1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5212/ar5212.h"
25#include "ar5212/ar5212reg.h"
26#include "ar5212/ar5212phy.h"
27
28#include "ah_eeprom_v3.h"
29
30#define AH_5212_2413
31#include "ar5212/ar5212.ini"
32
33#define	N(a)	(sizeof(a)/sizeof(a[0]))
34
35struct ar2413State {
36	RF_HAL_FUNCS	base;		/* public state, must be first */
37	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38
39	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
40	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
41	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
42	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
43	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
44
45	/*
46	 * Private state for reduced stack usage.
47	 */
48	/* filled out Vpd table for all pdGains (chanL) */
49	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50			    [MAX_PWR_RANGE_IN_HALF_DB];
51	/* filled out Vpd table for all pdGains (chanR) */
52	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53			    [MAX_PWR_RANGE_IN_HALF_DB];
54	/* filled out Vpd table for all pdGains (interpolated) */
55	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56			    [MAX_PWR_RANGE_IN_HALF_DB];
57};
58#define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61		uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63static void
64ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65	int writes)
66{
67	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70}
71
72/*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77static HAL_BOOL
78ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79{
80	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81	uint32_t channelSel  = 0;
82	uint32_t bModeSynth  = 0;
83	uint32_t aModeRefSel = 0;
84	uint32_t reg32       = 0;
85
86	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88	if (freq < 4800) {
89		uint32_t txctl;
90
91		if (((freq - 2192) % 5) == 0) {
92			channelSel = ((freq - 672) * 2 - 3040)/10;
93			bModeSynth = 0;
94		} else if (((freq - 2224) % 5) == 0) {
95			channelSel = ((freq - 704) * 2 - 3040) / 10;
96			bModeSynth = 1;
97		} else {
98			HALDEBUG(ah, HAL_DEBUG_ANY,
99			    "%s: invalid channel %u MHz\n",
100			    __func__, freq);
101			return AH_FALSE;
102		}
103
104		channelSel = (channelSel << 2) & 0xff;
105		channelSel = ath_hal_reverseBits(channelSel, 8);
106
107		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108		if (freq == 2484) {
109			/* Enable channel spreading for channel 14 */
110			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112		} else {
113			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115		}
116	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117		freq = freq - 2; /* Align to even 5MHz raster */
118		channelSel = ath_hal_reverseBits(
119			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120            	aModeRefSel = ath_hal_reverseBits(0, 2);
121	} else if ((freq % 20) == 0 && freq >= 5120) {
122		channelSel = ath_hal_reverseBits(
123			((freq - 4800) / 20 << 2), 8);
124		aModeRefSel = ath_hal_reverseBits(3, 2);
125	} else if ((freq % 10) == 0) {
126		channelSel = ath_hal_reverseBits(
127			((freq - 4800) / 10 << 1), 8);
128		aModeRefSel = ath_hal_reverseBits(2, 2);
129	} else if ((freq % 5) == 0) {
130		channelSel = ath_hal_reverseBits(
131			(freq - 4800) / 5, 8);
132		aModeRefSel = ath_hal_reverseBits(1, 2);
133	} else {
134		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135		    __func__, freq);
136		return AH_FALSE;
137	}
138
139	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140			(1 << 12) | 0x1;
141	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143	reg32 >>= 8;
144	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146	AH_PRIVATE(ah)->ah_curchan = chan;
147
148	return AH_TRUE;
149}
150
151/*
152 * Reads EEPROM header info from device structure and programs
153 * all rf registers
154 *
155 * REQUIRES: Access to the analog rf device
156 */
157static HAL_BOOL
158ar2413SetRfRegs(struct ath_hal *ah,
159	const struct ieee80211_channel *chan,
160	uint16_t modesIndex, uint16_t *rfXpdGain)
161{
162#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
163	int i;								    \
164	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
165		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
166} while (0)
167	struct ath_hal_5212 *ahp = AH5212(ah);
168	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169	uint16_t ob2GHz = 0, db2GHz = 0;
170	struct ar2413State *priv = AR2413(ah);
171	int regWrites = 0;
172
173	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
174	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
175
176	HALASSERT(priv);
177
178	/* Setup rf parameters */
179	if (IEEE80211_IS_CHAN_B(chan)) {
180		ob2GHz = ee->ee_obFor24;
181		db2GHz = ee->ee_dbFor24;
182	} else {
183		ob2GHz = ee->ee_obFor24g;
184		db2GHz = ee->ee_dbFor24g;
185	}
186
187	/* Bank 1 Write */
188	RF_BANK_SETUP(priv, 1, 1);
189
190	/* Bank 2 Write */
191	RF_BANK_SETUP(priv, 2, modesIndex);
192
193	/* Bank 3 Write */
194	RF_BANK_SETUP(priv, 3, modesIndex);
195
196	/* Bank 6 Write */
197	RF_BANK_SETUP(priv, 6, modesIndex);
198
199	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
200	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
201
202	/* Bank 7 Setup */
203	RF_BANK_SETUP(priv, 7, modesIndex);
204
205	/* Write Analog registers */
206	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
207	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
208	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
209	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
210	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
211
212	/* Now that we have reprogrammed rfgain value, clear the flag. */
213	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215	return AH_TRUE;
216#undef	RF_BANK_SETUP
217}
218
219/*
220 * Return a reference to the requested RF Bank.
