1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sched.h>
42#include <sys/sbuf.h>
43#include <sys/smp.h>
44
45#include <dev/pci/pcivar.h>
46#include <machine/atomic.h>
47#include <machine/bus.h>
48#if defined(__amd64__) || defined(__i386__)
49#include <machine/clock.h>
50#endif
51#include <sys/rman.h>
52
53#include <contrib/dev/acpica/include/acpi.h>
54#include <contrib/dev/acpica/include/accommon.h>
55
56#include <dev/acpica/acpivar.h>
57
58/*
59 * Support for ACPI Processor devices, including C[1-3] sleep states.
60 */
61
62/* Hooks for the ACPI CA debugging infrastructure */
63#define _COMPONENT	ACPI_PROCESSOR
64ACPI_MODULE_NAME("PROCESSOR")
65
66struct acpi_cx {
67    struct resource	*p_lvlx;	/* Register to read to enter state. */
68    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69    uint32_t		 trans_lat;	/* Transition latency (usec). */
70    uint32_t		 power;		/* Power consumed (mW). */
71    int			 res_type;	/* Resource type for p_lvlx. */
72    int			 res_rid;	/* Resource ID for p_lvlx. */
73};
74#define MAX_CX_STATES	 8
75
76struct acpi_cpu_softc {
77    device_t		 cpu_dev;
78    ACPI_HANDLE		 cpu_handle;
79    struct pcpu		*cpu_pcpu;
80    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
81    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
82    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
83    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
84    int			 cpu_cx_count;	/* Number of valid Cx states. */
85    int			 cpu_prev_sleep;/* Last idle sleep duration. */
86    int			 cpu_features;	/* Child driver supported features. */
87    /* Runtime state. */
88    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
89    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
90    /* Values for sysctl. */
91    struct sysctl_ctx_list cpu_sysctl_ctx;
92    struct sysctl_oid	*cpu_sysctl_tree;
93    int			 cpu_cx_lowest;
94    int			 cpu_cx_lowest_lim;
95    int			 cpu_disable_idle; /* Disable entry to idle function */
96    char 		 cpu_cx_supported[64];
97};
98
99struct acpi_cpu_device {
100    struct resource_list	ad_rl;
101};
102
103#define CPU_GET_REG(reg, width) 					\
104    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
105		      rman_get_bushandle((reg)), 0))
106#define CPU_SET_REG(reg, width, val)					\
107    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
108		       rman_get_bushandle((reg)), 0, (val)))
109
110#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
111
112#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
113
114#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
115#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
116
117#define PCI_VENDOR_INTEL	0x8086
118#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
119#define PCI_REVISION_A_STEP	0
120#define PCI_REVISION_B_STEP	1
121#define PCI_REVISION_4E		2
122#define PCI_REVISION_4M		3
123#define PIIX4_DEVACTB_REG	0x58
124#define PIIX4_BRLD_EN_IRQ0	(1<<0)
125#define PIIX4_BRLD_EN_IRQ	(1<<1)
126#define PIIX4_BRLD_EN_IRQ8	(1<<5)
127#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
128#define PIIX4_PCNTRL_BST_EN	(1<<10)
129
130/* Allow users to ignore processor orders in MADT. */
131static int cpu_unordered;
132TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
133SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
134    &cpu_unordered, 0,
135    "Do not use the MADT to match ACPI Processor objects to CPUs.");
136
137/* Platform hardware resource information. */
138static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
139static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
140static int		 cpu_quirks;	/* Indicate any hardware bugs. */
141
142/* Values for sysctl. */
143static struct sysctl_ctx_list cpu_sysctl_ctx;
144static struct sysctl_oid *cpu_sysctl_tree;
145static int		 cpu_cx_generic;
146static int		 cpu_cx_lowest_lim;
147
148static device_t		*cpu_devices;
149static int		 cpu_ndevices;
150static struct acpi_cpu_softc **cpu_softc;
151ACPI_SERIAL_DECL(cpu, "ACPI CPU");
152
153static int	acpi_cpu_probe(device_t dev);
154static int	acpi_cpu_attach(device_t dev);
155static int	acpi_cpu_suspend(device_t dev);
156static int	acpi_cpu_resume(device_t dev);
157static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
158		    uint32_t *cpu_id);
159static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
160static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
161		    int unit);
162static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
163		    uintptr_t *result);
164static int	acpi_cpu_shutdown(device_t dev);
165static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
166static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
167static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
168static void	acpi_cpu_startup(void *arg);
169static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
170static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
171static void	acpi_cpu_idle(sbintime_t sbt);
172static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
173static int	acpi_cpu_quirks(void);
174static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
175static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
176static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
177static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
178
179static device_method_t acpi_cpu_methods[] = {
180    /* Device interface */
181    DEVMETHOD(device_probe,	acpi_cpu_probe),
182    DEVMETHOD(device_attach,	acpi_cpu_attach),
183    DEVMETHOD(device_detach,	bus_generic_detach),
184    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
185    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
