1/*-
2 * 1. Redistributions of source code must retain the
3 * Copyright (c) 1997 Amancio Hasty, 1999 Roger Hardiman
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *      This product includes software developed by Amancio Hasty and
17 *      Roger Hardiman
18 * 4. The name of the author may not be used to endorse or promote products
19 *    derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37/*
38 * This is part of the Driver for Video Capture Cards (Frame grabbers)
39 * and TV Tuner cards using the Brooktree Bt848, Bt848A, Bt849A, Bt878, Bt879
40 * chipset.
41 * Copyright Roger Hardiman and Amancio Hasty.
42 *
43 * bktr_tuner : This deals with controlling the tuner fitted to TV cards.
44 */
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#ifdef __NetBSD__
50#include <sys/proc.h>
51#endif
52
53#ifdef __FreeBSD__
54#if (__FreeBSD_version < 500000)
55#include <machine/clock.h>              /* for DELAY */
56#include <pci/pcivar.h>
57#else
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/selinfo.h>
61#include <dev/pci/pcivar.h>
62#endif
63
64#include <machine/bus.h>
65#include <sys/bus.h>
66#endif
67
68#ifdef __NetBSD__
69#include <dev/ic/bt8xx.h>	/* NetBSD .h file location */
70#include <dev/pci/bktr/bktr_reg.h>
71#include <dev/pci/bktr/bktr_tuner.h>
72#include <dev/pci/bktr/bktr_card.h>
73#include <dev/pci/bktr/bktr_core.h>
74#else
75#include <dev/bktr/ioctl_meteor.h>
76#include <dev/bktr/ioctl_bt848.h>	/* extensions to ioctl_meteor.h */
77#include <dev/bktr/bktr_reg.h>
78#include <dev/bktr/bktr_tuner.h>
79#include <dev/bktr/bktr_card.h>
80#include <dev/bktr/bktr_core.h>
81#endif
82
83
84
85#if defined( TUNER_AFC )
86#define AFC_DELAY               10000   /* 10 millisend delay */
87#define AFC_BITS                0x07
88#define AFC_FREQ_MINUS_125      0x00
89#define AFC_FREQ_MINUS_62       0x01
90#define AFC_FREQ_CENTERED       0x02
91#define AFC_FREQ_PLUS_62        0x03
92#define AFC_FREQ_PLUS_125       0x04
93#define AFC_MAX_STEP            (5 * FREQFACTOR) /* no more than 5 MHz */
94#endif /* TUNER_AFC */
95
96
97#define TTYPE_XXX               0
98#define TTYPE_NTSC              1
99#define TTYPE_NTSC_J            2
100#define TTYPE_PAL               3
101#define TTYPE_PAL_M             4
102#define TTYPE_PAL_N             5
103#define TTYPE_SECAM             6
104
105#define TSA552x_CB_MSB          (0x80)
106#define TSA552x_CB_CP           (1<<6)	/* set this for fast tuning */
107#define TSA552x_CB_T2           (1<<5)	/* test mode - Normally set to 0 */
108#define TSA552x_CB_T1           (1<<4)	/* test mode - Normally set to 0 */
109#define TSA552x_CB_T0           (1<<3)	/* test mode - Normally set to 1 */
110#define TSA552x_CB_RSA          (1<<2)	/* 0 for 31.25 khz, 1 for 62.5 kHz */
111#define TSA552x_CB_RSB          (1<<1)	/* 0 for FM 50kHz steps, 1 = Use RSA*/
112#define TSA552x_CB_OS           (1<<0)	/* Set to 0 for normal operation */
113
114#define TSA552x_RADIO           (TSA552x_CB_MSB |       \
115                                 TSA552x_CB_T0)
116
117/* raise the charge pump voltage for fast tuning */
118#define TSA552x_FCONTROL        (TSA552x_CB_MSB |       \
119                                 TSA552x_CB_CP  |       \
120                                 TSA552x_CB_T0  |       \
121                                 TSA552x_CB_RSA |       \
122                                 TSA552x_CB_RSB)
123
124/* lower the charge pump voltage for better residual oscillator FM */
125#define TSA552x_SCONTROL        (TSA552x_CB_MSB |       \
126                                 TSA552x_CB_T0  |       \
127                                 TSA552x_CB_RSA |       \
128                                 TSA552x_CB_RSB)
129
130/* The control value for the ALPS TSCH5 Tuner */
131#define TSCH5_FCONTROL          0x82
132#define TSCH5_RADIO             0x86
133
134/* The control value for the ALPS TSBH1 Tuner */
135#define TSBH1_FCONTROL		0xce
136
137
138static void mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq);
139
140
141static const struct TUNER tuners[] = {
142/* XXX FIXME: fill in the band-switch crosspoints */
143	/* NO_TUNER */
144	{ "<no>",				/* the 'name' */
145	   TTYPE_XXX,				/* input type */
146 	   { 0x00,				/* control byte for Tuner PLL */
147 	     0x00,
148 	     0x00,
149 	     0x00 },
150	   { 0x00, 0x00 },			/* band-switch crosspoints */
151	   { 0x00, 0x00, 0x00,0x00} },		/* the band-switch values */
152
153	/* TEMIC_NTSC */
154	{ "Temic NTSC",				/* the 'name' */
155	   TTYPE_NTSC,				/* input type */
156	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
157	     TSA552x_SCONTROL,
158	     TSA552x_SCONTROL,
159	     0x00 },
160	   { 0x00, 0x00},			/* band-switch crosspoints */
161	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
162
163	/* TEMIC_PAL */
164	{ "Temic PAL",				/* the 'name' */
165	   TTYPE_PAL,				/* input type */
166	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
167	     TSA552x_SCONTROL,
168	     TSA552x_SCONTROL,
169	     0x00 },
170	   { 0x00, 0x00 },			/* band-switch crosspoints */
171	   { 0x02, 0x04, 0x01, 0x00 } },	/* the band-switch values */
172
173	/* TEMIC_SECAM */
174	{ "Temic SECAM",			/* the 'name' */
175	   TTYPE_SECAM,				/* input type */
176	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
177	     TSA552x_SCONTROL,
178	     TSA552x_SCONTROL,
179	     0x00 },
180	   { 0x00, 0x00 },			/* band-switch crosspoints */
181	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
182
183	/* PHILIPS_NTSC */
184	{ "Philips NTSC",			/* the 'name' */
185	   TTYPE_NTSC,				/* input type */
186	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
187	     TSA552x_SCONTROL,
188	     TSA552x_SCONTROL,
189	     0x00 },
190	   { 0x00, 0x00 },			/* band-switch crosspoints */
191	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
192
193	/* PHILIPS_PAL */
194	{ "Philips PAL",			/* the 'name' */