221 */
222static uint32_t *
223ar2413GetRfBank(struct ath_hal *ah, int bank)
224{
225	struct ar2413State *priv = AR2413(ah);
226
227	HALASSERT(priv != AH_NULL);
228	switch (bank) {
229	case 1: return priv->Bank1Data;
230	case 2: return priv->Bank2Data;
231	case 3: return priv->Bank3Data;
232	case 6: return priv->Bank6Data;
233	case 7: return priv->Bank7Data;
234	}
235	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
236	    __func__, bank);
237	return AH_NULL;
238}
239
240/*
241 * Return indices surrounding the value in sorted integer lists.
242 *
243 * NB: the input list is assumed to be sorted in ascending order
244 */
245static void
246GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
247                          uint32_t *vlo, uint32_t *vhi)
248{
249	int16_t target = v;
250	const uint16_t *ep = lp+listSize;
251	const uint16_t *tp;
252
253	/*
254	 * Check first and last elements for out-of-bounds conditions.
255	 */
256	if (target < lp[0]) {
257		*vlo = *vhi = 0;
258		return;
259	}
260	if (target >= ep[-1]) {
261		*vlo = *vhi = listSize - 1;
262		return;
263	}
264
265	/* look for value being near or between 2 values in list */
266	for (tp = lp; tp < ep; tp++) {
267		/*
268		 * If value is close to the current value of the list
269		 * then target is not between values, it is one of the values
270		 */
271		if (*tp == target) {
272			*vlo = *vhi = tp - (const uint16_t *) lp;
273			return;
274		}
275		/*
276		 * Look for value being between current value and next value
277		 * if so return these 2 values
278		 */
279		if (target < tp[1]) {
280			*vlo = tp - (const uint16_t *) lp;
281			*vhi = *vlo + 1;
282			return;
283		}
284	}
285}
286
287/*
288 * Fill the Vpdlist for indices Pmax-Pmin
289 */
290static HAL_BOOL
291ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
292		   const int16_t *pwrList, const uint16_t *VpdList,
293		   uint16_t numIntercepts, uint16_t retVpdList[][64])
294{
295	uint16_t ii, jj, kk;
296	int16_t currPwr = (int16_t)(2*Pmin);
297	/* since Pmin is pwr*2 and pwrList is 4*pwr */
298	uint32_t  idxL, idxR;
299
300	ii = 0;
301	jj = 0;
302
303	if (numIntercepts < 2)
304		return AH_FALSE;
305
306	while (ii <= (uint16_t)(Pmax - Pmin)) {
307		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
308				   numIntercepts, &(idxL), &(idxR));
309		if (idxR < 1)
310			idxR = 1;			/* extrapolate below */
311		if (idxL == (uint32_t)(numIntercepts - 1))
312			idxL = numIntercepts - 2;	/* extrapolate above */
313		if (pwrList[idxL] == pwrList[idxR])
314			kk = VpdList[idxL];
315		else
316			kk = (uint16_t)
317				(((currPwr - pwrList[idxL])*VpdList[idxR]+
318				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
319				 (pwrList[idxR] - pwrList[idxL]));
320		retVpdList[pdGainIdx][ii] = kk;
321		ii++;
322		currPwr += 2;				/* half dB steps */
323	}
324
325	return AH_TRUE;
326}
327
328/*
329 * Returns interpolated or the scaled up interpolated value
330 */
331static int16_t
332interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
333	int16_t targetLeft, int16_t targetRight)
334{
335	int16_t rv;
336
337	if (srcRight != srcLeft) {
338		rv = ((target - srcLeft)*targetRight +
339		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
340	} else {
341		rv = targetLeft;
342	}
343	return rv;
344}
345
346/*
347 * Uses the data points read from EEPROM to reconstruct the pdadc power table
348 * Called by ar2413SetPowerTable()
349 */
350static int
351ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
352		const RAW_DATA_STRUCT_2413 *pRawDataset,
353		uint16_t pdGainOverlap_t2,
354		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
355		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
356{
357	struct ar2413State *priv = AR2413(ah);
358#define	VpdTable_L	priv->vpdTable_L
359#define	VpdTable_R	priv->vpdTable_R
360#define	VpdTable_I	priv->vpdTable_I
361	uint32_t ii, jj, kk;
362	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
363	uint32_t idxL, idxR;
364	uint32_t numPdGainsUsed = 0;
365	/*
366	 * If desired to support -ve power levels in future, just
367	 * change pwr_I_0 to signed 5-bits.
368	 */
369	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