186    DEVMETHOD(device_resume,	acpi_cpu_resume),
187
188    /* Bus interface */
189    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
190    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
191    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
192    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
193    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
194    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
195    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
196    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
197    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
198    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
199    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
200
201    DEVMETHOD_END
202};
203
204static driver_t acpi_cpu_driver = {
205    "cpu",
206    acpi_cpu_methods,
207    sizeof(struct acpi_cpu_softc),
208};
209
210static devclass_t acpi_cpu_devclass;
211DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
212MODULE_DEPEND(cpu, acpi, 1, 1, 1);
213
214static int
215acpi_cpu_probe(device_t dev)
216{
217    int			   acpi_id, cpu_id;
218    ACPI_BUFFER		   buf;
219    ACPI_HANDLE		   handle;
220    ACPI_OBJECT		   *obj;
221    ACPI_STATUS		   status;
222
223    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
224	return (ENXIO);
225
226    handle = acpi_get_handle(dev);
227    if (cpu_softc == NULL)
228	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
229	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
230
231    /* Get our Processor object. */
232    buf.Pointer = NULL;
233    buf.Length = ACPI_ALLOCATE_BUFFER;
234    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
235    if (ACPI_FAILURE(status)) {
236	device_printf(dev, "probe failed to get Processor obj - %s\n",
237		      AcpiFormatException(status));
238	return (ENXIO);
239    }
240    obj = (ACPI_OBJECT *)buf.Pointer;
241    if (obj->Type != ACPI_TYPE_PROCESSOR) {
242	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
243	AcpiOsFree(obj);
244	return (ENXIO);
245    }
246
247    /*
248     * Find the processor associated with our unit.  We could use the
249     * ProcId as a key, however, some boxes do not have the same values
250     * in their Processor object as the ProcId values in the MADT.
251     */
252    acpi_id = obj->Processor.ProcId;
253    AcpiOsFree(obj);
254    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
255	return (ENXIO);
256
257    /*
258     * Check if we already probed this processor.  We scan the bus twice
259     * so it's possible we've already seen this one.
260     */
261    if (cpu_softc[cpu_id] != NULL)
262	return (ENXIO);
263
264    /* Mark this processor as in-use and save our derived id for attach. */
265    cpu_softc[cpu_id] = (void *)1;
266    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
267    device_set_desc(dev, "ACPI CPU");
268
269    return (0);
270}
271
272static int
273acpi_cpu_attach(device_t dev)
274{
275    ACPI_BUFFER		   buf;
276    ACPI_OBJECT		   arg[4], *obj;
277    ACPI_OBJECT_LIST	   arglist;
278    struct pcpu		   *pcpu_data;
279    struct acpi_cpu_softc *sc;
280    struct acpi_softc	  *acpi_sc;
281    ACPI_STATUS		   status;
282    u_int		   features;
283    int			   cpu_id, drv_count, i;
284    driver_t 		  **drivers;
285    uint32_t		   cap_set[3];
286
287    /* UUID needed by _OSC evaluation */
288    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
289				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
290				       0x58, 0x71, 0x39, 0x53 };
291
292    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
293
294    sc = device_get_softc(dev);
295    sc->cpu_dev = dev;
296    sc->cpu_handle = acpi_get_handle(dev);
297    cpu_id = (int)(intptr_t)acpi_get_private(dev);
298    cpu_softc[cpu_id] = sc;
299    pcpu_data = pcpu_find(cpu_id);
300    pcpu_data->pc_device = dev;
301    sc->cpu_pcpu = pcpu_data;
302    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
303    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
304
305    buf.Pointer = NULL;
306    buf.Length = ACPI_ALLOCATE_BUFFER;
307    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
308    if (ACPI_FAILURE(status)) {
309	device_printf(dev, "attach failed to get Processor obj - %s\n",
310		      AcpiFormatException(status));
311	return (ENXIO);
312    }
313    obj = (ACPI_OBJECT *)buf.Pointer;
314    sc->cpu_p_blk = obj->Processor.PblkAddress;
315    sc->cpu_p_blk_len = obj->Processor.PblkLength;
316    sc->cpu_acpi_id = obj->Processor.ProcId;
317    AcpiOsFree(obj);
318    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
319		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
320
321    /*
322     * If this is the first cpu we attach, create and initialize the generic
323     * resources that will be used by all acpi cpu devices.
324     */
325    if (device_get_unit(dev) == 0) {
326	/* Assume we won't be using generic Cx mode by default */
327	cpu_cx_generic = FALSE;
328
329	/* Install hw.acpi.cpu sysctl tree */
330	acpi_sc = acpi_device_get_parent_softc(dev);
331	sysctl_ctx_init(&cpu_sysctl_ctx);
332	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
333	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
334	    CTLFLAG_RD, 0, "node for CPU children");
335
336	/* Queue post cpu-probing task handler */
337	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
338    }
339
340    /*
341     * Before calling any CPU methods, collect child driver feature hints
342     * and notify ACPI of them.  We support unified SMP power control
343     * so advertise this ourselves.  Note this is not the same as independent
344     * SMP control where each CPU can have different settings.
