sc->port.advertising[idx] |=
14704                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14705                continue;
14706            }
14707            break;
14708
14709        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14710            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14711                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14712                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14713                                              ADVERTISED_TP);
14714            } else {
14715                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14716                          "speed_cap_mask=0x%08x\n",
14717                      link_config, sc->link_params.speed_cap_mask[idx]);
14718                return;
14719            }
14720            break;
14721
14722        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14723            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14724                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14725                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14726                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14727                                              ADVERTISED_TP);
14728            } else {
14729                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14730                          "speed_cap_mask=0x%08x\n",
14731                      link_config, sc->link_params.speed_cap_mask[idx]);
14732                return;
14733            }
14734            break;
14735
14736        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14737            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14738                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14739                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14740                                              ADVERTISED_TP);
14741            } else {
14742                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14743                          "speed_cap_mask=0x%08x\n",
14744                      link_config, sc->link_params.speed_cap_mask[idx]);
14745                return;
14746            }
14747            break;
14748
14749        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14750            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14751                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14752                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14753                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14754                                              ADVERTISED_TP);
14755            } else {
14756                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14757                          "speed_cap_mask=0x%08x\n",
14758                      link_config, sc->link_params.speed_cap_mask[idx]);
14759                return;
14760            }
14761            break;
14762
14763        case PORT_FEATURE_LINK_SPEED_1G:
14764            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14765                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14766                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14767                                              ADVERTISED_TP);
14768            } else {
14769                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14770                          "speed_cap_mask=0x%08x\n",
14771                      link_config, sc->link_params.speed_cap_mask[idx]);
14772                return;
14773            }
14774            break;
14775
14776        case PORT_FEATURE_LINK_SPEED_2_5G:
14777            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14778                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14779                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14780                                              ADVERTISED_TP);
14781            } else {
14782                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14783                          "speed_cap_mask=0x%08x\n",
14784                      link_config, sc->link_params.speed_cap_mask[idx]);
14785                return;
14786            }
14787            break;
14788
14789        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14790            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14791                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14792                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14793                                              ADVERTISED_FIBRE);
14794            } else {
14795                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14796                          "speed_cap_mask=0x%08x\n",
14797                      link_config, sc->link_params.speed_cap_mask[idx]);
14798                return;
14799            }
14800            break;
14801
14802        case PORT_FEATURE_LINK_SPEED_20G:
14803            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14804            break;
14805
14806        default:
14807            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14808                      "speed_cap_mask=0x%08x\n",
14809                  link_config, sc->link_params.speed_cap_mask[idx]);
14810            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14811            sc->port.advertising[idx] = sc->port.supported[idx];
14812            break;
14813        }
14814
14815        sc->link_params.req_flow_ctrl[idx] =
14816            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14817
14818        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14819            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14820                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14821            } else {
14822                bxe_set_requested_fc(sc);
14823            }
14824        }
14825
14826        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14827                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14828              sc->link_params.req_line_speed[idx],
14829              sc->link_params.req_duplex[idx],
14830              sc->link_params.req_flow_ctrl[idx],
14831              sc->port.advertising[idx]);
14832    }
14833}
14834
14835static void
14836bxe_get_phy_info(struct bxe_softc *sc)
14837{
14838    uint8_t port = SC_PORT(sc);
14839    uint32_t config = sc->port.config;
14840    uint32_t eee_mode;
14841
14842    /* shmem data already read in bxe_get_shmem_info() */
14843
14844    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14845                        "link_config0=0x%08x\n",
14846               sc->link_params.lane_config,
14847               sc->link_params.speed_cap_mask[0],
14848               sc->port.link_config[0]);
14849
14850    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14851    bxe_link_settings_requested(sc);
14852
14853    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14854        sc->link_params.feature_config_flags |=
14855            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14856    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14857        sc->link_params.feature_config_flags &=
14858            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14859    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14860        sc->link_params.feature_config_flags |=
14861            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14862    }
14863
14864    /* configure link feature according to nvram value */
14865    eee_mode =
14866        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14867          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14868         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14869    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14870        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14871                                    ELINK_EEE_MODE_ENABLE_LPI |
14872                                    ELINK_EEE_MODE_OUTPUT_TIME);
14873    } else {
14874        sc->link_params.eee_mode = 0;
14875    }
14876
14877    /* get the media type */
14878    bxe_media_detect(sc);
14879}
14880
14881static void
14882bxe_get_params(struct bxe_softc *sc)
14883{
14884    /* get user tunable params */
14885    bxe_get_tunable_params(sc);
14886
14887    /* select the RX and TX ring sizes */
14888    sc->tx_ring_size = TX_BD_USABLE;
14889    sc->rx_ring_size = RX_BD_USABLE;
14890
14891    /* XXX disable WoL */
14892    sc->wol = 0;
14893}
14894
14895static void
14896bxe_set_modes_bitmap(struct bxe_softc *sc)
14897{
14898    uint32_t flags = 0;
14899
14900    if (CHIP_REV_IS_FPGA(sc)) {
14901        SET_FLAGS(flags, MODE_FPGA);
14902    } else if (CHIP_REV_IS_EMUL(sc)) {
14903        SET_FLAGS(flags, MODE_EMUL);
14904    } else {
14905        SET_FLAGS(flags, MODE_ASIC);
14906    }
14907
14908    if (CHIP_IS_MODE_4_PORT(sc)) {
14909        SET_FLAGS(flags, MODE_PORT4);
14910    } else {
14911        SET_FLAGS(flags, MODE_PORT2);
14912    }
14913
14914    if (CHIP_IS_E2(sc)) {
14915        SET_FLAGS(flags, MODE_E2);
14916    } else if (CHIP_IS_E3(sc)) {
14917        SET_FLAGS(flags, MODE_E3);
14918        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14919            SET_FLAGS(flags, MODE_E3_A0);
14920        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14921            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14922        }
14923    }
14924
14925    if (IS_MF(sc)) {
14926        SET_FLAGS(flags, MODE_MF);
14927        switch (sc->devinfo.mf_info.mf_mode) {
14928        case MULTI_FUNCTION_SD:
14929            SET_FLAGS(flags, MODE_MF_SD);
14930            break;
14931        case MULTI_FUNCTION_SI:
14932            SET_FLAGS(flags, MODE_MF_SI);
14933            break;
14934        case MULTI_FUNCTION_AFEX:
14935            SET_FLAGS(flags, MODE_MF_AFEX);
14936            break;
14937        }
14938    } else {
14939        SET_FLAGS(flags, MODE_SF);
14940    }
14941
14942#if defined(__LITTLE_ENDIAN)
14943    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14944#else /* __BIG_ENDIAN */
14945    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14946#endif
14947
14948    INIT_MODE_FLAGS(sc) = flags;
14949}
14950
14951static int
14952bxe_alloc_hsi_mem(struct bxe_softc *sc)
14953{
14954    struct bxe_fastpath *fp;
14955    bus_addr_t busaddr;
14956    int max_agg_queues;
14957    int max_segments;
14958    bus_size_t max_size;
14959    bus_size_t max_seg_size;
14960    char buf[32];
14961    int rc;
14962    int i, j;
14963
14964    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14965
14966    /* allocate the parent bus DMA tag */
14967    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14968                            1,                        /* alignment */
14969                            0,                        /* boundary limit */
14970                            BUS_SPACE_MAXADDR,        /* restricted low */
14971                            BUS_SPACE_MAXADDR,        /* restricted hi */
14972                            NULL,                     /* addr filter() */
14973                            NULL,                     /* addr filter() arg */
14974                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14975                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14976                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14977                            0,                        /* flags */
14978                            NULL,                     /* lock() */
14979                            NULL,                     /* lock() arg */
14980                            &sc->parent_dma_tag);     /* returned dma tag */
14981    if (rc != 0) {
14982        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14983        return (1);
14984    }
14985
14986    /************************/
14987    /* DEFAULT STATUS BLOCK */
14988    /************************/
14989
14990    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14991                      &sc->def_sb_dma, "default status block") != 0) {
14992        /* XXX */
14993        bus_dma_tag_destroy(sc->parent_dma_tag);
14994        return (1);
14995    }
14996
14997    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14998
14999    /***************/
15000    /* EVENT QUEUE */
15001    /***************/
15002
15003    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15004                      &sc->eq_dma, "event queue") != 0) {
15005        /* XXX */
15006        bxe_dma_free(sc, &sc->def_sb_dma);
15007        sc->def_sb = NULL;
15008        bus_dma_tag_destroy(sc->parent_dma_tag);
15009        return (1);
15010    }
15011
15012    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
15013
15014    /*************/
15015    /* SLOW PATH */
15016    /*************/
15017
15018    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
15019                      &sc->sp_dma, "slow path") != 0) {
15020        /* XXX */
15021        bxe_dma_free(sc, &sc->eq_dma);
15022        sc->eq = NULL;
15023        bxe_dma_free(sc, &sc->def_sb_dma);
15024        sc->def_sb = NULL;
15025        bus_dma_tag_destroy(sc->parent_dma_tag);
15026        return (1);
15027    }
15028
15029    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
15030
15031    /*******************/
15032    /* SLOW PATH QUEUE */
15033    /*******************/
15034
15035    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15036                      &sc->spq_dma, "slow path queue") != 0) {
15037        /* XXX */
15038        bxe_dma_free(sc, &sc->sp_dma);
15039        sc->sp = NULL;
15040        bxe_dma_free(sc, &sc->eq_dma);
15041        sc->eq = NULL;
15042        bxe_dma_free(sc, &sc->def_sb_dma);
15043        sc->def_sb = NULL;
15044        bus_dma_tag_destroy(sc->parent_dma_tag);
15045        return (1);
15046    }
15047
15048    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15049
15050    /***************************/
15051    /* FW DECOMPRESSION BUFFER */
15052    /***************************/
15053
15054    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15055                      "fw decompression buffer") != 0) {
15056        /* XXX */
15057        bxe_dma_free(sc, &sc->spq_dma);
15058        sc->spq = NULL;
15059        bxe_dma_free(sc, &sc->sp_dma);
15060        sc->sp = NULL;
15061        bxe_dma_free(sc, &sc->eq_dma);
15062        sc->eq = NULL;
15063        bxe_dma_free(sc, &sc->def_sb_dma);
15064        sc->def_sb = NULL;
15065        bus_dma_tag_destroy(sc->parent_dma_tag);
15066        return (1);
15067    }
15068
15069    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15070
15071    if ((sc->gz_strm =
15072         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15073        /* XXX */
15074        bxe_dma_free(sc, &sc->gz_buf_dma);
15075        sc->gz_buf = NULL;
15076        bxe_dma_free(sc, &sc->spq_dma);
15077        sc->spq = NULL;
15078        bxe_dma_free(sc, &sc->sp_dma);
15079        sc->sp = NULL;
15080        bxe_dma_free(sc, &sc->eq_dma);
15081        sc->eq = NULL;
15082        bxe_dma_free(sc, &sc->def_sb_dma);
15083        sc->def_sb = NULL;
15084        bus_dma_tag_destroy(sc->parent_dma_tag);
15085        return (1);
15086    }
15087
15088    /*************/
15089    /* FASTPATHS */
15090    /*************/
15091
15092    /* allocate DMA memory for each fastpath structure */
15093    for (i = 0; i < sc->num_queues; i++) {
15094        fp = &sc->fp[i];
15095        fp->sc    = sc;
15096        fp->index = i;
15097
15098        /*******************/
15099        /* FP STATUS BLOCK */
15100        /*******************/
15101
15102        snprintf(buf, sizeof(buf), "fp %d status block", i);
15103        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15104                          &fp->sb_dma, buf) != 0) {
15105            /* XXX unwind and free previous fastpath allocations */
15106            BLOGE(sc, "Failed to alloc %s\n", buf);
15107            return (1);
15108        } else {
15109            if (CHIP_IS_E2E3(sc)) {
15110                fp->status_block.e2_sb =
15111                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15112            } else {
15113                fp->status_block.e1x_sb =
15114                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15115            }
15116        }
15117
15118        /******************/
15119        /* FP TX BD CHAIN */
15120        /******************/
15121
15122        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15123        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15124                          &fp->tx_dma, buf) != 0) {
15125            /* XXX unwind and free previous fastpath allocations */
15126            BLOGE(sc, "Failed to alloc %s\n", buf);
15127            return (1);
15128        } else {
15129            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15130        }
15131
15132        /* link together the tx bd chain pages */
15133        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15134            /* index into the tx bd chain array to last entry per page */
15135            struct eth_tx_next_bd *tx_next_bd =
15136                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15137            /* point to the next page and wrap from last page */
15138            busaddr = (fp->tx_dma.paddr +
15139                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15140            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15141            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15142        }