370	/* to accomodate -ve power levels later on. */
371	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372	/* to accomodate -ve power levels later on */
373	uint16_t numVpd = 0;
374	uint16_t Vpd_step;
375	int16_t tmpVal ;
376	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
377
378	/* Get upper lower index */
379	GetLowerUpperIndex(channel, pRawDataset->pChannels,
380				 pRawDataset->numChannels, &(idxL), &(idxR));
381
382	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
383		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
384		/* work backwards 'cause highest pdGain for lowest power */
385		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
386		if (numVpd > 0) {
387			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
388			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
389			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
390				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
391			}
392			Pmin_t2[numPdGainsUsed] = (int16_t)
393				(Pmin_t2[numPdGainsUsed] / 2);
394			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
395			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
396				Pmax_t2[numPdGainsUsed] =
397					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
398			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
399			ar2413FillVpdTable(
400					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
401					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
402					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
403					   );
404			ar2413FillVpdTable(
405					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
406					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
407					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
408					   );
409			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
410				VpdTable_I[numPdGainsUsed][kk] =
411					interpolate_signed(
412							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
413							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
414			}
415			/* fill VpdTable_I for this pdGain */
416			numPdGainsUsed++;
417		}
418		/* if this pdGain is used */
419	}
420
421	*pMinCalPower = Pmin_t2[0];
422	kk = 0; /* index for the final table */
423	for (ii = 0; ii < numPdGainsUsed; ii++) {
424		if (ii == (numPdGainsUsed - 1))
425			pPdGainBoundaries[ii] = Pmax_t2[ii] +
426				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
427		else
428			pPdGainBoundaries[ii] = (uint16_t)
429				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
430		if (pPdGainBoundaries[ii] > 63) {
431			HALDEBUG(ah, HAL_DEBUG_ANY,
432			    "%s: clamp pPdGainBoundaries[%d] %d\n",
433			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
434			pPdGainBoundaries[ii] = 63;
435		}
436
437		/* Find starting index for this pdGain */
438		if (ii == 0)
439			ss = 0; /* for the first pdGain, start from index 0 */
440		else
441			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
442				pdGainOverlap_t2;
443		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
444		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
445		/*
446		 *-ve ss indicates need to extrapolate data below for this pdGain
447		 */
448		while (ss < 0) {
449			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
450			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
451			ss++;
452		}
453
454		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
455		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
456		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
457
458		while (ss < (int16_t)maxIndex)
459			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
460
461		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
462				       VpdTable_I[ii][sizeCurrVpdTable-2]);
463		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
464		/*
465		 * for last gain, pdGainBoundary == Pmax_t2, so will
466		 * have to extrapolate
467		 */
468		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
469			while(ss < (int16_t)tgtIndex) {
470				tmpVal = (uint16_t)
471					(VpdTable_I[ii][sizeCurrVpdTable-1] +
472					 (ss-maxIndex)*Vpd_step);
473				pPDADCValues[kk++] = (tmpVal > 127) ?