345     */
346    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
347    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
348	for (i = 0; i < drv_count; i++) {
349	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
350		sc->cpu_features |= features;
351	}
352	free(drivers, M_TEMP);
353    }
354
355    /*
356     * CPU capabilities are specified in
357     * Intel Processor Vendor-Specific ACPI Interface Specification.
358     */
359    if (sc->cpu_features) {
360	arglist.Pointer = arg;
361	arglist.Count = 4;
362	arg[0].Type = ACPI_TYPE_BUFFER;
363	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
364	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
365	arg[1].Type = ACPI_TYPE_INTEGER;
366	arg[1].Integer.Value = 1;		/* revision */
367	arg[2].Type = ACPI_TYPE_INTEGER;
368	arg[2].Integer.Value = 1;		/* count */
369	arg[3].Type = ACPI_TYPE_BUFFER;
370	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
371	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
372	cap_set[0] = 0;				/* status */
373	cap_set[1] = sc->cpu_features;
374	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
375	if (ACPI_SUCCESS(status)) {
376	    if (cap_set[0] != 0)
377		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
378	}
379	else {
380	    arglist.Pointer = arg;
381	    arglist.Count = 1;
382	    arg[0].Type = ACPI_TYPE_BUFFER;
383	    arg[0].Buffer.Length = sizeof(cap_set);
384	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
385	    cap_set[0] = 1; /* revision */
386	    cap_set[1] = 1; /* number of capabilities integers */
387	    cap_set[2] = sc->cpu_features;
388	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
389	}
390    }
391
392    /* Probe for Cx state support. */
393    acpi_cpu_cx_probe(sc);
394
395    return (0);
396}
397
398static void
399acpi_cpu_postattach(void *unused __unused)
400{
401    device_t *devices;
402    int err;
403    int i, n;
404
405    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
406    if (err != 0) {
407	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
408	return;
409    }
410    for (i = 0; i < n; i++)
411	bus_generic_probe(devices[i]);
412    for (i = 0; i < n; i++)
413	bus_generic_attach(devices[i]);
414    free(devices, M_TEMP);
415}
416
417SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
418    acpi_cpu_postattach, NULL);
419
420static void
421disable_idle(struct acpi_cpu_softc *sc)
422{
423    cpuset_t cpuset;
424
425    CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
426    sc->cpu_disable_idle = TRUE;
427
428    /*
429     * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
430     * Note that this code depends on the fact that the rendezvous IPI
431     * can not penetrate context where interrupts are disabled and acpi_cpu_idle
432     * is called and executed in such a context with interrupts being re-enabled
433     * right before return.
434     */
435    smp_rendezvous_cpus(cpuset, smp_no_rendevous_barrier, NULL,
436	smp_no_rendevous_barrier, NULL);
437}
438
439static void
440enable_idle(struct acpi_cpu_softc *sc)
441{
442
443    sc->cpu_disable_idle = FALSE;
444}
445
446static int
447is_idle_disabled(struct acpi_cpu_softc *sc)
448{
449
450    return (sc->cpu_disable_idle);
451}
452
453/*
454 * Disable any entry to the idle function during suspend and re-enable it
455 * during resume.
456 */
457static int
458acpi_cpu_suspend(device_t dev)
459{
460    int error;
461
462    error = bus_generic_suspend(dev);
463    if (error)
464	return (error);
465    disable_idle(device_get_softc(dev));
466    return (0);
467}
468
469static int
470acpi_cpu_resume(device_t dev)
471{
472
473    enable_idle(device_get_softc(dev));
474    return (bus_generic_resume(dev));
475}
476
477/*
478 * Find the processor associated with a given ACPI ID.  By default,
479 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
480 * processor.  Some systems have inconsistent ASL and MADT however.
481 * For these systems the cpu_unordered tunable can be set in which
482 * case we assume that Processor objects are listed in the same order
483 * in both the MADT and ASL.
484 */
485static int
486acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
487{
488    struct pcpu	*pc;
489    uint32_t	 i, idx;
490
491    KASSERT(acpi_id != NULL, ("Null acpi_id"));
492    KASSERT(cpu_id != NULL, ("Null cpu_id"));
493    idx = device_get_unit(dev);
494
495    /*
496     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
497     * UP box) use the ACPI ID from the first processor we find.