15143
15144        /******************/
15145        /* FP RX BD CHAIN */
15146        /******************/
15147
15148        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15149        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15150                          &fp->rx_dma, buf) != 0) {
15151            /* XXX unwind and free previous fastpath allocations */
15152            BLOGE(sc, "Failed to alloc %s\n", buf);
15153            return (1);
15154        } else {
15155            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15156        }
15157
15158        /* link together the rx bd chain pages */
15159        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15160            /* index into the rx bd chain array to last entry per page */
15161            struct eth_rx_bd *rx_bd =
15162                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15163            /* point to the next page and wrap from last page */
15164            busaddr = (fp->rx_dma.paddr +
15165                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15166            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15167            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15168        }
15169
15170        /*******************/
15171        /* FP RX RCQ CHAIN */
15172        /*******************/
15173
15174        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15175        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15176                          &fp->rcq_dma, buf) != 0) {
15177            /* XXX unwind and free previous fastpath allocations */
15178            BLOGE(sc, "Failed to alloc %s\n", buf);
15179            return (1);
15180        } else {
15181            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15182        }
15183
15184        /* link together the rcq chain pages */
15185        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15186            /* index into the rcq chain array to last entry per page */
15187            struct eth_rx_cqe_next_page *rx_cqe_next =
15188                (struct eth_rx_cqe_next_page *)
15189                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15190            /* point to the next page and wrap from last page */
15191            busaddr = (fp->rcq_dma.paddr +
15192                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15193            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15194            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15195        }
15196
15197        /*******************/
15198        /* FP RX SGE CHAIN */
15199        /*******************/
15200
15201        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15202        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15203                          &fp->rx_sge_dma, buf) != 0) {
15204            /* XXX unwind and free previous fastpath allocations */
15205            BLOGE(sc, "Failed to alloc %s\n", buf);
15206            return (1);
15207        } else {
15208            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15209        }
15210
15211        /* link together the sge chain pages */
15212        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15213            /* index into the rcq chain array to last entry per page */
15214            struct eth_rx_sge *rx_sge =
15215                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15216            /* point to the next page and wrap from last page */
15217            busaddr = (fp->rx_sge_dma.paddr +
15218                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15219            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15220            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15221        }
15222
15223        /***********************/
15224        /* FP TX MBUF DMA MAPS */
15225        /***********************/
15226
15227        /* set required sizes before mapping to conserve resources */
15228        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15229            max_size     = BXE_TSO_MAX_SIZE;
15230            max_segments = BXE_TSO_MAX_SEGMENTS;
15231            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15232        } else {
15233            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15234            max_segments = BXE_MAX_SEGMENTS;
15235            max_seg_size = MCLBYTES;
15236        }
15237
15238        /* create a dma tag for the tx mbufs */
15239        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15240                                1,                  /* alignment */
15241                                0,                  /* boundary limit */
15242                                BUS_SPACE_MAXADDR,  /* restricted low */
15243                                BUS_SPACE_MAXADDR,  /* restricted hi */
15244                                NULL,               /* addr filter() */
15245                                NULL,               /* addr filter() arg */
15246                                max_size,           /* max map size */
15247                                max_segments,       /* num discontinuous */
15248                                max_seg_size,       /* max seg size */
15249                                0,                  /* flags */
15250                                NULL,               /* lock() */
15251                                NULL,               /* lock() arg */
15252                                &fp->tx_mbuf_tag);  /* returned dma tag */
15253        if (rc != 0) {
15254            /* XXX unwind and free previous fastpath allocations */
15255            BLOGE(sc, "Failed to create dma tag for "
15256                      "'fp %d tx mbufs' (%d)\n",
15257                  i, rc);
15258            return (1);
15259        }
15260
15261        /* create dma maps for each of the tx mbuf clusters */
15262        for (j = 0; j < TX_BD_TOTAL; j++) {
15263            if (bus_dmamap_create(fp->tx_mbuf_tag,
15264                                  BUS_DMA_NOWAIT,
15265                                  &fp->tx_mbuf_chain[j].m_map)) {
15266                /* XXX unwind and free previous fastpath allocations */
15267                BLOGE(sc, "Failed to create dma map for "
15268                          "'fp %d tx mbuf %d' (%d)\n",
15269                      i, j, rc);
15270                return (1);
15271            }
15272        }
15273
15274        /***********************/
15275        /* FP RX MBUF DMA MAPS */
15276        /***********************/
15277
15278        /* create a dma tag for the rx mbufs */
15279        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15280                                1,                  /* alignment */
15281                                0,                  /* boundary limit */
15282                                BUS_SPACE_MAXADDR,  /* restricted low */
15283                                BUS_SPACE_MAXADDR,  /* restricted hi */
15284                                NULL,               /* addr filter() */
15285                                NULL,               /* addr filter() arg */
15286                                MJUM9BYTES,         /* max map size */
15287                                1,                  /* num discontinuous */
15288                                MJUM9BYTES,         /* max seg size */
15289                                0,                  /* flags */
15290                                NULL,               /* lock() */
15291                                NULL,               /* lock() arg */
15292                                &fp->rx_mbuf_tag);  /* returned dma tag */
15293        if (rc != 0) {
15294            /* XXX unwind and free previous fastpath allocations */
15295            BLOGE(sc, "Failed to create dma tag for "
15296                      "'fp %d rx mbufs' (%d)\n",
15297                  i, rc);
15298            return (1);
15299        }
15300
15301        /* create dma maps for each of the rx mbuf clusters */
15302        for (j = 0; j < RX_BD_TOTAL; j++) {
15303            if (bus_dmamap_create(fp->rx_mbuf_tag,
15304                                  BUS_DMA_NOWAIT,
15305                                  &fp->rx_mbuf_chain[j].m_map)) {
15306                /* XXX unwind and free previous fastpath allocations */
15307                BLOGE(sc, "Failed to create dma map for "
15308                          "'fp %d rx mbuf %d' (%d)\n",
15309                      i, j, rc);
15310                return (1);
15311            }
15312        }
15313
15314        /* create dma map for the spare rx mbuf cluster */
15315        if (bus_dmamap_create(fp->rx_mbuf_tag,
15316                              BUS_DMA_NOWAIT,
15317                              &fp->rx_mbuf_spare_map)) {
15318            /* XXX unwind and free previous fastpath allocations */
15319            BLOGE(sc, "Failed to create dma map for "
15320                      "'fp %d spare rx mbuf' (%d)\n",
15321                  i, rc);
15322            return (1);
15323        }
15324
15325        /***************************/
15326        /* FP RX SGE MBUF DMA MAPS */
15327        /***************************/
15328
15329        /* create a dma tag for the rx sge mbufs */
15330        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15331                                1,                  /* alignment */
15332                                0,                  /* boundary limit */
15333                                BUS_SPACE_MAXADDR,  /* restricted low */
15334                                BUS_SPACE_MAXADDR,  /* restricted hi */
15335                                NULL,               /* addr filter() */
15336                                NULL,               /* addr filter() arg */
15337                                BCM_PAGE_SIZE,      /* max map size */
15338                                1,                  /* num discontinuous */
15339                                BCM_PAGE_SIZE,      /* max seg size */
15340                                0,                  /* flags */
15341                                NULL,               /* lock() */
15342                                NULL,               /* lock() arg */
15343                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15344        if (rc != 0) {
15345            /* XXX unwind and free previous fastpath allocations */
15346            BLOGE(sc, "Failed to create dma tag for "
15347                      "'fp %d rx sge mbufs' (%d)\n",
15348                  i, rc);
15349            return (1);
15350        }
15351
15352        /* create dma maps for the rx sge mbuf clusters */
15353        for (j = 0; j < RX_SGE_TOTAL; j++) {
15354            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15355                                  BUS_DMA_NOWAIT,
15356                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15357                /* XXX unwind and free previous fastpath allocations */
15358                BLOGE(sc, "Failed to create dma map for "
15359                          "'fp %d rx sge mbuf %d' (%d)\n",
15360                      i, j, rc);
15361                return (1);
15362            }
15363        }
15364
15365        /* create dma map for the spare rx sge mbuf cluster */
15366        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15367                              BUS_DMA_NOWAIT,
15368                              &fp->rx_sge_mbuf_spare_map)) {
15369            /* XXX unwind and free previous fastpath allocations */
15370            BLOGE(sc, "Failed to create dma map for "
15371                      "'fp %d spare rx sge mbuf' (%d)\n",
15372                  i, rc);
15373            return (1);
15374        }
15375
15376        /***************************/
15377        /* FP RX TPA MBUF DMA MAPS */
15378        /***************************/
15379
15380        /* create dma maps for the rx tpa mbuf clusters */
15381        max_agg_queues = MAX_AGG_QS(sc);
15382
15383        for (j = 0; j < max_agg_queues; j++) {
15384            if (bus_dmamap_create(fp->rx_mbuf_tag,
15385                                  BUS_DMA_NOWAIT,
15386                                  &fp->rx_tpa_info[j].bd.m_map)) {
15387                /* XXX unwind and free previous fastpath allocations */
15388                BLOGE(sc, "Failed to create dma map for "
15389                          "'fp %d rx tpa mbuf %d' (%d)\n",
15390                      i, j, rc);
15391                return (1);
15392            }
15393        }
15394
15395        /* create dma map for the spare rx tpa mbuf cluster */
15396        if (bus_dmamap_create(fp->rx_mbuf_tag,
15397                              BUS_DMA_NOWAIT,
15398                              &fp->rx_tpa_info_mbuf_spare_map)) {
15399            /* XXX unwind and free previous fastpath allocations */
15400            BLOGE(sc, "Failed to create dma map for "
15401                      "'fp %d spare rx tpa mbuf' (%d)\n",
15402                  i, rc);
15403            return (1);
15404        }
15405
15406        bxe_init_sge_ring_bit_mask(fp);
15407    }
15408
15409    return (0);
15410}
15411
15412static void
15413bxe_free_hsi_mem(struct bxe_softc *sc)
15414{
15415    struct bxe_fastpath *fp;
15416    int max_agg_queues;
15417    int i, j;
15418
15419    if (sc->parent_dma_tag == NULL) {
15420        return; /* assume nothing was allocated */
15421    }
15422
15423    for (i = 0; i < sc->num_queues; i++) {
15424        fp = &sc->fp[i];
15425
15426        /*******************/
15427        /* FP STATUS BLOCK */
15428        /*******************/
15429
15430        bxe_dma_free(sc, &fp->sb_dma);
15431        memset(&fp->status_block, 0, sizeof(fp->status_block));
15432
15433        /******************/
15434        /* FP TX BD CHAIN */
15435        /******************/
15436
15437        bxe_dma_free(sc, &fp->tx_dma);
15438        fp->tx_chain = NULL;
15439
15440        /******************/
15441        /* FP RX BD CHAIN */
15442        /******************/
15443
15444        bxe_dma_free(sc, &fp->rx_dma);
15445        fp->rx_chain = NULL;
15446
15447        /*******************/
15448        /* FP RX RCQ CHAIN */
15449        /*******************/
15450
15451        bxe_dma_free(sc, &fp->rcq_dma);
15452        fp->rcq_chain = NULL;
15453
15454        /*******************/
15455        /* FP RX SGE CHAIN */
15456        /*******************/
15457
15458        bxe_dma_free(sc, &fp->rx_sge_dma);
15459        fp->rx_sge_chain = NULL;
15460
15461        /***********************/
15462        /* FP TX MBUF DMA MAPS */
15463        /***********************/
15464
15465        if (fp->tx_mbuf_tag != NULL) {
15466            for (j = 0; j < TX_BD_TOTAL; j++) {
15467                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15468                    bus_dmamap_unload(fp->tx_mbuf_tag,
15469                                      fp->tx_mbuf_chain[j].m_map);
15470                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15471                                       fp->tx_mbuf_chain[j].m_map);
15472                }
15473            }
15474
15475            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15476            fp->tx_mbuf_tag = NULL;
15477        }
15478
15479        /***********************/
15480        /* FP RX MBUF DMA MAPS */
15481        /***********************/
15482
15483        if (fp->rx_mbuf_tag != NULL) {
15484            for (j = 0; j < RX_BD_TOTAL; j++) {
15485                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15486                    bus_dmamap_unload(fp->rx_mbuf_tag,
15487                                      fp->rx_mbuf_chain[j].m_map);
15488                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15489                                       fp->rx_mbuf_chain[j].m_map);
15490                }
15491            }
15492
15493            if (fp->rx_mbuf_spare_map != NULL) {
15494                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15495                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15496            }
15497
15498            /***************************/
15499            /* FP RX TPA MBUF DMA MAPS */
15500            /***************************/
15501
15502            max_agg_queues = MAX_AGG_QS(sc);
15503
15504            for (j = 0; j < max_agg_queues; j++) {
15505                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15506                    bus_dmamap_unload(fp->rx_mbuf_tag,
15507                                      fp->rx_tpa_info[j].bd.m_map);
15508                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15509                                       fp->rx_tpa_info[j].bd.m_map);
15510                }
15511            }
15512
15513            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15514                bus_dmamap_unload(fp->rx_mbuf_tag,
15515                                  fp->rx_tpa_info_mbuf_spare_map);
15516                bus_dmamap_destroy(fp->rx_mbuf_tag,
15517                                   fp->rx_tpa_info_mbuf_spare_map);
15518            }
15519
15520            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15521            fp->rx_mbuf_tag = NULL;
15522        }
15523
15524        /***************************/
15525        /* FP RX SGE MBUF DMA MAPS */
15526        /***************************/
15527
15528        if (fp->rx_sge_mbuf_tag != NULL) {
