1/*	$FreeBSD$	*/
2
3/*
4 * Copyright (C) 2012 by Darren Reed.
5 *
6 * See the IPFILTER.LICENCE file for details on licencing.
7 *
8 * Copyright 2008 Sun Microsystems.
9 *
10 * $Id$
11 *
12 */
13#if defined(KERNEL) || defined(_KERNEL)
14# undef KERNEL
15# undef _KERNEL
16# define        KERNEL	1
17# define        _KERNEL	1
18#endif
19#include <sys/errno.h>
20#include <sys/types.h>
21#include <sys/param.h>
22#include <sys/time.h>
23#if defined(_KERNEL) && defined(__FreeBSD_version) && \
24    (__FreeBSD_version >= 220000)
25# if (__FreeBSD_version >= 400000)
26#  if !defined(IPFILTER_LKM)
27#   include "opt_inet6.h"
28#  endif
29#  if (__FreeBSD_version == 400019)
30#   define CSUM_DELAY_DATA
31#  endif
32# endif
33# include <sys/filio.h>
34#else
35# include <sys/ioctl.h>
36#endif
37#if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
38# include <sys/filio.h>
39#endif
40#if !defined(_AIX51)
41# include <sys/fcntl.h>
42#endif
43#if defined(_KERNEL)
44# include <sys/systm.h>
45# include <sys/file.h>
46#else
47# include <stdio.h>
48# include <string.h>
49# include <stdlib.h>
50# include <stddef.h>
51# include <sys/file.h>
52# define _KERNEL
53# ifdef __OpenBSD__
54struct file;
55# endif
56# include <sys/uio.h>
57# undef _KERNEL
58#endif
59#if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
60    !defined(linux)
61# include <sys/mbuf.h>
62#else
63# if !defined(linux)
64#  include <sys/byteorder.h>
65# endif
66# if (SOLARIS2 < 5) && defined(sun)
67#  include <sys/dditypes.h>
68# endif
69#endif
70#ifdef __hpux
71# define _NET_ROUTE_INCLUDED
72#endif
73#if !defined(linux)
74# include <sys/protosw.h>
75#endif
76#include <sys/socket.h>
77#include <net/if.h>
78#ifdef sun
79# include <net/af.h>
80#endif
81#include <netinet/in.h>
82#include <netinet/in_systm.h>
83#include <netinet/ip.h>
84#if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
85# include <sys/hashing.h>
86# include <netinet/in_var.h>
87#endif
88#include <netinet/tcp.h>
89#if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
90# include <netinet/udp.h>
91# include <netinet/ip_icmp.h>
92#endif
93#ifdef __hpux
94# undef _NET_ROUTE_INCLUDED
95#endif
96#ifdef __osf__
97# undef _RADIX_H_
98#endif
99#include "netinet/ip_compat.h"
100#ifdef	USE_INET6
101# include <netinet/icmp6.h>
102# if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
103#  include <netinet6/in6_var.h>
104# endif
105#endif
106#include "netinet/ip_fil.h"
107#include "netinet/ip_nat.h"
108#include "netinet/ip_frag.h"
109#include "netinet/ip_state.h"
110#include "netinet/ip_proxy.h"
111#include "netinet/ip_auth.h"
112#ifdef IPFILTER_SCAN
113# include "netinet/ip_scan.h"
114#endif
115#include "netinet/ip_sync.h"
116#include "netinet/ip_lookup.h"
117#include "netinet/ip_pool.h"
118#include "netinet/ip_htable.h"
119#ifdef IPFILTER_COMPILED
120# include "netinet/ip_rules.h"
121#endif
122#if defined(IPFILTER_BPF) && defined(_KERNEL)
123# include <net/bpf.h>
124#endif
125#if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
126# include <sys/malloc.h>
127#endif
128#include "netinet/ipl.h"
129
130#if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
131# include <sys/callout.h>
132extern struct callout ipf_slowtimer_ch;
133#endif
134#if defined(__OpenBSD__)
135# include <sys/timeout.h>
136extern struct timeout ipf_slowtimer_ch;
137#endif
138/* END OF INCLUDES */
139
140#if !defined(lint)
141static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142static const char rcsid[] = "@(#)$FreeBSD$";
143/* static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.125 2007/10/10 09:27:20 darrenr Exp $"; */
144#endif
145
146#ifndef	_KERNEL
147# include "ipf.h"
148# include "ipt.h"
149extern	int	opts;
150extern	int	blockreason;
151#endif /* _KERNEL */
152
153#define	LBUMP(x)	softc->x++
154#define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
155
156static	INLINE int	ipf_check_ipf __P((fr_info_t *, frentry_t *, int));
157static	u_32_t		ipf_checkcipso __P((fr_info_t *, u_char *, int));
158static	u_32_t		ipf_checkripso __P((u_char *));
159static	u_32_t		ipf_decaps __P((fr_info_t *, u_32_t, int));
160#ifdef IPFILTER_LOG
161static	frentry_t	*ipf_dolog __P((fr_info_t *, u_32_t *));
162#endif
163static	int		ipf_flushlist __P((ipf_main_softc_t *, int *,
164					   frentry_t **));
165static	int		ipf_flush_groups __P((ipf_main_softc_t *, frgroup_t **,
166					      int));
167static	ipfunc_t	ipf_findfunc __P((ipfunc_t));
168static	void		*ipf_findlookup __P((ipf_main_softc_t *, int,
169					     frentry_t *,
170					     i6addr_t *, i6addr_t *));
171static	frentry_t	*ipf_firewall __P((fr_info_t *, u_32_t *));
172static	int		ipf_fr_matcharray __P((fr_info_t *, int *));
173static	int		ipf_frruleiter __P((ipf_main_softc_t *, void *, int,
174					    void *));
175static	void		ipf_funcfini __P((ipf_main_softc_t *, frentry_t *));
176static	int		ipf_funcinit __P((ipf_main_softc_t *, frentry_t *));
177static	int		ipf_geniter __P((ipf_main_softc_t *, ipftoken_t *,
178					 ipfgeniter_t *));
179static	void		ipf_getstat __P((ipf_main_softc_t *,
180					 struct friostat *, int));
181static	int		ipf_group_flush __P((ipf_main_softc_t *, frgroup_t *));
182static	void		ipf_group_free __P((frgroup_t *));
183static	int		ipf_grpmapfini __P((struct ipf_main_softc_s *,
184					    frentry_t *));
185static	int		ipf_grpmapinit __P((struct ipf_main_softc_s *,
186					    frentry_t *));
187static	frentry_t	*ipf_nextrule __P((ipf_main_softc_t *, int, int,
188					   frentry_t *, int));
189static	int		ipf_portcheck __P((frpcmp_t *, u_32_t));
190static	INLINE int	ipf_pr_ah __P((fr_info_t *));
191static	INLINE void	ipf_pr_esp __P((fr_info_t *));
192static	INLINE void	ipf_pr_gre __P((fr_info_t *));
193static	INLINE void	ipf_pr_udp __P((fr_info_t *));
194static	INLINE void	ipf_pr_tcp __P((fr_info_t *));
195static	INLINE void	ipf_pr_icmp __P((fr_info_t *));
196static	INLINE void	ipf_pr_ipv4hdr __P((fr_info_t *));
197static	INLINE void	ipf_pr_short __P((fr_info_t *, int));
198static	INLINE int	ipf_pr_tcpcommon __P((fr_info_t *));
199static	INLINE int	ipf_pr_udpcommon __P((fr_info_t *));
200static	void		ipf_rule_delete __P((ipf_main_softc_t *, frentry_t *f,
201					     int, int));
202static	void		ipf_rule_expire_insert __P((ipf_main_softc_t *,
203						    frentry_t *, int));
204static	int		ipf_synclist __P((ipf_main_softc_t *, frentry_t *,
205					  void *));
206static	void		ipf_token_flush __P((ipf_main_softc_t *));
207static	void		ipf_token_unlink __P((ipf_main_softc_t *,
208					      ipftoken_t *));
209static	ipftuneable_t	*ipf_tune_findbyname __P((ipftuneable_t *,
210						  const char *));
211static	ipftuneable_t	*ipf_tune_findbycookie __P((ipftuneable_t **, void *,
212						    void **));
213static	int		ipf_updateipid __P((fr_info_t *));
214static	int		ipf_settimeout __P((struct ipf_main_softc_s *,
215					    struct ipftuneable *,
216					    ipftuneval_t *));
217#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
218     !defined(__FreeBSD__)) || \
219    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
220    OPENBSD_LT_REV(200006)
221static	int		ppsratecheck(struct timeval *, int *, int);
222#endif
223
224
225/*
226 * bit values for identifying presence of individual IP options
227 * All of these tables should be ordered by increasing key value on the left
228 * hand side to allow for binary searching of the array and include a trailer
229 * with a 0 for the bitmask for linear searches to easily find the end with.
230 */
231static const	struct	optlist	ipopts[20] = {
232	{ IPOPT_NOP,	0x000001 },
233	{ IPOPT_RR,	0x000002 },
234	{ IPOPT_ZSU,	0x000004 },
235	{ IPOPT_MTUP,	0x000008 },
236	{ IPOPT_MTUR,	0x000010 },
237	{ IPOPT_ENCODE,	0x000020 },
238	{ IPOPT_TS,	0x000040 },
239	{ IPOPT_TR,	0x000080 },
240	{ IPOPT_SECURITY, 0x000100 },
241	{ IPOPT_LSRR,	0x000200 },
242	{ IPOPT_E_SEC,	0x000400 },
243	{ IPOPT_CIPSO,	0x000800 },
244	{ IPOPT_SATID,	0x001000 },
245	{ IPOPT_SSRR,	0x002000 },
246	{ IPOPT_ADDEXT,	0x004000 },
247	{ IPOPT_VISA,	0x008000 },
248	{ IPOPT_IMITD,	0x010000 },
249	{ IPOPT_EIP,	0x020000 },
250	{ IPOPT_FINN,	0x040000 },
251	{ 0,		0x000000 }
252};
253
254#ifdef USE_INET6
255static struct optlist ip6exthdr[] = {
256	{ IPPROTO_HOPOPTS,		0x000001 },
257	{ IPPROTO_IPV6,			0x000002 },
258	{ IPPROTO_ROUTING,		0x000004 },
259	{ IPPROTO_FRAGMENT,		0x000008 },
260	{ IPPROTO_ESP,			0x000010 },
261	{ IPPROTO_AH,			0x000020 },
262	{ IPPROTO_NONE,			0x000040 },
263	{ IPPROTO_DSTOPTS,		0x000080 },
264	{ IPPROTO_MOBILITY,		0x000100 },
265	{ 0,				0 }
266};
267#endif
268
269/*
270 * bit values for identifying presence of individual IP security options
271 */
272static const	struct	optlist	secopt[8] = {
273	{ IPSO_CLASS_RES4,	0x01 },
274	{ IPSO_CLASS_TOPS,	0x02 },
275	{ IPSO_CLASS_SECR,	0x04 },
276	{ IPSO_CLASS_RES3,	0x08 },
277	{ IPSO_CLASS_CONF,	0x10 },
278	{ IPSO_CLASS_UNCL,	0x20 },
279	{ IPSO_CLASS_RES2,	0x40 },
280	{ IPSO_CLASS_RES1,	0x80 }
281};
282
283char	ipfilter_version[] = IPL_VERSION;
284
285int	ipf_features = 0
286#ifdef	IPFILTER_LKM
287		| IPF_FEAT_LKM
288#endif
289#ifdef	IPFILTER_LOG
290		| IPF_FEAT_LOG
291#endif
292		| IPF_FEAT_LOOKUP
293#ifdef	IPFILTER_BPF
294		| IPF_FEAT_BPF
295#endif
296#ifdef	IPFILTER_COMPILED
297		| IPF_FEAT_COMPILED
298#endif
299#ifdef	IPFILTER_CKSUM
300		| IPF_FEAT_CKSUM
301#endif
302		| IPF_FEAT_SYNC
303#ifdef	IPFILTER_SCAN
304		| IPF_FEAT_SCAN
305#endif
306#ifdef	USE_INET6
307		| IPF_FEAT_IPV6
308#endif
309	;
310
311
312/*
313 * Table of functions available for use with call rules.
314 */
315static ipfunc_resolve_t ipf_availfuncs[] = {
316	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
317	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
318	{ "",	      NULL,	      NULL,	      NULL }
319};
320
321static ipftuneable_t ipf_main_tuneables[] = {
322	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
323		"ipf_flags",		0,	0xffffffff,
324		stsizeof(ipf_main_softc_t, ipf_flags),
325		0,			NULL,	NULL },
326	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
327		"active",		0,	0,
328		stsizeof(ipf_main_softc_t, ipf_active),
329		IPFT_RDONLY,		NULL,	NULL },
330	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
331		"control_forwarding",	0, 1,
332		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
333		0,			NULL,	NULL },
334	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
335		"update_ipid",		0,	1,
336		stsizeof(ipf_main_softc_t, ipf_update_ipid),
337		0,			NULL,	NULL },
338	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
339		"chksrc",		0,	1,
340		stsizeof(ipf_main_softc_t, ipf_chksrc),
341		0,			NULL,	NULL },
342	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
343		"min_ttl",		0,	1,
344		stsizeof(ipf_main_softc_t, ipf_minttl),
345		0,			NULL,	NULL },
346	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
347		"icmp_minfragmtu",	0,	1,
348		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
349		0,			NULL,	NULL },
350	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
351		"default_pass",		0,	0xffffffff,
352		stsizeof(ipf_main_softc_t, ipf_pass),
353		0,			NULL,	NULL },
354	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
355		"tcp_idle_timeout",	1,	0x7fffffff,
356		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
357		0,			NULL,	ipf_settimeout },
358	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
359		"tcp_close_wait",	1,	0x7fffffff,
360		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
361		0,			NULL,	ipf_settimeout },
362	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
363		"tcp_last_ack",		1,	0x7fffffff,
364		stsizeof(ipf_main_softc_t, ipf_tcplastack),
365		0,			NULL,	ipf_settimeout },
366	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
367		"tcp_timeout",		1,	0x7fffffff,
368		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
369		0,			NULL,	ipf_settimeout },
370	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
371		"tcp_syn_sent",		1,	0x7fffffff,
372		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
373		0,			NULL,	ipf_settimeout },
374	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
375		"tcp_syn_received",	1,	0x7fffffff,
376		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
377		0,			NULL,	ipf_settimeout },
378	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
379		"tcp_closed",		1,	0x7fffffff,
380		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
381		0,			NULL,	ipf_settimeout },
382	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
383		"tcp_half_closed",	1,	0x7fffffff,
384		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
385		0,			NULL,	ipf_settimeout },
386	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
387		"tcp_time_wait",	1,	0x7fffffff,
388		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
389		0,			NULL,	ipf_settimeout },
390	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
391		"udp_timeout",		1,	0x7fffffff,
392		stsizeof(ipf_main_softc_t, ipf_udptimeout),
393		0,			NULL,	ipf_settimeout },
394	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
395		"udp_ack_timeout",	1,	0x7fffffff,
396		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
397		0,			NULL,	ipf_settimeout },
398	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
399		"icmp_timeout",		1,	0x7fffffff,
400		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
401		0,			NULL,	ipf_settimeout },
402	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
403		"icmp_ack_timeout",	1,	0x7fffffff,
404		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
405		0,			NULL,	ipf_settimeout },
406	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
407		"ip_timeout",		1,	0x7fffffff,
408		stsizeof(ipf_main_softc_t, ipf_iptimeout),
409		0,			NULL,	ipf_settimeout },
410#if defined(INSTANCES) && defined(_KERNEL)
411	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
412		"intercept_loopback",	0,	1,
413		stsizeof(ipf_main_softc_t, ipf_get_loopback),
414		0,			NULL,	ipf_set_loopback },
415#endif
416	{ { 0 },
417		NULL,			0,	0,
418		0,
419		0,			NULL,	NULL }
420};
421
422
423/*
424 * The next section of code is a a collection of small routines that set
425 * fields in the fr_info_t structure passed based on properties of the
426 * current packet.  There are different routines for the same protocol
427 * for each of IPv4 and IPv6.  Adding a new protocol, for which there
428 * will "special" inspection for setup, is now more easily done by adding
429 * a new routine and expanding the ipf_pr_ipinit*() function rather than by
430 * adding more code to a growing switch statement.