498     */
499    if (idx == 0 && mp_ncpus == 1) {
500	pc = pcpu_find(0);
501	if (pc->pc_acpi_id == 0xffffffff)
502	    pc->pc_acpi_id = *acpi_id;
503	*cpu_id = 0;
504	return (0);
505    }
506
507    CPU_FOREACH(i) {
508	pc = pcpu_find(i);
509	KASSERT(pc != NULL, ("no pcpu data for %d", i));
510	if (cpu_unordered) {
511	    if (idx-- == 0) {
512		/*
513		 * If pc_acpi_id doesn't match the ACPI ID from the
514		 * ASL, prefer the MADT-derived value.
515		 */
516		if (pc->pc_acpi_id != *acpi_id)
517		    *acpi_id = pc->pc_acpi_id;
518		*cpu_id = pc->pc_cpuid;
519		return (0);
520	    }
521	} else {
522	    if (pc->pc_acpi_id == *acpi_id) {
523		if (bootverbose)
524		    device_printf(dev,
525			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
526			acpi_name(acpi_get_handle(dev)), *acpi_id,
527			pc->pc_cpuid);
528		*cpu_id = pc->pc_cpuid;
529		return (0);
530	    }
531	}
532    }
533
534    if (bootverbose)
535	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
536	    acpi_name(acpi_get_handle(dev)), *acpi_id);
537
538    return (ESRCH);
539}
540
541static struct resource_list *
542acpi_cpu_get_rlist(device_t dev, device_t child)
543{
544    struct acpi_cpu_device *ad;
545
546    ad = device_get_ivars(child);
547    if (ad == NULL)
548	return (NULL);
549    return (&ad->ad_rl);
550}
551
552static device_t
553acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
554{
555    struct acpi_cpu_device *ad;
556    device_t child;
557
558    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
559	return (NULL);
560
561    resource_list_init(&ad->ad_rl);
562
563    child = device_add_child_ordered(dev, order, name, unit);
564    if (child != NULL)
565	device_set_ivars(child, ad);
566    else
567	free(ad, M_TEMP);
568    return (child);
569}
570
571static int
572acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
573{
574    struct acpi_cpu_softc *sc;
575
576    sc = device_get_softc(dev);
577    switch (index) {
578    case ACPI_IVAR_HANDLE:
579	*result = (uintptr_t)sc->cpu_handle;
580	break;
581    case CPU_IVAR_PCPU:
582	*result = (uintptr_t)sc->cpu_pcpu;
583	break;
584#if defined(__amd64__) || defined(__i386__)
585    case CPU_IVAR_NOMINAL_MHZ:
586	if (tsc_is_invariant) {
587	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
588	    break;
589	}
590	/* FALLTHROUGH */
591#endif
592    default:
593	return (ENOENT);
594    }
595    return (0);
596}
597
598static int
599acpi_cpu_shutdown(device_t dev)
600{
601    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
602
603    /* Allow children to shutdown first. */
604    bus_generic_shutdown(dev);
605
606    /*
607     * Disable any entry to the idle function.
608     */
609    disable_idle(device_get_softc(dev));
610
611    /*
612     * CPU devices are not truely detached and remain referenced,
613     * so their resources are not freed.
614     */
615
616    return_VALUE (0);
617}
618
619static void
620acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
621{
622    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
623
624    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
625    sc->cpu_prev_sleep = 1000000;
626    sc->cpu_cx_lowest = 0;
627    sc->cpu_cx_lowest_lim = 0;
628
629    /*
630     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
631     * any, we'll revert to generic FADT/P_BLK Cx control method which will
632     * be handled by acpi_cpu_startup. We need to defer to after having
633     * probed all the cpus in the system before probing for generic Cx
634     * states as we may already have found cpus with valid _CST packages
635     */
636    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
637	/*
638	 * We were unable to find a _CST package for this cpu or there
639	 * was an error parsing it. Switch back to generic mode.
640	 */
641	cpu_cx_generic = TRUE;
642	if (bootverbose)
643	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
644    }
645
646    /*
647     * TODO: _CSD Package should be checked here.
648     */
649}
650
651static void
652acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
653{
654    ACPI_GENERIC_ADDRESS	 gas;
655    struct acpi_cx		*cx_ptr;
656
657    sc->cpu_cx_count = 0;
658    cx_ptr = sc->cpu_cx_states;
659
660    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
661    sc->cpu_prev_sleep = 1000000;
662
663    /* C1 has been required since just after ACPI 1.0 */
664    cx_ptr->type = ACPI_STATE_C1;
665    cx_ptr->trans_lat = 0;
666    cx_ptr++;
667    sc->cpu_non_c3 = sc->cpu_cx_count;
668    sc->cpu_cx_count++;
669
670    /*
671     * The spec says P_BLK must be 6 bytes long.  However, some systems
672     * use it to indicate a fractional set of features present so we
673     * take 5 as C2.  Some may also have a value of 7 to indicate
674     * another C3 but most use _CST for this (as required) and having
675     * "only" C1-C3 is not a hardship.