15529            for (j = 0; j < RX_SGE_TOTAL; j++) {
15530                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15531                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15532                                      fp->rx_sge_mbuf_chain[j].m_map);
15533                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15534                                       fp->rx_sge_mbuf_chain[j].m_map);
15535                }
15536            }
15537
15538            if (fp->rx_sge_mbuf_spare_map != NULL) {
15539                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15540                                  fp->rx_sge_mbuf_spare_map);
15541                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15542                                   fp->rx_sge_mbuf_spare_map);
15543            }
15544
15545            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15546            fp->rx_sge_mbuf_tag = NULL;
15547        }
15548    }
15549
15550    /***************************/
15551    /* FW DECOMPRESSION BUFFER */
15552    /***************************/
15553
15554    bxe_dma_free(sc, &sc->gz_buf_dma);
15555    sc->gz_buf = NULL;
15556    free(sc->gz_strm, M_DEVBUF);
15557    sc->gz_strm = NULL;
15558
15559    /*******************/
15560    /* SLOW PATH QUEUE */
15561    /*******************/
15562
15563    bxe_dma_free(sc, &sc->spq_dma);
15564    sc->spq = NULL;
15565
15566    /*************/
15567    /* SLOW PATH */
15568    /*************/
15569
15570    bxe_dma_free(sc, &sc->sp_dma);
15571    sc->sp = NULL;
15572
15573    /***************/
15574    /* EVENT QUEUE */
15575    /***************/
15576
15577    bxe_dma_free(sc, &sc->eq_dma);
15578    sc->eq = NULL;
15579
15580    /************************/
15581    /* DEFAULT STATUS BLOCK */
15582    /************************/
15583
15584    bxe_dma_free(sc, &sc->def_sb_dma);
15585    sc->def_sb = NULL;
15586
15587    bus_dma_tag_destroy(sc->parent_dma_tag);
15588    sc->parent_dma_tag = NULL;
15589}
15590
15591/*
15592 * Previous driver DMAE transaction may have occurred when pre-boot stage
15593 * ended and boot began. This would invalidate the addresses of the
15594 * transaction, resulting in was-error bit set in the PCI causing all
15595 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15596 * the interrupt which detected this from the pglueb and the was-done bit
15597 */
15598static void
15599bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15600{
15601    uint32_t val;
15602
15603    if (!CHIP_IS_E1x(sc)) {
15604        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15605        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15606            BLOGD(sc, DBG_LOAD,
15607                  "Clearing 'was-error' bit that was set in pglueb");
15608            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15609        }
15610    }
15611}
15612
15613static int
15614bxe_prev_mcp_done(struct bxe_softc *sc)
15615{
15616    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15617                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15618    if (!rc) {
15619        BLOGE(sc, "MCP response failure, aborting\n");
15620        return (-1);
15621    }
15622
15623    return (0);
15624}
15625
15626static struct bxe_prev_list_node *
15627bxe_prev_path_get_entry(struct bxe_softc *sc)
15628{
15629    struct bxe_prev_list_node *tmp;
15630
15631    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15632        if ((sc->pcie_bus == tmp->bus) &&
15633            (sc->pcie_device == tmp->slot) &&
15634            (SC_PATH(sc) == tmp->path)) {
15635            return (tmp);
15636        }
15637    }
15638
15639    return (NULL);
15640}
15641
15642static uint8_t
15643bxe_prev_is_path_marked(struct bxe_softc *sc)
15644{
15645    struct bxe_prev_list_node *tmp;
15646    int rc = FALSE;
15647
15648    mtx_lock(&bxe_prev_mtx);
15649
15650    tmp = bxe_prev_path_get_entry(sc);
15651    if (tmp) {
15652        if (tmp->aer) {
15653            BLOGD(sc, DBG_LOAD,
15654                  "Path %d/%d/%d was marked by AER\n",
15655                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15656        } else {
15657            rc = TRUE;
15658            BLOGD(sc, DBG_LOAD,
15659                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15660                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15661        }
15662    }
15663
15664    mtx_unlock(&bxe_prev_mtx);
15665
15666    return (rc);
15667}
15668
15669static int
15670bxe_prev_mark_path(struct bxe_softc *sc,
15671                   uint8_t          after_undi)
15672{
15673    struct bxe_prev_list_node *tmp;
15674
15675    mtx_lock(&bxe_prev_mtx);
15676
15677    /* Check whether the entry for this path already exists */
15678    tmp = bxe_prev_path_get_entry(sc);
15679    if (tmp) {
15680        if (!tmp->aer) {
15681            BLOGD(sc, DBG_LOAD,
15682                  "Re-marking AER in path %d/%d/%d\n",
15683                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15684        } else {
15685            BLOGD(sc, DBG_LOAD,
15686                  "Removing AER indication from path %d/%d/%d\n",
15687                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15688            tmp->aer = 0;
15689        }
15690
15691        mtx_unlock(&bxe_prev_mtx);
15692        return (0);
15693    }
15694
15695    mtx_unlock(&bxe_prev_mtx);
15696
15697    /* Create an entry for this path and add it */
15698    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15699                 (M_NOWAIT | M_ZERO));
15700    if (!tmp) {
15701        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15702        return (-1);
15703    }
15704
15705    tmp->bus  = sc->pcie_bus;
15706    tmp->slot = sc->pcie_device;
15707    tmp->path = SC_PATH(sc);
15708    tmp->aer  = 0;
15709    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15710
15711    mtx_lock(&bxe_prev_mtx);
15712
15713    BLOGD(sc, DBG_LOAD,
15714          "Marked path %d/%d/%d - finished previous unload\n",
15715          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15716    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15717
15718    mtx_unlock(&bxe_prev_mtx);
15719
15720    return (0);
15721}
15722
15723static int
15724bxe_do_flr(struct bxe_softc *sc)
15725{
15726    int i;
15727
15728    /* only E2 and onwards support FLR */
15729    if (CHIP_IS_E1x(sc)) {
15730        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15731        return (-1);
15732    }
15733
15734    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15735    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15736        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15737              sc->devinfo.bc_ver);
15738        return (-1);
15739    }
15740
15741    /* Wait for Transaction Pending bit clean */
15742    for (i = 0; i < 4; i++) {
15743        if (i) {
15744            DELAY(((1 << (i - 1)) * 100) * 1000);
15745        }
15746
15747        if (!bxe_is_pcie_pending(sc)) {
15748            goto clear;
15749        }
15750    }
15751
15752    BLOGE(sc, "PCIE transaction is not cleared, "
15753              "proceeding with reset anyway\n");
15754
15755clear:
15756
15757    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15758    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15759
15760    return (0);
15761}
15762
15763struct bxe_mac_vals {
15764    uint32_t xmac_addr;
15765    uint32_t xmac_val;
15766    uint32_t emac_addr;
15767    uint32_t emac_val;
15768    uint32_t umac_addr;
15769    uint32_t umac_val;
15770    uint32_t bmac_addr;
15771    uint32_t bmac_val[2];
15772};
15773
15774static void
15775bxe_prev_unload_close_mac(struct bxe_softc *sc,
15776                          struct bxe_mac_vals *vals)
15777{
15778    uint32_t val, base_addr, offset, mask, reset_reg;
15779    uint8_t mac_stopped = FALSE;
15780    uint8_t port = SC_PORT(sc);
15781    uint32_t wb_data[2];
15782
15783    /* reset addresses as they also mark which values were changed */
15784    vals->bmac_addr = 0;
15785    vals->umac_addr = 0;
15786    vals->xmac_addr = 0;
15787    vals->emac_addr = 0;
15788
15789    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15790
15791    if (!CHIP_IS_E3(sc)) {
15792        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15793        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15794        if ((mask & reset_reg) && val) {
15795            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15796            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15797                                    : NIG_REG_INGRESS_BMAC0_MEM;
15798            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15799                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15800
15801            /*
15802             * use rd/wr since we cannot use dmae. This is safe
15803             * since MCP won't access the bus due to the request
15804             * to unload, and no function on the path can be
15805             * loaded at this time.
15806             */
15807            wb_data[0] = REG_RD(sc, base_addr + offset);
15808            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15809            vals->bmac_addr = base_addr + offset;
15810            vals->bmac_val[0] = wb_data[0];
15811            vals->bmac_val[1] = wb_data[1];
15812            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15813            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15814            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15815        }
15816
15817        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15818        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15819        vals->emac_val = REG_RD(sc, vals->emac_addr);
15820        REG_WR(sc, vals->emac_addr, 0);
15821        mac_stopped = TRUE;
15822    } else {
15823        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15824            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15825            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15826            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15827            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15828            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15829            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15830            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15831            REG_WR(sc, vals->xmac_addr, 0);
15832            mac_stopped = TRUE;
15833        }
15834
15835        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15836        if (mask & reset_reg) {
15837            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15838            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15839            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15840            vals->umac_val = REG_RD(sc, vals->umac_addr);
15841            REG_WR(sc, vals->umac_addr, 0);
15842            mac_stopped = TRUE;
15843        }
15844    }
15845
15846    if (mac_stopped) {
15847        DELAY(20000);
15848    }
15849}
15850
15851#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15852#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15853#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15854#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15855
15856static void
15857bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15858                         uint8_t          port,
15859                         uint8_t          inc)
15860{
15861    uint16_t rcq, bd;
15862    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15863
15864    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15865    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15866
15867    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15868    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15869
15870    BLOGD(sc, DBG_LOAD,
15871          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15872          port, bd, rcq);
15873}
15874
15875static int
15876bxe_prev_unload_common(struct bxe_softc *sc)
15877{
15878    uint32_t reset_reg, tmp_reg = 0, rc;
15879    uint8_t prev_undi = FALSE;
15880    struct bxe_mac_vals mac_vals;
15881    uint32_t timer_count = 1000;
15882    uint32_t prev_brb;
15883
15884    /*
15885     * It is possible a previous function received 'common' answer,
15886     * but hasn't loaded yet, therefore creating a scenario of
15887     * multiple functions receiving 'common' on the same path.
15888     */
15889    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15890
15891    memset(&mac_vals, 0, sizeof(mac_vals));
15892
15893    if (bxe_prev_is_path_marked(sc)) {
15894        return (bxe_prev_mcp_done(sc));
15895    }
15896
15897    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15898
15899    /* Reset should be performed after BRB is emptied */
15900    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15901        /* Close the MAC Rx to prevent BRB from filling up */
15902        bxe_prev_unload_close_mac(sc, &mac_vals);
15903
15904        /* close LLH filters towards the BRB */
15905        elink_set_rx_filter(&sc->link_params, 0);
15906
15907        /*
15908         * Check if the UNDI driver was previously loaded.
15909         * UNDI driver initializes CID offset for normal bell to 0x7
15910         */
15911        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15912            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15913            if (tmp_reg == 0x7) {
15914                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15915                prev_undi = TRUE;
15916                /* clear the UNDI indication */
15917                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15918                /* clear possible idle check errors */
15919                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15920            }
15921        }
15922
15923        /* wait until BRB is empty */
15924        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15925        while (timer_count) {
15926            prev_brb = tmp_reg;
15927
15928            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15929            if (!tmp_reg) {
15930                break;
15931            }
15932
15933            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15934
15935            /* reset timer as long as BRB actually gets emptied */
15936            if (prev_brb > tmp_reg) {
15937                timer_count = 1000;
15938            } else {
15939                timer_count--;
15940            }
15941
15942            /* If UNDI resides in memory, manually increment it */
15943            if (prev_undi) {
15944                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15945            }
15946
15947            DELAY(10);
15948        }
15949
15950        if (!timer_count) {
15951            BLOGE(sc, "Failed to empty BRB\n");
15952        }
15953    }
15954
15955    /* No packets are in the pipeline, path is ready for reset */
15956    bxe_reset_common(sc);
15957
15958    if (mac_vals.xmac_addr) {
15959        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15960    }
15961    if (mac_vals.umac_addr) {
15962        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15963    }
15964    if (mac_vals.emac_addr) {
15965        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15966    }
15967    if (mac_vals.bmac_addr) {
15968        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15969        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15970    }
15971
15972    rc = bxe_prev_mark_path(sc, prev_undi);
15973    if (rc) {
15974        bxe_prev_mcp_done(sc);
15975        return (rc);
15976    }
15977
15978    return (bxe_prev_mcp_done(sc));
15979}
15980
15981static int
15982bxe_prev_unload_uncommon(struct bxe_softc *sc)
15983{
15984    int rc;
15985
15986    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15987
15988    /* Test if previous unload process was already finished for this path */
15989    if (bxe_prev_is_path_marked(sc)) {
15990        return (bxe_prev_mcp_done(sc));
15991    }
15992
15993    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15994
15995    /*
15996     * If function has FLR capabilities, and existing FW version matches
15997     * the one required, then FLR will be sufficient to clean any residue
15998     * left by previous driver
15999     */
16000    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
16001    if (!rc) {
16002        /* fw version is good */
16003        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
16004        rc = bxe_do_flr(sc);
16005    }
16006
16007    if (!rc) {
16008        /* FLR was performed */
16009        BLOGD(sc, DBG_LOAD, "FLR successful\n");
16010        return (0);
16011    }
16012
16013    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
16014
16015    /* Close the MCP request, return failure*/
16016    rc = bxe_prev_mcp_done(sc);
16017    if (!rc) {
16018        rc = BXE_PREV_WAIT_NEEDED;
16019    }
16020
16021    return (rc);
16022}
16023
16024static int
16025bxe_prev_unload(struct bxe_softc *sc)
16026{
16027    int time_counter = 10;
16028    uint32_t fw, hw_lock_reg, hw_lock_val;
16029    uint32_t rc = 0;
16030
16031    /*
16032     * Clear HW from errors which may have resulted from an interrupted
16033     * DMAE transaction.
16034     */
16035    bxe_prev_interrupted_dmae(sc);
16036
16037    /* Release previously held locks */
16038    hw_lock_reg =
16039        (SC_FUNC(sc) <= 5) ?