431 */
432#ifdef USE_INET6
433static	INLINE int	ipf_pr_ah6 __P((fr_info_t *));
434static	INLINE void	ipf_pr_esp6 __P((fr_info_t *));
435static	INLINE void	ipf_pr_gre6 __P((fr_info_t *));
436static	INLINE void	ipf_pr_udp6 __P((fr_info_t *));
437static	INLINE void	ipf_pr_tcp6 __P((fr_info_t *));
438static	INLINE void	ipf_pr_icmp6 __P((fr_info_t *));
439static	INLINE void	ipf_pr_ipv6hdr __P((fr_info_t *));
440static	INLINE void	ipf_pr_short6 __P((fr_info_t *, int));
441static	INLINE int	ipf_pr_hopopts6 __P((fr_info_t *));
442static	INLINE int	ipf_pr_mobility6 __P((fr_info_t *));
443static	INLINE int	ipf_pr_routing6 __P((fr_info_t *));
444static	INLINE int	ipf_pr_dstopts6 __P((fr_info_t *));
445static	INLINE int	ipf_pr_fragment6 __P((fr_info_t *));
446static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr __P((fr_info_t *, int, int));
447
448
449/* ------------------------------------------------------------------------ */
450/* Function:    ipf_pr_short6                                               */
451/* Returns:     void                                                        */
452/* Parameters:  fin(I)  - pointer to packet information                     */
453/*              xmin(I) - minimum header size                               */
454/*                                                                          */
455/* IPv6 Only                                                                */
456/* This is function enforces the 'is a packet too short to be legit' rule   */
457/* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
458/* for ipf_pr_short() for more details.                                     */
459/* ------------------------------------------------------------------------ */
460static INLINE void
461ipf_pr_short6(fin, xmin)
462	fr_info_t *fin;
463	int xmin;
464{
465
466	if (fin->fin_dlen < xmin)
467		fin->fin_flx |= FI_SHORT;
468}
469
470
471/* ------------------------------------------------------------------------ */
472/* Function:    ipf_pr_ipv6hdr                                              */
473/* Returns:     void                                                        */
474/* Parameters:  fin(I) - pointer to packet information                      */
475/*                                                                          */
476/* IPv6 Only                                                                */
477/* Copy values from the IPv6 header into the fr_info_t struct and call the  */
478/* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
479/* analyzer may pullup or free the packet itself so we need to be vigiliant */
480/* of that possibility arising.                                             */
481/* ------------------------------------------------------------------------ */
482static INLINE void
483ipf_pr_ipv6hdr(fin)
484	fr_info_t *fin;
485{
486	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
487	int p, go = 1, i, hdrcount;
488	fr_ip_t *fi = &fin->fin_fi;
489
490	fin->fin_off = 0;
491
492	fi->fi_tos = 0;
493	fi->fi_optmsk = 0;
494	fi->fi_secmsk = 0;
495	fi->fi_auth = 0;
496
497	p = ip6->ip6_nxt;
498	fin->fin_crc = p;
499	fi->fi_ttl = ip6->ip6_hlim;
500	fi->fi_src.in6 = ip6->ip6_src;
501	fin->fin_crc += fi->fi_src.i6[0];
502	fin->fin_crc += fi->fi_src.i6[1];
503	fin->fin_crc += fi->fi_src.i6[2];
504	fin->fin_crc += fi->fi_src.i6[3];
505	fi->fi_dst.in6 = ip6->ip6_dst;
506	fin->fin_crc += fi->fi_dst.i6[0];
507	fin->fin_crc += fi->fi_dst.i6[1];
508	fin->fin_crc += fi->fi_dst.i6[2];
509	fin->fin_crc += fi->fi_dst.i6[3];
510	fin->fin_id = 0;
511	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
512		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
513
514	hdrcount = 0;
515	while (go && !(fin->fin_flx & FI_SHORT)) {
516		switch (p)
517		{
518		case IPPROTO_UDP :
519			ipf_pr_udp6(fin);
520			go = 0;
521			break;
522
523		case IPPROTO_TCP :
524			ipf_pr_tcp6(fin);
525			go = 0;
526			break;
527
528		case IPPROTO_ICMPV6 :
529			ipf_pr_icmp6(fin);
530			go = 0;
531			break;
532
533		case IPPROTO_GRE :
534			ipf_pr_gre6(fin);
535			go = 0;
536			break;
537
538		case IPPROTO_HOPOPTS :
539			p = ipf_pr_hopopts6(fin);
540			break;
541
542		case IPPROTO_MOBILITY :
543			p = ipf_pr_mobility6(fin);
544			break;
545
546		case IPPROTO_DSTOPTS :
547			p = ipf_pr_dstopts6(fin);
548			break;
549
550		case IPPROTO_ROUTING :
551			p = ipf_pr_routing6(fin);
552			break;
553
554		case IPPROTO_AH :
555			p = ipf_pr_ah6(fin);
556			break;
557
558		case IPPROTO_ESP :
559			ipf_pr_esp6(fin);
560			go = 0;
561			break;
562
563		case IPPROTO_IPV6 :
564			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
565				if (ip6exthdr[i].ol_val == p) {
566					fin->fin_flx |= ip6exthdr[i].ol_bit;
567					break;
568				}
569			go = 0;
570			break;
571
572		case IPPROTO_NONE :
573			go = 0;
574			break;
575
576		case IPPROTO_FRAGMENT :
577			p = ipf_pr_fragment6(fin);
578			/*
579			 * Given that the only fragments we want to let through
580			 * (where fin_off != 0) are those where the non-first
581			 * fragments only have data, we can safely stop looking
582			 * at headers if this is a non-leading fragment.
583			 */
584			if (fin->fin_off != 0)
585				go = 0;
586			break;
587
588		default :
589			go = 0;
590			break;
591		}
592		hdrcount++;
593
594		/*
595		 * It is important to note that at this point, for the
596		 * extension headers (go != 0), the entire header may not have
597		 * been pulled up when the code gets to this point.  This is
598		 * only done for "go != 0" because the other header handlers
599		 * will all pullup their complete header.  The other indicator
600		 * of an incomplete packet is that this was just an extension
601		 * header.
602		 */
603		if ((go != 0) && (p != IPPROTO_NONE) &&
604		    (ipf_pr_pullup(fin, 0) == -1)) {
605			p = IPPROTO_NONE;
606			break;
607		}
608	}
609
610	/*
611	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
612	 * and destroy whatever packet was here.  The caller of this function
613	 * expects us to return if there is a problem with ipf_pullup.
614	 */
615	if (fin->fin_m == NULL) {
616		ipf_main_softc_t *softc = fin->fin_main_soft;
617
618		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
619		return;
620	}
621
622	fi->fi_p = p;
623
624	/*
625	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
626	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
627	 */
628	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
629		ipf_main_softc_t *softc = fin->fin_main_soft;
630
631		fin->fin_flx |= FI_BAD;
632		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
633		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
634	}
635}
636
637
638/* ------------------------------------------------------------------------ */
639/* Function:    ipf_pr_ipv6exthdr                                           */
640/* Returns:     struct ip6_ext * - pointer to the start of the next header  */
641/*                                 or NULL if there is a prolblem.          */
642/* Parameters:  fin(I)      - pointer to packet information                 */
643/*              multiple(I) - flag indicating yes/no if multiple occurances */
644/*                            of this extension header are allowed.         */
645/*              proto(I)    - protocol number for this extension header     */
646/*                                                                          */
647/* IPv6 Only                                                                */
648/* This function embodies a number of common checks that all IPv6 extension */
649/* headers must be subjected to.  For example, making sure the packet is    */
650/* big enough for it to be in, checking if it is repeated and setting a     */
651/* flag to indicate its presence.                                           */
652/* ------------------------------------------------------------------------ */
653static INLINE struct ip6_ext *
654ipf_pr_ipv6exthdr(fin, multiple, proto)
655	fr_info_t *fin;
656	int multiple, proto;
657{
658	ipf_main_softc_t *softc = fin->fin_main_soft;
659	struct ip6_ext *hdr;
660	u_short shift;
661	int i;
662
663	fin->fin_flx |= FI_V6EXTHDR;
664
665				/* 8 is default length of extension hdr */
666	if ((fin->fin_dlen - 8) < 0) {
667		fin->fin_flx |= FI_SHORT;
668		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
669		return NULL;
670	}
671
672	if (ipf_pr_pullup(fin, 8) == -1) {
673		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
674		return NULL;
675	}
676
677	hdr = fin->fin_dp;
678	switch (proto)
679	{
680	case IPPROTO_FRAGMENT :
681		shift = 8;
682		break;
683	default :
684		shift = 8 + (hdr->ip6e_len << 3);
685		break;
686	}
687
688	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
689		fin->fin_flx |= FI_BAD;
690		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
691		return NULL;
692	}
693
694	fin->fin_dp = (char *)fin->fin_dp + shift;
695	fin->fin_dlen -= shift;
696
697	/*
698	 * If we have seen a fragment header, do not set any flags to indicate
699	 * the presence of this extension header as it has no impact on the
700	 * end result until after it has been defragmented.
701	 */
702	if (fin->fin_flx & FI_FRAG)
703		return hdr;
704
705	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
706		if (ip6exthdr[i].ol_val == proto) {
707			/*
708			 * Most IPv6 extension headers are only allowed once.
709			 */
710			if ((multiple == 0) &&
711			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
712				fin->fin_flx |= FI_BAD;
713			else
714				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
715			break;
716		}
717
718	return hdr;
719}
720
721
722/* ------------------------------------------------------------------------ */
723/* Function:    ipf_pr_hopopts6                                             */
724/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
725/* Parameters:  fin(I) - pointer to packet information                      */
726/*                                                                          */
727/* IPv6 Only                                                                */
728/* This is function checks pending hop by hop options extension header      */
729/* ------------------------------------------------------------------------ */
730static INLINE int
731ipf_pr_hopopts6(fin)
732	fr_info_t *fin;
733{
734	struct ip6_ext *hdr;
735
736	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
737	if (hdr == NULL)
738		return IPPROTO_NONE;
739	return hdr->ip6e_nxt;
740}
741
742
743/* ------------------------------------------------------------------------ */
744/* Function:    ipf_pr_mobility6                                            */
745/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
746/* Parameters:  fin(I) - pointer to packet information                      */
747/*                                                                          */
748/* IPv6 Only                                                                */
749/* This is function checks the IPv6 mobility extension header               */
750/* ------------------------------------------------------------------------ */
751static INLINE int
752ipf_pr_mobility6(fin)
753	fr_info_t *fin;
754{
755	struct ip6_ext *hdr;
756
757	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
758	if (hdr == NULL)
759		return IPPROTO_NONE;
760	return hdr->ip6e_nxt;
761}
762
763
764/* ------------------------------------------------------------------------ */
765/* Function:    ipf_pr_routing6                                             */
766/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
767/* Parameters:  fin(I) - pointer to packet information                      */
768/*                                                                          */
769/* IPv6 Only                                                                */
770/* This is function checks pending routing extension header                 */
771/* ------------------------------------------------------------------------ */
772static INLINE int
773ipf_pr_routing6(fin)
774	fr_info_t *fin;
775{
776	struct ip6_routing *hdr;
777
778	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
779	if (hdr == NULL)
780		return IPPROTO_NONE;
781
782	switch (hdr->ip6r_type)
783	{
784	case 0 :
785		/*
786		 * Nasty extension header length?
787		 */
788		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
789		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
790			ipf_main_softc_t *softc = fin->fin_main_soft;
791
792			fin->fin_flx |= FI_BAD;
793			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
794			return IPPROTO_NONE;
795		}
796		break;
797
798	default :
799		break;
800	}
801
802	return hdr->ip6r_nxt;
803}
804
805
806/* ------------------------------------------------------------------------ */
807/* Function:    ipf_pr_fragment6                                            */
808/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
809/* Parameters:  fin(I) - pointer to packet information                      */
810/*                                                                          */
811/* IPv6 Only                                                                */
812/* Examine the IPv6 fragment header and extract fragment offset information.*/
813/*                                                                          */
814/* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
815/* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
816/* packets with a fragment header can fit into.  They are as follows:       */
817/*                                                                          */
818/* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
819/* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
820/* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
821/* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
822/* 5.  [IPV6][0-n EH][FH][data]                                             */
823/*                                                                          */
824/* IPV6 = IPv6 header, FH = Fragment Header,                                */
825/* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
826/*                                                                          */
827/* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
828/* scenario in which they happen is in extreme circumstances that are most  */
829/* likely to be an indication of an attack rather than normal traffic.      */
830/* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
831/* are two rules that can be used to guard against type 3 packets: L4       */
832/* headers must always be in a packet that has the offset field set to 0    */
833/* and no packet is allowed to overlay that where offset = 0.               */
834/* ------------------------------------------------------------------------ */
835static INLINE int
836ipf_pr_fragment6(fin)
837	fr_info_t *fin;
838{
839	ipf_main_softc_t *softc = fin->fin_main_soft;
840	struct ip6_frag *frag;
841
842	fin->fin_flx |= FI_FRAG;
843
844	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
845	if (frag == NULL) {
846		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
847		return IPPROTO_NONE;
848	}
849
850	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
851		/*
852		 * Any fragment that isn't the last fragment must have its
853		 * length as a multiple of 8.
854		 */
855		if ((fin->fin_plen & 7) != 0)
856			fin->fin_flx |= FI_BAD;
857	}
858
859	fin->fin_fraghdr = frag;
860	fin->fin_id = frag->ip6f_ident;
861	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
862	if (fin->fin_off != 0)
863		fin->fin_flx |= FI_FRAGBODY;
864
865	/*
866	 * Jumbograms aren't handled, so the max. length is 64k
867	 */
868	if ((fin->fin_off << 3) + fin->fin_dlen > 65535)
869		  fin->fin_flx |= FI_BAD;
870
871	/*
872	 * We don't know where the transport layer header (or whatever is next
873	 * is), as it could be behind destination options (amongst others) so
874	 * return the fragment header as the type of packet this is.  Note that
875	 * this effectively disables the fragment cache for > 1 protocol at a
876	 * time.
877	 */
878	return frag->ip6f_nxt;
879}
880
881
882/* ------------------------------------------------------------------------ */
883/* Function:    ipf_pr_dstopts6                                             */
884/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
885/* Parameters:  fin(I) - pointer to packet information                      */
886/*                                                                          */
887/* IPv6 Only                                                                */
888/* This is function checks pending destination options extension header     */
889/* ------------------------------------------------------------------------ */
890static INLINE int
891ipf_pr_dstopts6(fin)
892	fr_info_t *fin;
893{
894	ipf_main_softc_t *softc = fin->fin_main_soft;
895	struct ip6_ext *hdr;
896
897	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
898	if (hdr == NULL) {
899		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
900		return IPPROTO_NONE;
901	}
902	return hdr->ip6e_nxt;
903}
904
905
906/* ------------------------------------------------------------------------ */
907/* Function:    ipf_pr_icmp6                                                */
908/* Returns:     void                                                        */
909/* Parameters:  fin(I) - pointer to packet information                      */
910/*                                                                          */
911/* IPv6 Only                                                                */
912/* This routine is mainly concerned with determining the minimum valid size */
913/* for an ICMPv6 packet.                                                    */
914/* ------------------------------------------------------------------------ */
915static INLINE void
916ipf_pr_icmp6(fin)
917	fr_info_t *fin;
918{
919	int minicmpsz = sizeof(struct icmp6_hdr);
920	struct icmp6_hdr *icmp6;
921
922	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
923		ipf_main_softc_t *softc = fin->fin_main_soft;
924
925		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
926		return;
927	}
928
929	if (fin->fin_dlen > 1) {
930		ip6_t *ip6;
931
932		icmp6 = fin->fin_dp;
933
934		fin->fin_data[0] = *(u_short *)icmp6;
935
936		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
937			fin->fin_flx |= FI_ICMPQUERY;
938
939		switch (icmp6->icmp6_type)
940		{
941		case ICMP6_ECHO_REPLY :
942		case ICMP6_ECHO_REQUEST :
943			if (fin->fin_dlen >= 6)
944				fin->fin_data[1] = icmp6->icmp6_id;
945			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
946			break;
947
948		case ICMP6_DST_UNREACH :
949		case ICMP6_PACKET_TOO_BIG :
950		case ICMP6_TIME_EXCEEDED :
951		case ICMP6_PARAM_PROB :
952			fin->fin_flx |= FI_ICMPERR;
953			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
954			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
955				break;
956
957			if (M_LEN(fin->fin_m) < fin->fin_plen) {
958				if (ipf_coalesce(fin) != 1)
959					return;
960			}
961
962			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
963				return;
964
965			/*
966			 * If the destination of this packet doesn't match the
967			 * source of the original packet then this packet is
968			 * not correct.
969			 */
970			icmp6 = fin->fin_dp;
971			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
972			if (IP6_NEQ(&fin->fin_fi.fi_dst,
973				    (i6addr_t *)&ip6->ip6_src))
974				fin->fin_flx |= FI_BAD;
975			break;
976		default :
977			break;
978		}
979	}
980
981	ipf_pr_short6(fin, minicmpsz);
982	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
983		u_char p = fin->fin_p;
984
985		fin->fin_p = IPPROTO_ICMPV6;
986		ipf_checkv6sum(fin);
987		fin->fin_p = p;
988	}
989}
990
991
992/* ------------------------------------------------------------------------ */
993/* Function:    ipf_pr_udp6                                                 */
994/* Returns:     void                                                        */
995/* Parameters:  fin(I) - pointer to packet information                      */
996/*                                                                          */
997/* IPv6 Only                                                                */
998/* Analyse the packet for IPv6/UDP properties.                              */
999/* Is not expected to be called for fragmented packets.                     */
1000/* ------------------------------------------------------------------------ */
1001static INLINE void
1002ipf_pr_udp6(fin)
1003	fr_info_t *fin;
1004{
1005
1006	if (ipf_pr_udpcommon(fin) == 0) {
1007		u_char p = fin->fin_p;
1008
1009		fin->fin_p = IPPROTO_UDP;
1010		ipf_checkv6sum(fin);
1011		fin->fin_p = p;
1012	}
1013}
1014
1015
1016/* ------------------------------------------------------------------------ */
1017/* Function:    ipf_pr_tcp6                                                 */
1018/* Returns:     void                                                        */
1019/* Parameters:  fin(I) - pointer to packet information                      */
1020/*                                                                          */
1021/* IPv6 Only                                                                */
1022/* Analyse the packet for IPv6/TCP properties.                              */
1023/* Is not expected to be called for fragmented packets.                     */
1024/* ------------------------------------------------------------------------ */
1025static INLINE void
1026ipf_pr_tcp6(fin)
1027	fr_info_t *fin;
1028{
1029
1030	if (ipf_pr_tcpcommon(fin) == 0) {
1031		u_char p = fin->fin_p;
1032
1033		fin->fin_p = IPPROTO_TCP;
1034		ipf_checkv6sum(fin);
1035		fin->fin_p = p;
1036	}
1037}
1038
1039
1040/* ------------------------------------------------------------------------ */
1041/* Function:    ipf_pr_esp6                                                 */
1042/* Returns:     void                                                        */
1043/* Parameters:  fin(I) - pointer to packet information                      */
1044/*                                                                          */
1045/* IPv6 Only                                                                */
1046/* Analyse the packet for ESP properties.                                   */
1047/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1048/* even though the newer ESP packets must also have a sequence number that  */
1049/* is 32bits as well, it is not possible(?) to determine the version from a */
1050/* simple packet header.                                                    */
1051/* ------------------------------------------------------------------------ */
1052static INLINE void
1053ipf_pr_esp6(fin)
1054	fr_info_t *fin;
1055{
1056
1057	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1058		ipf_main_softc_t *softc = fin->fin_main_soft;
1059
1060		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1061		return;
1062	}
1063}
1064
1065
1066/* ------------------------------------------------------------------------ */
1067/* Function:    ipf_pr_ah6                                                  */
1068/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1069/* Parameters:  fin(I) - pointer to packet information                      */
1070/*                                                                          */
1071/* IPv6 Only                                                                */
1072/* Analyse the packet for AH properties.                                    */
1073/* The minimum length is taken to be the combination of all fields in the   */
1074/* header being present and no authentication data (null algorithm used.)   */
1075/* ------------------------------------------------------------------------ */
1076static INLINE int
1077ipf_pr_ah6(fin)
1078	fr_info_t *fin;
1079{
1080	authhdr_t *ah;
1081
1082	fin->fin_flx |= FI_AH;
1083
1084	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1085	if (ah == NULL) {
1086		ipf_main_softc_t *softc = fin->fin_main_soft;
1087
1088		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1089		return IPPROTO_NONE;
1090	}
1091
1092	ipf_pr_short6(fin, sizeof(*ah));
1093
1094	/*
1095	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1096	 * enough data to satisfy ah_next (the very first one.)