676     */
677    if (sc->cpu_p_blk_len < 5)
678	return;
679
680    /* Validate and allocate resources for C2 (P_LVL2). */
681    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
682    gas.BitWidth = 8;
683    if (AcpiGbl_FADT.C2Latency <= 100) {
684	gas.Address = sc->cpu_p_blk + 4;
685	cx_ptr->res_rid = 0;
686	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
687	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
688	if (cx_ptr->p_lvlx != NULL) {
689	    cx_ptr->type = ACPI_STATE_C2;
690	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
691	    cx_ptr++;
692	    sc->cpu_non_c3 = sc->cpu_cx_count;
693	    sc->cpu_cx_count++;
694	}
695    }
696    if (sc->cpu_p_blk_len < 6)
697	return;
698
699    /* Validate and allocate resources for C3 (P_LVL3). */
700    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
701	gas.Address = sc->cpu_p_blk + 5;
702	cx_ptr->res_rid = 1;
703	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
704	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
705	if (cx_ptr->p_lvlx != NULL) {
706	    cx_ptr->type = ACPI_STATE_C3;
707	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
708	    cx_ptr++;
709	    sc->cpu_cx_count++;
710	    cpu_can_deep_sleep = 1;
711	}
712    }
713}
714
715/*
716 * Parse a _CST package and set up its Cx states.  Since the _CST object
717 * can change dynamically, our notify handler may call this function
718 * to clean up and probe the new _CST package.
719 */
720static int
721acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
722{
723    struct	 acpi_cx *cx_ptr;
724    ACPI_STATUS	 status;
725    ACPI_BUFFER	 buf;
726    ACPI_OBJECT	*top;
727    ACPI_OBJECT	*pkg;
728    uint32_t	 count;
729    int		 i;
730
731    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
732
733    buf.Pointer = NULL;
734    buf.Length = ACPI_ALLOCATE_BUFFER;
735    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
736    if (ACPI_FAILURE(status))
737	return (ENXIO);
738
739    /* _CST is a package with a count and at least one Cx package. */
740    top = (ACPI_OBJECT *)buf.Pointer;
741    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
742	device_printf(sc->cpu_dev, "invalid _CST package\n");
743	AcpiOsFree(buf.Pointer);
744	return (ENXIO);
745    }
746    if (count != top->Package.Count - 1) {
747	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
748	       count, top->Package.Count - 1);
749	count = top->Package.Count - 1;
750    }
751    if (count > MAX_CX_STATES) {
752	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
753	count = MAX_CX_STATES;
754    }
755
756    sc->cpu_non_c3 = 0;
757    sc->cpu_cx_count = 0;
758    cx_ptr = sc->cpu_cx_states;
759
760    /*
761     * C1 has been required since just after ACPI 1.0.
762     * Reserve the first slot for it.
763     */
764    cx_ptr->type = ACPI_STATE_C0;
765    cx_ptr++;
766    sc->cpu_cx_count++;
767
768    /* Set up all valid states. */
769    for (i = 0; i < count; i++) {
770	pkg = &top->Package.Elements[i + 1];
771	if (!ACPI_PKG_VALID(pkg, 4) ||
772	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
773	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
774	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
775
776	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
777	    continue;
778	}
779
780	/* Validate the state to see if we should use it. */
781	switch (cx_ptr->type) {
782	case ACPI_STATE_C1:
783	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
784		/* This is the first C1 state.  Use the reserved slot. */
785		sc->cpu_cx_states[0] = *cx_ptr;
786	    } else {
787		sc->cpu_non_c3 = sc->cpu_cx_count;
788		cx_ptr++;
789		sc->cpu_cx_count++;
790	    }
791	    continue;
792	case ACPI_STATE_C2:
793	    sc->cpu_non_c3 = sc->cpu_cx_count;
794	    break;
795	case ACPI_STATE_C3:
796	default:
797	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
798		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
799				 "acpi_cpu%d: C3[%d] not available.\n",
800				 device_get_unit(sc->cpu_dev), i));
801		continue;
802	    } else
803		cpu_can_deep_sleep = 1;
804	    break;
805	}
806
807	/* Free up any previous register. */
808	if (cx_ptr->p_lvlx != NULL) {
809	    bus_release_resource(sc->cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
810	        cx_ptr->p_lvlx);
811	    cx_ptr->p_lvlx = NULL;
812	}
813
814	/* Allocate the control register for C2 or C3. */
815	cx_ptr->res_rid = sc->cpu_cx_count;
816	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &cx_ptr->res_rid,
817	    &cx_ptr->p_lvlx, RF_SHAREABLE);
818	if (cx_ptr->p_lvlx) {
819	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
820			     "acpi_cpu%d: Got C%d - %d latency\n",
821			     device_get_unit(sc->cpu_dev), cx_ptr->type,
822			     cx_ptr->trans_lat));
823	    cx_ptr++;
824	    sc->cpu_cx_count++;
825	}
826    }
827    AcpiOsFree(buf.Pointer);
828
829    /* If C1 state was not found, we need one now. */
830    cx_ptr = sc->cpu_cx_states;
831    if (cx_ptr->type == ACPI_STATE_C0) {
832	cx_ptr->type = ACPI_STATE_C1;
833	cx_ptr->trans_lat = 0;
834    }
835
836    return (0);
837}
838
839/*
840 * Call this *after* all CPUs have been attached.