16040            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16041            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16042
16043    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16044    if (hw_lock_val) {
16045        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16046            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16047            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16048                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16049        }
16050        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16051        REG_WR(sc, hw_lock_reg, 0xffffffff);
16052    } else {
16053        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16054    }
16055
16056    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16057        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16058        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16059    }
16060
16061    do {
16062        /* Lock MCP using an unload request */
16063        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16064        if (!fw) {
16065            BLOGE(sc, "MCP response failure, aborting\n");
16066            rc = -1;
16067            break;
16068        }
16069
16070        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16071            rc = bxe_prev_unload_common(sc);
16072            break;
16073        }
16074
16075        /* non-common reply from MCP night require looping */
16076        rc = bxe_prev_unload_uncommon(sc);
16077        if (rc != BXE_PREV_WAIT_NEEDED) {
16078            break;
16079        }
16080
16081        DELAY(20000);
16082    } while (--time_counter);
16083
16084    if (!time_counter || rc) {
16085        BLOGE(sc, "Failed to unload previous driver!\n");
16086        rc = -1;
16087    }
16088
16089    return (rc);
16090}
16091
16092void
16093bxe_dcbx_set_state(struct bxe_softc *sc,
16094                   uint8_t          dcb_on,
16095                   uint32_t         dcbx_enabled)
16096{
16097    if (!CHIP_IS_E1x(sc)) {
16098        sc->dcb_state = dcb_on;
16099        sc->dcbx_enabled = dcbx_enabled;
16100    } else {
16101        sc->dcb_state = FALSE;
16102        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16103    }
16104    BLOGD(sc, DBG_LOAD,
16105          "DCB state [%s:%s]\n",
16106          dcb_on ? "ON" : "OFF",
16107          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16108          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16109          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16110          "on-chip with negotiation" : "invalid");
16111}
16112
16113/* must be called after sriov-enable */
16114static int
16115bxe_set_qm_cid_count(struct bxe_softc *sc)
16116{
16117    int cid_count = BXE_L2_MAX_CID(sc);
16118
16119    if (IS_SRIOV(sc)) {
16120        cid_count += BXE_VF_CIDS;
16121    }
16122
16123    if (CNIC_SUPPORT(sc)) {
16124        cid_count += CNIC_CID_MAX;
16125    }
16126
16127    return (roundup(cid_count, QM_CID_ROUND));
16128}
16129
16130static void
16131bxe_init_multi_cos(struct bxe_softc *sc)
16132{
16133    int pri, cos;
16134
16135    uint32_t pri_map = 0; /* XXX change to user config */
16136
16137    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16138        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16139        if (cos < sc->max_cos) {
16140            sc->prio_to_cos[pri] = cos;
16141        } else {
16142            BLOGW(sc, "Invalid COS %d for priority %d "
16143                      "(max COS is %d), setting to 0\n",
16144                  cos, pri, (sc->max_cos - 1));
16145            sc->prio_to_cos[pri] = 0;
16146        }
16147    }
16148}
16149
16150static int
16151bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16152{
16153    struct bxe_softc *sc;
16154    int error, result;
16155
16156    result = 0;
16157    error = sysctl_handle_int(oidp, &result, 0, req);
16158
16159    if (error || !req->newptr) {
16160        return (error);
16161    }
16162
16163    if (result == 1) {
16164        sc = (struct bxe_softc *)arg1;
16165        BLOGI(sc, "... dumping driver state ...\n");
16166        /* XXX */
16167    }
16168
16169    return (error);
16170}
16171
16172static int
16173bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16174{
16175    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16176    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16177    uint32_t *offset;
16178    uint64_t value = 0;
16179    int index = (int)arg2;
16180
16181    if (index >= BXE_NUM_ETH_STATS) {
16182        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16183        return (-1);
16184    }
16185
16186    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16187
16188    switch (bxe_eth_stats_arr[index].size) {
16189    case 4:
16190        value = (uint64_t)*offset;
16191        break;
16192    case 8:
16193        value = HILO_U64(*offset, *(offset + 1));
16194        break;
16195    default:
16196        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16197              index, bxe_eth_stats_arr[index].size);
16198        return (-1);
16199    }
16200
16201    return (sysctl_handle_64(oidp, &value, 0, req));
16202}
16203
16204static int
16205bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16206{
16207    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16208    uint32_t *eth_stats;
16209    uint32_t *offset;
16210    uint64_t value = 0;
16211    uint32_t q_stat = (uint32_t)arg2;
16212    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16213    uint32_t index = (q_stat & 0xffff);
16214
16215    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16216
16217    if (index >= BXE_NUM_ETH_Q_STATS) {
16218        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16219        return (-1);
16220    }
16221
16222    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16223
16224    switch (bxe_eth_q_stats_arr[index].size) {
16225    case 4:
16226        value = (uint64_t)*offset;
16227        break;
16228    case 8:
16229        value = HILO_U64(*offset, *(offset + 1));
16230        break;
16231    default:
16232        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16233              index, bxe_eth_q_stats_arr[index].size);
16234        return (-1);
16235    }
16236
16237    return (sysctl_handle_64(oidp, &value, 0, req));
16238}
16239
16240static void
16241bxe_add_sysctls(struct bxe_softc *sc)
16242{
16243    struct sysctl_ctx_list *ctx;
16244    struct sysctl_oid_list *children;
16245    struct sysctl_oid *queue_top, *queue;
16246    struct sysctl_oid_list *queue_top_children, *queue_children;
16247    char queue_num_buf[32];
16248    uint32_t q_stat;
16249    int i, j;
16250
16251    ctx = device_get_sysctl_ctx(sc->dev);
16252    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16253
16254    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16255                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16256                      "version");
16257
16258    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16259                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16260                      "bootcode version");
16261
16262    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16263             BCM_5710_FW_MAJOR_VERSION,
16264             BCM_5710_FW_MINOR_VERSION,
16265             BCM_5710_FW_REVISION_VERSION,
16266             BCM_5710_FW_ENGINEERING_VERSION);
16267    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16268                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16269                      "firmware version");
16270
16271    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16272        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16273         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16274         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16275         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16276                                                                "Unknown"));
16277    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16278                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16279                      "multifunction mode");
16280
16281    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16282                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16283                    "multifunction vnics per port");
16284
16285    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16286                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16287                      "mac address");
16288
16289    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16290        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16291         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16292         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16293                                              "???GT/s"),
16294        sc->devinfo.pcie_link_width);
16295    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16296                      CTLFLAG_RD, &sc->pci_link_str, 0,
16297                      "pci link status");
16298
16299    sc->debug = bxe_debug;
16300    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16301                    CTLFLAG_RW, &sc->debug, 0,
16302                    "debug logging mode");
16303
16304    sc->rx_budget = bxe_rx_budget;
16305    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16306                    CTLFLAG_RW, &sc->rx_budget, 0,
16307                    "rx processing budget");
16308
16309    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16310                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16311                    bxe_sysctl_state, "IU", "dump driver state");
16312
16313    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16314        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16315                        bxe_eth_stats_arr[i].string,
16316                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16317                        bxe_sysctl_eth_stat, "LU",
16318                        bxe_eth_stats_arr[i].string);
16319    }
16320
16321    /* add a new parent node for all queues "dev.bxe.#.queue" */
16322    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16323                                CTLFLAG_RD, NULL, "queue");
16324    queue_top_children = SYSCTL_CHILDREN(queue_top);
16325
16326    for (i = 0; i < sc->num_queues; i++) {
16327        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16328        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16329        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16330                                queue_num_buf, CTLFLAG_RD, NULL,
16331                                "single queue");
16332        queue_children = SYSCTL_CHILDREN(queue);
16333
16334        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16335            q_stat = ((i << 16) | j);
16336            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16337                            bxe_eth_q_stats_arr[j].string,
16338                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16339                            bxe_sysctl_eth_q_stat, "LU",
16340                            bxe_eth_q_stats_arr[j].string);
16341        }
16342    }
16343}
16344
16345/*
16346 * Device attach function.
16347 *
16348 * Allocates device resources, performs secondary chip identification, and
16349 * initializes driver instance variables. This function is called from driver
16350 * load after a successful probe.
16351 *
16352 * Returns:
16353 *   0 = Success, >0 = Failure
16354 */
16355static int
16356bxe_attach(device_t dev)
16357{
16358    struct bxe_softc *sc;
16359
16360    sc = device_get_softc(dev);
16361
16362    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16363
16364    sc->state = BXE_STATE_CLOSED;
16365
16366    sc->dev  = dev;
16367    sc->unit = device_get_unit(dev);
16368
16369    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16370
16371    sc->pcie_bus    = pci_get_bus(dev);
16372    sc->pcie_device = pci_get_slot(dev);
16373    sc->pcie_func   = pci_get_function(dev);
16374
16375    /* enable bus master capability */
16376    pci_enable_busmaster(dev);
16377
16378    /* get the BARs */
16379    if (bxe_allocate_bars(sc) != 0) {
16380        return (ENXIO);
16381    }
16382
16383    /* initialize the mutexes */
16384    bxe_init_mutexes(sc);
16385
16386    /* prepare the periodic callout */
16387    callout_init(&sc->periodic_callout, 0);
16388
16389    /* prepare the chip taskqueue */
16390    sc->chip_tq_flags = CHIP_TQ_NONE;
16391    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16392             "bxe%d_chip_tq", sc->unit);
16393    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16394    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16395                                   taskqueue_thread_enqueue,
16396                                   &sc->chip_tq);
16397    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16398                            "%s", sc->chip_tq_name);
16399
16400    /* get device info and set params */
16401    if (bxe_get_device_info(sc) != 0) {
16402        BLOGE(sc, "getting device info\n");
16403        bxe_deallocate_bars(sc);
16404        pci_disable_busmaster(dev);
16405        return (ENXIO);
16406    }
16407
16408    /* get final misc params */
16409    bxe_get_params(sc);
16410
16411    /* set the default MTU (changed via ifconfig) */
16412    sc->mtu = ETHERMTU;
16413
16414    bxe_set_modes_bitmap(sc);
16415
16416    /* XXX
16417     * If in AFEX mode and the function is configured for FCoE
16418     * then bail... no L2 allowed.
16419     */
16420
16421    /* get phy settings from shmem and 'and' against admin settings */
16422    bxe_get_phy_info(sc);
16423
16424    /* initialize the FreeBSD ifnet interface */
16425    if (bxe_init_ifnet(sc) != 0) {
16426        bxe_release_mutexes(sc);
16427        bxe_deallocate_bars(sc);
16428        pci_disable_busmaster(dev);
16429        return (ENXIO);
16430    }
16431
16432    /* allocate device interrupts */
16433    if (bxe_interrupt_alloc(sc) != 0) {
16434        if (sc->ifnet != NULL) {
16435            ether_ifdetach(sc->ifnet);
16436        }
16437        ifmedia_removeall(&sc->ifmedia);
16438        bxe_release_mutexes(sc);
16439        bxe_deallocate_bars(sc);
16440        pci_disable_busmaster(dev);
16441        return (ENXIO);
16442    }
16443
16444    /* allocate ilt */
16445    if (bxe_alloc_ilt_mem(sc) != 0) {
16446        bxe_interrupt_free(sc);
16447        if (sc->ifnet != NULL) {
16448            ether_ifdetach(sc->ifnet);
16449        }
16450        ifmedia_removeall(&sc->ifmedia);
16451        bxe_release_mutexes(sc);
16452        bxe_deallocate_bars(sc);
16453        pci_disable_busmaster(dev);
16454        return (ENXIO);
16455    }
16456
16457    /* allocate the host hardware/software hsi structures */
16458    if (bxe_alloc_hsi_mem(sc) != 0) {
16459        bxe_free_ilt_mem(sc);
16460        bxe_interrupt_free(sc);
16461        if (sc->ifnet != NULL) {
16462            ether_ifdetach(sc->ifnet);
16463        }
16464        ifmedia_removeall(&sc->ifmedia);
16465        bxe_release_mutexes(sc);
16466        bxe_deallocate_bars(sc);
16467        pci_disable_busmaster(dev);
16468        return (ENXIO);
16469    }
16470
16471    /* need to reset chip if UNDI was active */
16472    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16473        /* init fw_seq */
16474        sc->fw_seq =
16475            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16476             DRV_MSG_SEQ_NUMBER_MASK);
16477        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16478        bxe_prev_unload(sc);
16479    }
16480
16481#if 1
16482    /* XXX */
16483    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16484#else
16485    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16486        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16487        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16488        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16489        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16490        bxe_dcbx_init_params(sc);
16491    } else {
16492        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16493    }
16494#endif
16495
16496    /* calculate qm_cid_count */
16497    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16498    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16499
16500    sc->max_cos = 1;
16501    bxe_init_multi_cos(sc);
16502
16503    bxe_add_sysctls(sc);
16504
16505    return (0);
16506}
16507
16508/*
16509 * Device detach function.
16510 *
16511 * Stops the controller, resets the controller, and releases resources.
16512 *
16513 * Returns:
16514 *   0 = Success, >0 = Failure
16515 */
16516static int
16517bxe_detach(device_t dev)
16518{
16519    struct bxe_softc *sc;
16520    struct ifnet *ifp;
16521
16522    sc = device_get_softc(dev);
16523
16524    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16525
16526    ifp = sc->ifnet;
16527    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16528        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16529        return(EBUSY);
16530    }
16531
16532    /* stop the periodic callout */
16533    bxe_periodic_stop(sc);
16534
16535    /* stop the chip taskqueue */
16536    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16537    if (sc->chip_tq) {
16538        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16539        taskqueue_free(sc->chip_tq);
16540        sc->chip_tq = NULL;
16541    }
16542
16543    /* stop and reset the controller if it was open */
16544    if (sc->state != BXE_STATE_CLOSED) {
16545        BXE_CORE_LOCK(sc);
16546        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16547        BXE_CORE_UNLOCK(sc);
16548    }
16549
16550    /* release the network interface */
16551    if (ifp != NULL) {
16552        ether_ifdetach(ifp);
16553    }
16554    ifmedia_removeall(&sc->ifmedia);
16555
16556    /* XXX do the following based on driver state... */
16557
16558    /* free the host hardware/software hsi structures */
16559    bxe_free_hsi_mem(sc);
16560
16561    /* free ilt */
16562    bxe_free_ilt_mem(sc);
16563
16564    /* release the interrupts */
16565    bxe_interrupt_free(sc);
16566
16567    /* Release the mutexes*/
16568    bxe_release_mutexes(sc);
16569
16570    /* Release the PCIe BAR mapped memory */
16571    bxe_deallocate_bars(sc);
16572
16573    /* Release the FreeBSD interface. */
16574    if (sc->ifnet != NULL) {
16575        if_free(sc->ifnet);
16576    }
16577
16578    pci_disable_busmaster(dev);
16579
16580    return (0);
16581}
16582
16583/*
16584 * Device shutdown function.
16585 *
16586 * Stops and resets the controller.