1097	 */
1098	return ah->ah_next;
1099}
1100
1101
1102/* ------------------------------------------------------------------------ */
1103/* Function:    ipf_pr_gre6                                                 */
1104/* Returns:     void                                                        */
1105/* Parameters:  fin(I) - pointer to packet information                      */
1106/*                                                                          */
1107/* Analyse the packet for GRE properties.                                   */
1108/* ------------------------------------------------------------------------ */
1109static INLINE void
1110ipf_pr_gre6(fin)
1111	fr_info_t *fin;
1112{
1113	grehdr_t *gre;
1114
1115	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1116		ipf_main_softc_t *softc = fin->fin_main_soft;
1117
1118		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1119		return;
1120	}
1121
1122	gre = fin->fin_dp;
1123	if (GRE_REV(gre->gr_flags) == 1)
1124		fin->fin_data[0] = gre->gr_call;
1125}
1126#endif	/* USE_INET6 */
1127
1128
1129/* ------------------------------------------------------------------------ */
1130/* Function:    ipf_pr_pullup                                               */
1131/* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1132/* Parameters:  fin(I)  - pointer to packet information                     */
1133/*              plen(I) - length (excluding L3 header) to pullup            */
1134/*                                                                          */
1135/* Short inline function to cut down on code duplication to perform a call  */
1136/* to ipf_pullup to ensure there is the required amount of data,            */
1137/* consecutively in the packet buffer.                                      */
1138/*                                                                          */
1139/* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1140/* points to the first byte after the complete layer 3 header, which will   */
1141/* include all of the known extension headers for IPv6 or options for IPv4. */
1142/*                                                                          */
1143/* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1144/* is necessary to add those we can already assume to be pulled up (fin_dp  */
1145/* - fin_ip) to what is passed through.                                     */
1146/* ------------------------------------------------------------------------ */
1147int
1148ipf_pr_pullup(fin, plen)
1149	fr_info_t *fin;
1150	int plen;
1151{
1152	ipf_main_softc_t *softc = fin->fin_main_soft;
1153
1154	if (fin->fin_m != NULL) {
1155		if (fin->fin_dp != NULL)
1156			plen += (char *)fin->fin_dp -
1157				((char *)fin->fin_ip + fin->fin_hlen);
1158		plen += fin->fin_hlen;
1159		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1160#if defined(_KERNEL)
1161			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1162				DT(ipf_pullup_fail);
1163				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1164				return -1;
1165			}
1166			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1167#else
1168			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1169			/*
1170			 * Fake ipf_pullup failing
1171			 */
1172			fin->fin_reason = FRB_PULLUP;
1173			*fin->fin_mp = NULL;
1174			fin->fin_m = NULL;
1175			fin->fin_ip = NULL;
1176			return -1;
1177#endif
1178		}
1179	}
1180	return 0;
1181}
1182
1183
1184/* ------------------------------------------------------------------------ */
1185/* Function:    ipf_pr_short                                                */
1186/* Returns:     void                                                        */
1187/* Parameters:  fin(I)  - pointer to packet information                     */
1188/*              xmin(I) - minimum header size                               */
1189/*                                                                          */
1190/* Check if a packet is "short" as defined by xmin.  The rule we are        */
1191/* applying here is that the packet must not be fragmented within the layer */
1192/* 4 header.  That is, it must not be a fragment that has its offset set to */
1193/* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1194/* entire layer 4 header must be present (min).                             */
1195/* ------------------------------------------------------------------------ */
1196static INLINE void
1197ipf_pr_short(fin, xmin)
1198	fr_info_t *fin;
1199	int xmin;
1200{
1201
1202	if (fin->fin_off == 0) {
1203		if (fin->fin_dlen < xmin)
1204			fin->fin_flx |= FI_SHORT;
1205	} else if (fin->fin_off < xmin) {
1206		fin->fin_flx |= FI_SHORT;
1207	}
1208}
1209
1210
1211/* ------------------------------------------------------------------------ */
1212/* Function:    ipf_pr_icmp                                                 */
1213/* Returns:     void                                                        */
1214/* Parameters:  fin(I) - pointer to packet information                      */
1215/*                                                                          */
1216/* IPv4 Only                                                                */
1217/* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1218/* except extrememly bad packets, both type and code will be present.       */
1219/* The expected minimum size of an ICMP packet is very much dependent on    */
1220/* the type of it.                                                          */
1221/*                                                                          */
1222/* XXX - other ICMP sanity checks?                                          */
1223/* ------------------------------------------------------------------------ */
1224static INLINE void
1225ipf_pr_icmp(fin)
1226	fr_info_t *fin;
1227{
1228	ipf_main_softc_t *softc = fin->fin_main_soft;
1229	int minicmpsz = sizeof(struct icmp);
1230	icmphdr_t *icmp;
1231	ip_t *oip;
1232
1233	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1234
1235	if (fin->fin_off != 0) {
1236		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1237		return;
1238	}
1239
1240	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1241		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1242		return;
1243	}
1244
1245	icmp = fin->fin_dp;
1246
1247	fin->fin_data[0] = *(u_short *)icmp;
1248	fin->fin_data[1] = icmp->icmp_id;
1249
1250	switch (icmp->icmp_type)
1251	{
1252	case ICMP_ECHOREPLY :
1253	case ICMP_ECHO :
1254	/* Router discovery messaes - RFC 1256 */
1255	case ICMP_ROUTERADVERT :
1256	case ICMP_ROUTERSOLICIT :
1257		fin->fin_flx |= FI_ICMPQUERY;
1258		minicmpsz = ICMP_MINLEN;
1259		break;
1260	/*
1261	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1262	 * 3 * timestamp(3 * 4)
1263	 */
1264	case ICMP_TSTAMP :
1265	case ICMP_TSTAMPREPLY :
1266		fin->fin_flx |= FI_ICMPQUERY;
1267		minicmpsz = 20;
1268		break;
1269	/*
1270	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1271	 * mask(4)
1272	 */
1273	case ICMP_IREQ :
1274	case ICMP_IREQREPLY :
1275	case ICMP_MASKREQ :
1276	case ICMP_MASKREPLY :
1277		fin->fin_flx |= FI_ICMPQUERY;
1278		minicmpsz = 12;
1279		break;
1280	/*
1281	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1282	 */
1283	case ICMP_UNREACH :
1284#ifdef icmp_nextmtu
1285		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1286			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu)
1287				fin->fin_flx |= FI_BAD;
1288		}
1289#endif
1290	case ICMP_SOURCEQUENCH :
1291	case ICMP_REDIRECT :
1292	case ICMP_TIMXCEED :
1293	case ICMP_PARAMPROB :
1294		fin->fin_flx |= FI_ICMPERR;
1295		if (ipf_coalesce(fin) != 1) {
1296			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1297			return;
1298		}
1299
1300		/*
1301		 * ICMP error packets should not be generated for IP
1302		 * packets that are a fragment that isn't the first
1303		 * fragment.
1304		 */
1305		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1306		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1307			fin->fin_flx |= FI_BAD;
1308
1309		/*
1310		 * If the destination of this packet doesn't match the
1311		 * source of the original packet then this packet is
1312		 * not correct.
1313		 */
1314		if (oip->ip_src.s_addr != fin->fin_daddr)
1315			fin->fin_flx |= FI_BAD;
1316		break;
1317	default :
1318		break;
1319	}
1320
1321	ipf_pr_short(fin, minicmpsz);
1322
1323	ipf_checkv4sum(fin);
1324}
1325
1326
1327/* ------------------------------------------------------------------------ */
1328/* Function:    ipf_pr_tcpcommon                                            */
1329/* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1330/* Parameters:  fin(I) - pointer to packet information                      */
1331/*                                                                          */
1332/* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1333/* and make some checks with how they interact with other fields.           */
1334/* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1335/* valid and mark the packet as bad if not.                                 */
1336/* ------------------------------------------------------------------------ */
1337static INLINE int
1338ipf_pr_tcpcommon(fin)
1339	fr_info_t *fin;
1340{
1341	ipf_main_softc_t *softc = fin->fin_main_soft;
1342	int flags, tlen;
1343	tcphdr_t *tcp;
1344
1345	fin->fin_flx |= FI_TCPUDP;
1346	if (fin->fin_off != 0) {
1347		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1348		return 0;
1349	}
1350
1351	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1352		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1353		return -1;
1354	}
1355
1356	tcp = fin->fin_dp;
1357	if (fin->fin_dlen > 3) {
1358		fin->fin_sport = ntohs(tcp->th_sport);
1359		fin->fin_dport = ntohs(tcp->th_dport);
1360	}
1361
1362	if ((fin->fin_flx & FI_SHORT) != 0) {
1363		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1364		return 1;
1365	}
1366
1367	/*
1368	 * Use of the TCP data offset *must* result in a value that is at
1369	 * least the same size as the TCP header.
1370	 */
1371	tlen = TCP_OFF(tcp) << 2;
1372	if (tlen < sizeof(tcphdr_t)) {
1373		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1374		fin->fin_flx |= FI_BAD;
1375		return 1;
1376	}
1377
1378	flags = tcp->th_flags;
1379	fin->fin_tcpf = tcp->th_flags;
1380
1381	/*
1382	 * If the urgent flag is set, then the urgent pointer must
1383	 * also be set and vice versa.  Good TCP packets do not have
1384	 * just one of these set.
1385	 */
1386	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1387		fin->fin_flx |= FI_BAD;
1388#if 0
1389	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1390		/*
1391		 * Ignore this case (#if 0) as it shows up in "real"
1392		 * traffic with bogus values in the urgent pointer field.
1393		 */
1394		fin->fin_flx |= FI_BAD;
1395#endif
1396	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1397		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1398		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1399		fin->fin_flx |= FI_BAD;
1400#if 1
1401	} else if (((flags & TH_SYN) != 0) &&
1402		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1403		/*
1404		 * SYN with URG and PUSH set is not for normal TCP but it is
1405		 * possible(?) with T/TCP...but who uses T/TCP?
1406		 */
1407		fin->fin_flx |= FI_BAD;
1408#endif
1409	} else if (!(flags & TH_ACK)) {
1410		/*
1411		 * If the ack bit isn't set, then either the SYN or
1412		 * RST bit must be set.  If the SYN bit is set, then
1413		 * we expect the ACK field to be 0.  If the ACK is
1414		 * not set and if URG, PSH or FIN are set, consdier
1415		 * that to indicate a bad TCP packet.
1416		 */
1417		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1418			/*
1419			 * Cisco PIX sets the ACK field to a random value.
1420			 * In light of this, do not set FI_BAD until a patch
1421			 * is available from Cisco to ensure that
1422			 * interoperability between existing systems is
1423			 * achieved.
1424			 */
1425			/*fin->fin_flx |= FI_BAD*/;
1426		} else if (!(flags & (TH_RST|TH_SYN))) {
1427			fin->fin_flx |= FI_BAD;
1428		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1429			fin->fin_flx |= FI_BAD;
1430		}
1431	}
1432	if (fin->fin_flx & FI_BAD) {
1433		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1434		return 1;
1435	}
1436
1437	/*
1438	 * At this point, it's not exactly clear what is to be gained by
1439	 * marking up which TCP options are and are not present.  The one we
1440	 * are most interested in is the TCP window scale.  This is only in
1441	 * a SYN packet [RFC1323] so we don't need this here...?
1442	 * Now if we were to analyse the header for passive fingerprinting,
1443	 * then that might add some weight to adding this...
1444	 */
1445	if (tlen == sizeof(tcphdr_t)) {
1446		return 0;
1447	}
1448
1449	if (ipf_pr_pullup(fin, tlen) == -1) {
1450		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1451		return -1;
1452	}
1453
1454#if 0
1455	tcp = fin->fin_dp;
1456	ip = fin->fin_ip;
1457	s = (u_char *)(tcp + 1);
1458	off = IP_HL(ip) << 2;
1459# ifdef _KERNEL
1460	if (fin->fin_mp != NULL) {
1461		mb_t *m = *fin->fin_mp;
1462
1463		if (off + tlen > M_LEN(m))
1464			return;
1465	}
1466# endif
1467	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1468		opt = *s;
1469		if (opt == '\0')
1470			break;
1471		else if (opt == TCPOPT_NOP)
1472			ol = 1;
1473		else {
1474			if (tlen < 2)
1475				break;
1476			ol = (int)*(s + 1);
1477			if (ol < 2 || ol > tlen)
1478				break;
1479		}
1480
1481		for (i = 9, mv = 4; mv >= 0; ) {
1482			op = ipopts + i;
1483			if (opt == (u_char)op->ol_val) {
1484				optmsk |= op->ol_bit;
1485				break;
1486			}
1487		}
1488		tlen -= ol;
1489		s += ol;
1490	}
1491#endif /* 0 */
1492
1493	return 0;
1494}
1495
1496
1497
1498/* ------------------------------------------------------------------------ */
1499/* Function:    ipf_pr_udpcommon                                            */
1500/* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1501/* Parameters:  fin(I) - pointer to packet information                      */
1502/*                                                                          */
1503/* Extract the UDP source and destination ports, if present.  If compiled   */
1504/* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1505/* ------------------------------------------------------------------------ */
1506static INLINE int
1507ipf_pr_udpcommon(fin)
1508	fr_info_t *fin;
1509{
1510	udphdr_t *udp;
1511
1512	fin->fin_flx |= FI_TCPUDP;
1513
1514	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1515		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1516			ipf_main_softc_t *softc = fin->fin_main_soft;
1517
1518			fin->fin_flx |= FI_SHORT;
1519			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1520			return 1;
1521		}
1522
1523		udp = fin->fin_dp;
1524
1525		fin->fin_sport = ntohs(udp->uh_sport);
1526		fin->fin_dport = ntohs(udp->uh_dport);
1527	}
1528
1529	return 0;
1530}
1531
1532
1533/* ------------------------------------------------------------------------ */
1534/* Function:    ipf_pr_tcp                                                  */
1535/* Returns:     void                                                        */
1536/* Parameters:  fin(I) - pointer to packet information                      */
1537/*                                                                          */
1538/* IPv4 Only                                                                */
1539/* Analyse the packet for IPv4/TCP properties.                              */
1540/* ------------------------------------------------------------------------ */
1541static INLINE void
1542ipf_pr_tcp(fin)
1543	fr_info_t *fin;
1544{
1545
1546	ipf_pr_short(fin, sizeof(tcphdr_t));
1547
1548	if (ipf_pr_tcpcommon(fin) == 0)
1549		ipf_checkv4sum(fin);
1550}
1551
1552
1553/* ------------------------------------------------------------------------ */
1554/* Function:    ipf_pr_udp                                                  */
1555/* Returns:     void                                                        */
1556/* Parameters:  fin(I) - pointer to packet information                      */
1557/*                                                                          */
1558/* IPv4 Only                                                                */
1559/* Analyse the packet for IPv4/UDP properties.                              */
1560/* ------------------------------------------------------------------------ */
1561static INLINE void
1562ipf_pr_udp(fin)
1563	fr_info_t *fin;
1564{
1565
1566	ipf_pr_short(fin, sizeof(udphdr_t));
1567
1568	if (ipf_pr_udpcommon(fin) == 0)
1569		ipf_checkv4sum(fin);
1570}
1571
1572
1573/* ------------------------------------------------------------------------ */
1574/* Function:    ipf_pr_esp                                                  */
1575/* Returns:     void                                                        */
1576/* Parameters:  fin(I) - pointer to packet information                      */
1577/*                                                                          */
1578/* Analyse the packet for ESP properties.                                   */
1579/* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1580/* even though the newer ESP packets must also have a sequence number that  */
1581/* is 32bits as well, it is not possible(?) to determine the version from a */
1582/* simple packet header.                                                    */
1583/* ------------------------------------------------------------------------ */
1584static INLINE void
1585ipf_pr_esp(fin)
1586	fr_info_t *fin;
1587{
1588
1589	if (fin->fin_off == 0) {
1590		ipf_pr_short(fin, 8);
1591		if (ipf_pr_pullup(fin, 8) == -1) {
1592			ipf_main_softc_t *softc = fin->fin_main_soft;
1593
1594			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1595		}
1596	}
1597}
1598
1599
1600/* ------------------------------------------------------------------------ */
1601/* Function:    ipf_pr_ah                                                   */
1602/* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1603/* Parameters:  fin(I) - pointer to packet information                      */
1604/*                                                                          */
1605/* Analyse the packet for AH properties.                                    */
1606/* The minimum length is taken to be the combination of all fields in the   */
1607/* header being present and no authentication data (null algorithm used.)   */
1608/* ------------------------------------------------------------------------ */
1609static INLINE int
1610ipf_pr_ah(fin)
1611	fr_info_t *fin;
1612{
1613	ipf_main_softc_t *softc = fin->fin_main_soft;
1614	authhdr_t *ah;
1615	int len;
1616
1617	fin->fin_flx |= FI_AH;
1618	ipf_pr_short(fin, sizeof(*ah));
1619
1620	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1621		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1622		return IPPROTO_NONE;
1623	}
1624
1625	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1626		DT(fr_v4_ah_pullup_1);
1627		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1628		return IPPROTO_NONE;
1629	}
1630
1631	ah = (authhdr_t *)fin->fin_dp;
1632
1633	len = (ah->ah_plen + 2) << 2;
1634	ipf_pr_short(fin, len);
1635	if (ipf_pr_pullup(fin, len) == -1) {
1636		DT(fr_v4_ah_pullup_2);
1637		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1638		return IPPROTO_NONE;
1639	}
1640
1641	/*
1642	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1643	 * header.
1644	 */
1645	fin->fin_dp = (char *)fin->fin_dp + len;
1646	fin->fin_dlen -= len;
1647	return ah->ah_next;
1648}
1649
1650
1651/* ------------------------------------------------------------------------ */
1652/* Function:    ipf_pr_gre                                                  */
1653/* Returns:     void                                                        */
1654/* Parameters:  fin(I) - pointer to packet information                      */
1655/*                                                                          */
1656/* Analyse the packet for GRE properties.                                   */
1657/* ------------------------------------------------------------------------ */
1658static INLINE void
1659ipf_pr_gre(fin)
1660	fr_info_t *fin;
1661{
1662	ipf_main_softc_t *softc = fin->fin_main_soft;
1663	grehdr_t *gre;
1664
1665	ipf_pr_short(fin, sizeof(grehdr_t));
1666
1667	if (fin->fin_off != 0) {
1668		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1669		return;
1670	}
1671
1672	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1673		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1674		return;
1675	}
1676
1677	gre = fin->fin_dp;
1678	if (GRE_REV(gre->gr_flags) == 1)
1679		fin->fin_data[0] = gre->gr_call;
1680}
1681
1682
1683/* ------------------------------------------------------------------------ */
1684/* Function:    ipf_pr_ipv4hdr                                              */
1685/* Returns:     void                                                        */
1686/* Parameters:  fin(I) - pointer to packet information                      */
1687/*                                                                          */
1688/* IPv4 Only                                                                */
1689/* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1690/* Check all options present and flag their presence if any exist.          */
1691/* ------------------------------------------------------------------------ */
1692static INLINE void
1693ipf_pr_ipv4hdr(fin)
1694	fr_info_t *fin;
1695{
1696	u_short optmsk = 0, secmsk = 0, auth = 0;
1697	int hlen, ol, mv, p, i;
1698	const struct optlist *op;
1699	u_char *s, opt;
1700	u_short off;
1701	fr_ip_t *fi;
1702	ip_t *ip;
1703
1704	fi = &fin->fin_fi;
1705	hlen = fin->fin_hlen;
1706
1707	ip = fin->fin_ip;
1708	p = ip->ip_p;
1709	fi->fi_p = p;
1710	fin->fin_crc = p;
1711	fi->fi_tos = ip->ip_tos;
1712	fin->fin_id = ip->ip_id;
1713	off = ntohs(ip->ip_off);
1714
1715	/* Get both TTL and protocol */
1716	fi->fi_p = ip->ip_p;
1717	fi->fi_ttl = ip->ip_ttl;
1718
1719	/* Zero out bits not used in IPv6 address */
1720	fi->fi_src.i6[1] = 0;
1721	fi->fi_src.i6[2] = 0;
1722	fi->fi_src.i6[3] = 0;
1723	fi->fi_dst.i6[1] = 0;
1724	fi->fi_dst.i6[2] = 0;
1725	fi->fi_dst.i6[3] = 0;
1726
1727	fi->fi_saddr = ip->ip_src.s_addr;
1728	fin->fin_crc += fi->fi_saddr;
1729	fi->fi_daddr = ip->ip_dst.s_addr;
1730	fin->fin_crc += fi->fi_daddr;
1731	if (IN_CLASSD(ntohl(fi->fi_daddr)))
1732		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1733
1734	/*
1735	 * set packet attribute flags based on the offset and
1736	 * calculate the byte offset that it represents.