841 */
842static void
843acpi_cpu_startup(void *arg)
844{
845    struct acpi_cpu_softc *sc;
846    int i;
847
848    /* Get set of CPU devices */
849    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
850
851    /*
852     * Setup any quirks that might necessary now that we have probed
853     * all the CPUs
854     */
855    acpi_cpu_quirks();
856
857    if (cpu_cx_generic) {
858	/*
859	 * We are using generic Cx mode, probe for available Cx states
860	 * for all processors.
861	 */
862	for (i = 0; i < cpu_ndevices; i++) {
863	    sc = device_get_softc(cpu_devices[i]);
864	    acpi_cpu_generic_cx_probe(sc);
865	}
866    } else {
867	/*
868	 * We are using _CST mode, remove C3 state if necessary.
869	 * As we now know for sure that we will be using _CST mode
870	 * install our notify handler.
871	 */
872	for (i = 0; i < cpu_ndevices; i++) {
873	    sc = device_get_softc(cpu_devices[i]);
874	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
875		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
876	    }
877	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
878		acpi_cpu_notify, sc);
879	}
880    }
881
882    /* Perform Cx final initialization. */
883    for (i = 0; i < cpu_ndevices; i++) {
884	sc = device_get_softc(cpu_devices[i]);
885	acpi_cpu_startup_cx(sc);
886    }
887
888    /* Add a sysctl handler to handle global Cx lowest setting */
889    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
890	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
891	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
892	"Global lowest Cx sleep state to use");
893
894    /* Take over idling from cpu_idle_default(). */
895    cpu_cx_lowest_lim = 0;
896    for (i = 0; i < cpu_ndevices; i++) {
897	sc = device_get_softc(cpu_devices[i]);
898	enable_idle(sc);
899    }
900    cpu_idle_hook = acpi_cpu_idle;
901}
902
903static void
904acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
905{
906    struct sbuf sb;
907    int i;
908
909    /*
910     * Set up the list of Cx states
911     */
912    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
913	SBUF_FIXEDLEN);
914    for (i = 0; i < sc->cpu_cx_count; i++)
915	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
916	    sc->cpu_cx_states[i].trans_lat);
917    sbuf_trim(&sb);
918    sbuf_finish(&sb);
919}
920
921static void
922acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
923{
924    acpi_cpu_cx_list(sc);
925
926    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
927		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
928		      OID_AUTO, "cx_supported", CTLFLAG_RD,
929		      sc->cpu_cx_supported, 0,
930		      "Cx/microsecond values for supported Cx states");
931    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
932		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
933		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
934		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
935		    "lowest Cx sleep state to use");
936    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
937		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
938		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
939		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
940		    "percent usage for each Cx state");
941
942    /* Signal platform that we can handle _CST notification. */
943    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
944	ACPI_LOCK(acpi);
945	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
946	ACPI_UNLOCK(acpi);
947    }
948}
949
950/*
951 * Idle the CPU in the lowest state possible.  This function is called with
952 * interrupts disabled.  Note that once it re-enables interrupts, a task
953 * switch can occur so do not access shared data (i.e. the softc) after
954 * interrupts are re-enabled.
955 */
956static void
957acpi_cpu_idle(sbintime_t sbt)
958{
959    struct	acpi_cpu_softc *sc;
960    struct	acpi_cx *cx_next;
961    uint64_t	cputicks;
962    uint32_t	start_time, end_time;
963    int		bm_active, cx_next_idx, i, us;
964
965    /*
966     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
967     * since there is no ACPI processor object for this CPU.  This occurs
968     * for logical CPUs in the HTT case.
969     */
970    sc = cpu_softc[PCPU_GET(cpuid)];
971    if (sc == NULL) {
972	acpi_cpu_c1();
973	return;
974    }
975
976    /* If disabled, take the safe path. */
977    if (is_idle_disabled(sc)) {
978	acpi_cpu_c1();
979	return;
980    }
981
982    /* Find the lowest state that has small enough latency. */
983    us = sc->cpu_prev_sleep;
984    if (sbt >= 0 && us > (sbt >> 12))
985	us = (sbt >> 12);
986    cx_next_idx = 0;
987    if (cpu_disable_deep_sleep)
988	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
989    else
990	i = sc->cpu_cx_lowest;
991    for (; i >= 0; i--) {
992	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
993	    cx_next_idx = i;
994	    break;
995	}
996    }
997
998    /*
999     * Check for bus master activity.  If there was activity, clear
1000     * the bit and use the lowest non-C3 state.  Note that the USB
1001     * driver polling for new devices keeps this bit set all the
1002     * time if USB is loaded.