16587 *
16588 * Returns:
16589 *   Nothing
16590 */
16591static int
16592bxe_shutdown(device_t dev)
16593{
16594    struct bxe_softc *sc;
16595
16596    sc = device_get_softc(dev);
16597
16598    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16599
16600    /* stop the periodic callout */
16601    bxe_periodic_stop(sc);
16602
16603    BXE_CORE_LOCK(sc);
16604    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16605    BXE_CORE_UNLOCK(sc);
16606
16607    return (0);
16608}
16609
16610void
16611bxe_igu_ack_sb(struct bxe_softc *sc,
16612               uint8_t          igu_sb_id,
16613               uint8_t          segment,
16614               uint16_t         index,
16615               uint8_t          op,
16616               uint8_t          update)
16617{
16618    uint32_t igu_addr = sc->igu_base_addr;
16619    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16620    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16621}
16622
16623static void
16624bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16625                     uint8_t          func,
16626                     uint8_t          idu_sb_id,
16627                     uint8_t          is_pf)
16628{
16629    uint32_t data, ctl, cnt = 100;
16630    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16631    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16632    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16633    uint32_t sb_bit =  1 << (idu_sb_id%32);
16634    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16635    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16636
16637    /* Not supported in BC mode */
16638    if (CHIP_INT_MODE_IS_BC(sc)) {
16639        return;
16640    }
16641
16642    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16643             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16644            IGU_REGULAR_CLEANUP_SET |
16645            IGU_REGULAR_BCLEANUP);
16646
16647    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16648           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16649           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16650
16651    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16652            data, igu_addr_data);
16653    REG_WR(sc, igu_addr_data, data);
16654
16655    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16656                      BUS_SPACE_BARRIER_WRITE);
16657    mb();
16658
16659    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16660            ctl, igu_addr_ctl);
16661    REG_WR(sc, igu_addr_ctl, ctl);
16662
16663    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16664                      BUS_SPACE_BARRIER_WRITE);
16665    mb();
16666
16667    /* wait for clean up to finish */
16668    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16669        DELAY(20000);
16670    }
16671
16672    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16673        BLOGD(sc, DBG_LOAD,
16674              "Unable to finish IGU cleanup: "
16675              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16676              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16677    }
16678}
16679
16680static void
16681bxe_igu_clear_sb(struct bxe_softc *sc,
16682                 uint8_t          idu_sb_id)
16683{
16684    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16685}
16686
16687
16688
16689
16690
16691
16692
16693/*******************/
16694/* ECORE CALLBACKS */
16695/*******************/
16696
16697static void
16698bxe_reset_common(struct bxe_softc *sc)
16699{
16700    uint32_t val = 0x1400;
16701
16702    /* reset_common */
16703    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16704
16705    if (CHIP_IS_E3(sc)) {
16706        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16707        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16708    }
16709
16710    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16711}
16712
16713static void
16714bxe_common_init_phy(struct bxe_softc *sc)
16715{
16716    uint32_t shmem_base[2];
16717    uint32_t shmem2_base[2];
16718
16719    /* Avoid common init in case MFW supports LFA */
16720    if (SHMEM2_RD(sc, size) >
16721        (uint32_t)offsetof(struct shmem2_region,
16722                           lfa_host_addr[SC_PORT(sc)])) {
16723        return;
16724    }
16725
16726    shmem_base[0]  = sc->devinfo.shmem_base;
16727    shmem2_base[0] = sc->devinfo.shmem2_base;
16728
16729    if (!CHIP_IS_E1x(sc)) {
16730        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16731        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16732    }
16733
16734    BXE_PHY_LOCK(sc);
16735    elink_common_init_phy(sc, shmem_base, shmem2_base,
16736                          sc->devinfo.chip_id, 0);
16737    BXE_PHY_UNLOCK(sc);
16738}
16739
16740static void
16741bxe_pf_disable(struct bxe_softc *sc)
16742{
16743    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16744
16745    val &= ~IGU_PF_CONF_FUNC_EN;
16746
16747    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16748    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16749    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16750}
16751
16752static void
16753bxe_init_pxp(struct bxe_softc *sc)
16754{
16755    uint16_t devctl;
16756    int r_order, w_order;
16757
16758    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16759
16760    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16761
16762    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16763
16764    if (sc->mrrs == -1) {
16765        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16766    } else {
16767        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16768        r_order = sc->mrrs;
16769    }
16770
16771    ecore_init_pxp_arb(sc, r_order, w_order);
16772}
16773
16774static uint32_t
16775bxe_get_pretend_reg(struct bxe_softc *sc)
16776{
16777    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16778    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16779    return (base + (SC_ABS_FUNC(sc)) * stride);
16780}
16781
16782/*
16783 * Called only on E1H or E2.
16784 * When pretending to be PF, the pretend value is the function number 0..7.
16785 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16786 * combination.
16787 */
16788static int
16789bxe_pretend_func(struct bxe_softc *sc,
16790                 uint16_t         pretend_func_val)
16791{
16792    uint32_t pretend_reg;
16793
16794    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16795        return (-1);
16796    }
16797
16798    /* get my own pretend register */
16799    pretend_reg = bxe_get_pretend_reg(sc);
16800    REG_WR(sc, pretend_reg, pretend_func_val);
16801    REG_RD(sc, pretend_reg);
16802    return (0);
16803}
16804
16805static void
16806bxe_iov_init_dmae(struct bxe_softc *sc)
16807{
16808    return;
16809#if 0
16810    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16811
16812    if (!IS_SRIOV(sc)) {
16813        return;
16814    }
16815
16816    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16817#endif
16818}
16819
16820#if 0
16821static int
16822bxe_iov_init_ilt(struct bxe_softc *sc,
16823                 uint16_t         line)
16824{
16825    return (line);
16826#if 0
16827    int i;
16828    struct ecore_ilt* ilt = sc->ilt;
16829
16830    if (!IS_SRIOV(sc)) {
16831        return (line);
16832    }
16833
16834    /* set vfs ilt lines */
16835    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16836        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16837        ilt->lines[line+i].page = hw_cxt->addr;
16838        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16839        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16840    }
16841    return (line+i);
16842#endif
16843}
16844#endif
16845
16846static void
16847bxe_iov_init_dq(struct bxe_softc *sc)
16848{
16849    return;
16850#if 0
16851    if (!IS_SRIOV(sc)) {
16852        return;
16853    }
16854
16855    /* Set the DQ such that the CID reflect the abs_vfid */
16856    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16857    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16858
16859    /*
16860     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16861     * the PF L2 queues
16862     */
16863    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16864
16865    /* The VF window size is the log2 of the max number of CIDs per VF */
16866    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16867
16868    /*
16869     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16870     * the Pf doorbell size although the 2 are independent.
16871     */
16872    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16873           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16874
16875    /*
16876     * No security checks for now -
16877     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16878     * CID range 0 - 0x1ffff
16879     */
16880    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16881    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16882    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16883    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16884
16885    /* set the number of VF alllowed doorbells to the full DQ range */
16886    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16887
16888    /* set the VF doorbell threshold */
16889    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16890#endif
16891}
16892
16893/* send a NIG loopback debug packet */
16894static void
16895bxe_lb_pckt(struct bxe_softc *sc)
16896{
16897    uint32_t wb_write[3];
16898
16899    /* Ethernet source and destination addresses */
16900    wb_write[0] = 0x55555555;
16901    wb_write[1] = 0x55555555;
16902    wb_write[2] = 0x20;     /* SOP */
16903    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16904
16905    /* NON-IP protocol */
16906    wb_write[0] = 0x09000000;
16907    wb_write[1] = 0x55555555;
16908    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16909    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16910}
16911
16912/*
16913 * Some of the internal memories are not directly readable from the driver.
16914 * To test them we send debug packets.
16915 */
16916static int
16917bxe_int_mem_test(struct bxe_softc *sc)
16918{
16919    int factor;
16920    int count, i;
16921    uint32_t val = 0;
16922
16923    if (CHIP_REV_IS_FPGA(sc)) {
16924        factor = 120;
16925    } else if (CHIP_REV_IS_EMUL(sc)) {
16926        factor = 200;
16927    } else {
16928        factor = 1;
16929    }
16930
16931    /* disable inputs of parser neighbor blocks */
16932    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16933    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16934    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16935    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16936
16937    /*  write 0 to parser credits for CFC search request */
16938    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16939
16940    /* send Ethernet packet */
16941    bxe_lb_pckt(sc);
16942
16943    /* TODO do i reset NIG statistic? */
16944    /* Wait until NIG register shows 1 packet of size 0x10 */
16945    count = 1000 * factor;
16946    while (count) {
16947        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16948        val = *BXE_SP(sc, wb_data[0]);
16949        if (val == 0x10) {
16950            break;
16951        }
16952
16953        DELAY(10000);
16954        count--;
16955    }
16956
16957    if (val != 0x10) {
16958        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16959        return (-1);
16960    }
16961
16962    /* wait until PRS register shows 1 packet */
16963    count = (1000 * factor);
16964    while (count) {
16965        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16966        if (val == 1) {
16967            break;
16968        }
16969
16970        DELAY(10000);
16971        count--;
16972    }
16973
16974    if (val != 0x1) {
16975        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16976        return (-2);
16977    }
16978
16979    /* Reset and init BRB, PRS */
16980    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16981    DELAY(50000);
16982    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16983    DELAY(50000);
16984    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16985    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16986
16987    /* Disable inputs of parser neighbor blocks */
16988    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16989    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16990    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16991    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16992
16993    /* Write 0 to parser credits for CFC search request */
16994    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16995
16996    /* send 10 Ethernet packets */
16997    for (i = 0; i < 10; i++) {
16998        bxe_lb_pckt(sc);
16999    }
17000
17001    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
17002    count = (1000 * factor);
17003    while (count) {
17004        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17005        val = *BXE_SP(sc, wb_data[0]);
17006        if (val == 0xb0) {
17007            break;
17008        }
17009
17010        DELAY(10000);
17011        count--;
17012    }
17013
17014    if (val != 0xb0) {
17015        BLOGE(sc, "NIG timeout val=0x%x\n", val);
17016        return (-3);
17017    }
17018
17019    /* Wait until PRS register shows 2 packets */
17020    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17021    if (val != 2) {
17022        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17023    }
17024
17025    /* Write 1 to parser credits for CFC search request */
17026    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
17027
17028    /* Wait until PRS register shows 3 packets */
17029    DELAY(10000 * factor);
17030
17031    /* Wait until NIG register shows 1 packet of size 0x10 */
17032    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17033    if (val != 3) {
17034        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17035    }
17036
17037    /* clear NIG EOP FIFO */
17038    for (i = 0; i < 11; i++) {
17039        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17040    }
17041
17042    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17043    if (val != 1) {
17044        BLOGE(sc, "clear of NIG failed\n");
17045        return (-4);
17046    }
17047
17048    /* Reset and init BRB, PRS, NIG */
17049    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17050    DELAY(50000);
17051    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17052    DELAY(50000);
17053    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17054    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17055    if (!CNIC_SUPPORT(sc)) {
17056        /* set NIC mode */
17057        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17058    }
17059
17060    /* Enable inputs of parser neighbor blocks */
17061    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17062    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17063    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17064    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17065
17066    return (0);
17067}
17068
17069static void
17070bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17071{
17072    int is_required;
17073    uint32_t val;
17074    int port;
17075
17076    is_required = 0;
17077    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17078           SHARED_HW_CFG_FAN_FAILURE_MASK);
17079
17080    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17081        is_required = 1;
17082    }
17083    /*
17084     * The fan failure mechanism is usually related to the PHY type since
17085     * the power consumption of the board is affected by the PHY. Currently,
17086     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17087     */
17088    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17089        for (port = PORT_0; port < PORT_MAX; port++) {
17090            is_required |= elink_fan_failure_det_req(sc,
17091                                                     sc->devinfo.shmem_base,
17092                                                     sc->devinfo.shmem2_base,
17093                                                     port);
17094        }
17095    }
17096
17097    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17098
17099    if (is_required == 0) {
17100        return;
17101    }
17102
17103    /* Fan failure is indicated by SPIO 5 */
17104    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17105
17106    /* set to active low mode */
17107    val = REG_RD(sc, MISC_REG_SPIO_INT);
17108    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17109    REG_WR(sc, MISC_REG_SPIO_INT, val);
17110
17111    /* enable interrupt to signal the IGU */
17112    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17113    val |= MISC_SPIO_SPIO5;
17114    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17115}
17116
17117static void
17118bxe_enable_blocks_attention(struct bxe_softc *sc)
17119{
17120    uint32_t val;
17121
17122    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17123    if (!CHIP_IS_E1x(sc)) {
17124        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17125    } else {
17126        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17127    }
17128    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17129    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17130    /*
17131     * mask read length error interrupts in brb for parser
17132     * (parsing unit and 'checksum and crc' unit)
17133     * these errors are legal (PU reads fixed length and CAC can cause
17134     * read length error on truncated packets)
17135     */
17136    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17137    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17138    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17139    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17140    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17141    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17142/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17143/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17144    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17145    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17146    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17147/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17148/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17149    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17150    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17151    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17152    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17153/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17154/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17155
17156    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17157           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17158           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17159    if (!CHIP_IS_E1x(sc)) {
17160        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17161                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17162    }
17163    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17164
17165    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17166    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17167    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17168/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17169
17170    if (!CHIP_IS_E1x(sc)) {
17171        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17172        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17173    }
17174
17175    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17176    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17177/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17178    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17179}
17180
17181/**
17182 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17183 *
17184 * @sc:     driver handle
17185 */
17186static int
17187bxe_init_hw_common(struct bxe_softc *sc)
17188{
17189    uint8_t abs_func_id;
17190    uint32_t val;
17191
17192    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17193          SC_ABS_FUNC(sc));
17194
17195    /*
17196     * take the RESET lock to protect undi_unload flow from accessing
17197     * registers while we are resetting the chip
17198     */
17199    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17200
17201    bxe_reset_common(sc);
17202
17203    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17204
17205    val = 0xfffc;
17206    if (CHIP_IS_E3(sc)) {
17207        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17208        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17209    }
17210
17211    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17212
17213    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17214
17215    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17216    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17217
17218    if (!CHIP_IS_E1x(sc)) {
17219        /*
17220         * 4-port mode or 2-port mode we need to turn off master-enable for
17221         * everyone. After that we turn it back on for self. So, we disregard
17222         * multi-function, and always disable all functions on the given path,
17223         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17224         */
17225        for (abs_func_id = SC_PATH(sc);
17226             abs_func_id < (E2_FUNC_MAX * 2);
17227             abs_func_id += 2) {
17228            if (abs_func_id == SC_ABS_FUNC(sc)) {
17229                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17230                continue;
17231            }
17232
17233            bxe_pretend_func(sc, abs_func_id);
17234
17235            /* clear pf enable */
17236            bxe_pf_disable(sc);
17237
17238            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17239        }
17240    }
17241
17242    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17243
17244    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17245
17246    if (CHIP_IS_E1(sc)) {
17247        /*
17248         * enable HW interrupt from PXP on USDM overflow
17249         * bit 16 on INT_MASK_0
17250         */
17251        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17252    }
17253
17254    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17255    bxe_init_pxp(sc);
17256
17257#ifdef __BIG_ENDIAN
17258    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17259    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17260    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17261    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17262    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17263    /* make sure this value is 0 */
17264    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17265
17266    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17267    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17268    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17269    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17270    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17271#endif
17272
17273    ecore_ilt_init_page_size(sc, INITOP_SET);
17274
17275    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17276        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17277    }
17278
17279    /* let the HW do it's magic... */
17280    DELAY(100000);
17281
17282    /* finish PXP init */
17283    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17284    if (val != 1) {
17285        BLOGE(sc, "PXP2 CFG failed\n");
17286        return (-1);
17287    }
17288    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17289    if (val != 1) {
17290        BLOGE(sc, "PXP2 RD_INIT failed\n");
17291        return (-1);
17292    }
17293
17294    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17295
17296    /*
17297     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17298     * entries with value "0" and valid bit on. This needs to be done by the
17299     * first PF that is loaded in a path (i.e. common phase)
17300     */
17301    if (!CHIP_IS_E1x(sc)) {
17302/*
17303 * In E2 there is a bug in the timers block that can cause function 6 / 7
17304 * (i.e. vnic3) to start even if it is marked as "scan-off".