1737	 */
1738	off &= IP_MF|IP_OFFMASK;
1739	if (off != 0) {
1740		int morefrag = off & IP_MF;
1741
1742		fi->fi_flx |= FI_FRAG;
1743		off &= IP_OFFMASK;
1744		if (off != 0) {
1745			fin->fin_flx |= FI_FRAGBODY;
1746			off <<= 3;
1747			if ((off + fin->fin_dlen > 65535) ||
1748			    (fin->fin_dlen == 0) ||
1749			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1750				/*
1751				 * The length of the packet, starting at its
1752				 * offset cannot exceed 65535 (0xffff) as the
1753				 * length of an IP packet is only 16 bits.
1754				 *
1755				 * Any fragment that isn't the last fragment
1756				 * must have a length greater than 0 and it
1757				 * must be an even multiple of 8.
1758				 */
1759				fi->fi_flx |= FI_BAD;
1760			}
1761		}
1762	}
1763	fin->fin_off = off;
1764
1765	/*
1766	 * Call per-protocol setup and checking
1767	 */
1768	if (p == IPPROTO_AH) {
1769		/*
1770		 * Treat AH differently because we expect there to be another
1771		 * layer 4 header after it.
1772		 */
1773		p = ipf_pr_ah(fin);
1774	}
1775
1776	switch (p)
1777	{
1778	case IPPROTO_UDP :
1779		ipf_pr_udp(fin);
1780		break;
1781	case IPPROTO_TCP :
1782		ipf_pr_tcp(fin);
1783		break;
1784	case IPPROTO_ICMP :
1785		ipf_pr_icmp(fin);
1786		break;
1787	case IPPROTO_ESP :
1788		ipf_pr_esp(fin);
1789		break;
1790	case IPPROTO_GRE :
1791		ipf_pr_gre(fin);
1792		break;
1793	}
1794
1795	ip = fin->fin_ip;
1796	if (ip == NULL)
1797		return;
1798
1799	/*
1800	 * If it is a standard IP header (no options), set the flag fields
1801	 * which relate to options to 0.
1802	 */
1803	if (hlen == sizeof(*ip)) {
1804		fi->fi_optmsk = 0;
1805		fi->fi_secmsk = 0;
1806		fi->fi_auth = 0;
1807		return;
1808	}
1809
1810	/*
1811	 * So the IP header has some IP options attached.  Walk the entire
1812	 * list of options present with this packet and set flags to indicate
1813	 * which ones are here and which ones are not.  For the somewhat out
1814	 * of date and obscure security classification options, set a flag to
1815	 * represent which classification is present.
1816	 */
1817	fi->fi_flx |= FI_OPTIONS;
1818
1819	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1820		opt = *s;
1821		if (opt == '\0')
1822			break;
1823		else if (opt == IPOPT_NOP)
1824			ol = 1;
1825		else {
1826			if (hlen < 2)
1827				break;
1828			ol = (int)*(s + 1);
1829			if (ol < 2 || ol > hlen)
1830				break;
1831		}
1832		for (i = 9, mv = 4; mv >= 0; ) {
1833			op = ipopts + i;
1834
1835			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1836				u_32_t doi;
1837
1838				switch (opt)
1839				{
1840				case IPOPT_SECURITY :
1841					if (optmsk & op->ol_bit) {
1842						fin->fin_flx |= FI_BAD;
1843					} else {
1844						doi = ipf_checkripso(s);
1845						secmsk = doi >> 16;
1846						auth = doi & 0xffff;
1847					}
1848					break;
1849
1850				case IPOPT_CIPSO :
1851
1852					if (optmsk & op->ol_bit) {
1853						fin->fin_flx |= FI_BAD;
1854					} else {
1855						doi = ipf_checkcipso(fin,
1856								     s, ol);
1857						secmsk = doi >> 16;
1858						auth = doi & 0xffff;
1859					}
1860					break;
1861				}
1862				optmsk |= op->ol_bit;
1863			}
1864
1865			if (opt < op->ol_val)
1866				i -= mv;
1867			else
1868				i += mv;
1869			mv--;
1870		}
1871		hlen -= ol;
1872		s += ol;
1873	}
1874
1875	/*
1876	 *
1877	 */
1878	if (auth && !(auth & 0x0100))
1879		auth &= 0xff00;
1880	fi->fi_optmsk = optmsk;
1881	fi->fi_secmsk = secmsk;
1882	fi->fi_auth = auth;
1883}
1884
1885
1886/* ------------------------------------------------------------------------ */
1887/* Function:    ipf_checkripso                                              */
1888/* Returns:     void                                                        */
1889/* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1890/*                                                                          */
1891/* ------------------------------------------------------------------------ */
1892static u_32_t
1893ipf_checkripso(s)
1894	u_char *s;
1895{
1896	const struct optlist *sp;
1897	u_short secmsk = 0, auth = 0;
1898	u_char sec;
1899	int j, m;
1900
1901	sec = *(s + 2);	/* classification */
1902	for (j = 3, m = 2; m >= 0; ) {
1903		sp = secopt + j;
1904		if (sec == sp->ol_val) {
1905			secmsk |= sp->ol_bit;
1906			auth = *(s + 3);
1907			auth *= 256;
1908			auth += *(s + 4);
1909			break;
1910		}
1911		if (sec < sp->ol_val)
1912			j -= m;
1913		else
1914			j += m;
1915		m--;
1916	}
1917
1918	return (secmsk << 16) | auth;
1919}
1920
1921
1922/* ------------------------------------------------------------------------ */
1923/* Function:    ipf_checkcipso                                              */
1924/* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1925/* Parameters:  fin(IO) - pointer to packet information                     */
1926/*              s(I)    - pointer to start of CIPSO option                  */
1927/*              ol(I)   - length of CIPSO option field                      */
1928/*                                                                          */
1929/* This function returns the domain of integrity (DOI) field from the CIPSO */
1930/* header and returns that whilst also storing the highest sensitivity      */
1931/* value found in the fr_info_t structure.                                  */
1932/*                                                                          */
1933/* No attempt is made to extract the category bitmaps as these are defined  */
1934/* by the user (rather than the protocol) and can be rather numerous on the */
1935/* end nodes.                                                               */
1936/* ------------------------------------------------------------------------ */
1937static u_32_t
1938ipf_checkcipso(fin, s, ol)
1939	fr_info_t *fin;
1940	u_char *s;
1941	int ol;
1942{
1943	ipf_main_softc_t *softc = fin->fin_main_soft;
1944	fr_ip_t *fi;
1945	u_32_t doi;
1946	u_char *t, tag, tlen, sensitivity;
1947	int len;
1948
1949	if (ol < 6 || ol > 40) {
1950		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1951		fin->fin_flx |= FI_BAD;
1952		return 0;
1953	}
1954
1955	fi = &fin->fin_fi;
1956	fi->fi_sensitivity = 0;
1957	/*
1958	 * The DOI field MUST be there.
1959	 */
1960	bcopy(s + 2, &doi, sizeof(doi));
1961
1962	t = (u_char *)s + 6;
1963	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1964		tag = *t;
1965		tlen = *(t + 1);
1966		if (tlen > len || tlen < 4 || tlen > 34) {
1967			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1968			fin->fin_flx |= FI_BAD;
1969			return 0;
1970		}
1971
1972		sensitivity = 0;
1973		/*
1974		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1975		 * draft (16 July 1992) that has expired.
1976		 */
1977		if (tag == 0) {
1978			fin->fin_flx |= FI_BAD;
1979			continue;
1980		} else if (tag == 1) {
1981			if (*(t + 2) != 0) {
1982				fin->fin_flx |= FI_BAD;
1983				continue;
1984			}
1985			sensitivity = *(t + 3);
1986			/* Category bitmap for categories 0-239 */
1987
1988		} else if (tag == 4) {
1989			if (*(t + 2) != 0) {
1990				fin->fin_flx |= FI_BAD;
1991				continue;
1992			}
1993			sensitivity = *(t + 3);
1994			/* Enumerated categories, 16bits each, upto 15 */
1995
1996		} else if (tag == 5) {
1997			if (*(t + 2) != 0) {
1998				fin->fin_flx |= FI_BAD;
1999				continue;
2000			}
2001			sensitivity = *(t + 3);
2002			/* Range of categories (2*16bits), up to 7 pairs */
2003
2004		} else if (tag > 127) {
2005			/* Custom defined DOI */
2006			;
2007		} else {
2008			fin->fin_flx |= FI_BAD;
2009			continue;
2010		}
2011
2012		if (sensitivity > fi->fi_sensitivity)
2013			fi->fi_sensitivity = sensitivity;
2014	}
2015
2016	return doi;
2017}
2018
2019
2020/* ------------------------------------------------------------------------ */
2021/* Function:    ipf_makefrip                                                */
2022/* Returns:     int     - 0 == packet ok, -1 == packet freed                */
2023/* Parameters:  hlen(I) - length of IP packet header                        */
2024/*              ip(I)   - pointer to the IP header                          */
2025/*              fin(IO) - pointer to packet information                     */
2026/*                                                                          */
2027/* Compact the IP header into a structure which contains just the info.     */
2028/* which is useful for comparing IP headers with and store this information */
2029/* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
2030/* this function will be called with either an IPv4 or IPv6 packet.         */
2031/* ------------------------------------------------------------------------ */
2032int
2033ipf_makefrip(hlen, ip, fin)
2034	int hlen;
2035	ip_t *ip;
2036	fr_info_t *fin;
2037{
2038	ipf_main_softc_t *softc = fin->fin_main_soft;
2039	int v;
2040
2041	fin->fin_depth = 0;
2042	fin->fin_hlen = (u_short)hlen;
2043	fin->fin_ip = ip;
2044	fin->fin_rule = 0xffffffff;
2045	fin->fin_group[0] = -1;
2046	fin->fin_group[1] = '\0';
2047	fin->fin_dp = (char *)ip + hlen;
2048
2049	v = fin->fin_v;
2050	if (v == 4) {
2051		fin->fin_plen = ntohs(ip->ip_len);
2052		fin->fin_dlen = fin->fin_plen - hlen;
2053		ipf_pr_ipv4hdr(fin);
2054#ifdef	USE_INET6
2055	} else if (v == 6) {
2056		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2057		fin->fin_dlen = fin->fin_plen;
2058		fin->fin_plen += hlen;
2059
2060		ipf_pr_ipv6hdr(fin);
2061#endif
2062	}
2063	if (fin->fin_ip == NULL) {
2064		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2065		return -1;
2066	}
2067	return 0;
2068}
2069
2070
2071/* ------------------------------------------------------------------------ */
2072/* Function:    ipf_portcheck                                               */
2073/* Returns:     int - 1 == port matched, 0 == port match failed             */
2074/* Parameters:  frp(I) - pointer to port check `expression'                 */
2075/*              pop(I) - port number to evaluate                            */
2076/*                                                                          */
2077/* Perform a comparison of a port number against some other(s), using a     */
2078/* structure with compare information stored in it.                         */
2079/* ------------------------------------------------------------------------ */
2080static INLINE int
2081ipf_portcheck(frp, pop)
2082	frpcmp_t *frp;
2083	u_32_t pop;
2084{
2085	int err = 1;
2086	u_32_t po;
2087
2088	po = frp->frp_port;
2089
2090	/*
2091	 * Do opposite test to that required and continue if that succeeds.
2092	 */
2093	switch (frp->frp_cmp)
2094	{
2095	case FR_EQUAL :
2096		if (pop != po) /* EQUAL */
2097			err = 0;
2098		break;
2099	case FR_NEQUAL :
2100		if (pop == po) /* NOTEQUAL */
2101			err = 0;
2102		break;
2103	case FR_LESST :
2104		if (pop >= po) /* LESSTHAN */
2105			err = 0;
2106		break;
2107	case FR_GREATERT :
2108		if (pop <= po) /* GREATERTHAN */
2109			err = 0;
2110		break;
2111	case FR_LESSTE :
2112		if (pop > po) /* LT or EQ */
2113			err = 0;
2114		break;
2115	case FR_GREATERTE :
2116		if (pop < po) /* GT or EQ */
2117			err = 0;
2118		break;
2119	case FR_OUTRANGE :
2120		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2121			err = 0;
2122		break;
2123	case FR_INRANGE :
2124		if (pop <= po || pop >= frp->frp_top) /* In range */
2125			err = 0;
2126		break;
2127	case FR_INCRANGE :
2128		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2129			err = 0;
2130		break;
2131	default :
2132		break;
2133	}
2134	return err;
2135}
2136
2137
2138/* ------------------------------------------------------------------------ */
2139/* Function:    ipf_tcpudpchk                                               */
2140/* Returns:     int - 1 == protocol matched, 0 == check failed              */
2141/* Parameters:  fda(I) - pointer to packet information                      */
2142/*              ft(I)  - pointer to structure with comparison data          */
2143/*                                                                          */
2144/* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2145/* structure containing information that we want to match against.          */
2146/* ------------------------------------------------------------------------ */
2147int
2148ipf_tcpudpchk(fi, ft)
2149	fr_ip_t *fi;
2150	frtuc_t *ft;
2151{
2152	int err = 1;
2153
2154	/*
2155	 * Both ports should *always* be in the first fragment.
2156	 * So far, I cannot find any cases where they can not be.
2157	 *
2158	 * compare destination ports
2159	 */
2160	if (ft->ftu_dcmp)
2161		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2162
2163	/*
2164	 * compare source ports
2165	 */
2166	if (err && ft->ftu_scmp)
2167		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2168
2169	/*
2170	 * If we don't have all the TCP/UDP header, then how can we
2171	 * expect to do any sort of match on it ?  If we were looking for
2172	 * TCP flags, then NO match.  If not, then match (which should
2173	 * satisfy the "short" class too).
2174	 */
2175	if (err && (fi->fi_p == IPPROTO_TCP)) {
2176		if (fi->fi_flx & FI_SHORT)
2177			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2178		/*
2179		 * Match the flags ?  If not, abort this match.
2180		 */
2181		if (ft->ftu_tcpfm &&
2182		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2183			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2184				 ft->ftu_tcpfm, ft->ftu_tcpf));
2185			err = 0;
2186		}
2187	}
2188	return err;
2189}
2190
2191
2192/* ------------------------------------------------------------------------ */
2193/* Function:    ipf_check_ipf                                               */
2194/* Returns:     int - 0 == match, else no match                             */
2195/* Parameters:  fin(I)     - pointer to packet information                  */
2196/*              fr(I)      - pointer to filter rule                         */
2197/*              portcmp(I) - flag indicating whether to attempt matching on */
2198/*                           TCP/UDP port data.                             */
2199/*                                                                          */
2200/* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2201/* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2202/* this function.                                                           */
2203/* ------------------------------------------------------------------------ */
2204static INLINE int
2205ipf_check_ipf(fin, fr, portcmp)
2206	fr_info_t *fin;
2207	frentry_t *fr;
2208	int portcmp;
2209{
2210	u_32_t	*ld, *lm, *lip;
2211	fripf_t *fri;
2212	fr_ip_t *fi;
2213	int i;
2214
2215	fi = &fin->fin_fi;
2216	fri = fr->fr_ipf;
2217	lip = (u_32_t *)fi;
2218	lm = (u_32_t *)&fri->fri_mip;
2219	ld = (u_32_t *)&fri->fri_ip;
2220
2221	/*
2222	 * first 32 bits to check coversion:
2223	 * IP version, TOS, TTL, protocol
2224	 */
2225	i = ((*lip & *lm) != *ld);
2226	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2227		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2228	if (i)
2229		return 1;
2230
2231	/*
2232	 * Next 32 bits is a constructed bitmask indicating which IP options
2233	 * are present (if any) in this packet.
2234	 */
2235	lip++, lm++, ld++;
2236	i = ((*lip & *lm) != *ld);
2237	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2238		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2239	if (i != 0)
2240		return 1;
2241
2242	lip++, lm++, ld++;
2243	/*
2244	 * Unrolled loops (4 each, for 32 bits) for address checks.
2245	 */
2246	/*
2247	 * Check the source address.
2248	 */
2249	if (fr->fr_satype == FRI_LOOKUP) {
2250		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2251				      fi->fi_v, lip, fin->fin_plen);
2252		if (i == -1)
2253			return 1;
2254		lip += 3;
2255		lm += 3;
2256		ld += 3;
2257	} else {
2258		i = ((*lip & *lm) != *ld);
2259		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2260			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2261		if (fi->fi_v == 6) {
2262			lip++, lm++, ld++;
2263			i |= ((*lip & *lm) != *ld);
2264			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2265				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2266			lip++, lm++, ld++;
2267			i |= ((*lip & *lm) != *ld);
2268			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2269				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2270			lip++, lm++, ld++;
2271			i |= ((*lip & *lm) != *ld);
2272			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2273				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2274		} else {
2275			lip += 3;
2276			lm += 3;
2277			ld += 3;
2278		}
2279	}
2280	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2281	if (i != 0)
2282		return 1;
2283
2284	/*
2285	 * Check the destination address.