195	   TTYPE_PAL,				/* input type */
196	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
197	     TSA552x_SCONTROL,
198	     TSA552x_SCONTROL,
199	     0x00 },
200	   { 0x00, 0x00 },			/* band-switch crosspoints */
201	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
202
203	/* PHILIPS_SECAM */
204	{ "Philips SECAM",			/* the 'name' */
205	   TTYPE_SECAM,				/* input type */
206	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
207	     TSA552x_SCONTROL,
208	     TSA552x_SCONTROL,
209	     0x00 },
210	   { 0x00, 0x00 },			/* band-switch crosspoints */
211	   { 0xa7, 0x97, 0x37, 0x00 } },	/* the band-switch values */
212
213	/* TEMIC_PAL I */
214	{ "Temic PAL I",			/* the 'name' */
215	   TTYPE_PAL,				/* input type */
216	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
217	     TSA552x_SCONTROL,
218	     TSA552x_SCONTROL,
219	     0x00 },
220	   { 0x00, 0x00 },			/* band-switch crosspoints */
221	   { 0x02, 0x04, 0x01,0x00 } },		/* the band-switch values */
222
223	/* PHILIPS_PALI */
224	{ "Philips PAL I",			/* the 'name' */
225	   TTYPE_PAL,				/* input type */
226	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
227	     TSA552x_SCONTROL,
228	     TSA552x_SCONTROL,
229	     0x00 },
230          { 0x00, 0x00 },                      /* band-switch crosspoints */
231          { 0xa0, 0x90, 0x30,0x00 } },         /* the band-switch values */
232
233       /* PHILIPS_FR1236_NTSC */
234       { "Philips FR1236 NTSC FM",             /* the 'name' */
235          TTYPE_NTSC,                          /* input type */
236	  { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
237	    TSA552x_FCONTROL,
238	    TSA552x_FCONTROL,
239	    TSA552x_RADIO  },
240          { 0x00, 0x00 },			/* band-switch crosspoints */
241	  { 0xa0, 0x90, 0x30,0xa4 } },		/* the band-switch values */
242
243	/* PHILIPS_FR1216_PAL */
244	{ "Philips FR1216 PAL FM" ,		/* the 'name' */
245	   TTYPE_PAL,				/* input type */
246	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
247	     TSA552x_FCONTROL,
248	     TSA552x_FCONTROL,
249	     TSA552x_RADIO },
250	   { 0x00, 0x00 },			/* band-switch crosspoints */
251	   { 0xa0, 0x90, 0x30, 0xa4 } },	/* the band-switch values */
252
253	/* PHILIPS_FR1236_SECAM */
254	{ "Philips FR1236 SECAM FM",		/* the 'name' */
255	   TTYPE_SECAM,				/* input type */
256	   { TSA552x_FCONTROL,			/* control byte for Tuner PLL */
257	     TSA552x_FCONTROL,
258	     TSA552x_FCONTROL,
259	     TSA552x_RADIO },
260	   { 0x00, 0x00 },			/* band-switch crosspoints */
261	   { 0xa7, 0x97, 0x37, 0xa4 } },	/* the band-switch values */
262
263        /* ALPS TSCH5 NTSC */
264        { "ALPS TSCH5 NTSC FM",                 /* the 'name' */
265           TTYPE_NTSC,                          /* input type */
266           { TSCH5_FCONTROL,                    /* control byte for Tuner PLL */
267             TSCH5_FCONTROL,
268             TSCH5_FCONTROL,
269             TSCH5_RADIO },
270           { 0x00, 0x00 },                      /* band-switch crosspoints */
271           { 0x14, 0x12, 0x11, 0x04 } },        /* the band-switch values */
272
273        /* ALPS TSBH1 NTSC */
274        { "ALPS TSBH1 NTSC",                    /* the 'name' */
275           TTYPE_NTSC,                          /* input type */
276           { TSBH1_FCONTROL,                    /* control byte for Tuner PLL */
277             TSBH1_FCONTROL,
278             TSBH1_FCONTROL,
279             0x00 },
280           { 0x00, 0x00 },                      /* band-switch crosspoints */
281           { 0x01, 0x02, 0x08, 0x00 } },        /* the band-switch values */
282
283	/* MT2032 Microtune */
284	{ "MT2032",				/* the 'name' */
285	   TTYPE_PAL,				/* input type */
286	   { TSA552x_SCONTROL,			/* control byte for Tuner PLL */
287	     TSA552x_SCONTROL,
288	     TSA552x_SCONTROL,
289	     0x00 },
290	   { 0x00, 0x00 },			/* band-switch crosspoints */
291	   { 0xa0, 0x90, 0x30, 0x00 } },	/* the band-switch values */
292
293	 /* LG TPI8PSB12P PAL */
294	 { "LG TPI8PSB12P PAL",                 /* the 'name' */
295	   TTYPE_PAL,                           /* input type */
296	   { TSA552x_SCONTROL,                  /* control byte for Tuner PLL */
297	     TSA552x_SCONTROL,
298	     TSA552x_SCONTROL,
299	     0x00 },
300	   { 0x00, 0x00 },                      /* band-switch crosspoints */
301	   { 0xa0, 0x90, 0x30, 0x8e } },        /* the band-switch values */
302};
303
304
305/* scaling factor for frequencies expressed as ints */
306#define FREQFACTOR		16
307
308/*
309 * Format:
310 *	entry 0:         MAX legal channel
311 *	entry 1:         IF frequency
312 *			 expressed as fi{mHz} * 16,
313 *			 eg 45.75mHz == 45.75 * 16 = 732
314 *	entry 2:         [place holder/future]
315 *	entry 3:         base of channel record 0
316 *	entry 3 + (x*3): base of channel record 'x'
317 *	entry LAST:      NULL channel entry marking end of records
318 *
319 * Record:
320 *	int 0:		base channel
321 *	int 1:		frequency of base channel,
322 *			 expressed as fb{mHz} * 16,
323 *	int 2:		offset frequency between channels,
324 *			 expressed as fo{mHz} * 16,
325 */
326
327/*
328 * North American Broadcast Channels:
329 *
330 *  2:  55.25 mHz -  4:  67.25 mHz
331 *  5:  77.25 mHz -  6:	 83.25 mHz
332 *  7: 175.25 mHz - 13:	211.25 mHz
333 * 14: 471.25 mHz - 83:	885.25 mHz
334 *
335 * IF freq: 45.75 mHz
336 */
337#define OFFSET	6.00
338static int nabcst[] = {
339	83,	(int)( 45.75 * FREQFACTOR),	0,
340	14,	(int)(471.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
341	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
342	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
343	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
344	 0
345};
346#undef OFFSET
347
348/*
349 * North American Cable Channels, IRC:
350 *
351 *  2:  55.25 mHz -  4:  67.25 mHz
352 *  5:  77.25 mHz -  6:  83.25 mHz
353 *  7: 175.25 mHz - 13: 211.25 mHz