17305 * This occurs when a different function (func2,3) is being marked
17306 * as "scan-off". Real-life scenario for example: if a driver is being
17307 * load-unloaded while func6,7 are down. This will cause the timer to access
17308 * the ilt, translate to a logical address and send a request to read/write.
17309 * Since the ilt for the function that is down is not valid, this will cause
17310 * a translation error which is unrecoverable.
17311 * The Workaround is intended to make sure that when this happens nothing
17312 * fatal will occur. The workaround:
17313 *  1.  First PF driver which loads on a path will:
17314 *      a.  After taking the chip out of reset, by using pretend,
17315 *          it will write "0" to the following registers of
17316 *          the other vnics.
17317 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17318 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17319 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17320 *          And for itself it will write '1' to
17321 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17322 *          dmae-operations (writing to pram for example.)
17323 *          note: can be done for only function 6,7 but cleaner this
17324 *            way.
17325 *      b.  Write zero+valid to the entire ILT.
17326 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17327 *          VNIC3 (of that port). The range allocated will be the
17328 *          entire ILT. This is needed to prevent  ILT range error.
17329 *  2.  Any PF driver load flow:
17330 *      a.  ILT update with the physical addresses of the allocated
17331 *          logical pages.
17332 *      b.  Wait 20msec. - note that this timeout is needed to make
17333 *          sure there are no requests in one of the PXP internal
17334 *          queues with "old" ILT addresses.
17335 *      c.  PF enable in the PGLC.
17336 *      d.  Clear the was_error of the PF in the PGLC. (could have
17337 *          occurred while driver was down)
17338 *      e.  PF enable in the CFC (WEAK + STRONG)
17339 *      f.  Timers scan enable
17340 *  3.  PF driver unload flow:
17341 *      a.  Clear the Timers scan_en.
17342 *      b.  Polling for scan_on=0 for that PF.
17343 *      c.  Clear the PF enable bit in the PXP.
17344 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17345 *      e.  Write zero+valid to all ILT entries (The valid bit must
17346 *          stay set)
17347 *      f.  If this is VNIC 3 of a port then also init
17348 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17349 *          to the last enrty in the ILT.
17350 *
17351 *      Notes:
17352 *      Currently the PF error in the PGLC is non recoverable.
17353 *      In the future the there will be a recovery routine for this error.
17354 *      Currently attention is masked.
17355 *      Having an MCP lock on the load/unload process does not guarantee that
17356 *      there is no Timer disable during Func6/7 enable. This is because the
17357 *      Timers scan is currently being cleared by the MCP on FLR.
17358 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17359 *      there is error before clearing it. But the flow above is simpler and
17360 *      more general.
17361 *      All ILT entries are written by zero+valid and not just PF6/7
17362 *      ILT entries since in the future the ILT entries allocation for
17363 *      PF-s might be dynamic.
17364 */
17365        struct ilt_client_info ilt_cli;
17366        struct ecore_ilt ilt;
17367
17368        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17369        memset(&ilt, 0, sizeof(struct ecore_ilt));
17370
17371        /* initialize dummy TM client */
17372        ilt_cli.start      = 0;
17373        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17374        ilt_cli.client_num = ILT_CLIENT_TM;
17375
17376        /*
17377         * Step 1: set zeroes to all ilt page entries with valid bit on
17378         * Step 2: set the timers first/last ilt entry to point
17379         * to the entire range to prevent ILT range error for 3rd/4th
17380         * vnic (this code assumes existence of the vnic)
17381         *
17382         * both steps performed by call to ecore_ilt_client_init_op()
17383         * with dummy TM client
17384         *
17385         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17386         * and his brother are split registers
17387         */
17388
17389        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17390        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17391        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17392
17393        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17394        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17395        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17396    }
17397
17398    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17399    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17400
17401    if (!CHIP_IS_E1x(sc)) {
17402        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17403                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17404
17405        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17406        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17407
17408        /* let the HW do it's magic... */
17409        do {
17410            DELAY(200000);
17411            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17412        } while (factor-- && (val != 1));
17413
17414        if (val != 1) {
17415            BLOGE(sc, "ATC_INIT failed\n");
17416            return (-1);
17417        }
17418    }
17419
17420    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17421
17422    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17423
17424    bxe_iov_init_dmae(sc);
17425
17426    /* clean the DMAE memory */
17427    sc->dmae_ready = 1;
17428    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17429
17430    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17431
17432    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17433
17434    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17435
17436    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17437
17438    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17439    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17440    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17441    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17442
17443    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17444
17445    /* QM queues pointers table */
17446    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17447
17448    /* soft reset pulse */
17449    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17450    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17451
17452    if (CNIC_SUPPORT(sc))
17453        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17454
17455    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17456    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17457    if (!CHIP_REV_IS_SLOW(sc)) {
17458        /* enable hw interrupt from doorbell Q */
17459        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17460    }
17461
17462    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17463
17464    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17465    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17466
17467    if (!CHIP_IS_E1(sc)) {
17468        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17469    }
17470
17471    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17472        if (IS_MF_AFEX(sc)) {
17473            /*
17474             * configure that AFEX and VLAN headers must be
17475             * received in AFEX mode
17476             */
17477            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17478            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17479            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17480            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17481            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17482        } else {
17483            /*
17484             * Bit-map indicating which L2 hdrs may appear
17485             * after the basic Ethernet header
17486             */
17487            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17488                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17489        }
17490    }
17491
17492    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17493    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17494    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17495    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17496
17497    if (!CHIP_IS_E1x(sc)) {
17498        /* reset VFC memories */
17499        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17500               VFC_MEMORIES_RST_REG_CAM_RST |
17501               VFC_MEMORIES_RST_REG_RAM_RST);
17502        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17503               VFC_MEMORIES_RST_REG_CAM_RST |
17504               VFC_MEMORIES_RST_REG_RAM_RST);
17505
17506        DELAY(20000);
17507    }
17508
17509    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17510    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17511    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17512    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17513
17514    /* sync semi rtc */
17515    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17516           0x80000000);
17517    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17518           0x80000000);
17519
17520    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17521    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17522    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17523
17524    if (!CHIP_IS_E1x(sc)) {
17525        if (IS_MF_AFEX(sc)) {
17526            /*
17527             * configure that AFEX and VLAN headers must be
17528             * sent in AFEX mode
17529             */
17530            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17531            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17532            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17533            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17534            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17535        } else {
17536            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17537                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17538        }
17539    }
17540
17541    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17542
17543    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17544
17545    if (CNIC_SUPPORT(sc)) {
17546        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17547        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17548        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17549        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17550        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17551        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17552        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17553        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17554        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17555        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17556    }
17557    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17558
17559    if (sizeof(union cdu_context) != 1024) {
17560        /* we currently assume that a context is 1024 bytes */
17561        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17562              (long)sizeof(union cdu_context));
17563    }
17564
17565    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17566    val = (4 << 24) + (0 << 12) + 1024;
17567    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17568
17569    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17570
17571    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17572    /* enable context validation interrupt from CFC */
17573    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17574
17575    /* set the thresholds to prevent CFC/CDU race */
17576    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17577    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17578
17579    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17580        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17581    }
17582
17583    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17584    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17585
17586    /* Reset PCIE errors for debug */
17587    REG_WR(sc, 0x2814, 0xffffffff);
17588    REG_WR(sc, 0x3820, 0xffffffff);
17589
17590    if (!CHIP_IS_E1x(sc)) {
17591        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17592               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17593                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17594        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17595               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17596                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17597                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17598        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17599               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17600                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17601                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17602    }
17603
17604    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17605
17606    if (!CHIP_IS_E1(sc)) {
17607        /* in E3 this done in per-port section */
17608        if (!CHIP_IS_E3(sc))
17609            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17610    }
17611
17612    if (CHIP_IS_E1H(sc)) {
17613        /* not applicable for E2 (and above ...) */
17614        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17615    }
17616
17617    if (CHIP_REV_IS_SLOW(sc)) {
17618        DELAY(200000);
17619    }
17620
17621    /* finish CFC init */
17622    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17623    if (val != 1) {
17624        BLOGE(sc, "CFC LL_INIT failed\n");
17625        return (-1);
17626    }
17627    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17628    if (val != 1) {
17629        BLOGE(sc, "CFC AC_INIT failed\n");
17630        return (-1);
17631    }
17632    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17633    if (val != 1) {
17634        BLOGE(sc, "CFC CAM_INIT failed\n");
17635        return (-1);
17636    }
17637    REG_WR(sc, CFC_REG_DEBUG0, 0);
17638
17639    if (CHIP_IS_E1(sc)) {
17640        /* read NIG statistic to see if this is our first up since powerup */
17641        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17642        val = *BXE_SP(sc, wb_data[0]);
17643
17644        /* do internal memory self test */
17645        if ((val == 0) && bxe_int_mem_test(sc)) {
17646            BLOGE(sc, "internal mem self test failed\n");
17647            return (-1);
17648        }
17649    }
17650
17651    bxe_setup_fan_failure_detection(sc);
17652
17653    /* clear PXP2 attentions */
17654    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17655
17656    bxe_enable_blocks_attention(sc);
17657
17658    if (!CHIP_REV_IS_SLOW(sc)) {
17659        ecore_enable_blocks_parity(sc);
17660    }
17661
17662    if (!BXE_NOMCP(sc)) {
17663        if (CHIP_IS_E1x(sc)) {
17664            bxe_common_init_phy(sc);
17665        }
17666    }
17667
17668    return (0);
17669}
17670
17671/**
17672 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17673 *
17674 * @sc:     driver handle
17675 */
17676static int
17677bxe_init_hw_common_chip(struct bxe_softc *sc)
17678{
17679    int rc = bxe_init_hw_common(sc);
17680
17681    if (rc) {
17682        return (rc);
17683    }
17684
17685    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17686    if (!BXE_NOMCP(sc)) {
17687        bxe_common_init_phy(sc);
17688    }
17689
17690    return (0);
17691}
17692
17693static int
17694bxe_init_hw_port(struct bxe_softc *sc)
17695{
17696    int port = SC_PORT(sc);
17697    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17698    uint32_t low, high;
17699    uint32_t val;
17700
17701    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17702
17703    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17704
17705    ecore_init_block(sc, BLOCK_MISC, init_phase);
17706    ecore_init_block(sc, BLOCK_PXP, init_phase);
17707    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17708
17709    /*
17710     * Timers bug workaround: disables the pf_master bit in pglue at
17711     * common phase, we need to enable it here before any dmae access are
17712     * attempted. Therefore we manually added the enable-master to the
17713     * port phase (it also happens in the function phase)
17714     */
17715    if (!CHIP_IS_E1x(sc)) {
17716        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17717    }
17718
17719    ecore_init_block(sc, BLOCK_ATC, init_phase);
17720    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17721    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17722    ecore_init_block(sc, BLOCK_QM, init_phase);
17723
17724    ecore_init_block(sc, BLOCK_TCM, init_phase);
17725    ecore_init_block(sc, BLOCK_UCM, init_phase);
17726    ecore_init_block(sc, BLOCK_CCM, init_phase);
17727    ecore_init_block(sc, BLOCK_XCM, init_phase);
17728
17729    /* QM cid (connection) count */
17730    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17731
17732    if (CNIC_SUPPORT(sc)) {
17733        ecore_init_block(sc, BLOCK_TM, init_phase);
17734        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17735        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17736    }
17737
17738    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17739
17740    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17741
17742    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17743        if (IS_MF(sc)) {
17744            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17745        } else if (sc->mtu > 4096) {
17746            if (BXE_ONE_PORT(sc)) {
17747                low = 160;
17748            } else {
17749                val = sc->mtu;
17750                /* (24*1024 + val*4)/256 */
17751                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17752            }
17753        } else {
17754            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17755        }
17756        high = (low + 56); /* 14*1024/256 */
17757        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17758        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17759    }
17760
17761    if (CHIP_IS_MODE_4_PORT(sc)) {
17762        REG_WR(sc, SC_PORT(sc) ?
17763               BRB1_REG_MAC_GUARANTIED_1 :
17764               BRB1_REG_MAC_GUARANTIED_0, 40);
17765    }
17766
17767    ecore_init_block(sc, BLOCK_PRS, init_phase);
17768    if (CHIP_IS_E3B0(sc)) {
17769        if (IS_MF_AFEX(sc)) {
17770            /* configure headers for AFEX mode */
17771            REG_WR(sc, SC_PORT(sc) ?
17772                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17773                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17774            REG_WR(sc, SC_PORT(sc) ?
17775                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17776                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17777            REG_WR(sc, SC_PORT(sc) ?