2286	 */
2287	lip++, lm++, ld++;
2288	if (fr->fr_datype == FRI_LOOKUP) {
2289		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2290				      fi->fi_v, lip, fin->fin_plen);
2291		if (i == -1)
2292			return 1;
2293		lip += 3;
2294		lm += 3;
2295		ld += 3;
2296	} else {
2297		i = ((*lip & *lm) != *ld);
2298		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2299			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2300		if (fi->fi_v == 6) {
2301			lip++, lm++, ld++;
2302			i |= ((*lip & *lm) != *ld);
2303			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2304				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2305			lip++, lm++, ld++;
2306			i |= ((*lip & *lm) != *ld);
2307			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2308				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2309			lip++, lm++, ld++;
2310			i |= ((*lip & *lm) != *ld);
2311			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2312				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2313		} else {
2314			lip += 3;
2315			lm += 3;
2316			ld += 3;
2317		}
2318	}
2319	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2320	if (i != 0)
2321		return 1;
2322	/*
2323	 * IP addresses matched.  The next 32bits contains:
2324	 * mast of old IP header security & authentication bits.
2325	 */
2326	lip++, lm++, ld++;
2327	i = (*ld - (*lip & *lm));
2328	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2329
2330	/*
2331	 * Next we have 32 bits of packet flags.
2332	 */
2333	lip++, lm++, ld++;
2334	i |= (*ld - (*lip & *lm));
2335	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2336
2337	if (i == 0) {
2338		/*
2339		 * If a fragment, then only the first has what we're
2340		 * looking for here...
2341		 */
2342		if (portcmp) {
2343			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2344				i = 1;
2345		} else {
2346			if (fr->fr_dcmp || fr->fr_scmp ||
2347			    fr->fr_tcpf || fr->fr_tcpfm)
2348				i = 1;
2349			if (fr->fr_icmpm || fr->fr_icmp) {
2350				if (((fi->fi_p != IPPROTO_ICMP) &&
2351				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2352				    fin->fin_off || (fin->fin_dlen < 2))
2353					i = 1;
2354				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2355					 fr->fr_icmp) {
2356					FR_DEBUG(("i. %#x & %#x != %#x\n",
2357						 fin->fin_data[0],
2358						 fr->fr_icmpm, fr->fr_icmp));
2359					i = 1;
2360				}
2361			}
2362		}
2363	}
2364	return i;
2365}
2366
2367
2368/* ------------------------------------------------------------------------ */
2369/* Function:    ipf_scanlist                                                */
2370/* Returns:     int - result flags of scanning filter list                  */
2371/* Parameters:  fin(I) - pointer to packet information                      */
2372/*              pass(I) - default result to return for filtering            */
2373/*                                                                          */
2374/* Check the input/output list of rules for a match to the current packet.  */
2375/* If a match is found, the value of fr_flags from the rule becomes the     */
2376/* return value and fin->fin_fr points to the matched rule.                 */
2377/*                                                                          */
2378/* This function may be called recusively upto 16 times (limit inbuilt.)    */
2379/* When unwinding, it should finish up with fin_depth as 0.                 */
2380/*                                                                          */
2381/* Could be per interface, but this gets real nasty when you don't have,    */
2382/* or can't easily change, the kernel source code to .                      */
2383/* ------------------------------------------------------------------------ */
2384int
2385ipf_scanlist(fin, pass)
2386	fr_info_t *fin;
2387	u_32_t pass;
2388{
2389	ipf_main_softc_t *softc = fin->fin_main_soft;
2390	int rulen, portcmp, off, skip;
2391	struct frentry *fr, *fnext;
2392	u_32_t passt, passo;
2393
2394	/*
2395	 * Do not allow nesting deeper than 16 levels.
2396	 */
2397	if (fin->fin_depth >= 16)
2398		return pass;
2399
2400	fr = fin->fin_fr;
2401
2402	/*
2403	 * If there are no rules in this list, return now.
2404	 */
2405	if (fr == NULL)
2406		return pass;
2407
2408	skip = 0;
2409	portcmp = 0;
2410	fin->fin_depth++;
2411	fin->fin_fr = NULL;
2412	off = fin->fin_off;
2413
2414	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2415		portcmp = 1;
2416
2417	for (rulen = 0; fr; fr = fnext, rulen++) {
2418		fnext = fr->fr_next;
2419		if (skip != 0) {
2420			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2421			skip--;
2422			continue;
2423		}
2424
2425		/*
2426		 * In all checks below, a null (zero) value in the
2427		 * filter struture is taken to mean a wildcard.
2428		 *
2429		 * check that we are working for the right interface
2430		 */
2431#ifdef	_KERNEL
2432		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2433			continue;
2434#else
2435		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2436			printf("\n");
2437		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2438				  FR_ISPASS(pass) ? 'p' :
2439				  FR_ISACCOUNT(pass) ? 'A' :
2440				  FR_ISAUTH(pass) ? 'a' :
2441				  (pass & FR_NOMATCH) ? 'n' :'b'));
2442		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2443			continue;
2444		FR_VERBOSE((":i"));
2445#endif
2446
2447		switch (fr->fr_type)
2448		{
2449		case FR_T_IPF :
2450		case FR_T_IPF_BUILTIN :
2451			if (ipf_check_ipf(fin, fr, portcmp))
2452				continue;
2453			break;
2454#if defined(IPFILTER_BPF)
2455		case FR_T_BPFOPC :
2456		case FR_T_BPFOPC_BUILTIN :
2457		    {
2458			u_char *mc;
2459			int wlen;
2460
2461			if (*fin->fin_mp == NULL)
2462				continue;
2463			if (fin->fin_family != fr->fr_family)
2464				continue;
2465			mc = (u_char *)fin->fin_m;
2466			wlen = fin->fin_dlen + fin->fin_hlen;
2467			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2468				continue;
2469			break;
2470		    }
2471#endif
2472		case FR_T_CALLFUNC_BUILTIN :
2473		    {
2474			frentry_t *f;
2475
2476			f = (*fr->fr_func)(fin, &pass);
2477			if (f != NULL)
2478				fr = f;
2479			else
2480				continue;
2481			break;
2482		    }
2483
2484		case FR_T_IPFEXPR :
2485		case FR_T_IPFEXPR_BUILTIN :
2486			if (fin->fin_family != fr->fr_family)
2487				continue;
2488			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2489				continue;
2490			break;
2491
2492		default :
2493			break;
2494		}
2495
2496		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2497			if (fin->fin_nattag == NULL)
2498				continue;
2499			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2500				continue;
2501		}
2502		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2503
2504		passt = fr->fr_flags;
2505
2506		/*
2507		 * If the rule is a "call now" rule, then call the function
2508		 * in the rule, if it exists and use the results from that.
2509		 * If the function pointer is bad, just make like we ignore
2510		 * it, except for increasing the hit counter.
2511		 */
2512		if ((passt & FR_CALLNOW) != 0) {
2513			frentry_t *frs;
2514
2515			ATOMIC_INC64(fr->fr_hits);
2516			if ((fr->fr_func == NULL) ||
2517			    (fr->fr_func == (ipfunc_t)-1))
2518				continue;
2519
2520			frs = fin->fin_fr;
2521			fin->fin_fr = fr;
2522			fr = (*fr->fr_func)(fin, &passt);
2523			if (fr == NULL) {
2524				fin->fin_fr = frs;
2525				continue;
2526			}
2527			passt = fr->fr_flags;
2528		}
2529		fin->fin_fr = fr;
2530
2531#ifdef  IPFILTER_LOG
2532		/*
2533		 * Just log this packet...
2534		 */
2535		if ((passt & FR_LOGMASK) == FR_LOG) {
2536			if (ipf_log_pkt(fin, passt) == -1) {
2537				if (passt & FR_LOGORBLOCK) {
2538					DT(frb_logfail);
2539					passt &= ~FR_CMDMASK;
2540					passt |= FR_BLOCK|FR_QUICK;
2541					fin->fin_reason = FRB_LOGFAIL;
2542				}
2543			}
2544		}
2545#endif /* IPFILTER_LOG */
2546
2547		MUTEX_ENTER(&fr->fr_lock);
2548		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2549		fr->fr_hits++;
2550		MUTEX_EXIT(&fr->fr_lock);
2551		fin->fin_rule = rulen;
2552
2553		passo = pass;
2554		if (FR_ISSKIP(passt)) {
2555			skip = fr->fr_arg;
2556			continue;
2557		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2558			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2559			pass = passt;
2560		}
2561
2562		if (passt & (FR_RETICMP|FR_FAKEICMP))
2563			fin->fin_icode = fr->fr_icode;
2564
2565		if (fr->fr_group != -1) {
2566			(void) strncpy(fin->fin_group,
2567				       FR_NAME(fr, fr_group),
2568				       strlen(FR_NAME(fr, fr_group)));
2569		} else {
2570			fin->fin_group[0] = '\0';
2571		}
2572
2573		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2574
2575		if (fr->fr_grphead != NULL) {
2576			fin->fin_fr = fr->fr_grphead->fg_start;
2577			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2578
2579			if (FR_ISDECAPS(passt))
2580				passt = ipf_decaps(fin, pass, fr->fr_icode);
2581			else
2582				passt = ipf_scanlist(fin, pass);
2583
2584			if (fin->fin_fr == NULL) {
2585				fin->fin_rule = rulen;
2586				if (fr->fr_group != -1)
2587					(void) strncpy(fin->fin_group,
2588						       fr->fr_names +
2589						       fr->fr_group,
2590						       strlen(fr->fr_names +
2591							      fr->fr_group));
2592				fin->fin_fr = fr;
2593				passt = pass;
2594			}
2595			pass = passt;
2596		}
2597
2598		if (pass & FR_QUICK) {
2599			/*
2600			 * Finally, if we've asked to track state for this
2601			 * packet, set it up.  Add state for "quick" rules
2602			 * here so that if the action fails we can consider
2603			 * the rule to "not match" and keep on processing
2604			 * filter rules.
2605			 */
2606			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2607			    !(fin->fin_flx & FI_STATE)) {
2608				int out = fin->fin_out;
2609
2610				fin->fin_fr = fr;
2611				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2612					LBUMPD(ipf_stats[out], fr_ads);
2613				} else {
2614					LBUMPD(ipf_stats[out], fr_bads);
2615					pass = passo;
2616					continue;
2617				}
2618			}
2619			break;
2620		}
2621	}
2622	fin->fin_depth--;
2623	return pass;
2624}
2625
2626
2627/* ------------------------------------------------------------------------ */
2628/* Function:    ipf_acctpkt                                                 */
2629/* Returns:     frentry_t* - always returns NULL                            */
2630/* Parameters:  fin(I) - pointer to packet information                      */
2631/*              passp(IO) - pointer to current/new filter decision (unused) */
2632/*                                                                          */
2633/* Checks a packet against accounting rules, if there are any for the given */
2634/* IP protocol version.                                                     */
2635/*                                                                          */
2636/* N.B.: this function returns NULL to match the prototype used by other    */
2637/* functions called from the IPFilter "mainline" in ipf_check().            */
2638/* ------------------------------------------------------------------------ */
2639frentry_t *
2640ipf_acctpkt(fin, passp)
2641	fr_info_t *fin;
2642	u_32_t *passp;
2643{
2644	ipf_main_softc_t *softc = fin->fin_main_soft;
2645	char group[FR_GROUPLEN];
2646	frentry_t *fr, *frsave;
2647	u_32_t pass, rulen;
2648
2649	passp = passp;
2650	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2651
2652	if (fr != NULL) {
2653		frsave = fin->fin_fr;
2654		bcopy(fin->fin_group, group, FR_GROUPLEN);
2655		rulen = fin->fin_rule;
2656		fin->fin_fr = fr;
2657		pass = ipf_scanlist(fin, FR_NOMATCH);
2658		if (FR_ISACCOUNT(pass)) {
2659			LBUMPD(ipf_stats[0], fr_acct);
2660		}
2661		fin->fin_fr = frsave;
2662		bcopy(group, fin->fin_group, FR_GROUPLEN);
2663		fin->fin_rule = rulen;
2664	}
2665	return NULL;
2666}
2667
2668
2669/* ------------------------------------------------------------------------ */
2670/* Function:    ipf_firewall                                                */
2671/* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2672/*                           were found, returns NULL.                      */
2673/* Parameters:  fin(I) - pointer to packet information                      */
2674/*              passp(IO) - pointer to current/new filter decision (unused) */
2675/*                                                                          */
2676/* Applies an appropriate set of firewall rules to the packet, to see if    */
2677/* there are any matches.  The first check is to see if a match can be seen */
2678/* in the cache.  If not, then search an appropriate list of rules.  Once a */
2679/* matching rule is found, take any appropriate actions as defined by the   */
2680/* rule - except logging.                                                   */
2681/* ------------------------------------------------------------------------ */
2682static frentry_t *
2683ipf_firewall(fin, passp)
2684	fr_info_t *fin;
2685	u_32_t *passp;
2686{
2687	ipf_main_softc_t *softc = fin->fin_main_soft;
2688	frentry_t *fr;
2689	u_32_t pass;
2690	int out;
2691
2692	out = fin->fin_out;
2693	pass = *passp;
2694
2695	/*
2696	 * This rule cache will only affect packets that are not being
2697	 * statefully filtered.
2698	 */
2699	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2700	if (fin->fin_fr != NULL)
2701		pass = ipf_scanlist(fin, softc->ipf_pass);
2702
2703	if ((pass & FR_NOMATCH)) {
2704		LBUMPD(ipf_stats[out], fr_nom);
2705	}
2706	fr = fin->fin_fr;
2707
2708	/*
2709	 * Apply packets per second rate-limiting to a rule as required.
2710	 */
2711	if ((fr != NULL) && (fr->fr_pps != 0) &&
2712	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2713		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2714		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2715		pass |= FR_BLOCK;
2716		LBUMPD(ipf_stats[out], fr_ppshit);
2717		fin->fin_reason = FRB_PPSRATE;
2718	}
2719
2720	/*
2721	 * If we fail to add a packet to the authorization queue, then we
2722	 * drop the packet later.  However, if it was added then pretend
2723	 * we've dropped it already.
2724	 */
2725	if (FR_ISAUTH(pass)) {
2726		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2727			DT1(frb_authnew, fr_info_t *, fin);
2728			fin->fin_m = *fin->fin_mp = NULL;
2729			fin->fin_reason = FRB_AUTHNEW;
2730			fin->fin_error = 0;
2731		} else {
2732			IPFERROR(1);
2733			fin->fin_error = ENOSPC;
2734		}
2735	}
2736
2737	if ((fr != NULL) && (fr->fr_func != NULL) &&
2738	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2739		(void) (*fr->fr_func)(fin, &pass);
2740
2741	/*
2742	 * If a rule is a pre-auth rule, check again in the list of rules
2743	 * loaded for authenticated use.  It does not particulary matter
2744	 * if this search fails because a "preauth" result, from a rule,
2745	 * is treated as "not a pass", hence the packet is blocked.
2746	 */
2747	if (FR_ISPREAUTH(pass)) {
2748		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2749	}
2750
2751	/*
2752	 * If the rule has "keep frag" and the packet is actually a fragment,
2753	 * then create a fragment state entry.
2754	 */
2755	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2756		if (fin->fin_flx & FI_FRAG) {
2757			if (ipf_frag_new(softc, fin, pass) == -1) {
2758				LBUMP(ipf_stats[out].fr_bnfr);
2759			} else {
2760				LBUMP(ipf_stats[out].fr_nfr);
2761			}
2762		} else {
2763			LBUMP(ipf_stats[out].fr_cfr);
2764		}
2765	}
2766
2767	fr = fin->fin_fr;
2768	*passp = pass;
2769
2770	return fr;
2771}
2772
2773
2774/* ------------------------------------------------------------------------ */
2775/* Function:    ipf_check                                                   */
2776/* Returns:     int -  0 == packet allowed through,                         */
2777/*              User space:                                                 */
2778/*                    -1 == packet blocked                                  */
2779/*                     1 == packet not matched                              */
2780/*                    -2 == requires authentication                         */
2781/*              Kernel:                                                     */
2782/*                   > 0 == filter error # for packet                       */
2783/* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2784/*             hlen(I) - length of header                                   */
2785/*             ifp(I)  - pointer to interface this packet is on             */
2786/*             out(I)  - 0 == packet going in, 1 == packet going out        */
2787/*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2788/*                       IP packet.                                         */
2789/* Solaris & HP-UX ONLY :                                                   */
2790/*             qpi(I)  - pointer to STREAMS queue information for this      */
2791/*                       interface & direction.                             */
2792/*                                                                          */
2793/* ipf_check() is the master function for all IPFilter packet processing.   */
2794/* It orchestrates: Network Address Translation (NAT), checking for packet  */
2795/* authorisation (or pre-authorisation), presence of related state info.,   */
2796/* generating log entries, IP packet accounting, routing of packets as      */
2797/* directed by firewall rules and of course whether or not to allow the     */
2798/* packet to be further processed by the kernel.                            */
2799/*                                                                          */
2800/* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2801/* freed.  Packets passed may be returned with the pointer pointed to by    */
2802/* by "mp" changed to a new buffer.                                         */
2803/* ------------------------------------------------------------------------ */
2804int
2805ipf_check(ctx, ip, hlen, ifp, out
2806#if defined(_KERNEL) && defined(MENTAT)
2807	, qif, mp)
2808	void *qif;
2809#else
2810	, mp)
2811#endif
2812	mb_t **mp;
2813	ip_t *ip;
2814	int hlen;
2815	void *ifp;
2816	int out;
2817	void *ctx;
2818{
2819	/*
2820	 * The above really sucks, but short of writing a diff
2821	 */
2822	ipf_main_softc_t *softc = ctx;
2823	fr_info_t frinfo;
2824	fr_info_t *fin = &frinfo;
2825	u_32_t pass = softc->ipf_pass;
2826	frentry_t *fr = NULL;
2827	int v = IP_V(ip);
2828	mb_t *mc = NULL;
2829	mb_t *m;
2830	/*
2831	 * The first part of ipf_check() deals with making sure that what goes
2832	 * into the filtering engine makes some sense.  Information about the
2833	 * the packet is distilled, collected into a fr_info_t structure and
2834	 * the an attempt to ensure the buffer the packet is in is big enough
2835	 * to hold all the required packet headers.