354 * 14: 121.25 mHz - 22: 169.25 mHz
355 * 23: 217.25 mHz - 94: 643.25 mHz
356 * 95:  91.25 mHz - 99: 115.25 mHz
357 *
358 * IF freq: 45.75 mHz
359 */
360#define OFFSET	6.00
361static int irccable[] = {
362	116,    (int)( 45.75 * FREQFACTOR),     0,
363	100,    (int)(649.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
364	95,	(int)( 91.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
365	23,	(int)(217.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
366	14,	(int)(121.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
367	 7,	(int)(175.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
368	 5,	(int)( 77.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
369	 2,	(int)( 55.25 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
370	 0
371};
372#undef OFFSET
373
374/*
375 * North American Cable Channels, HRC:
376 *
377 * 2:   54 mHz  - 4:    66 mHz
378 * 5:   78 mHz  - 6:    84 mHz
379 * 7:  174 mHz  - 13:  210 mHz
380 * 14: 120 mHz  - 22:  168 mHz
381 * 23: 216 mHz  - 94:  642 mHz
382 * 95:  90 mHz  - 99:  114 mHz
383 *
384 * IF freq: 45.75 mHz
385 */
386#define OFFSET  6.00
387static int hrccable[] = {
388	116,    (int)( 45.75 * FREQFACTOR),     0,
389	100,    (int)(648.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
390	95,	(int)( 90.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
391	23,	(int)(216.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
392	14,	(int)(120.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
393	7,	(int)(174.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
394	5,	(int)( 78.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
395	2,	(int)( 54.00 * FREQFACTOR),	(int)(OFFSET * FREQFACTOR),
396	0
397};
398#undef OFFSET
399
400/*
401 * Western European broadcast channels:
402 *
403 * (there are others that appear to vary between countries - rmt)
404 *
405 * here's the table Philips provides:
406 * caution, some of the offsets don't compute...
407 *
408 *  1	 4525	700	N21
409 *
410 *  2	 4825	700	E2
411 *  3	 5525	700	E3
412 *  4	 6225	700	E4
413 *
414 *  5	17525	700	E5
415 *  6	18225	700	E6
416 *  7	18925	700	E7
417 *  8	19625	700	E8
418 *  9	20325	700	E9
419 * 10	21025	700	E10
420 * 11	21725	700	E11
421 * 12	22425	700	E12
422 *
423 * 13	 5375	700	ITA
424 * 14	 6225	700	ITB
425 *
426 * 15	 8225	700	ITC
427 *
428 * 16	17525	700	ITD
429 * 17	18325	700	ITE
430 *
431 * 18	19225	700	ITF
432 * 19	20125	700	ITG
433 * 20	21025	700	ITH
434 *
435 * 21	47125	800	E21
436 * 22	47925	800	E22
437 * 23	48725	800	E23
438 * 24	49525	800	E24
439 * 25	50325	800	E25
440 * 26	51125	800	E26
441 * 27	51925	800	E27
442 * 28	52725	800	E28
443 * 29	53525	800	E29
444 * 30	54325	800	E30
445 * 31	55125	800	E31
446 * 32	55925	800	E32
447 * 33	56725	800	E33
448 * 34	57525	800	E34
449 * 35	58325	800	E35
450 * 36	59125	800	E36
451 * 37	59925	800	E37
452 * 38	60725	800	E38
453 * 39	61525	800	E39
454 * 40	62325	800	E40
455 * 41	63125	800	E41
456 * 42	63925	800	E42
457 * 43	64725	800	E43
458 * 44	65525	800	E44
459 * 45	66325	800	E45
460 * 46	67125	800	E46
461 * 47	67925	800	E47
462 * 48	68725	800	E48
463 * 49	69525	800	E49
464 * 50	70325	800	E50
465 * 51	71125	800	E51
466 * 52	71925	800	E52
467 * 53	72725	800	E53
468 * 54	73525	800	E54
469 * 55	74325	800	E55
470 * 56	75125	800	E56
471 * 57	75925	800	E57
472 * 58	76725	800	E58
473 * 59	77525	800	E59
474 * 60	78325	800	E60
475 * 61	79125	800	E61
476 * 62	79925	800	E62
477 * 63	80725	800	E63
478 * 64	81525	800	E64
479 * 65	82325	800	E65
480 * 66	83125	800	E66
481 * 67	83925	800	E67
482 * 68	84725	800	E68
483 * 69	85525	800	E69
484 *
485 * 70	 4575	800	IA
486 * 71	 5375	800	IB
487 * 72	 6175	800	IC
488 *
489 * 74	 6925	700	S01
490 * 75	 7625	700	S02
491 * 76	 8325	700	S03
492 *
493 * 80	10525	700	S1
494 * 81	11225	700	S2
495 * 82	11925	700	S3
496 * 83	12625	700	S4
497 * 84	13325	700	S5
498 * 85	14025	700	S6
499 * 86	14725	700	S7
500 * 87	15425	700	S8
501 * 88	16125	700	S9
502 * 89	16825	700	S10
503 * 90	23125	700	S11
504 * 91	23825	700	S12
505 * 92	24525	700	S13
506 * 93	25225	700	S14
507 * 94	25925	700	S15
508 * 95	26625	700	S16
509 * 96	27325	700	S17
510 * 97	28025	700	S18
511 * 98	28725	700	S19
512 * 99	29425	700	S20
513 *
514 *
515 * Channels S21 - S41 are taken from
516 * http://gemma.apple.com:80/dev/technotes/tn/tn1012.html
517 *
518 * 100	30325	800	S21
519 * 101	31125	800	S22
520 * 102	31925	800	S23
521 * 103	32725	800	S24
522 * 104	33525	800	S25
523 * 105	34325	800	S26
524 * 106	35125	800	S27
525 * 107	35925	800	S28
526 * 108	36725	800	S29
527 * 109	37525	800	S30
528 * 110	38325	800	S31
529 * 111	39125	800	S32
530 * 112	39925	800	S33
531 * 113	40725	800	S34
532 * 114	41525	800	S35
533 * 115	42325	800	S36
534 * 116	43125	800	S37
535 * 117	43925	800	S38
536 * 118	44725	800	S39
537 * 119	45525	800	S40
538 * 120	46325	800	S41
539 *
540 * 121	 3890	000	IFFREQ
541 *
542 */
543static int weurope[] = {
544       121,     (int)( 38.90 * FREQFACTOR),     0,
545       100,     (int)(303.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
546        90,     (int)(231.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
547        80,     (int)(105.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
548        74,     (int)( 69.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
549        21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
550        17,     (int)(183.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
551        16,     (int)(175.25 * FREQFACTOR),     (int)(9.00 * FREQFACTOR),
552        15,     (int)(82.25 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
553        13,     (int)(53.75 * FREQFACTOR),      (int)(8.50 * FREQFACTOR),
554         5,     (int)(175.25 * FREQFACTOR),     (int)(7.00 * FREQFACTOR),
555         2,     (int)(48.25 * FREQFACTOR),      (int)(7.00 * FREQFACTOR),
556	 0
557};
558
559/*
560 * Japanese Broadcast Channels:
561 *
562 *  1:  91.25MHz -  3: 103.25MHz