17778                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17779                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17780        } else {
17781            /* Ovlan exists only if we are in multi-function +
17782             * switch-dependent mode, in switch-independent there
17783             * is no ovlan headers
17784             */
17785            REG_WR(sc, SC_PORT(sc) ?
17786                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17787                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17788                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17789        }
17790    }
17791
17792    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17793    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17794    ecore_init_block(sc, BLOCK_USDM, init_phase);
17795    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17796
17797    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17798    ecore_init_block(sc, BLOCK_USEM, init_phase);
17799    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17800    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17801
17802    ecore_init_block(sc, BLOCK_UPB, init_phase);
17803    ecore_init_block(sc, BLOCK_XPB, init_phase);
17804
17805    ecore_init_block(sc, BLOCK_PBF, init_phase);
17806
17807    if (CHIP_IS_E1x(sc)) {
17808        /* configure PBF to work without PAUSE mtu 9000 */
17809        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17810
17811        /* update threshold */
17812        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17813        /* update init credit */
17814        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17815
17816        /* probe changes */
17817        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17818        DELAY(50);
17819        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17820    }
17821
17822    if (CNIC_SUPPORT(sc)) {
17823        ecore_init_block(sc, BLOCK_SRC, init_phase);
17824    }
17825
17826    ecore_init_block(sc, BLOCK_CDU, init_phase);
17827    ecore_init_block(sc, BLOCK_CFC, init_phase);
17828
17829    if (CHIP_IS_E1(sc)) {
17830        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17831        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17832    }
17833    ecore_init_block(sc, BLOCK_HC, init_phase);
17834
17835    ecore_init_block(sc, BLOCK_IGU, init_phase);
17836
17837    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17838    /* init aeu_mask_attn_func_0/1:
17839     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17840     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17841     *             bits 4-7 are used for "per vn group attention" */
17842    val = IS_MF(sc) ? 0xF7 : 0x7;
17843    /* Enable DCBX attention for all but E1 */
17844    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17845    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17846
17847    ecore_init_block(sc, BLOCK_NIG, init_phase);
17848
17849    if (!CHIP_IS_E1x(sc)) {
17850        /* Bit-map indicating which L2 hdrs may appear after the
17851         * basic Ethernet header
17852         */
17853        if (IS_MF_AFEX(sc)) {
17854            REG_WR(sc, SC_PORT(sc) ?
17855                   NIG_REG_P1_HDRS_AFTER_BASIC :
17856                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17857        } else {
17858            REG_WR(sc, SC_PORT(sc) ?
17859                   NIG_REG_P1_HDRS_AFTER_BASIC :
17860                   NIG_REG_P0_HDRS_AFTER_BASIC,
17861                   IS_MF_SD(sc) ? 7 : 6);
17862        }
17863
17864        if (CHIP_IS_E3(sc)) {
17865            REG_WR(sc, SC_PORT(sc) ?
17866                   NIG_REG_LLH1_MF_MODE :
17867                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17868        }
17869    }
17870    if (!CHIP_IS_E3(sc)) {
17871        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17872    }
17873
17874    if (!CHIP_IS_E1(sc)) {
17875        /* 0x2 disable mf_ov, 0x1 enable */
17876        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17877               (IS_MF_SD(sc) ? 0x1 : 0x2));
17878
17879        if (!CHIP_IS_E1x(sc)) {
17880            val = 0;
17881            switch (sc->devinfo.mf_info.mf_mode) {
17882            case MULTI_FUNCTION_SD:
17883                val = 1;
17884                break;
17885            case MULTI_FUNCTION_SI:
17886            case MULTI_FUNCTION_AFEX:
17887                val = 2;
17888                break;
17889            }
17890
17891            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17892                        NIG_REG_LLH0_CLS_TYPE), val);
17893        }
17894        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17895        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17896        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17897    }
17898
17899    /* If SPIO5 is set to generate interrupts, enable it for this port */
17900    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17901    if (val & MISC_SPIO_SPIO5) {
17902        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17903                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17904        val = REG_RD(sc, reg_addr);
17905        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17906        REG_WR(sc, reg_addr, val);
17907    }
17908
17909    return (0);
17910}
17911
17912static uint32_t
17913bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17914                       uint32_t         reg,
17915                       uint32_t         expected,
17916                       uint32_t         poll_count)
17917{
17918    uint32_t cur_cnt = poll_count;
17919    uint32_t val;
17920
17921    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17922        DELAY(FLR_WAIT_INTERVAL);
17923    }
17924
17925    return (val);
17926}
17927
17928static int
17929bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17930                              uint32_t         reg,
17931                              char             *msg,
17932                              uint32_t         poll_cnt)
17933{
17934    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17935
17936    if (val != 0) {
17937        BLOGE(sc, "%s usage count=%d\n", msg, val);
17938        return (1);
17939    }
17940
17941    return (0);
17942}
17943
17944/* Common routines with VF FLR cleanup */
17945static uint32_t
17946bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17947{
17948    /* adjust polling timeout */
17949    if (CHIP_REV_IS_EMUL(sc)) {
17950        return (FLR_POLL_CNT * 2000);
17951    }
17952
17953    if (CHIP_REV_IS_FPGA(sc)) {
17954        return (FLR_POLL_CNT * 120);
17955    }
17956
17957    return (FLR_POLL_CNT);
17958}
17959
17960static int
17961bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17962                           uint32_t         poll_cnt)
17963{
17964    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17965    if (bxe_flr_clnup_poll_hw_counter(sc,
17966                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17967                                      "CFC PF usage counter timed out",
17968                                      poll_cnt)) {
17969        return (1);
17970    }
17971
17972    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17973    if (bxe_flr_clnup_poll_hw_counter(sc,
17974                                      DORQ_REG_PF_USAGE_CNT,
17975                                      "DQ PF usage counter timed out",
17976                                      poll_cnt)) {
17977        return (1);
17978    }
17979
17980    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17981    if (bxe_flr_clnup_poll_hw_counter(sc,
17982                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17983                                      "QM PF usage counter timed out",
17984                                      poll_cnt)) {
17985        return (1);
17986    }
17987
17988    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17989    if (bxe_flr_clnup_poll_hw_counter(sc,
17990                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17991                                      "Timers VNIC usage counter timed out",
17992                                      poll_cnt)) {
17993        return (1);
17994    }
17995
17996    if (bxe_flr_clnup_poll_hw_counter(sc,
17997                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17998                                      "Timers NUM_SCANS usage counter timed out",
17999                                      poll_cnt)) {
18000        return (1);
18001    }
18002
18003    /* Wait DMAE PF usage counter to zero */
18004    if (bxe_flr_clnup_poll_hw_counter(sc,
18005                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
18006                                      "DMAE dommand register timed out",
18007                                      poll_cnt)) {
18008        return (1);
18009    }
18010
18011    return (0);
18012}
18013
18014#define OP_GEN_PARAM(param)                                            \
18015    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
18016#define OP_GEN_TYPE(type)                                           \
18017    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
18018#define OP_GEN_AGG_VECT(index)                                             \
18019    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
18020
18021static int
18022bxe_send_final_clnup(struct bxe_softc *sc,
18023                     uint8_t          clnup_func,
18024                     uint32_t         poll_cnt)
18025{
18026    uint32_t op_gen_command = 0;
18027    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
18028                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
18029    int ret = 0;
18030
18031    if (REG_RD(sc, comp_addr)) {
18032        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18033        return (1);
18034    }
18035
18036    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18037    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18038    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18039    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18040
18041    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18042    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18043
18044    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18045        BLOGE(sc, "FW final cleanup did not succeed\n");
18046        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18047              (REG_RD(sc, comp_addr)));
18048        bxe_panic(sc, ("FLR cleanup failed\n"));
18049        return (1);
18050    }
18051
18052    /* Zero completion for nxt FLR */
18053    REG_WR(sc, comp_addr, 0);
18054
18055    return (ret);
18056}
18057
18058static void
18059bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18060                       struct pbf_pN_buf_regs *regs,
18061                       uint32_t               poll_count)
18062{
18063    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18064    uint32_t cur_cnt = poll_count;
18065
18066    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18067    crd = crd_start = REG_RD(sc, regs->crd);
18068    init_crd = REG_RD(sc, regs->init_crd);
18069
18070    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18071    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18072    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18073
18074    while ((crd != init_crd) &&
18075           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18076            (init_crd - crd_start))) {
18077        if (cur_cnt--) {
18078            DELAY(FLR_WAIT_INTERVAL);
18079            crd = REG_RD(sc, regs->crd);
18080            crd_freed = REG_RD(sc, regs->crd_freed);
18081        } else {
18082            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18083            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18084            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18085            break;
18086        }
18087    }
18088
18089    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18090          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18091}
18092
18093static void
18094bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18095                       struct pbf_pN_cmd_regs *regs,
18096                       uint32_t               poll_count)
18097{
18098    uint32_t occup, to_free, freed, freed_start;
18099    uint32_t cur_cnt = poll_count;
18100
18101    occup = to_free = REG_RD(sc, regs->lines_occup);
18102    freed = freed_start = REG_RD(sc, regs->lines_freed);
18103
18104    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18105    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18106
18107    while (occup &&
18108           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18109        if (cur_cnt--) {
18110            DELAY(FLR_WAIT_INTERVAL);
18111            occup = REG_RD(sc, regs->lines_occup);
18112            freed = REG_RD(sc, regs->lines_freed);
18113        } else {
18114            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18115            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18116            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18117            break;
18118        }
18119    }
18120
18121    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18122          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18123}
18124
18125static void
18126bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18127{
18128    struct pbf_pN_cmd_regs cmd_regs[] = {
18129        {0, (CHIP_IS_E3B0(sc)) ?
18130            PBF_REG_TQ_OCCUPANCY_Q0 :
18131            PBF_REG_P0_TQ_OCCUPANCY,
18132            (CHIP_IS_E3B0(sc)) ?
18133            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18134            PBF_REG_P0_TQ_LINES_FREED_CNT},
18135        {1, (CHIP_IS_E3B0(sc)) ?
18136            PBF_REG_TQ_OCCUPANCY_Q1 :
18137            PBF_REG_P1_TQ_OCCUPANCY,
18138            (CHIP_IS_E3B0(sc)) ?
18139            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18140            PBF_REG_P1_TQ_LINES_FREED_CNT},
18141        {4, (CHIP_IS_E3B0(sc)) ?
18142            PBF_REG_TQ_OCCUPANCY_LB_Q :
18143            PBF_REG_P4_TQ_OCCUPANCY,
18144            (CHIP_IS_E3B0(sc)) ?
18145            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18146            PBF_REG_P4_TQ_LINES_FREED_CNT}
18147    };
18148
18149    struct pbf_pN_buf_regs buf_regs[] = {
18150        {0, (CHIP_IS_E3B0(sc)) ?
18151            PBF_REG_INIT_CRD_Q0 :
18152            PBF_REG_P0_INIT_CRD ,
18153            (CHIP_IS_E3B0(sc)) ?
18154            PBF_REG_CREDIT_Q0 :
18155            PBF_REG_P0_CREDIT,
18156            (CHIP_IS_E3B0(sc)) ?
18157            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18158            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18159        {1, (CHIP_IS_E3B0(sc)) ?
18160            PBF_REG_INIT_CRD_Q1 :
18161            PBF_REG_P1_INIT_CRD,
18162            (CHIP_IS_E3B0(sc)) ?
18163            PBF_REG_CREDIT_Q1 :
18164            PBF_REG_P1_CREDIT,
18165            (CHIP_IS_E3B0(sc)) ?
18166            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18167            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18168        {4, (CHIP_IS_E3B0(sc)) ?
18169            PBF_REG_INIT_CRD_LB_Q :
18170            PBF_REG_P4_INIT_CRD,
18171            (CHIP_IS_E3B0(sc)) ?
18172            PBF_REG_CREDIT_LB_Q :
18173            PBF_REG_P4_CREDIT,
18174            (CHIP_IS_E3B0(sc)) ?
18175            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18176            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18177    };
18178
18179    int i;
18180
18181    /* Verify the command queues are flushed P0, P1, P4 */
18182    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18183        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18184    }
18185
18186    /* Verify the transmission buffers are flushed P0, P1, P4 */
18187    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18188        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18189    }
18190}
18191
18192static void
18193bxe_hw_enable_status(struct bxe_softc *sc)
18194{
18195    uint32_t val;
18196
18197    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18198    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18199
18200    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18201    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18202
18203    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18204    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18205
18206    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18207    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18208
18209    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18210    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18211
18212    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18213    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18214
18215    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18216    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18217
18218    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18219    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18220}
18221
18222static int
18223bxe_pf_flr_clnup(struct bxe_softc *sc)
18224{
18225    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18226
18227    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18228
18229    /* Re-enable PF target read access */
18230    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18231
18232    /* Poll HW usage counters */
18233    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18234    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18235        return (-1);
18236    }
18237
18238    /* Zero the igu 'trailing edge' and 'leading edge' */
18239
18240    /* Send the FW cleanup command */
18241    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18242        return (-1);
18243    }
18244
18245    /* ATC cleanup */
18246
18247    /* Verify TX hw is flushed */
18248    bxe_tx_hw_flushed(sc, poll_cnt);
18249
18250    /* Wait 100ms (not adjusted according to platform) */
18251    DELAY(100000);
18252
18253    /* Verify no pending pci transactions */
18254    if (bxe_is_pcie_pending(sc)) {
18255        BLOGE(sc, "PCIE Transactions still pending\n");
18256    }
18257
18258    /* Debug */
18259    bxe_hw_enable_status(sc);
18260
18261    /*
18262     * Master enable - Due to WB DMAE writes performed before this
18263     * register is re-initialized as part of the regular function init
18264     */
18265    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18266
18267    return (0);
18268}
18269
18270#if 0
18271static void
18272bxe_init_searcher(struct bxe_softc *sc)
18273{
18274    int port = SC_PORT(sc);
18275    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18276    /* T1 hash bits value determines the T1 number of entries */
18277    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18278}
18279#endif
18280
18281static int
18282bxe_init_hw_func(struct bxe_softc *sc)
18283{
18284    int port = SC_PORT(sc);
18285    int func = SC_FUNC(sc);
18286    int init_phase = PHASE_PF0 + func;
18287    struct ecore_ilt *ilt = sc->ilt;
18288    uint16_t cdu_ilt_start;
18289    uint32_t addr, val;
18290    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18291    int i, main_mem_width, rc;
18292
18293    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18294
18295    /* FLR cleanup */
18296    if (!CHIP_IS_E1x(sc)) {
18297        rc = bxe_pf_flr_clnup(sc);
18298        if (rc) {
18299            BLOGE(sc, "FLR cleanup failed!\n");
18300            // XXX bxe_fw_dump(sc);
18301            // XXX bxe_idle_chk(sc);
18302            return (rc);
18303        }
18304    }
18305
18306    /* set MSI reconfigure capability */
18307    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18308        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18309        val = REG_RD(sc, addr);
18310        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18311        REG_WR(sc, addr, val);
18312    }
18313
18314    ecore_init_block(sc, BLOCK_PXP, init_phase);
18315    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18316
18317    ilt = sc->ilt;
18318    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18319
18320#if 0
18321    if (IS_SRIOV(sc)) {
18322        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18323    }
18324    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18325
18326#if (BXE_FIRST_VF_CID > 0)
18327    /*
18328     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18329     * those of the VFs, so start line should be reset
18330     */
18331    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18332#endif
18333#endif
18334
18335    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18336        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18337        ilt->lines[cdu_ilt_start + i].page_mapping =
18338            sc->context[i].vcxt_dma.paddr;
18339        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18340    }
18341    ecore_ilt_init_op(sc, INITOP_SET);
18342
18343#if 0
18344    if (!CONFIGURE_NIC_MODE(sc)) {
18345        bxe_init_searcher(sc);
18346        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18347        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18348    } else
18349#endif
18350    {
18351        /* Set NIC mode */
18352        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18353        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18354    }
18355
18356    if (!CHIP_IS_E1x(sc)) {
18357        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18358
18359        /* Turn on a single ISR mode in IGU if driver is going to use
18360         * INT#x or MSI
18361         */
18362        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18363            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18364        }
18365
18366        /*
18367         * Timers workaround bug: function init part.