2836	 */
2837#ifdef	_KERNEL
2838# ifdef MENTAT
2839	qpktinfo_t *qpi = qif;
2840
2841#  ifdef __sparc
2842	if ((u_int)ip & 0x3)
2843		return 2;
2844#  endif
2845# else
2846	SPL_INT(s);
2847# endif
2848
2849	if (softc->ipf_running <= 0) {
2850		return 0;
2851	}
2852
2853	bzero((char *)fin, sizeof(*fin));
2854
2855# ifdef MENTAT
2856	if (qpi->qpi_flags & QF_BROADCAST)
2857		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2858	if (qpi->qpi_flags & QF_MULTICAST)
2859		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2860	m = qpi->qpi_m;
2861	fin->fin_qfm = m;
2862	fin->fin_qpi = qpi;
2863# else /* MENTAT */
2864
2865	m = *mp;
2866
2867#  if defined(M_MCAST)
2868	if ((m->m_flags & M_MCAST) != 0)
2869		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2870#  endif
2871#  if defined(M_MLOOP)
2872	if ((m->m_flags & M_MLOOP) != 0)
2873		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2874#  endif
2875#  if defined(M_BCAST)
2876	if ((m->m_flags & M_BCAST) != 0)
2877		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2878#  endif
2879#  ifdef M_CANFASTFWD
2880	/*
2881	 * XXX For now, IP Filter and fast-forwarding of cached flows
2882	 * XXX are mutually exclusive.  Eventually, IP Filter should
2883	 * XXX get a "can-fast-forward" filter rule.
2884	 */
2885	m->m_flags &= ~M_CANFASTFWD;
2886#  endif /* M_CANFASTFWD */
2887#  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2888				   (__FreeBSD_version < 501108))
2889	/*
2890	 * disable delayed checksums.
2891	 */
2892	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2893		in_delayed_cksum(m);
2894		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2895	}
2896#  endif /* CSUM_DELAY_DATA */
2897# endif /* MENTAT */
2898#else
2899	bzero((char *)fin, sizeof(*fin));
2900	m = *mp;
2901# if defined(M_MCAST)
2902	if ((m->m_flags & M_MCAST) != 0)
2903		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2904# endif
2905# if defined(M_MLOOP)
2906	if ((m->m_flags & M_MLOOP) != 0)
2907		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2908# endif
2909# if defined(M_BCAST)
2910	if ((m->m_flags & M_BCAST) != 0)
2911		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2912# endif
2913#endif /* _KERNEL */
2914
2915	fin->fin_v = v;
2916	fin->fin_m = m;
2917	fin->fin_ip = ip;
2918	fin->fin_mp = mp;
2919	fin->fin_out = out;
2920	fin->fin_ifp = ifp;
2921	fin->fin_error = ENETUNREACH;
2922	fin->fin_hlen = (u_short)hlen;
2923	fin->fin_dp = (char *)ip + hlen;
2924	fin->fin_main_soft = softc;
2925
2926	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2927
2928	SPL_NET(s);
2929
2930#ifdef	USE_INET6
2931	if (v == 6) {
2932		LBUMP(ipf_stats[out].fr_ipv6);
2933		/*
2934		 * Jumbo grams are quite likely too big for internal buffer
2935		 * structures to handle comfortably, for now, so just drop
2936		 * them.
2937		 */
2938		if (((ip6_t *)ip)->ip6_plen == 0) {
2939			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2940			pass = FR_BLOCK|FR_NOMATCH;
2941			fin->fin_reason = FRB_JUMBO;
2942			goto finished;
2943		}
2944		fin->fin_family = AF_INET6;
2945	} else
2946#endif
2947	{
2948		fin->fin_family = AF_INET;
2949	}
2950
2951	if (ipf_makefrip(hlen, ip, fin) == -1) {
2952		DT1(frb_makefrip, fr_info_t *, fin);
2953		pass = FR_BLOCK|FR_NOMATCH;
2954		fin->fin_reason = FRB_MAKEFRIP;
2955		goto finished;
2956	}
2957
2958	/*
2959	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2960	 * becomes NULL and so we have no packet to free.
2961	 */
2962	if (*fin->fin_mp == NULL)
2963		goto finished;
2964
2965	if (!out) {
2966		if (v == 4) {
2967			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2968				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2969				fin->fin_flx |= FI_BADSRC;
2970			}
2971			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2972				LBUMPD(ipf_stats[0], fr_v4_badttl);
2973				fin->fin_flx |= FI_LOWTTL;
2974			}
2975		}
2976#ifdef USE_INET6
2977		else  if (v == 6) {
2978			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2979				LBUMPD(ipf_stats[0], fr_v6_badttl);
2980				fin->fin_flx |= FI_LOWTTL;
2981			}
2982		}
2983#endif
2984	}
2985
2986	if (fin->fin_flx & FI_SHORT) {
2987		LBUMPD(ipf_stats[out], fr_short);
2988	}
2989
2990	READ_ENTER(&softc->ipf_mutex);
2991
2992	if (!out) {
2993		switch (fin->fin_v)
2994		{
2995		case 4 :
2996			if (ipf_nat_checkin(fin, &pass) == -1) {
2997				goto filterdone;
2998			}
2999			break;
3000#ifdef USE_INET6
3001		case 6 :
3002			if (ipf_nat6_checkin(fin, &pass) == -1) {
3003				goto filterdone;
3004			}
3005			break;
3006#endif
3007		default :
3008			break;
3009		}
3010	}
3011	/*
3012	 * Check auth now.
3013	 * If a packet is found in the auth table, then skip checking
3014	 * the access lists for permission but we do need to consider
3015	 * the result as if it were from the ACL's.  In addition, being
3016	 * found in the auth table means it has been seen before, so do
3017	 * not pass it through accounting (again), lest it be counted twice.
3018	 */
3019	fr = ipf_auth_check(fin, &pass);
3020	if (!out && (fr == NULL))
3021		(void) ipf_acctpkt(fin, NULL);
3022
3023	if (fr == NULL) {
3024		if ((fin->fin_flx & FI_FRAG) != 0)
3025			fr = ipf_frag_known(fin, &pass);
3026
3027		if (fr == NULL)
3028			fr = ipf_state_check(fin, &pass);
3029	}
3030
3031	if ((pass & FR_NOMATCH) || (fr == NULL))
3032		fr = ipf_firewall(fin, &pass);
3033
3034	/*
3035	 * If we've asked to track state for this packet, set it up.
3036	 * Here rather than ipf_firewall because ipf_checkauth may decide
3037	 * to return a packet for "keep state"
3038	 */
3039	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
3040	    !(fin->fin_flx & FI_STATE)) {
3041		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
3042			LBUMP(ipf_stats[out].fr_ads);
3043		} else {
3044			LBUMP(ipf_stats[out].fr_bads);
3045			if (FR_ISPASS(pass)) {
3046				DT(frb_stateadd);
3047				pass &= ~FR_CMDMASK;
3048				pass |= FR_BLOCK;
3049				fin->fin_reason = FRB_STATEADD;
3050			}
3051		}
3052	}
3053
3054	fin->fin_fr = fr;
3055	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
3056		fin->fin_dif = &fr->fr_dif;
3057		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3058	}
3059
3060	/*
3061	 * Only count/translate packets which will be passed on, out the
3062	 * interface.
3063	 */
3064	if (out && FR_ISPASS(pass)) {
3065		(void) ipf_acctpkt(fin, NULL);
3066
3067		switch (fin->fin_v)
3068		{
3069		case 4 :
3070			if (ipf_nat_checkout(fin, &pass) == -1) {
3071				;
3072			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3073				if (ipf_updateipid(fin) == -1) {
3074					DT(frb_updateipid);
3075					LBUMP(ipf_stats[1].fr_ipud);
3076					pass &= ~FR_CMDMASK;
3077					pass |= FR_BLOCK;
3078					fin->fin_reason = FRB_UPDATEIPID;
3079				} else {
3080					LBUMP(ipf_stats[0].fr_ipud);
3081				}
3082			}
3083			break;
3084#ifdef USE_INET6
3085		case 6 :
3086			(void) ipf_nat6_checkout(fin, &pass);
3087			break;
3088#endif
3089		default :
3090			break;
3091		}
3092	}
3093
3094filterdone:
3095#ifdef	IPFILTER_LOG
3096	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3097		(void) ipf_dolog(fin, &pass);
3098	}
3099#endif
3100
3101	/*
3102	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3103	 * will work when called from inside of fr_fastroute.  Although
3104	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3105	 * impact on code execution.
3106	 */
3107	fin->fin_flx &= ~FI_STATE;
3108
3109#if defined(FASTROUTE_RECURSION)
3110	/*
3111	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3112	 * a packet below can sometimes cause a recursive call into IPFilter.
3113	 * On those platforms where that does happen, we need to hang onto
3114	 * the filter rule just in case someone decides to remove or flush it
3115	 * in the meantime.
3116	 */
3117	if (fr != NULL) {
3118		MUTEX_ENTER(&fr->fr_lock);
3119		fr->fr_ref++;
3120		MUTEX_EXIT(&fr->fr_lock);
3121	}
3122
3123	RWLOCK_EXIT(&softc->ipf_mutex);
3124#endif
3125
3126	if ((pass & FR_RETMASK) != 0) {
3127		/*
3128		 * Should we return an ICMP packet to indicate error
3129		 * status passing through the packet filter ?
3130		 * WARNING: ICMP error packets AND TCP RST packets should
3131		 * ONLY be sent in repsonse to incoming packets.  Sending
3132		 * them in response to outbound packets can result in a
3133		 * panic on some operating systems.
3134		 */
3135		if (!out) {
3136			if (pass & FR_RETICMP) {
3137				int dst;
3138
3139				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3140					dst = 1;
3141				else
3142					dst = 0;
3143				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3144							 dst);
3145				LBUMP(ipf_stats[0].fr_ret);
3146			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3147				   !(fin->fin_flx & FI_SHORT)) {
3148				if (((fin->fin_flx & FI_OOW) != 0) ||
3149				    (ipf_send_reset(fin) == 0)) {
3150					LBUMP(ipf_stats[1].fr_ret);
3151				}
3152			}
3153
3154			/*
3155			 * When using return-* with auth rules, the auth code
3156			 * takes over disposing of this packet.
3157			 */
3158			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3159				DT1(frb_authcapture, fr_info_t *, fin);
3160				fin->fin_m = *fin->fin_mp = NULL;
3161				fin->fin_reason = FRB_AUTHCAPTURE;
3162				m = NULL;
3163			}
3164		} else {
3165			if (pass & FR_RETRST) {
3166				fin->fin_error = ECONNRESET;
3167			}
3168		}
3169	}
3170
3171	/*
3172	 * After the above so that ICMP unreachables and TCP RSTs get
3173	 * created properly.
3174	 */
3175	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3176		ipf_nat_uncreate(fin);
3177
3178	/*
3179	 * If we didn't drop off the bottom of the list of rules (and thus
3180	 * the 'current' rule fr is not NULL), then we may have some extra
3181	 * instructions about what to do with a packet.
3182	 * Once we're finished return to our caller, freeing the packet if
3183	 * we are dropping it.
3184	 */
3185	if (fr != NULL) {
3186		frdest_t *fdp;
3187
3188		/*
3189		 * Generate a duplicated packet first because ipf_fastroute
3190		 * can lead to fin_m being free'd... not good.
3191		 */
3192		fdp = fin->fin_dif;
3193		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3194		    (fdp->fd_ptr != (void *)-1)) {
3195			mc = M_COPY(fin->fin_m);
3196			if (mc != NULL)
3197				ipf_fastroute(mc, &mc, fin, fdp);
3198		}
3199
3200		fdp = fin->fin_tif;
3201		if (!out && (pass & FR_FASTROUTE)) {
3202			/*
3203			 * For fastroute rule, no destination interface defined
3204			 * so pass NULL as the frdest_t parameter
3205			 */
3206			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3207			m = *mp = NULL;
3208		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3209			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3210			/* this is for to rules: */
3211			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3212			m = *mp = NULL;
3213		}
3214
3215#if defined(FASTROUTE_RECURSION)
3216		(void) ipf_derefrule(softc, &fr);
3217#endif
3218	}
3219#if !defined(FASTROUTE_RECURSION)
3220	RWLOCK_EXIT(&softc->ipf_mutex);
3221#endif
3222
3223finished:
3224	if (!FR_ISPASS(pass)) {
3225		LBUMP(ipf_stats[out].fr_block);
3226		if (*mp != NULL) {
3227#ifdef _KERNEL
3228			FREE_MB_T(*mp);
3229#endif
3230			m = *mp = NULL;
3231		}
3232	} else {
3233		LBUMP(ipf_stats[out].fr_pass);
3234#if defined(_KERNEL) && defined(__sgi)
3235		if ((fin->fin_hbuf != NULL) &&
3236		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3237			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3238		}
3239#endif
3240	}
3241
3242	SPL_X(s);
3243
3244#ifdef _KERNEL
3245	if (FR_ISPASS(pass))
3246		return 0;
3247	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3248	return fin->fin_error;
3249#else /* _KERNEL */
3250	if (*mp != NULL)
3251		(*mp)->mb_ifp = fin->fin_ifp;
3252	blockreason = fin->fin_reason;
3253	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3254	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3255		if ((pass & FR_NOMATCH) != 0)
3256			return 1;
3257
3258	if ((pass & FR_RETMASK) != 0)
3259		switch (pass & FR_RETMASK)
3260		{
3261		case FR_RETRST :
3262			return 3;
3263		case FR_RETICMP :
3264			return 4;
3265		case FR_FAKEICMP :
3266			return 5;
3267		}
3268
3269	switch (pass & FR_CMDMASK)
3270	{
3271	case FR_PASS :
3272		return 0;
3273	case FR_BLOCK :
3274		return -1;
3275	case FR_AUTH :
3276		return -2;
3277	case FR_ACCOUNT :
3278		return -3;
3279	case FR_PREAUTH :
3280		return -4;
3281	}
3282	return 2;
3283#endif /* _KERNEL */
3284}
3285
3286
3287#ifdef	IPFILTER_LOG
3288/* ------------------------------------------------------------------------ */
3289/* Function:    ipf_dolog                                                   */
3290/* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3291/* Parameters:  fin(I) - pointer to packet information                      */
3292/*              passp(IO) - pointer to current/new filter decision (unused) */
3293/*                                                                          */
3294/* Checks flags set to see how a packet should be logged, if it is to be    */
3295/* logged.  Adjust statistics based on its success or not.                  */
3296/* ------------------------------------------------------------------------ */
3297frentry_t *
3298ipf_dolog(fin, passp)
3299	fr_info_t *fin;
3300	u_32_t *passp;
3301{
3302	ipf_main_softc_t *softc = fin->fin_main_soft;
3303	u_32_t pass;
3304	int out;
3305
3306	out = fin->fin_out;
3307	pass = *passp;
3308
3309	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3310		pass |= FF_LOGNOMATCH;
3311		LBUMPD(ipf_stats[out], fr_npkl);
3312		goto logit;
3313
3314	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3315	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3316		if ((pass & FR_LOGMASK) != FR_LOGP)
3317			pass |= FF_LOGPASS;
3318		LBUMPD(ipf_stats[out], fr_ppkl);
3319		goto logit;
3320
3321	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3322		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3323		if ((pass & FR_LOGMASK) != FR_LOGB)
3324			pass |= FF_LOGBLOCK;
3325		LBUMPD(ipf_stats[out], fr_bpkl);
3326
3327logit:
3328		if (ipf_log_pkt(fin, pass) == -1) {
3329			/*
3330			 * If the "or-block" option has been used then
3331			 * block the packet if we failed to log it.
3332			 */
3333			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3334				DT1(frb_logfail2, u_int, pass);
3335				pass &= ~FR_CMDMASK;
3336				pass |= FR_BLOCK;
3337				fin->fin_reason = FRB_LOGFAIL2;
3338			}
3339		}
3340		*passp = pass;
3341	}
3342
3343	return fin->fin_fr;
3344}
3345#endif /* IPFILTER_LOG */
3346
3347
3348/* ------------------------------------------------------------------------ */
3349/* Function:    ipf_cksum                                                   */
3350/* Returns:     u_short - IP header checksum                                */
3351/* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3352/*              len(I)  - length of buffer in bytes                         */
3353/*                                                                          */
3354/* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3355/*                                                                          */
3356/* N.B.: addr should be 16bit aligned.                                      */
3357/* ------------------------------------------------------------------------ */
3358u_short
3359ipf_cksum(addr, len)
3360	u_short *addr;
3361	int len;
3362{
3363	u_32_t sum = 0;
3364
3365	for (sum = 0; len > 1; len -= 2)
3366		sum += *addr++;
3367
3368	/* mop up an odd byte, if necessary */
3369	if (len == 1)
3370		sum += *(u_char *)addr;
3371
3372	/*
3373	 * add back carry outs from top 16 bits to low 16 bits
3374	 */
3375	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3376	sum += (sum >> 16);			/* add carry */
3377	return (u_short)(~sum);
3378}
3379
3380
3381/* ------------------------------------------------------------------------ */
3382/* Function:    fr_cksum                                                    */
3383/* Returns:     u_short - layer 4 checksum                                  */
3384/* Parameters:  fin(I)     - pointer to packet information                  */
3385/*              ip(I)      - pointer to IP header                           */
3386/*              l4proto(I) - protocol to caclulate checksum for             */
3387/*              l4hdr(I)   - pointer to layer 4 header                      */
3388/*                                                                          */
3389/* Calculates the TCP checksum for the packet held in "m", using the data   */
3390/* in the IP header "ip" to seed it.                                        */
3391/*                                                                          */
3392/* NB: This function assumes we've pullup'd enough for all of the IP header */
3393/* and the TCP header.  We also assume that data blocks aren't allocated in */
3394/* odd sizes.                                                               */
3395/*                                                                          */
3396/* Expects ip_len and ip_off to be in network byte order when called.       */
3397/* ------------------------------------------------------------------------ */
3398u_short
3399fr_cksum(fin, ip, l4proto, l4hdr)
3400	fr_info_t *fin;
3401	ip_t *ip;
3402	int l4proto;
3403	void *l4hdr;
3404{
3405	u_short *sp, slen, sumsave, *csump;
3406	u_int sum, sum2;
3407	int hlen;
3408	int off;
3409#ifdef	USE_INET6
3410	ip6_t *ip6;
3411#endif
3412
3413	csump = NULL;
3414	sumsave = 0;
3415	sp = NULL;
3416	slen = 0;
3417	hlen = 0;
3418	sum = 0;
3419
3420	sum = htons((u_short)l4proto);
3421	/*
3422	 * Add up IP Header portion
3423	 */
3424#ifdef	USE_INET6
3425	if (IP_V(ip) == 4) {
3426#endif
3427		hlen = IP_HL(ip) << 2;
3428		off = hlen;
3429		sp = (u_short *)&ip->ip_src;
3430		sum += *sp++;	/* ip_src */
3431		sum += *sp++;
3432		sum += *sp++;	/* ip_dst */
3433		sum += *sp++;
3434#ifdef	USE_INET6
3435	} else if (IP_V(ip) == 6) {
3436		ip6 = (ip6_t *)ip;
3437		hlen = sizeof(*ip6);
3438		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3439		sp = (u_short *)&ip6->ip6_src;
3440		sum += *sp++;	/* ip6_src */
3441		sum += *sp++;
3442		sum += *sp++;
3443		sum += *sp++;
3444		sum += *sp++;
3445		sum += *sp++;
3446		sum += *sp++;
3447		sum += *sp++;
3448		/* This needs to be routing header aware. */
3449		sum += *sp++;	/* ip6_dst */
3450		sum += *sp++;
3451		sum += *sp++;
3452		sum += *sp++;
3453		sum += *sp++;
3454		sum += *sp++;
3455		sum += *sp++;
3456		sum += *sp++;
3457	} else {
3458		return 0xffff;
3459	}
3460#endif
3461	slen = fin->fin_plen - off;
3462	sum += htons(slen);
3463
3464	switch (l4proto)
3465	{
3466	case IPPROTO_UDP :
3467		csump = &((udphdr_t *)l4hdr)->uh_sum;
3468		break;
3469
3470	case IPPROTO_TCP :
3471		csump = &((tcphdr_t *)l4hdr)->th_sum;
3472		break;
3473	case IPPROTO_ICMP :
3474		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3475		sum = 0;	/* Pseudo-checksum is not included */
3476		break;
3477#ifdef USE_INET6
3478	case IPPROTO_ICMPV6 :
3479		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3480		break;
3481#endif
3482	default :
3483		break;
3484	}
3485
3486	if (csump != NULL) {
3487		sumsave = *csump;
3488		*csump = 0;
3489	}
3490
3491	sum2 = ipf_pcksum(fin, off, sum);
3492	if (csump != NULL)
3493		*csump = sumsave;
3494	return sum2;
3495}
3496
3497
3498/* ------------------------------------------------------------------------ */
3499/* Function:    ipf_findgroup                                               */
3500/* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3501/* Parameters:  softc(I) - pointer to soft context main structure           */
3502/*              group(I) - group name to search for                         */
3503/*              unit(I)  - device to which this group belongs               */
3504/*              set(I)   - which set of rules (inactive/inactive) this is   */
3505/*              fgpp(O)  - pointer to place to store pointer to the pointer */
3506/*                         to where to add the next (last) group or where   */
3507/*                         to delete group from.                            */
3508/*                                                                          */
3509/* Search amongst the defined groups for a particular group number.         */
3510/* ------------------------------------------------------------------------ */
3511frgroup_t *
3512ipf_findgroup(softc, group, unit, set, fgpp)
3513	ipf_main_softc_t *softc;
3514	char *group;
3515	minor_t unit;
3516	int set;
3517	frgroup_t ***fgpp;
3518{
3519	frgroup_t *fg, **fgp;
3520
3521	/*
3522	 * Which list of groups to search in is dependent on which list of
3523	 * rules are being operated on.