563 *  4: 171.25MHz -  7: 189.25MHz
564 *  8: 193.25MHz - 12: 217.25MHz  (VHF)
565 * 13: 471.25MHz - 62: 765.25MHz  (UHF)
566 *
567 * IF freq: 45.75 mHz
568 *  OR
569 * IF freq: 58.75 mHz
570 */
571#define OFFSET  6.00
572#define IF_FREQ 45.75
573static int jpnbcst[] = {
574	62,     (int)(IF_FREQ * FREQFACTOR),    0,
575	13,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
576	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
577	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
578	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
579	 0
580};
581#undef IF_FREQ
582#undef OFFSET
583
584/*
585 * Japanese Cable Channels:
586 *
587 *  1:  91.25MHz -  3: 103.25MHz
588 *  4: 171.25MHz -  7: 189.25MHz
589 *  8: 193.25MHz - 12: 217.25MHz
590 * 13: 109.25MHz - 21: 157.25MHz
591 * 22: 165.25MHz
592 * 23: 223.25MHz - 63: 463.25MHz
593 *
594 * IF freq: 45.75 mHz
595 */
596#define OFFSET  6.00
597#define IF_FREQ 45.75
598static int jpncable[] = {
599	63,     (int)(IF_FREQ * FREQFACTOR),    0,
600	23,     (int)(223.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
601	22,     (int)(165.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
602	13,     (int)(109.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
603	 8,     (int)(193.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
604	 4,     (int)(171.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
605	 1,     (int)( 91.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
606	 0
607};
608#undef IF_FREQ
609#undef OFFSET
610
611/*
612 * xUSSR Broadcast Channels:
613 *
614 *  1:  49.75MHz -  2:  59.25MHz
615 *  3:  77.25MHz -  5:  93.25MHz
616 *  6: 175.25MHz - 12: 223.25MHz
617 * 13-20 - not exist
618 * 21: 471.25MHz - 34: 575.25MHz
619 * 35: 583.25MHz - 69: 855.25MHz
620 *
621 * Cable channels
622 *
623 * 70: 111.25MHz - 77: 167.25MHz
624 * 78: 231.25MHz -107: 463.25MHz
625 *
626 * IF freq: 38.90 MHz
627 */
628#define IF_FREQ 38.90
629static int xussr[] = {
630      107,     (int)(IF_FREQ * FREQFACTOR),    0,
631       78,     (int)(231.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
632       70,     (int)(111.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
633       35,     (int)(583.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
634       21,     (int)(471.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
635        6,     (int)(175.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
636        3,     (int)( 77.25 * FREQFACTOR),     (int)(8.00 * FREQFACTOR),
637        1,     (int)( 49.75 * FREQFACTOR),     (int)(9.50 * FREQFACTOR),
638        0
639};
640#undef IF_FREQ
641
642/*
643 * Australian broadcast channels
644 */
645#define OFFSET	7.00
646#define IF_FREQ 38.90
647static int australia[] = {
648       83,     (int)(IF_FREQ * FREQFACTOR),    0,
649       28,     (int)(527.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
650       10,     (int)(209.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
651        6,     (int)(175.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
652        4,     (int)( 95.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
653        3,     (int)( 86.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
654        1,     (int)( 57.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR),
655        0
656};
657#undef OFFSET
658#undef IF_FREQ
659
660/*
661 * France broadcast channels
662 */
663#define OFFSET 8.00
664#define IF_FREQ 38.90
665static int france[] = {
666        69,     (int)(IF_FREQ * FREQFACTOR),     0,
667        21,     (int)(471.25 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 21 -> 69 */
668         5,     (int)(176.00 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 5 -> 10 */
669         4,     (int)( 63.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 4    */
670         3,     (int)( 60.50 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 3    */
671         1,     (int)( 47.75 * FREQFACTOR),     (int)(OFFSET * FREQFACTOR), /* 1  2 */
672         0
673};
674#undef OFFSET
675#undef IF_FREQ
676
677static struct {
678        int     *ptr;
679        char    name[BT848_MAX_CHNLSET_NAME_LEN];
680} freqTable[] = {
681        {NULL,          ""},
682        {nabcst,        "nabcst"},
683        {irccable,      "cableirc"},
684        {hrccable,      "cablehrc"},
685        {weurope,       "weurope"},
686        {jpnbcst,       "jpnbcst"},
687        {jpncable,      "jpncable"},
688        {xussr,         "xussr"},
689        {australia,     "australia"},
690        {france,        "france"},
691
692};
693
694#define TBL_CHNL	freqTable[ bktr->tuner.chnlset ].ptr[ x ]
695#define TBL_BASE_FREQ	freqTable[ bktr->tuner.chnlset ].ptr[ x + 1 ]
696#define TBL_OFFSET	freqTable[ bktr->tuner.chnlset ].ptr[ x + 2 ]
697static int
698frequency_lookup( bktr_ptr_t bktr, int channel )
699{
700	int	x;
701
702	/* check for "> MAX channel" */
703	x = 0;
704	if ( channel > TBL_CHNL )
705		return( -1 );
706
707	/* search the table for data */
708	for ( x = 3; TBL_CHNL; x += 3 ) {
709		if ( channel >= TBL_CHNL ) {
710			return( TBL_BASE_FREQ +
711				 ((channel - TBL_CHNL) * TBL_OFFSET) );
712		}
713	}
714
715	/* not found, must be below the MIN channel */
716	return( -1 );
717}
718#undef TBL_OFFSET
719#undef TBL_BASE_FREQ
720#undef TBL_CHNL
721
722
723#define	TBL_IF	(bktr->format_params == BT848_IFORM_F_NTSCJ || \
724                 bktr->format_params == BT848_IFORM_F_NTSCM ? \
725                 nabcst[1] : weurope[1])
726
727
728/* Initialise the tuner structures in the bktr_softc */
729/* This is needed as the tuner details are no longer globally declared */
730
731void    select_tuner( bktr_ptr_t bktr, int tuner_type ) {
732	if (tuner_type < Bt848_MAX_TUNER) {
733		bktr->card.tuner = &tuners[ tuner_type ];
734	} else {
735		bktr->card.tuner = NULL;
736	}
737}
738
739/*
740 * Tuner Notes:
741 * Programming the tuner properly is quite complicated.