1003     */
1004    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1005	cx_next_idx > sc->cpu_non_c3) {
1006	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1007	if (bm_active != 0) {
1008	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1009	    cx_next_idx = sc->cpu_non_c3;
1010	}
1011    }
1012
1013    /* Select the next state and update statistics. */
1014    cx_next = &sc->cpu_cx_states[cx_next_idx];
1015    sc->cpu_cx_stats[cx_next_idx]++;
1016    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1017
1018    /*
1019     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1020     * precisely calculate the time spent in C1 since the place we wake up
1021     * is an ISR.  Assume we slept no more then half of quantum, unless
1022     * we are called inside critical section, delaying context switch.
1023     */
1024    if (cx_next->type == ACPI_STATE_C1) {
1025	cputicks = cpu_ticks();
1026	acpi_cpu_c1();
1027	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1028	if (curthread->td_critnest == 0)
1029		end_time = min(end_time, 500000 / hz);
1030	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1031	return;
1032    }
1033
1034    /*
1035     * For C3, disable bus master arbitration and enable bus master wake
1036     * if BM control is available, otherwise flush the CPU cache.
1037     */
1038    if (cx_next->type == ACPI_STATE_C3) {
1039	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1040	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1041	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1042	} else
1043	    ACPI_FLUSH_CPU_CACHE();
1044    }
1045
1046    /*
1047     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1048     * Use the ACPI timer for measuring sleep time.  Since we need to
1049     * get the time very close to the CPU start/stop clock logic, this
1050     * is the only reliable time source.
1051     */
1052    if (cx_next->type == ACPI_STATE_C3) {
1053	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1054	cputicks = 0;
1055    } else {
1056	start_time = 0;
1057	cputicks = cpu_ticks();
1058    }
1059    CPU_GET_REG(cx_next->p_lvlx, 1);
1060
1061    /*
1062     * Read the end time twice.  Since it may take an arbitrary time
1063     * to enter the idle state, the first read may be executed before
1064     * the processor has stopped.  Doing it again provides enough
1065     * margin that we are certain to have a correct value.
1066     */
1067    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1068    if (cx_next->type == ACPI_STATE_C3) {
1069	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1070	end_time = acpi_TimerDelta(end_time, start_time);
1071    } else
1072	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1073
1074    /* Enable bus master arbitration and disable bus master wakeup. */
1075    if (cx_next->type == ACPI_STATE_C3 &&
1076	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1077	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1078	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1079    }
1080    ACPI_ENABLE_IRQS();
1081
1082    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1083}
1084
1085/*
1086 * Re-evaluate the _CST object when we are notified that it changed.
1087 */
1088static void
1089acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1090{
1091    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1092
1093    if (notify != ACPI_NOTIFY_CX_STATES)
1094	return;
1095
1096    /*
1097     * C-state data for target CPU is going to be in flux while we execute
1098     * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1099     * Also, it may happen that multiple ACPI taskqueues may concurrently
1100     * execute notifications for the same CPU.  ACPI_SERIAL is used to
1101     * protect against that.
1102     */
1103    ACPI_SERIAL_BEGIN(cpu);
1104    disable_idle(sc);
1105
1106    /* Update the list of Cx states. */
1107    acpi_cpu_cx_cst(sc);
1108    acpi_cpu_cx_list(sc);
1109    acpi_cpu_set_cx_lowest(sc);
1110
1111    enable_idle(sc);
1112    ACPI_SERIAL_END(cpu);
1113
1114    acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1115}
1116
1117static int
1118acpi_cpu_quirks(void)
1119{
1120    device_t acpi_dev;
1121    uint32_t val;
1122
1123    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1124
1125    /*
1126     * Bus mastering arbitration control is needed to keep caches coherent
1127     * while sleeping in C3.  If it's not present but a working flush cache
1128     * instruction is present, flush the caches before entering C3 instead.
1129     * Otherwise, just disable C3 completely.
1130     */
1131    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1132	AcpiGbl_FADT.Pm2ControlLength == 0) {
1133	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1134	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1135	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1136	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1137		"acpi_cpu: no BM control, using flush cache method\n"));
1138	} else {
1139	    cpu_quirks |= CPU_QUIRK_NO_C3;
1140	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1141		"acpi_cpu: no BM control, C3 not available\n"));
1142	}
1143    }
1144
1145    /*
1146     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1147     * the expensive flush cache instruction.