3524	 */
3525	fgp = &softc->ipf_groups[unit][set];
3526
3527	while ((fg = *fgp) != NULL) {
3528		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3529			break;
3530		else
3531			fgp = &fg->fg_next;
3532	}
3533	if (fgpp != NULL)
3534		*fgpp = fgp;
3535	return fg;
3536}
3537
3538
3539/* ------------------------------------------------------------------------ */
3540/* Function:    ipf_group_add                                               */
3541/* Returns:     frgroup_t * - NULL == did not create group,                 */
3542/*                            != NULL == pointer to the group               */
3543/* Parameters:  softc(I) - pointer to soft context main structure           */
3544/*              num(I)   - group number to add                              */
3545/*              head(I)  - rule pointer that is using this as the head      */
3546/*              flags(I) - rule flags which describe the type of rule it is */
3547/*              unit(I)  - device to which this group will belong to        */
3548/*              set(I)   - which set of rules (inactive/inactive) this is   */
3549/* Write Locks: ipf_mutex                                                   */
3550/*                                                                          */
3551/* Add a new group head, or if it already exists, increase the reference    */
3552/* count to it.                                                             */
3553/* ------------------------------------------------------------------------ */
3554frgroup_t *
3555ipf_group_add(softc, group, head, flags, unit, set)
3556	ipf_main_softc_t *softc;
3557	char *group;
3558	void *head;
3559	u_32_t flags;
3560	minor_t unit;
3561	int set;
3562{
3563	frgroup_t *fg, **fgp;
3564	u_32_t gflags;
3565
3566	if (group == NULL)
3567		return NULL;
3568
3569	if (unit == IPL_LOGIPF && *group == '\0')
3570		return NULL;
3571
3572	fgp = NULL;
3573	gflags = flags & FR_INOUT;
3574
3575	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3576	if (fg != NULL) {
3577		if (fg->fg_head == NULL && head != NULL)
3578			fg->fg_head = head;
3579		if (fg->fg_flags == 0)
3580			fg->fg_flags = gflags;
3581		else if (gflags != fg->fg_flags)
3582			return NULL;
3583		fg->fg_ref++;
3584		return fg;
3585	}
3586
3587	KMALLOC(fg, frgroup_t *);
3588	if (fg != NULL) {
3589		fg->fg_head = head;
3590		fg->fg_start = NULL;
3591		fg->fg_next = *fgp;
3592		bcopy(group, fg->fg_name, strlen(group) + 1);
3593		fg->fg_flags = gflags;
3594		fg->fg_ref = 1;
3595		fg->fg_set = &softc->ipf_groups[unit][set];
3596		*fgp = fg;
3597	}
3598	return fg;
3599}
3600
3601
3602/* ------------------------------------------------------------------------ */
3603/* Function:    ipf_group_del                                               */
3604/* Returns:     int      - number of rules deleted                          */
3605/* Parameters:  softc(I) - pointer to soft context main structure           */
3606/*              group(I) - group name to delete                             */
3607/*              fr(I)    - filter rule from which group is referenced       */
3608/* Write Locks: ipf_mutex                                                   */
3609/*                                                                          */
3610/* This function is called whenever a reference to a group is to be dropped */
3611/* and thus its reference count needs to be lowered and the group free'd if */
3612/* the reference count reaches zero. Passing in fr is really for the sole   */
3613/* purpose of knowing when the head rule is being deleted.                  */
3614/* ------------------------------------------------------------------------ */
3615void
3616ipf_group_del(softc, group, fr)
3617	ipf_main_softc_t *softc;
3618	frgroup_t *group;
3619	frentry_t *fr;
3620{
3621
3622	if (group->fg_head == fr)
3623		group->fg_head = NULL;
3624
3625	group->fg_ref--;
3626	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3627		ipf_group_free(group);
3628}
3629
3630
3631/* ------------------------------------------------------------------------ */
3632/* Function:    ipf_group_free                                              */
3633/* Returns:     Nil                                                         */
3634/* Parameters:  group(I) - pointer to filter rule group                     */
3635/*                                                                          */
3636/* Remove the group from the list of groups and free it.                    */
3637/* ------------------------------------------------------------------------ */
3638static void
3639ipf_group_free(group)
3640	frgroup_t *group;
3641{
3642	frgroup_t **gp;
3643
3644	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3645		if (*gp == group) {
3646			*gp = group->fg_next;
3647			break;
3648		}
3649	}
3650	KFREE(group);
3651}
3652
3653
3654/* ------------------------------------------------------------------------ */
3655/* Function:    ipf_group_flush                                             */
3656/* Returns:     int      - number of rules flush from group                 */
3657/* Parameters:  softc(I) - pointer to soft context main structure           */
3658/* Parameters:  group(I) - pointer to filter rule group                     */
3659/*                                                                          */
3660/* Remove all of the rules that currently are listed under the given group. */
3661/* ------------------------------------------------------------------------ */
3662static int
3663ipf_group_flush(softc, group)
3664	ipf_main_softc_t *softc;
3665	frgroup_t *group;
3666{
3667	int gone = 0;
3668
3669	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3670
3671	return gone;
3672}
3673
3674
3675/* ------------------------------------------------------------------------ */
3676/* Function:    ipf_getrulen                                                */
3677/* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3678/* Parameters:  softc(I) - pointer to soft context main structure           */
3679/* Parameters:  unit(I)  - device for which to count the rule's number      */
3680/*              flags(I) - which set of rules to find the rule in           */
3681/*              group(I) - group name                                       */
3682/*              n(I)     - rule number to find                              */
3683/*                                                                          */
3684/* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3685/* group # g doesn't exist or there are less than n rules in the group.     */
3686/* ------------------------------------------------------------------------ */
3687frentry_t *
3688ipf_getrulen(softc, unit, group, n)
3689	ipf_main_softc_t *softc;
3690	int unit;
3691	char *group;
3692	u_32_t n;
3693{
3694	frentry_t *fr;
3695	frgroup_t *fg;
3696
3697	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3698	if (fg == NULL)
3699		return NULL;
3700	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3701		;
3702	if (n != 0)
3703		return NULL;
3704	return fr;
3705}
3706
3707
3708/* ------------------------------------------------------------------------ */
3709/* Function:    ipf_flushlist                                               */
3710/* Returns:     int - >= 0 - number of flushed rules                        */
3711/* Parameters:  softc(I)   - pointer to soft context main structure         */
3712/*              nfreedp(O) - pointer to int where flush count is stored     */
3713/*              listp(I)   - pointer to list to flush pointer               */
3714/* Write Locks: ipf_mutex                                                   */
3715/*                                                                          */
3716/* Recursively flush rules from the list, descending groups as they are     */
3717/* encountered.  if a rule is the head of a group and it has lost all its   */
3718/* group members, then also delete the group reference.  nfreedp is needed  */
3719/* to store the accumulating count of rules removed, whereas the returned   */
3720/* value is just the number removed from the current list.  The latter is   */
3721/* needed to correctly adjust reference counts on rules that define groups. */
3722/*                                                                          */
3723/* NOTE: Rules not loaded from user space cannot be flushed.                */
3724/* ------------------------------------------------------------------------ */
3725static int
3726ipf_flushlist(softc, nfreedp, listp)
3727	ipf_main_softc_t *softc;
3728	int *nfreedp;
3729	frentry_t **listp;
3730{
3731	int freed = 0;
3732	frentry_t *fp;
3733
3734	while ((fp = *listp) != NULL) {
3735		if ((fp->fr_type & FR_T_BUILTIN) ||
3736		    !(fp->fr_flags & FR_COPIED)) {
3737			listp = &fp->fr_next;
3738			continue;
3739		}
3740		*listp = fp->fr_next;
3741		if (fp->fr_next != NULL)
3742			fp->fr_next->fr_pnext = fp->fr_pnext;
3743		fp->fr_pnext = NULL;
3744
3745		if (fp->fr_grphead != NULL) {
3746			freed += ipf_group_flush(softc, fp->fr_grphead);
3747			fp->fr_names[fp->fr_grhead] = '\0';
3748		}
3749
3750		if (fp->fr_icmpgrp != NULL) {
3751			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3752			fp->fr_names[fp->fr_icmphead] = '\0';
3753		}
3754
3755		if (fp->fr_srctrack.ht_max_nodes)
3756			ipf_rb_ht_flush(&fp->fr_srctrack);
3757
3758		fp->fr_next = NULL;
3759
3760		ASSERT(fp->fr_ref > 0);
3761		if (ipf_derefrule(softc, &fp) == 0)
3762			freed++;
3763	}
3764	*nfreedp += freed;
3765	return freed;
3766}
3767
3768
3769/* ------------------------------------------------------------------------ */
3770/* Function:    ipf_flush                                                   */
3771/* Returns:     int - >= 0 - number of flushed rules                        */
3772/* Parameters:  softc(I) - pointer to soft context main structure           */
3773/*              unit(I)  - device for which to flush rules                  */
3774/*              flags(I) - which set of rules to flush                      */
3775/*                                                                          */
3776/* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3777/* and IPv6) as defined by the value of flags.                              */
3778/* ------------------------------------------------------------------------ */
3779int
3780ipf_flush(softc, unit, flags)
3781	ipf_main_softc_t *softc;
3782	minor_t unit;
3783	int flags;
3784{
3785	int flushed = 0, set;
3786
3787	WRITE_ENTER(&softc->ipf_mutex);
3788
3789	set = softc->ipf_active;
3790	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3791		set = 1 - set;
3792
3793	if (flags & FR_OUTQUE) {
3794		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3795		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3796	}
3797	if (flags & FR_INQUE) {
3798		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3799		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3800	}
3801
3802	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3803				    flags & (FR_INQUE|FR_OUTQUE));
3804
3805	RWLOCK_EXIT(&softc->ipf_mutex);
3806
3807	if (unit == IPL_LOGIPF) {
3808		int tmp;
3809
3810		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3811		if (tmp >= 0)
3812			flushed += tmp;
3813	}
3814	return flushed;
3815}
3816
3817
3818/* ------------------------------------------------------------------------ */
3819/* Function:    ipf_flush_groups                                            */
3820/* Returns:     int - >= 0 - number of flushed rules                        */
3821/* Parameters:  softc(I)  - soft context pointerto work with                */
3822/*              grhead(I) - pointer to the start of the group list to flush */
3823/*              flags(I)  - which set of rules to flush                     */
3824/*                                                                          */
3825/* Walk through all of the groups under the given group head and remove all */
3826/* of those that match the flags passed in. The for loop here is bit more   */
3827/* complicated than usual because the removal of a rule with ipf_derefrule  */
3828/* may end up removing not only the structure pointed to by "fg" but also   */
3829/* what is fg_next and fg_next after that. So if a filter rule is actually  */
3830/* removed from the group then it is necessary to start again.              */
3831/* ------------------------------------------------------------------------ */
3832static int
3833ipf_flush_groups(softc, grhead, flags)
3834	ipf_main_softc_t *softc;
3835	frgroup_t **grhead;
3836	int flags;
3837{
3838	frentry_t *fr, **frp;
3839	frgroup_t *fg, **fgp;
3840	int flushed = 0;
3841	int removed = 0;
3842
3843	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3844		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3845			fg = fg->fg_next;
3846		if (fg == NULL)
3847			break;
3848		removed = 0;
3849		frp = &fg->fg_start;
3850		while ((removed == 0) && ((fr = *frp) != NULL)) {
3851			if ((fr->fr_flags & flags) == 0) {
3852				frp = &fr->fr_next;
3853			} else {
3854				if (fr->fr_next != NULL)
3855					fr->fr_next->fr_pnext = fr->fr_pnext;
3856				*frp = fr->fr_next;
3857				fr->fr_pnext = NULL;
3858				fr->fr_next = NULL;
3859				(void) ipf_derefrule(softc, &fr);
3860				flushed++;
3861				removed++;
3862			}
3863		}
3864		if (removed == 0)
3865			fgp = &fg->fg_next;
3866	}
3867	return flushed;
3868}
3869
3870
3871/* ------------------------------------------------------------------------ */
3872/* Function:    memstr                                                      */
3873/* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3874/* Parameters:  src(I)  - pointer to byte sequence to match                 */
3875/*              dst(I)  - pointer to byte sequence to search                */
3876/*              slen(I) - match length                                      */
3877/*              dlen(I) - length available to search in                     */
3878/*                                                                          */
3879/* Search dst for a sequence of bytes matching those at src and extend for  */
3880/* slen bytes.                                                              */
3881/* ------------------------------------------------------------------------ */
3882char *
3883memstr(src, dst, slen, dlen)
3884	const char *src;
3885	char *dst;
3886	size_t slen, dlen;
3887{
3888	char *s = NULL;
3889
3890	while (dlen >= slen) {
3891		if (bcmp(src, dst, slen) == 0) {
3892			s = dst;
3893			break;
3894		}
3895		dst++;
3896		dlen--;
3897	}
3898	return s;
3899}
3900/* ------------------------------------------------------------------------ */
3901/* Function:    ipf_fixskip                                                 */
3902/* Returns:     Nil                                                         */
3903/* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3904/*              rp(I)        - rule added/removed with skip in it.          */
3905/*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3906/*                             depending on whether a rule was just added   */
3907/*                             or removed.                                  */
3908/*                                                                          */
3909/* Adjust all the rules in a list which would have skip'd past the position */
3910/* where we are inserting to skip to the right place given the change.      */
3911/* ------------------------------------------------------------------------ */
3912void
3913ipf_fixskip(listp, rp, addremove)
3914	frentry_t **listp, *rp;
3915	int addremove;
3916{
3917	int rules, rn;
3918	frentry_t *fp;
3919
3920	rules = 0;
3921	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3922		rules++;
3923
3924	if (!fp)
3925		return;
3926
3927	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3928		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3929			fp->fr_arg += addremove;
3930}
3931
3932
3933#ifdef	_KERNEL
3934/* ------------------------------------------------------------------------ */
3935/* Function:    count4bits                                                  */
3936/* Returns:     int - >= 0 - number of consecutive bits in input            */
3937/* Parameters:  ip(I) - 32bit IP address                                    */
3938/*                                                                          */
3939/* IPv4 ONLY                                                                */
3940/* count consecutive 1's in bit mask.  If the mask generated by counting    */
3941/* consecutive 1's is different to that passed, return -1, else return #    */
3942/* of bits.                                                                 */
3943/* ------------------------------------------------------------------------ */
3944int
3945count4bits(ip)
3946	u_32_t	ip;
3947{
3948	u_32_t	ipn;
3949	int	cnt = 0, i, j;
3950
3951	ip = ipn = ntohl(ip);
3952	for (i = 32; i; i--, ipn *= 2)
3953		if (ipn & 0x80000000)
3954			cnt++;
3955		else
3956			break;
3957	ipn = 0;
3958	for (i = 32, j = cnt; i; i--, j--) {
3959		ipn *= 2;
3960		if (j > 0)
3961			ipn++;
3962	}
3963	if (ipn == ip)
3964		return cnt;
3965	return -1;
3966}
3967
3968
3969/* ------------------------------------------------------------------------ */
3970/* Function:    count6bits                                                  */
3971/* Returns:     int - >= 0 - number of consecutive bits in input            */
3972/* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3973/*                                                                          */
3974/* IPv6 ONLY                                                                */
3975/* count consecutive 1's in bit mask.                                       */
3976/* ------------------------------------------------------------------------ */
3977# ifdef USE_INET6
3978int
3979count6bits(msk)
3980	u_32_t *msk;
3981{
3982	int i = 0, k;
3983	u_32_t j;
3984
3985	for (k = 3; k >= 0; k--)
3986		if (msk[k] == 0xffffffff)
3987			i += 32;
3988		else {
3989			for (j = msk[k]; j; j <<= 1)
3990				if (j & 0x80000000)
3991					i++;
3992		}
3993	return i;
3994}
3995# endif
3996#endif /* _KERNEL */
3997
3998
3999/* ------------------------------------------------------------------------ */
4000/* Function:    ipf_synclist                                                */
4001/* Returns:     int    - 0 = no failures, else indication of first failure  */
4002/* Parameters:  fr(I)  - start of filter list to sync interface names for   */
4003/*              ifp(I) - interface pointer for limiting sync lookups        */
4004/* Write Locks: ipf_mutex                                                   */
4005/*                                                                          */
4006/* Walk through a list of filter rules and resolve any interface names into */
4007/* pointers.  Where dynamic addresses are used, also update the IP address  */
4008/* used in the rule.  The interface pointer is used to limit the lookups to */
4009/* a specific set of matching names if it is non-NULL.                      */
4010/* Errors can occur when resolving the destination name of to/dup-to fields */
4011/* when the name points to a pool and that pool doest not exist. If this    */
4012/* does happen then it is necessary to check if there are any lookup refs   */
4013/* that need to be dropped before returning with an error.                  */
4014/* ------------------------------------------------------------------------ */
4015static int
4016ipf_synclist(softc, fr, ifp)
4017	ipf_main_softc_t *softc;
4018	frentry_t *fr;
4019	void *ifp;
4020{
4021	frentry_t *frt, *start = fr;
4022	frdest_t *fdp;
4023	char *name;
4024	int error;
4025	void *ifa;
4026	int v, i;
4027
4028	error = 0;
4029
4030	for (; fr; fr = fr->fr_next) {
4031		if (fr->fr_family == AF_INET)
4032			v = 4;
4033		else if (fr->fr_family == AF_INET6)
4034			v = 6;
4035		else
4036			v = 0;
4037
4038		/*
4039		 * Lookup all the interface names that are part of the rule.