742 * Here are some notes, based on a FM1246 data sheet for a PAL-I tuner.
743 * The tuner (front end) covers 45.75 Mhz - 855.25 Mhz and an FM band of
744 * 87.5 Mhz to 108.0 Mhz.
745 *
746 * RF and IF.  RF = radio frequencies, it is the transmitted signal.
747 *             IF is the Intermediate Frequency (the offset from the base
748 *             signal where the video, color,  audio and NICAM signals are.
749 *
750 * Eg, Picture at 38.9 Mhz, Colour at 34.47 MHz, sound at 32.9 MHz
751 * NICAM at 32.348 Mhz.
752 * Strangely enough, there is an IF (intermediate frequency) for
753 * FM Radio which is 10.7 Mhz.
754 *
755 * The tuner also works in Bands. Philips bands are
756 * FM radio band 87.50 to 108.00 MHz
757 * Low band 45.75 to 170.00 MHz
758 * Mid band 170.00 to 450.00 MHz
759 * High band 450.00 to 855.25 MHz
760 *
761 *
762 * Now we need to set the PLL on the tuner to the required freuqncy.
763 * It has a programmable divisor.
764 * For TV we want
765 *  N = 16 (freq RF(pc) + freq IF(pc))  pc is picture carrier and RF and IF
766 *  are in MHz.
767
768 * For RADIO we want a different equation.
769 *  freq IF is 10.70 MHz (so the data sheet tells me)
770 * N = (freq RF + freq IF) / step size
771 * The step size must be set to 50 khz (so the data sheet tells me)
772 * (note this is 50 kHz, the other things are in MHz)
773 * so we end up with N = 20x(freq RF + 10.7)
774 *
775 */
776
777#define LOW_BAND 0
778#define MID_BAND 1
779#define HIGH_BAND 2
780#define FM_RADIO_BAND 3
781
782
783/* Check if these are correct for other than Philips PAL */
784#define STATUSBIT_COLD   0x80
785#define STATUSBIT_LOCK   0x40
786#define STATUSBIT_TV     0x20
787#define STATUSBIT_STEREO 0x10 /* valid if FM (aka not TV) */
788#define STATUSBIT_ADC    0x07
789
790/*
791 * set the frequency of the tuner
792 * If 'type' is TV_FREQUENCY, the frequency is freq MHz*16
793 * If 'type' is FM_RADIO_FREQUENCY, the frequency is freq MHz * 100
794 * (note *16 gives is 4 bits of fraction, eg steps of nnn.0625)
795 *
796 */
797int
798tv_freq( bktr_ptr_t bktr, int frequency, int type )
799{
800	const struct TUNER*	tuner;
801	u_char			addr;
802	u_char			control;
803	u_char			band;
804	int			N;
805	int			band_select = 0;
806#if defined( TEST_TUNER_AFC )
807	int			oldFrequency, afcDelta;
808#endif
809
810	tuner = bktr->card.tuner;
811	if ( tuner == NULL )
812		return( -1 );
813
814	if (tuner == &tuners[TUNER_MT2032]) {
815		mt2032_set_tv_freq(bktr, frequency);
816		return 0;
817	}
818	if (type == TV_FREQUENCY) {
819		/*
820		 * select the band based on frequency
821		 * XXX FIXME: get the cross-over points from the tuner struct
822		 */
823		if ( frequency < (160 * FREQFACTOR  ) )
824		    band_select = LOW_BAND;
825		else if ( frequency < (454 * FREQFACTOR ) )
826		    band_select = MID_BAND;
827		else
828		    band_select = HIGH_BAND;
829
830#if defined( TEST_TUNER_AFC )
831		if ( bktr->tuner.afc )
832			frequency -= 4;
833#endif
834		/*
835		 * N = 16 * { fRF(pc) + fIF(pc) }
836		 * or N = 16* fRF(pc) + 16*fIF(pc) }
837		 * where:
838		 *  pc is picture carrier, fRF & fIF are in MHz
839		 *
840		 * fortunatly, frequency is passed in as MHz * 16
841		 * and the TBL_IF frequency is also stored in MHz * 16
842		 */
843		N = frequency + TBL_IF;
844
845		/* set the address of the PLL */
846		addr    = bktr->card.tuner_pllAddr;
847		control = tuner->pllControl[ band_select ];
848		band    = tuner->bandAddrs[ band_select ];
849
850		if(!(band && control))		/* Don't try to set un-	*/
851		  return(-1);			/* supported modes.	*/
852
853		if ( frequency > bktr->tuner.frequency ) {
854			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
855			i2cWrite( bktr, addr, control, band );
856	        }
857	        else {
858			i2cWrite( bktr, addr, control, band );
859			i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
860       		}
861
862#if defined( TUNER_AFC )
863		if ( bktr->tuner.afc == TRUE ) {
864#if defined( TEST_TUNER_AFC )
865			oldFrequency = frequency;
866#endif
867			if ( (N = do_afc( bktr, addr, N )) < 0 ) {
868			    /* AFC failed, restore requested frequency */
869			    N = frequency + TBL_IF;
870#if defined( TEST_TUNER_AFC )
871			    printf("%s: do_afc: failed to lock\n",
872				   bktr_name(bktr));
873#endif
874			    i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
875			}
876			else
877			    frequency = N - TBL_IF;
878#if defined( TEST_TUNER_AFC )
879 printf("%s: do_afc: returned freq %d (%d %% %d)\n", bktr_name(bktr), frequency, frequency / 16, frequency % 16);
880			    afcDelta = frequency - oldFrequency;
881 printf("%s: changed by: %d clicks (%d mod %d)\n", bktr_name(bktr), afcDelta, afcDelta / 16, afcDelta % 16);
882#endif
883			}
884#endif /* TUNER_AFC */
885
886		bktr->tuner.frequency = frequency;
887	}
888
889	if ( type == FM_RADIO_FREQUENCY ) {
890		band_select = FM_RADIO_BAND;
891
892		/*
893		 * N = { fRF(pc) + fIF(pc) }/step_size
894                 * The step size is 50kHz for FM radio.