474					127 : tmpVal;
475				ss++;
476			}
477		}				/* extrapolated above */
478	}					/* for all pdGainUsed */
479
480	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
481		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
482		ii++;
483	}
484	while (kk < 128) {
485		pPDADCValues[kk] = pPDADCValues[kk-1];
486		kk++;
487	}
488
489	return numPdGainsUsed;
490#undef VpdTable_L
491#undef VpdTable_R
492#undef VpdTable_I
493}
494
495static HAL_BOOL
496ar2413SetPowerTable(struct ath_hal *ah,
497	int16_t *minPower, int16_t *maxPower,
498	const struct ieee80211_channel *chan,
499	uint16_t *rfXpdGain)
500{
501	uint16_t freq = ath_hal_gethwchannel(ah, chan);
502	struct ath_hal_5212 *ahp = AH5212(ah);
503	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
504	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
505	uint16_t pdGainOverlap_t2;
506	int16_t minCalPower2413_t2;
507	uint16_t *pdadcValues = ahp->ah_pcdacTable;
508	uint16_t gainBoundaries[4];
509	uint32_t reg32, regoffset;
510	int i, numPdGainsUsed;
511#ifndef AH_USE_INIPDGAIN
512	uint32_t tpcrg1;
513#endif
514
515	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
516	    __func__, freq, chan->ic_flags);
517
518	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
519		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
520	else if (IEEE80211_IS_CHAN_B(chan))
521		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
522	else {
523		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
524		return AH_FALSE;
525	}
526
527	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
528					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
529
530	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
531		freq, pRawDataset, pdGainOverlap_t2,
532		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
533	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
534
535#ifdef AH_USE_INIPDGAIN
536	/*
537	 * Use pd_gains curve from eeprom; Atheros always uses
538	 * the default curve from the ini file but some vendors
539	 * (e.g. Zcomax) want to override this curve and not
540	 * honoring their settings results in tx power 5dBm low.
541	 */
542	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
543			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
544#else
545	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
546	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
547		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
548	switch (numPdGainsUsed) {
549	case 3:
550		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
551		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
552		/* fall thru... */
553	case 2:
554		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
555		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
556		/* fall thru... */
557	case 1:
558		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
559		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
560		break;
561	}
562#ifdef AH_DEBUG
563	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
564		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
565		    "pd_gains (default 0x%x, calculated 0x%x)\n",
566		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
567#endif
568	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
569#endif
570
571	/*
572	 * Note the pdadc table may not start at 0 dBm power, could be
573	 * negative or greater than 0.  Need to offset the power
574	 * values by the amount of minPower for griffin
575	 */
576	if (minCalPower2413_t2 != 0)
577		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
578	else
579		ahp->ah_txPowerIndexOffset = 0;
580
581	/* Finally, write the power values into the baseband power table */
582	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
583	for (i = 0; i < 32; i++) {
584		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
585			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
586			((pdadcValues[4*i + 2] & 0xFF) << 16) |
587			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
588		OS_REG_WRITE(ah, regoffset, reg32);
589		regoffset += 4;
590	}
591
592	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
593		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
594		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
595		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
596		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
597		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
598
599	return AH_TRUE;
600}
601
602static int16_t
603ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
604{
605	uint32_t ii,jj;
606	uint16_t Pmin=0,numVpd;
607
608	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