18368         * Need to wait 20msec after initializing ILT,
18369         * needed to make sure there are no requests in
18370         * one of the PXP internal queues with "old" ILT addresses
18371         */
18372        DELAY(20000);
18373
18374        /*
18375         * Master enable - Due to WB DMAE writes performed before this
18376         * register is re-initialized as part of the regular function
18377         * init
18378         */
18379        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18380        /* Enable the function in IGU */
18381        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18382    }
18383
18384    sc->dmae_ready = 1;
18385
18386    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18387
18388    if (!CHIP_IS_E1x(sc))
18389        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18390
18391    ecore_init_block(sc, BLOCK_ATC, init_phase);
18392    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18393    ecore_init_block(sc, BLOCK_NIG, init_phase);
18394    ecore_init_block(sc, BLOCK_SRC, init_phase);
18395    ecore_init_block(sc, BLOCK_MISC, init_phase);
18396    ecore_init_block(sc, BLOCK_TCM, init_phase);
18397    ecore_init_block(sc, BLOCK_UCM, init_phase);
18398    ecore_init_block(sc, BLOCK_CCM, init_phase);
18399    ecore_init_block(sc, BLOCK_XCM, init_phase);
18400    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18401    ecore_init_block(sc, BLOCK_USEM, init_phase);
18402    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18403    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18404
18405    if (!CHIP_IS_E1x(sc))
18406        REG_WR(sc, QM_REG_PF_EN, 1);
18407
18408    if (!CHIP_IS_E1x(sc)) {
18409        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18410        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18411        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18412        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18413    }
18414    ecore_init_block(sc, BLOCK_QM, init_phase);
18415
18416    ecore_init_block(sc, BLOCK_TM, init_phase);
18417    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18418
18419    bxe_iov_init_dq(sc);
18420
18421    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18422    ecore_init_block(sc, BLOCK_PRS, init_phase);
18423    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18424    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18425    ecore_init_block(sc, BLOCK_USDM, init_phase);
18426    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18427    ecore_init_block(sc, BLOCK_UPB, init_phase);
18428    ecore_init_block(sc, BLOCK_XPB, init_phase);
18429    ecore_init_block(sc, BLOCK_PBF, init_phase);
18430    if (!CHIP_IS_E1x(sc))
18431        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18432
18433    ecore_init_block(sc, BLOCK_CDU, init_phase);
18434
18435    ecore_init_block(sc, BLOCK_CFC, init_phase);
18436
18437    if (!CHIP_IS_E1x(sc))
18438        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18439
18440    if (IS_MF(sc)) {
18441        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18442        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18443    }
18444
18445    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18446
18447    /* HC init per function */
18448    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18449        if (CHIP_IS_E1H(sc)) {
18450            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18451
18452            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18453            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18454        }
18455        ecore_init_block(sc, BLOCK_HC, init_phase);
18456
18457    } else {
18458        int num_segs, sb_idx, prod_offset;
18459
18460        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18461
18462        if (!CHIP_IS_E1x(sc)) {
18463            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18464            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18465        }
18466
18467        ecore_init_block(sc, BLOCK_IGU, init_phase);
18468
18469        if (!CHIP_IS_E1x(sc)) {
18470            int dsb_idx = 0;
18471            /**
18472             * Producer memory:
18473             * E2 mode: address 0-135 match to the mapping memory;
18474             * 136 - PF0 default prod; 137 - PF1 default prod;
18475             * 138 - PF2 default prod; 139 - PF3 default prod;
18476             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18477             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18478             * 144-147 reserved.
18479             *
18480             * E1.5 mode - In backward compatible mode;
18481             * for non default SB; each even line in the memory
18482             * holds the U producer and each odd line hold
18483             * the C producer. The first 128 producers are for
18484             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18485             * producers are for the DSB for each PF.
18486             * Each PF has five segments: (the order inside each
18487             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18488             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18489             * 144-147 attn prods;
18490             */
18491            /* non-default-status-blocks */
18492            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18493                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18494            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18495                prod_offset = (sc->igu_base_sb + sb_idx) *
18496                    num_segs;
18497
18498                for (i = 0; i < num_segs; i++) {
18499                    addr = IGU_REG_PROD_CONS_MEMORY +
18500                            (prod_offset + i) * 4;
18501                    REG_WR(sc, addr, 0);
18502                }
18503                /* send consumer update with value 0 */
18504                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18505                           USTORM_ID, 0, IGU_INT_NOP, 1);
18506                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18507            }
18508
18509            /* default-status-blocks */
18510            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18511                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18512
18513            if (CHIP_IS_MODE_4_PORT(sc))
18514                dsb_idx = SC_FUNC(sc);
18515            else
18516                dsb_idx = SC_VN(sc);
18517
18518            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18519                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18520                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18521
18522            /*
18523             * igu prods come in chunks of E1HVN_MAX (4) -
18524             * does not matters what is the current chip mode
18525             */
18526            for (i = 0; i < (num_segs * E1HVN_MAX);
18527                 i += E1HVN_MAX) {
18528                addr = IGU_REG_PROD_CONS_MEMORY +
18529                            (prod_offset + i)*4;
18530                REG_WR(sc, addr, 0);
18531            }
18532            /* send consumer update with 0 */
18533            if (CHIP_INT_MODE_IS_BC(sc)) {
18534                bxe_ack_sb(sc, sc->igu_dsb_id,
18535                           USTORM_ID, 0, IGU_INT_NOP, 1);
18536                bxe_ack_sb(sc, sc->igu_dsb_id,
18537                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18538                bxe_ack_sb(sc, sc->igu_dsb_id,
18539                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18540                bxe_ack_sb(sc, sc->igu_dsb_id,
18541                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18542                bxe_ack_sb(sc, sc->igu_dsb_id,
18543                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18544            } else {
18545                bxe_ack_sb(sc, sc->igu_dsb_id,
18546                           USTORM_ID, 0, IGU_INT_NOP, 1);
18547                bxe_ack_sb(sc, sc->igu_dsb_id,
18548                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18549            }
18550            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18551
18552            /* !!! these should become driver const once
18553               rf-tool supports split-68 const */
18554            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18555            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18556            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18557            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18558            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18559            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18560        }
18561    }
18562
18563    /* Reset PCIE errors for debug */
18564    REG_WR(sc, 0x2114, 0xffffffff);
18565    REG_WR(sc, 0x2120, 0xffffffff);
18566
18567    if (CHIP_IS_E1x(sc)) {
18568        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18569        main_mem_base = HC_REG_MAIN_MEMORY +
18570                SC_PORT(sc) * (main_mem_size * 4);
18571        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18572        main_mem_width = 8;
18573
18574        val = REG_RD(sc, main_mem_prty_clr);
18575        if (val) {
18576            BLOGD(sc, DBG_LOAD,
18577                  "Parity errors in HC block during function init (0x%x)!\n",
18578                  val);
18579        }
18580
18581        /* Clear "false" parity errors in MSI-X table */
18582        for (i = main_mem_base;
18583             i < main_mem_base + main_mem_size * 4;
18584             i += main_mem_width) {
18585            bxe_read_dmae(sc, i, main_mem_width / 4);
18586            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18587                           i, main_mem_width / 4);
18588        }
18589        /* Clear HC parity attention */
18590        REG_RD(sc, main_mem_prty_clr);
18591    }
18592
18593#if 1
18594    /* Enable STORMs SP logging */
18595    REG_WR8(sc, BAR_USTRORM_INTMEM +
18596           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18597    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18598           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18599    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18600           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18601    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18602           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18603#endif
18604
18605    elink_phy_probe(&sc->link_params);
18606
18607    return (0);
18608}
18609
18610static void
18611bxe_link_reset(struct bxe_softc *sc)
18612{
18613    if (!BXE_NOMCP(sc)) {
18614        BXE_PHY_LOCK(sc);
18615        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18616        BXE_PHY_UNLOCK(sc);
18617    } else {
18618        if (!CHIP_REV_IS_SLOW(sc)) {
18619            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18620        }
18621    }
18622}
18623
18624static void
18625bxe_reset_port(struct bxe_softc *sc)
18626{
18627    int port = SC_PORT(sc);
18628    uint32_t val;
18629
18630    /* reset physical Link */
18631    bxe_link_reset(sc);
18632
18633    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18634
18635    /* Do not rcv packets to BRB */
18636    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18637    /* Do not direct rcv packets that are not for MCP to the BRB */
18638    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18639               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18640
18641    /* Configure AEU */
18642    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18643
18644    DELAY(100000);
18645
18646    /* Check for BRB port occupancy */
18647    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18648    if (val) {
18649        BLOGD(sc, DBG_LOAD,
18650              "BRB1 is not empty, %d blocks are occupied\n", val);
18651    }
18652
18653    /* TODO: Close Doorbell port? */
18654}
18655
18656static void
18657bxe_ilt_wr(struct bxe_softc *sc,
18658           uint32_t         index,
18659           bus_addr_t       addr)
18660{
18661    int reg;
18662    uint32_t wb_write[2];
18663
18664    if (CHIP_IS_E1(sc)) {
18665        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18666    } else {
18667        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18668    }
18669
18670    wb_write[0] = ONCHIP_ADDR1(addr);
18671    wb_write[1] = ONCHIP_ADDR2(addr);
18672    REG_WR_DMAE(sc, reg, wb_write, 2);
18673}
18674
18675static void
18676bxe_clear_func_ilt(struct bxe_softc *sc,
18677                   uint32_t         func)
18678{
18679    uint32_t i, base = FUNC_ILT_BASE(func);
18680    for (i = base; i < base + ILT_PER_FUNC; i++) {
18681        bxe_ilt_wr(sc, i, 0);
18682    }
18683}
18684
18685static void
18686bxe_reset_func(struct bxe_softc *sc)
18687{
18688    struct bxe_fastpath *fp;
18689    int port = SC_PORT(sc);
18690    int func = SC_FUNC(sc);
18691    int i;
18692
18693    /* Disable the function in the FW */
18694    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18695    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18696    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18697    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18698
18699    /* FP SBs */
18700    FOR_EACH_ETH_QUEUE(sc, i) {
18701        fp = &sc->fp[i];
18702        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18703                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18704                SB_DISABLED);
18705    }
18706
18707#if 0
18708    if (CNIC_LOADED(sc)) {
18709        /* CNIC SB */
18710        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18711                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18712                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18713    }
18714#endif
18715
18716    /* SP SB */
18717    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18718            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18719            SB_DISABLED);
18720
18721    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18722        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18723    }
18724
18725    /* Configure IGU */
18726    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18727        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18728        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18729    } else {
18730        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18731        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18732    }
18733
18734    if (CNIC_LOADED(sc)) {
18735        /* Disable Timer scan */
18736        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18737        /*
18738         * Wait for at least 10ms and up to 2 second for the timers
18739         * scan to complete
18740         */
18741        for (i = 0; i < 200; i++) {
18742            DELAY(10000);
18743            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18744                break;
18745        }
18746    }
18747
18748    /* Clear ILT */
18749    bxe_clear_func_ilt(sc, func);
18750
18751    /*
18752     * Timers workaround bug for E2: if this is vnic-3,
18753     * we need to set the entire ilt range for this timers.
18754     */
18755    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18756        struct ilt_client_info ilt_cli;
18757        /* use dummy TM client */
18758        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18759        ilt_cli.start = 0;
18760        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18761        ilt_cli.client_num = ILT_CLIENT_TM;
18762
18763        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18764    }
18765
18766    /* this assumes that reset_port() called before reset_func()*/
18767    if (!CHIP_IS_E1x(sc)) {
18768        bxe_pf_disable(sc);
18769    }
18770
18771    sc->dmae_ready = 0;
18772}
18773
18774static int
18775bxe_gunzip_init(struct bxe_softc *sc)
18776{
18777    return (0);
18778}
18779
18780static void
18781bxe_gunzip_end(struct bxe_softc *sc)
18782{
18783    return;
18784}
18785
18786static int
18787bxe_init_firmware(struct bxe_softc *sc)
18788{
18789    if (CHIP_IS_E1(sc)) {
18790        ecore_init_e1_firmware(sc);
18791        sc->iro_array = e1_iro_arr;
18792    } else if (CHIP_IS_E1H(sc)) {
18793        ecore_init_e1h_firmware(sc);
18794        sc->iro_array = e1h_iro_arr;
18795    } else if (!CHIP_IS_E1x(sc)) {
18796        ecore_init_e2_firmware(sc);
18797        sc->iro_array = e2_iro_arr;
18798    } else {
18799        BLOGE(sc, "Unsupported chip revision\n");
18800        return (-1);
18801    }
18802
18803    return (0);
18804}
18805
18806static void
18807bxe_release_firmware(struct bxe_softc *sc)
18808{
18809    /* Do nothing */
18810    return;
18811}
18812
18813static int
18814ecore_gunzip(struct bxe_softc *sc,
18815             const uint8_t    *zbuf,
18816             int              len)
18817{
18818    /* XXX : Implement... */
18819    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18820    return (FALSE);
18821}
18822
18823static void
18824ecore_reg_wr_ind(struct bxe_softc *sc,
18825                 uint32_t         addr,
18826                 uint32_t         val)
18827{
18828    bxe_reg_wr_ind(sc, addr, val);
18829}
18830
18831static void
18832ecore_write_dmae_phys_len(struct bxe_softc *sc,
18833                          bus_addr_t       phys_addr,
18834                          uint32_t         addr,
18835                          uint32_t         len)
18836{
18837    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18838}
18839
18840void
18841ecore_storm_memset_struct(struct bxe_softc *sc,
18842                          uint32_t         addr,
18843                          size_t           size,
18844                          uint32_t         *data)
18845{
18846    uint8_t i;
18847    for (i = 0; i < size/4; i++) {
18848        REG_WR(sc, addr + (i * 4), data[i]);
18849    }
18850}
18851
18852