895		 * (eg after 102.35MHz comes 102.40 MHz)
896		 * fIF is 10.7 MHz (as detailed in the specs)
897		 *
898		 * frequency is passed in as MHz * 100
899		 *
900		 * So, we have N = (frequency/100 + 10.70)  /(50/1000)
901		 */
902		N = (frequency + 1070)/5;
903
904		/* set the address of the PLL */
905		addr    = bktr->card.tuner_pllAddr;
906		control = tuner->pllControl[ band_select ];
907		band    = tuner->bandAddrs[ band_select ];
908
909		if(!(band && control))		/* Don't try to set un-	*/
910		  return(-1);			/* supported modes.	*/
911
912		band |= bktr->tuner.radio_mode; /* tuner.radio_mode is set in
913						 * the ioctls RADIO_SETMODE
914						 * and RADIO_GETMODE */
915
916		i2cWrite( bktr, addr, control, band );
917		i2cWrite( bktr, addr, (N>>8) & 0x7f, N & 0xff );
918
919		bktr->tuner.frequency = (N * 5) - 1070;
920
921
922	}
923
924
925	return( 0 );
926}
927
928
929
930#if defined( TUNER_AFC )
931/*
932 *
933 */
934int
935do_afc( bktr_ptr_t bktr, int addr, int frequency )
936{
937	int step;
938	int status;
939	int origFrequency;
940
941	origFrequency = frequency;
942
943	/* wait for first setting to take effect */
944	tsleep( BKTR_SLEEP, PZERO, "tuning", hz/8 );
945
946	if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
947		return( -1 );
948
949#if defined( TEST_TUNER_AFC )
950 printf( "%s: Original freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
951#endif
952	for ( step = 0; step < AFC_MAX_STEP; ++step ) {
953		if ( (status = i2cRead( bktr, addr + 1 )) < 0 )
954			goto fubar;
955		if ( !(status & 0x40) ) {
956#if defined( TEST_TUNER_AFC )
957 printf( "%s: no lock!\n", bktr_name(bktr) );
958#endif
959			goto fubar;
960		}
961
962		switch( status & AFC_BITS ) {
963		case AFC_FREQ_CENTERED:
964#if defined( TEST_TUNER_AFC )
965 printf( "%s: Centered, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
966#endif
967			return( frequency );
968
969		case AFC_FREQ_MINUS_125:
970		case AFC_FREQ_MINUS_62:
971#if defined( TEST_TUNER_AFC )
972 printf( "%s: Low, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
973#endif
974			--frequency;
975			break;
976
977		case AFC_FREQ_PLUS_62:
978		case AFC_FREQ_PLUS_125:
979#if defined( TEST_TUNER_AFC )
980 printf( "%s: Hi, freq: %d, status: 0x%02x\n", bktr_name(bktr), frequency, status );
981#endif
982			++frequency;
983			break;
984		}
985
986		i2cWrite( bktr, addr,
987			  (frequency>>8) & 0x7f, frequency & 0xff );
988		DELAY( AFC_DELAY );
989	}
990
991 fubar:
992	i2cWrite( bktr, addr,
993		  (origFrequency>>8) & 0x7f, origFrequency & 0xff );
994
995	return( -1 );
996}
997#endif /* TUNER_AFC */
998#undef TBL_IF
999
1000
1001/*
1002 * Get the Tuner status and signal strength
1003 */
1004int     get_tuner_status( bktr_ptr_t bktr ) {
1005	if (bktr->card.tuner == &tuners[TUNER_MT2032])
1006		return 0;
1007	return i2cRead( bktr, bktr->card.tuner_pllAddr + 1 );
1008}
1009
1010/*
1011 * set the channel of the tuner
1012 */
1013int
1014tv_channel( bktr_ptr_t bktr, int channel )
1015{
1016	int frequency;
1017
1018	/* calculate the frequency according to tuner type */
1019	if ( (frequency = frequency_lookup( bktr, channel )) < 0 )
1020		return( -1 );
1021
1022	/* set the new frequency */
1023	if ( tv_freq( bktr, frequency, TV_FREQUENCY ) < 0 )
1024		return( -1 );
1025
1026	/* OK to update records */
1027	return( (bktr->tuner.channel = channel) );
1028}
1029
1030/*
1031 * get channelset name
1032 */
1033int
1034tuner_getchnlset(struct bktr_chnlset *chnlset)
1035{
1036       if (( chnlset->index < CHNLSET_MIN ) ||
1037               ( chnlset->index > CHNLSET_MAX ))
1038                       return( EINVAL );
1039
1040       memcpy(&chnlset->name, &freqTable[chnlset->index].name,
1041               BT848_MAX_CHNLSET_NAME_LEN);
1042
1043       chnlset->max_channel=freqTable[chnlset->index].ptr[0];
1044       return( 0 );
1045}
1046
1047
1048
1049
1050#define	TDA9887_ADDR	0x86
1051
1052static int
1053TDA9887_init(bktr_ptr_t bktr, int output2_enable)
1054{
1055	u_char addr = TDA9887_ADDR;
1056
1057	i2cWrite(bktr, addr, 0, output2_enable ? 0x50 : 0xd0);
1058	i2cWrite(bktr, addr, 1, 0x6e); /* takeover point / de-emphasis */
1059
1060	/* PAL BG: 0x09  PAL I: 0x0a  NTSC: 0x04 */
1061#ifdef MT2032_NTSC
1062	i2cWrite(bktr, addr, 2, 0x04);
1063#else
1064	i2cWrite(bktr, addr, 2, 0x09);
1065#endif
1066	return 0;
1067}
1068
1069
1070
1071#define MT2032_OPTIMIZE_VCO	 1
1072
1073/* holds the value of XOGC register after init */