1148     */
1149    if (cpu_cx_generic && mp_ncpus > 1) {
1150	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1151	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1152	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1153    }
1154
1155    /* Look for various quirks of the PIIX4 part. */
1156    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1157    if (acpi_dev != NULL) {
1158	switch (pci_get_revid(acpi_dev)) {
1159	/*
1160	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1161	 * do not report the BMIDE status to the BM status register and
1162	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1163	 * works around the BMIDE bug by reading the BM status directly
1164	 * but we take the simpler approach of disabling C3 for these
1165	 * parts.
1166	 *
1167	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1168	 * Livelock") from the January 2002 PIIX4 specification update.
1169	 * Applies to all PIIX4 models.
1170	 *
1171	 * Also, make sure that all interrupts cause a "Stop Break"
1172	 * event to exit from C2 state.
1173	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1174	 * should be set to zero, otherwise it causes C2 to short-sleep.
1175	 * PIIX4 doesn't properly support C3 and bus master activity
1176	 * need not break out of C2.
1177	 */
1178	case PCI_REVISION_A_STEP:
1179	case PCI_REVISION_B_STEP:
1180	case PCI_REVISION_4E:
1181	case PCI_REVISION_4M:
1182	    cpu_quirks |= CPU_QUIRK_NO_C3;
1183	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1184		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1185
1186	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1187	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1188		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1189		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1190	    	val |= PIIX4_STOP_BREAK_MASK;
1191		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1192	    }
1193	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1194	    if (val) {
1195		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1196		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1197		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1198	    }
1199	    break;
1200	default:
1201	    break;
1202	}
1203    }
1204
1205    return (0);
1206}
1207
1208static int
1209acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1210{
1211    struct acpi_cpu_softc *sc;
1212    struct sbuf	 sb;
1213    char	 buf[128];
1214    int		 i;
1215    uintmax_t	 fract, sum, whole;
1216
1217    sc = (struct acpi_cpu_softc *) arg1;
1218    sum = 0;
1219    for (i = 0; i < sc->cpu_cx_count; i++)
1220	sum += sc->cpu_cx_stats[i];
1221    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1222    for (i = 0; i < sc->cpu_cx_count; i++) {
1223	if (sum > 0) {
1224	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1225	    fract = (whole % sum) * 100;
1226	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1227		(u_int)(fract / sum));
1228	} else
1229	    sbuf_printf(&sb, "0.00%% ");
1230    }
1231    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1232    sbuf_trim(&sb);
1233    sbuf_finish(&sb);
1234    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1235    sbuf_delete(&sb);
1236
1237    return (0);
1238}
1239
1240static int
1241acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1242{
1243    int i;
1244
1245    ACPI_SERIAL_ASSERT(cpu);
1246    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1247
1248    /* If not disabling, cache the new lowest non-C3 state. */
1249    sc->cpu_non_c3 = 0;
1250    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1251	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1252	    sc->cpu_non_c3 = i;
1253	    break;
1254	}
1255    }
1256
1257    /* Reset the statistics counters. */
1258    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1259    return (0);
1260}
1261
1262static int
1263acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1264{
1265    struct	 acpi_cpu_softc *sc;
1266    char	 state[8];
1267    int		 val, error;
1268
1269    sc = (struct acpi_cpu_softc *) arg1;
1270    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1271    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1272    if (error != 0 || req->newptr == NULL)
1273	return (error);
1274    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1275	return (EINVAL);
1276    if (strcasecmp(state, "Cmax") == 0)
1277	val = MAX_CX_STATES;
1278    else {
1279	val = (int) strtol(state + 1, NULL, 10);
1280	if (val < 1 || val > MAX_CX_STATES)
1281	    return (EINVAL);
1282    }
1283
1284    ACPI_SERIAL_BEGIN(cpu);
1285    sc->cpu_cx_lowest_lim = val - 1;
1286    acpi_cpu_set_cx_lowest(sc);
1287    ACPI_SERIAL_END(cpu);
1288
1289    return (0);
1290}
1291
1292static int
1293acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1294{
1295    struct	acpi_cpu_softc *sc;
1296    char	state[8];
1297    int		val, error, i;
1298
1299    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1300    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1301    if (error != 0 || req->newptr == NULL)
1302	return (error);
1303    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1304	return (EINVAL);
1305    if (strcasecmp(state, "Cmax") == 0)
1306	val = MAX_CX_STATES;
1307    else {
1308	val = (int) strtol(state + 1, NULL, 10);
1309	if (val < 1 || val > MAX_CX_STATES)
1310	    return (EINVAL);
1311    }
1312
1313    /* Update the new lowest useable Cx state for all CPUs. */
1314    ACPI_SERIAL_BEGIN(cpu);
1315    cpu_cx_lowest_lim = val - 1;
1316    for (i = 0; i < cpu_ndevices; i++) {
1317	sc = device_get_softc(cpu_devices[i]);
1318	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1319	acpi_cpu_set_cx_lowest(sc);
1320    }
1321    ACPI_SERIAL_END(cpu);
1322
1323    return (0);
1324}
1325