609		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
610		/* work backwards 'cause highest pdGain for lowest power */
611		numVpd = data->pDataPerPDGain[jj].numVpd;
612		if (numVpd > 0) {
613			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
614			return(Pmin);
615		}
616	}
617	return(Pmin);
618}
619
620static int16_t
621ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
622{
623	uint32_t ii;
624	uint16_t Pmax=0,numVpd;
625
626	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
627		/* work forwards cuase lowest pdGain for highest power */
628		numVpd = data->pDataPerPDGain[ii].numVpd;
629		if (numVpd > 0) {
630			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
631			return(Pmax);
632		}
633	}
634	return(Pmax);
635}
636
637static HAL_BOOL
638ar2413GetChannelMaxMinPower(struct ath_hal *ah,
639	const struct ieee80211_channel *chan,
640	int16_t *maxPow, int16_t *minPow)
641{
642	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
643	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
644	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
645	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
646	uint16_t numChannels;
647	int totalD,totalF, totalMin,last, i;
648
649	*maxPow = 0;
650
651	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
652		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
653	else if (IEEE80211_IS_CHAN_B(chan))
654		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
655	else
656		return(AH_FALSE);
657
658	numChannels = pRawDataset->numChannels;
659	data = pRawDataset->pDataPerChannel;
660
661	/* Make sure the channel is in the range of the TP values
662	 *  (freq piers)
663	 */
664	if (numChannels < 1)
665		return(AH_FALSE);
666
667	if ((freq < data[0].channelValue) ||
668	    (freq > data[numChannels-1].channelValue)) {
669		if (freq < data[0].channelValue) {
670			*maxPow = ar2413GetMaxPower(ah, &data[0]);
671			*minPow = ar2413GetMinPower(ah, &data[0]);
672			return(AH_TRUE);
673		} else {
674			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
675			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
676			return(AH_TRUE);
677		}
678	}
679
680	/* Linearly interpolate the power value now */
681	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
682	     last = i++);
683	totalD = data[i].channelValue - data[last].channelValue;
684	if (totalD > 0) {
685		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
686		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
687				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
688		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
689		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
690				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
691		return(AH_TRUE);
692	} else {
693		if (freq == data[i].channelValue) {
694			*maxPow = ar2413GetMaxPower(ah, &data[i]);
695			*minPow = ar2413GetMinPower(ah, &data[i]);
696			return(AH_TRUE);
697		} else
698			return(AH_FALSE);
699	}
700}
701
702/*
703 * Free memory for analog bank scratch buffers
704 */
705static void
706ar2413RfDetach(struct ath_hal *ah)
707{
708	struct ath_hal_5212 *ahp = AH5212(ah);
709
710	HALASSERT(ahp->ah_rfHal != AH_NULL);
711	ath_hal_free(ahp->ah_rfHal);
712	ahp->ah_rfHal = AH_NULL;
713}
714
715/*
716 * Allocate memory for analog bank scratch buffers
717 * Scratch Buffer will be reinitialized every reset so no need to zero now
718 */
719static HAL_BOOL
720ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
721{
722	struct ath_hal_5212 *ahp = AH5212(ah);
723	struct ar2413State *priv;
724
725	HALASSERT(ah->ah_magic == AR5212_MAGIC);
726
727	HALASSERT(ahp->ah_rfHal == AH_NULL);
728	priv = ath_hal_malloc(sizeof(struct ar2413State));
729	if (priv == AH_NULL) {
730		HALDEBUG(ah, HAL_DEBUG_ANY,
731		    "%s: cannot allocate private state\n", __func__);
732		*status = HAL_ENOMEM;		/* XXX */
733		return AH_FALSE;
734	}
735	priv->base.rfDetach		= ar2413RfDetach;
736	priv->base.writeRegs		= ar2413WriteRegs;
737	priv->base.getRfBank		= ar2413GetRfBank;
738	priv->base.setChannel		= ar2413SetChannel;
739	priv->base.setRfRegs		= ar2413SetRfRegs;
740	priv->base.setPowerTable	= ar2413SetPowerTable;
741	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
742	priv->base.getNfAdjust		= ar5212GetNfAdjust;
743
744	ahp->ah_pcdacTable = priv->pcdacTable;
745	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
746	ahp->ah_rfHal = &priv->base;
747
748	return AH_TRUE;
749}
750
751static HAL_BOOL
752ar2413Probe(struct ath_hal *ah)
753{
754	return IS_2413(ah);
755}
756AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
757