1074static int      MT2032_XOGC = 4;
1075
1076/* card.tuner_pllAddr not set during init */
1077#define	MT2032_ADDR		0xc0
1078
1079#ifndef MT2032_ADDR
1080#define	MT2032_ADDR		(bktr->card.tuner_pllAddr)
1081#endif
1082
1083static int
1084_MT2032_GetRegister(bktr_ptr_t bktr, u_char regNum)
1085{
1086	int		ch;
1087
1088	if (i2cWrite(bktr, MT2032_ADDR, regNum, -1) == -1) {
1089		if (bootverbose)
1090			printf("%s: MT2032 write failed (i2c addr %#x)\n",
1091				bktr_name(bktr), MT2032_ADDR);
1092		return -1;
1093	}
1094	if ((ch = i2cRead(bktr, MT2032_ADDR + 1)) == -1) {
1095		if (bootverbose)
1096			printf("%s: MT2032 get register %d failed\n",
1097				bktr_name(bktr), regNum);
1098		return -1;
1099	}
1100	return ch;
1101}
1102
1103static void
1104_MT2032_SetRegister(bktr_ptr_t bktr, u_char regNum, u_char data)
1105{
1106	i2cWrite(bktr, MT2032_ADDR, regNum, data);
1107}
1108
1109#define	MT2032_GetRegister(r)		_MT2032_GetRegister(bktr,r)
1110#define	MT2032_SetRegister(r,d)		_MT2032_SetRegister(bktr,r,d)
1111
1112
1113int
1114mt2032_init(bktr_ptr_t bktr)
1115{
1116	u_char            rdbuf[22];
1117	int             xogc, xok = 0;
1118	int             i;
1119	int		x;
1120
1121	TDA9887_init(bktr, 0);
1122
1123	for (i = 0; i < 21; i++) {
1124		if ((x = MT2032_GetRegister(i)) == -1)
1125			break;
1126		rdbuf[i] = x;
1127	}
1128	if (i < 21)
1129		return -1;
1130
1131	printf("%s: MT2032: Companycode=%02x%02x Part=%02x Revision=%02x\n",
1132		bktr_name(bktr),
1133		rdbuf[0x11], rdbuf[0x12], rdbuf[0x13], rdbuf[0x14]);
1134	if (rdbuf[0x13] != 4) {
1135		printf("%s: MT2032 not found or unknown type\n", bktr_name(bktr));
1136		return -1;
1137	}
1138
1139	/* Initialize Registers per spec. */
1140	MT2032_SetRegister(2, 0xff);
1141	MT2032_SetRegister(3, 0x0f);
1142	MT2032_SetRegister(4, 0x1f);
1143	MT2032_SetRegister(6, 0xe4);
1144	MT2032_SetRegister(7, 0x8f);
1145	MT2032_SetRegister(8, 0xc3);
1146	MT2032_SetRegister(9, 0x4e);
1147	MT2032_SetRegister(10, 0xec);
1148	MT2032_SetRegister(13, 0x32);
1149
1150	/* Adjust XOGC (register 7), wait for XOK */
1151	xogc = 7;
1152	do {
1153		DELAY(10000);
1154		xok = MT2032_GetRegister(0x0e) & 0x01;
1155		if (xok == 1) {
1156			break;
1157		}
1158		xogc--;
1159		if (xogc == 3) {
1160			xogc = 4;	/* min. 4 per spec */
1161			break;
1162		}
1163		MT2032_SetRegister(7, 0x88 + xogc);
1164	} while (xok != 1);
1165
1166	TDA9887_init(bktr, 1);
1167
1168	MT2032_XOGC = xogc;
1169
1170	return 0;
1171}
1172
1173static int
1174MT2032_SpurCheck(int f1, int f2, int spectrum_from, int spectrum_to)
1175{
1176	int             n1 = 1, n2, f;
1177
1178	f1 = f1 / 1000;		/* scale to kHz to avoid 32bit overflows */
1179	f2 = f2 / 1000;
1180	spectrum_from /= 1000;
1181	spectrum_to /= 1000;
1182
1183	do {
1184		n2 = -n1;
1185		f = n1 * (f1 - f2);
1186		do {
1187			n2--;
1188			f = f - f2;
1189			if ((f > spectrum_from) && (f < spectrum_to)) {
1190				return 1;
1191			}
1192		} while ((f > (f2 - spectrum_to)) || (n2 > -5));
1193		n1++;
1194	} while (n1 < 5);
1195
1196	return 0;
1197}
1198
1199static int
1200MT2032_ComputeFreq(
1201		   int rfin,
1202		   int if1,
1203		   int if2,
1204		   int spectrum_from,
1205		   int spectrum_to,
1206		   unsigned char *buf,
1207		   int *ret_sel,
1208		   int xogc
1209)
1210{				/* all in Hz */
1211	int             fref, lo1, lo1n, lo1a, s, sel;
1212	int             lo1freq, desired_lo1, desired_lo2, lo2, lo2n, lo2a,
1213	                lo2num, lo2freq;
1214	int             nLO1adjust;
1215
1216	fref = 5250 * 1000;	/* 5.25MHz */
1217
1218	/* per spec 2.3.1 */
1219	desired_lo1 = rfin + if1;
1220	lo1 = (2 * (desired_lo1 / 1000) + (fref / 1000)) / (2 * fref / 1000);
1221	lo1freq = lo1 * fref;
1222	desired_lo2 = lo1freq - rfin - if2;
1223
1224	/* per spec 2.3.2 */
1225	for (nLO1adjust = 1; nLO1adjust < 3; nLO1adjust++) {
1226		if (!MT2032_SpurCheck(lo1freq, desired_lo2, spectrum_from, spectrum_to)) {
1227			break;
1228		}
1229		if (lo1freq < desired_lo1) {
1230			lo1 += nLO1adjust;
1231		} else {
1232			lo1 -= nLO1adjust;
1233		}
1234
1235		lo1freq = lo1 * fref;
1236		desired_lo2 = lo1freq - rfin - if2;
1237	}
1238
1239	/* per spec 2.3.3 */
1240	s = lo1freq / 1000 / 1000;
1241
1242	if (MT2032_OPTIMIZE_VCO) {
1243		if (s > 1890) {
1244			sel = 0;
1245		} else if (s > 1720) {
1246			sel = 1;
1247		} else if (s > 1530) {
1248			sel = 2;
1249		} else if (s > 1370) {
1250			sel = 3;
1251		} else {
1252			sel = 4;/* >1090 */
1253		}
1254	} else {
1255		if (s > 1790) {
1256			sel = 0;/* <1958 */
1257		} else if (s > 1617) {
1258			sel = 1;
1259		} else if (s > 1449) {
1260			sel = 2;
1261		} else if (s > 1291) {
1262			sel = 3;
1263		} else {
1264			sel = 4;/* >1090 */
1265		}
1266	}
1267
1268	*ret_sel = sel;
1269
1270	/* per spec 2.3.4 */
1271	lo1n = lo1 / 8;
1272	lo1a = lo1 - (lo1n * 8);
1273	lo2 = desired_lo2 / fref;
1274	lo2n = lo2 / 8;
1275	lo2a = lo2 - (lo2n * 8);
1276	/* scale to fit in 32bit arith */
1277	lo2num = ((desired_lo2 / 1000) % (fref / 1000)) * 3780 / (fref / 1000);
1278	lo2freq = (lo2a + 8 * lo2n) * fref + lo2num * (fref / 1000) / 3780 * 1000;
1279
1280	if (lo1a < 0 || lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a < 0 ||
1281	    lo2a > 7 || lo2n < 17 || lo2n > 30) {
1282		printf("MT2032: parameter out of range\n");
1283		return -1;
1284	}
1285	/* set up MT2032 register map for transfer over i2c */
1286	buf[0] = lo1n - 1;
1287	buf[1] = lo1a | (sel << 4);
1288	buf[2] = 0x86;		/* LOGC */
1289	buf[3] = 0x0f;		/* reserved */
1290	buf[4] = 0x1f;
1291	buf[5] = (lo2n - 1) | (lo2a << 5);
1292	if (rfin < 400 * 1000 * 1000) {
1293		buf[6] = 0xe4;
1294	} else {
1295		buf[6] = 0xf4;	/* set PKEN per rev 1.2 */
1296	}
1297
1298	buf[7] = 8 + xogc;
1299	buf[8] = 0xc3;		/* reserved */
1300	buf[9] = 0x4e;		/* reserved */
1301	buf[10] = 0xec;		/* reserved */
1302	buf[11] = (lo2num & 0xff);
1303	buf[12] = (lo2num >> 8) | 0x80;	/* Lo2RST */
1304
1305	return 0;
1306}
1307
1308static int
1309MT2032_CheckLOLock(bktr_ptr_t bktr)
1310{
1311	int             t, lock = 0;
1312	for (t = 0; t < 10; t++) {
1313		lock = MT2032_GetRegister(0x0e) & 0x06;
1314		if (lock == 6) {
1315			break;
1316		}
1317		DELAY(1000);
1318	}
1319	return lock;
1320}
1321
1322static int
1323MT2032_OptimizeVCO(bktr_ptr_t bktr, int sel, int lock)
1324{
1325	int             tad1, lo1a;
1326
1327	tad1 = MT2032_GetRegister(0x0f) & 0x07;
1328
1329	if (tad1 == 0) {
1330		return lock;
1331	}
1332	if (tad1 == 1) {
1333		return lock;
1334	}
1335	if (tad1 == 2) {
1336		if (sel == 0) {
1337			return lock;
1338		} else {
1339			sel--;
1340		}
1341	} else {
1342		if (sel < 4) {
1343			sel++;
1344		} else {
1345			return lock;
1346		}
1347	}
1348	lo1a = MT2032_GetRegister(0x01) & 0x07;
1349	MT2032_SetRegister(0x01, lo1a | (sel << 4));
1350	lock = MT2032_CheckLOLock(bktr);
1351	return lock;
1352}
1353
1354static int
1355MT2032_SetIFFreq(bktr_ptr_t bktr, int rfin, int if1, int if2, int from, int to)
1356{
1357	u_char          buf[21];
1358	int             lint_try, sel, lock = 0;
1359
1360	if (MT2032_ComputeFreq(rfin, if1, if2, from, to, &buf[0], &sel, MT2032_XOGC) == -1)
1361		return -1;
1362
1363	TDA9887_init(bktr, 0);
1364
1365	/* send only the relevant registers per Rev. 1.2 */
1366	MT2032_SetRegister(0, buf[0x00]);
1367	MT2032_SetRegister(1, buf[0x01]);
1368	MT2032_SetRegister(2, buf[0x02]);
1369
1370	MT2032_SetRegister(5, buf[0x05]);
1371	MT2032_SetRegister(6, buf[0x06]);
1372	MT2032_SetRegister(7, buf[0x07]);
1373
1374	MT2032_SetRegister(11, buf[0x0B]);
1375	MT2032_SetRegister(12, buf[0x0C]);
1376
1377	/* wait for PLLs to lock (per manual), retry LINT if not. */
1378	for (lint_try = 0; lint_try < 2; lint_try++) {
1379		lock = MT2032_CheckLOLock(bktr);
1380
1381		if (MT2032_OPTIMIZE_VCO) {
1382			lock = MT2032_OptimizeVCO(bktr, sel, lock);
1383		}
1384		if (lock == 6) {
1385			break;
1386		}
1387		/* set LINT to re-init PLLs */
1388		MT2032_SetRegister(7, 0x80 + 8 + MT2032_XOGC);
1389		DELAY(10000);
1390		MT2032_SetRegister(7, 8 + MT2032_XOGC);
1391	}
1392	if (lock != 6)
1393		printf("%s: PLL didn't lock\n", bktr_name(bktr));
1394
1395	MT2032_SetRegister(2, 0x20);
1396
1397	TDA9887_init(bktr, 1);
1398	return 0;
1399}
1400
1401static void
1402mt2032_set_tv_freq(bktr_ptr_t bktr, unsigned int freq)
1403{
1404	int if2,from,to;
1405	int stat, tad;
1406
1407#ifdef MT2032_NTSC
1408	from=40750*1000;
1409	to=46750*1000;
1410	if2=45750*1000;
1411#else
1412	from=32900*1000;
1413	to=39900*1000;
1414	if2=38900*1000;
1415#endif
1416
1417	if (MT2032_SetIFFreq(bktr, freq*62500 /* freq*1000*1000/16 */,
1418			1090*1000*1000, if2, from, to) == 0) {
1419		bktr->tuner.frequency = freq;
1420		stat = MT2032_GetRegister(0x0e);
1421		tad = MT2032_GetRegister(0x0f);
1422		if (bootverbose)
1423			printf("%s: frequency set to %d, st = %#x, tad = %#x\n",
1424				bktr_name(bktr), freq*62500, stat, tad);
1425	}
1426}
1427