4040		 */
4041		for (i = 0; i < 4; i++) {
4042			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
4043				continue;
4044			if (fr->fr_ifnames[i] == -1)
4045				continue;
4046			name = FR_NAME(fr, fr_ifnames[i]);
4047			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
4048		}
4049
4050		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4051			if (fr->fr_satype != FRI_NORMAL &&
4052			    fr->fr_satype != FRI_LOOKUP) {
4053				ifa = ipf_resolvenic(softc, fr->fr_names +
4054						     fr->fr_sifpidx, v);
4055				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
4056					    &fr->fr_src6, &fr->fr_smsk6);
4057			}
4058			if (fr->fr_datype != FRI_NORMAL &&
4059			    fr->fr_datype != FRI_LOOKUP) {
4060				ifa = ipf_resolvenic(softc, fr->fr_names +
4061						     fr->fr_sifpidx, v);
4062				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
4063					    &fr->fr_dst6, &fr->fr_dmsk6);
4064			}
4065		}
4066
4067		fdp = &fr->fr_tifs[0];
4068		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4069			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4070			if (error != 0)
4071				goto unwind;
4072		}
4073
4074		fdp = &fr->fr_tifs[1];
4075		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4076			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4077			if (error != 0)
4078				goto unwind;
4079		}
4080
4081		fdp = &fr->fr_dif;
4082		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
4083			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
4084			if (error != 0)
4085				goto unwind;
4086		}
4087
4088		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4089		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
4090			fr->fr_srcptr = ipf_lookup_res_num(softc,
4091							   fr->fr_srctype,
4092							   IPL_LOGIPF,
4093							   fr->fr_srcnum,
4094							   &fr->fr_srcfunc);
4095		}
4096		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4097		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
4098			fr->fr_dstptr = ipf_lookup_res_num(softc,
4099							   fr->fr_dsttype,
4100							   IPL_LOGIPF,
4101							   fr->fr_dstnum,
4102							   &fr->fr_dstfunc);
4103		}
4104	}
4105	return 0;
4106
4107unwind:
4108	for (frt = start; frt != fr; fr = fr->fr_next) {
4109		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4110		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
4111				ipf_lookup_deref(softc, frt->fr_srctype,
4112						 frt->fr_srcptr);
4113		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
4114		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4115				ipf_lookup_deref(softc, frt->fr_dsttype,
4116						 frt->fr_dstptr);
4117	}
4118	return error;
4119}
4120
4121
4122/* ------------------------------------------------------------------------ */
4123/* Function:    ipf_sync                                                    */
4124/* Returns:     void                                                        */
4125/* Parameters:  Nil                                                         */
4126/*                                                                          */
4127/* ipf_sync() is called when we suspect that the interface list or          */
4128/* information about interfaces (like IP#) has changed.  Go through all     */
4129/* filter rules, NAT entries and the state table and check if anything      */
4130/* needs to be changed/updated.                                             */
4131/* ------------------------------------------------------------------------ */
4132int
4133ipf_sync(softc, ifp)
4134	ipf_main_softc_t *softc;
4135	void *ifp;
4136{
4137	int i;
4138
4139# if !SOLARIS
4140	ipf_nat_sync(softc, ifp);
4141	ipf_state_sync(softc, ifp);
4142	ipf_lookup_sync(softc, ifp);
4143# endif
4144
4145	WRITE_ENTER(&softc->ipf_mutex);
4146	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4147	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4148	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4149	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4150
4151	for (i = 0; i < IPL_LOGSIZE; i++) {
4152		frgroup_t *g;
4153
4154		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4155			(void) ipf_synclist(softc, g->fg_start, ifp);
4156		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4157			(void) ipf_synclist(softc, g->fg_start, ifp);
4158	}
4159	RWLOCK_EXIT(&softc->ipf_mutex);
4160
4161	return 0;
4162}
4163
4164
4165/*
4166 * In the functions below, bcopy() is called because the pointer being
4167 * copied _from_ in this instance is a pointer to a char buf (which could
4168 * end up being unaligned) and on the kernel's local stack.
4169 */
4170/* ------------------------------------------------------------------------ */
4171/* Function:    copyinptr                                                   */
4172/* Returns:     int - 0 = success, else failure                             */
4173/* Parameters:  src(I)  - pointer to the source address                     */
4174/*              dst(I)  - destination address                               */
4175/*              size(I) - number of bytes to copy                           */
4176/*                                                                          */
4177/* Copy a block of data in from user space, given a pointer to the pointer  */
4178/* to start copying from (src) and a pointer to where to store it (dst).    */
4179/* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4180/* ------------------------------------------------------------------------ */
4181int
4182copyinptr(softc, src, dst, size)
4183	ipf_main_softc_t *softc;
4184	void *src, *dst;
4185	size_t size;
4186{
4187	caddr_t ca;
4188	int error;
4189
4190# if SOLARIS
4191	error = COPYIN(src, &ca, sizeof(ca));
4192	if (error != 0)
4193		return error;
4194# else
4195	bcopy(src, (caddr_t)&ca, sizeof(ca));
4196# endif
4197	error = COPYIN(ca, dst, size);
4198	if (error != 0) {
4199		IPFERROR(3);
4200		error = EFAULT;
4201	}
4202	return error;
4203}
4204
4205
4206/* ------------------------------------------------------------------------ */
4207/* Function:    copyoutptr                                                  */
4208/* Returns:     int - 0 = success, else failure                             */
4209/* Parameters:  src(I)  - pointer to the source address                     */
4210/*              dst(I)  - destination address                               */
4211/*              size(I) - number of bytes to copy                           */
4212/*                                                                          */
4213/* Copy a block of data out to user space, given a pointer to the pointer   */
4214/* to start copying from (src) and a pointer to where to store it (dst).    */
4215/* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4216/* ------------------------------------------------------------------------ */
4217int
4218copyoutptr(softc, src, dst, size)
4219	ipf_main_softc_t *softc;
4220	void *src, *dst;
4221	size_t size;
4222{
4223	caddr_t ca;
4224	int error;
4225
4226	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4227	error = COPYOUT(src, ca, size);
4228	if (error != 0) {
4229		IPFERROR(4);
4230		error = EFAULT;
4231	}
4232	return error;
4233}
4234#ifdef	_KERNEL
4235#endif
4236
4237
4238/* ------------------------------------------------------------------------ */
4239/* Function:    ipf_lock                                                    */
4240/* Returns:     int      - 0 = success, else error                          */
4241/* Parameters:  data(I)  - pointer to lock value to set                     */
4242/*              lockp(O) - pointer to location to store old lock value      */
4243/*                                                                          */
4244/* Get the new value for the lock integer, set it and return the old value  */
4245/* in *lockp.                                                               */
4246/* ------------------------------------------------------------------------ */
4247int
4248ipf_lock(data, lockp)
4249	caddr_t data;
4250	int *lockp;
4251{
4252	int arg, err;
4253
4254	err = BCOPYIN(data, &arg, sizeof(arg));
4255	if (err != 0)
4256		return EFAULT;
4257	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4258	if (err != 0)
4259		return EFAULT;
4260	*lockp = arg;
4261	return 0;
4262}
4263
4264
4265/* ------------------------------------------------------------------------ */
4266/* Function:    ipf_getstat                                                 */
4267/* Returns:     Nil                                                         */
4268/* Parameters:  softc(I) - pointer to soft context main structure           */
4269/*              fiop(I)  - pointer to ipfilter stats structure              */
4270/*              rev(I)   - version claim by program doing ioctl             */
4271/*                                                                          */
4272/* Stores a copy of current pointers, counters, etc, in the friostat        */
4273/* structure.                                                               */
4274/* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4275/* program is looking for. This ensure that validation of the version it    */
4276/* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4277/* allow older binaries to work but kernels without it will not.            */
4278/* ------------------------------------------------------------------------ */
4279/*ARGSUSED*/
4280static void
4281ipf_getstat(softc, fiop, rev)
4282	ipf_main_softc_t *softc;
4283	friostat_t *fiop;
4284	int rev;
4285{
4286	int i;
4287
4288	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4289	      sizeof(ipf_statistics_t) * 2);
4290	fiop->f_locks[IPL_LOGSTATE] = -1;
4291	fiop->f_locks[IPL_LOGNAT] = -1;
4292	fiop->f_locks[IPL_LOGIPF] = -1;
4293	fiop->f_locks[IPL_LOGAUTH] = -1;
4294
4295	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4296	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4297	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4298	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4299	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4300	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4301	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4302	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4303
4304	fiop->f_ticks = softc->ipf_ticks;
4305	fiop->f_active = softc->ipf_active;
4306	fiop->f_froute[0] = softc->ipf_frouteok[0];
4307	fiop->f_froute[1] = softc->ipf_frouteok[1];
4308	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4309	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4310
4311	fiop->f_running = softc->ipf_running;
4312	for (i = 0; i < IPL_LOGSIZE; i++) {
4313		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4314		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4315	}
4316#ifdef  IPFILTER_LOG
4317	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4318	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4319	fiop->f_logging = 1;
4320#else
4321	fiop->f_log_ok = 0;
4322	fiop->f_log_fail = 0;
4323	fiop->f_logging = 0;
4324#endif
4325	fiop->f_defpass = softc->ipf_pass;
4326	fiop->f_features = ipf_features;
4327
4328#ifdef IPFILTER_COMPAT
4329	sprintf(fiop->f_version, "IP Filter: v%d.%d.%d",
4330		(rev / 1000000) % 100,
4331		(rev / 10000) % 100,
4332		(rev / 100) % 100);
4333#else
4334	rev = rev;
4335	(void) strncpy(fiop->f_version, ipfilter_version,
4336		       sizeof(fiop->f_version));
4337#endif
4338}
4339
4340
4341#ifdef	USE_INET6
4342int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4343	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4344	-1,			/* 1: UNUSED */
4345	-1,			/* 2: UNUSED */
4346	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4347	-1,			/* 4: ICMP_SOURCEQUENCH */
4348	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4349	-1,			/* 6: UNUSED */
4350	-1,			/* 7: UNUSED */
4351	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4352	-1,			/* 9: UNUSED */
4353	-1,			/* 10: UNUSED */
4354	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4355	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4356	-1,			/* 13: ICMP_TSTAMP */
4357	-1,			/* 14: ICMP_TSTAMPREPLY */
4358	-1,			/* 15: ICMP_IREQ */
4359	-1,			/* 16: ICMP_IREQREPLY */
4360	-1,			/* 17: ICMP_MASKREQ */
4361	-1,			/* 18: ICMP_MASKREPLY */
4362};
4363
4364
4365int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4366	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4367	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4368	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4369	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4370	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4371	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4372	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4373	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4374	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4375	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4376	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4377	-1,				/* 11: ICMP_UNREACH_TOSNET */
4378	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4379	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4380};
4381int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4382#endif
4383
4384int	icmpreplytype4[ICMP_MAXTYPE + 1];
4385
4386
4387/* ------------------------------------------------------------------------ */
4388/* Function:    ipf_matchicmpqueryreply                                     */
4389/* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4390/* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4391/*              ic(I)   - ICMP information                                  */
4392/*              icmp(I) - ICMP packet header                                */
4393/*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4394/*                                                                          */
4395/* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4396/* reply to one as described by what's in ic.  If it is a match, return 1,  */
4397/* else return 0 for no match.                                              */
4398/* ------------------------------------------------------------------------ */
4399int
4400ipf_matchicmpqueryreply(v, ic, icmp, rev)
4401	int v;
4402	icmpinfo_t *ic;
4403	icmphdr_t *icmp;
4404	int rev;
4405{
4406	int ictype;
4407
4408	ictype = ic->ici_type;
4409
4410	if (v == 4) {
4411		/*
4412		 * If we matched its type on the way in, then when going out
4413		 * it will still be the same type.
4414		 */
4415		if ((!rev && (icmp->icmp_type == ictype)) ||
4416		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4417			if (icmp->icmp_type != ICMP_ECHOREPLY)
4418				return 1;
4419			if (icmp->icmp_id == ic->ici_id)
4420				return 1;
4421		}
4422	}
4423#ifdef	USE_INET6
4424	else if (v == 6) {
4425		if ((!rev && (icmp->icmp_type == ictype)) ||
4426		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4427			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4428				return 1;
4429			if (icmp->icmp_id == ic->ici_id)
4430				return 1;
4431		}
4432	}
4433#endif
4434	return 0;
4435}
4436
4437
4438/* ------------------------------------------------------------------------ */
4439/* Function:    frrequest                                                   */
4440/* Returns:     int - 0 == success, > 0 == errno value                      */
4441/* Parameters:  unit(I)     - device for which this is for                  */
4442/*              req(I)      - ioctl command (SIOC*)                         */
4443/*              data(I)     - pointr to ioctl data                          */
4444/*              set(I)      - 1 or 0 (filter set)                           */
4445/*              makecopy(I) - flag indicating whether data points to a rule */
4446/*                            in kernel space & hence doesn't need copying. */
4447/*                                                                          */
4448/* This function handles all the requests which operate on the list of      */
4449/* filter rules.  This includes adding, deleting, insertion.  It is also    */
4450/* responsible for creating groups when a "head" rule is loaded.  Interface */
4451/* names are resolved here and other sanity checks are made on the content  */
4452/* of the rule structure being loaded.  If a rule has user defined timeouts */
4453/* then make sure they are created and initialised before exiting.          */
4454/* ------------------------------------------------------------------------ */
4455int
4456frrequest(softc, unit, req, data, set, makecopy)
4457	ipf_main_softc_t *softc;
4458	int unit;
4459	ioctlcmd_t req;
4460	int set, makecopy;
4461	caddr_t data;
4462{
4463	int error = 0, in, family, addrem, need_free = 0;
4464	frentry_t frd, *fp, *f, **fprev, **ftail;
4465	void *ptr, *uptr, *cptr;
4466	u_int *p, *pp;
4467	frgroup_t *fg;
4468	char *group;
4469
4470	ptr = NULL;
4471	cptr = NULL;
4472	fg = NULL;
4473	fp = &frd;
4474	if (makecopy != 0) {
4475		bzero(fp, sizeof(frd));
4476		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4477		if (error) {
4478			return error;
4479		}
4480		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4481			IPFERROR(6);
4482			return EINVAL;
4483		}
4484		KMALLOCS(f, frentry_t *, fp->fr_size);
4485		if (f == NULL) {
4486			IPFERROR(131);
4487			return ENOMEM;
4488		}
4489		bzero(f, fp->fr_size);
4490		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4491				    fp->fr_size);
4492		if (error) {
4493			KFREES(f, fp->fr_size);
4494			return error;
4495		}
4496
4497		fp = f;
4498		f = NULL;
4499		fp->fr_dnext = NULL;
4500		fp->fr_ref = 0;
4501		fp->fr_flags |= FR_COPIED;
4502	} else {
4503		fp = (frentry_t *)data;
4504		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4505			IPFERROR(7);
4506			return EINVAL;
4507		}
4508		fp->fr_flags &= ~FR_COPIED;
4509	}
4510
4511	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4512	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4513		IPFERROR(8);
4514		error = EINVAL;
4515		goto donenolock;
4516	}
4517
4518	family = fp->fr_family;
4519	uptr = fp->fr_data;
4520
4521	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4522	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4523		addrem = 0;
4524	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4525		addrem = 1;
4526	else if (req == (ioctlcmd_t)SIOCZRLST)
4527		addrem = 2;
4528	else {
4529		IPFERROR(9);
4530		error = EINVAL;
4531		goto donenolock;
4532	}
4533
4534	/*
4535	 * Only filter rules for IPv4 or IPv6 are accepted.
4536	 */
4537	if (family == AF_INET) {
4538		/*EMPTY*/;
4539#ifdef	USE_INET6
4540	} else if (family == AF_INET6) {
4541		/*EMPTY*/;
4542#endif
4543	} else if (family != 0) {
4544		IPFERROR(10);
4545		error = EINVAL;
4546		goto donenolock;
4547	}
4548
4549	/*
4550	 * If the rule is being loaded from user space, i.e. we had to copy it
4551	 * into kernel space, then do not trust the function pointer in the
4552	 * rule.
4553	 */
4554	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4555		if (ipf_findfunc(fp->fr_func) == NULL) {
4556			IPFERROR(11);
4557			error = ESRCH;
4558			goto donenolock;
4559		}
4560
4561		if (addrem == 0) {
4562			error = ipf_funcinit(softc, fp);
4563			if (error != 0)
4564				goto donenolock;
4565		}
4566	}
4567	if ((fp->fr_flags & FR_CALLNOW) &&
4568	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4569		IPFERROR(142);
4570		error = ESRCH;
4571		goto donenolock;
4572	}
4573	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4574	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4575		IPFERROR(143);
4576		error = ESRCH;
4577		goto donenolock;
4578	}
4579
4580	ptr = NULL;
4581	cptr = NULL;
4582
4583	if (FR_ISACCOUNT(fp->fr_flags))
4584		unit = IPL_LOGCOUNT;
4585
4586	/*
4587	 * Check that each group name in the rule has a start index that
4588	 * is valid.
4589	 */
4590	if (fp->fr_icmphead != -1) {
4591		if ((fp->fr_icmphead < 0) ||
4592		    (fp->fr_icmphead >= fp->fr_namelen)) {
4593			IPFERROR(136);
4594			error = EINVAL;
4595			goto donenolock;
4596		}
4597		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4598			fp->fr_names[fp->fr_icmphead] = '\0';
4599	}
4600
4601	if (fp->fr_grhead != -1) {
4602		if ((fp->fr_grhead < 0) ||
4603		    (fp->fr_grhead >= fp->fr_namelen)) {
4604			IPFERROR(137);
4605			error = EINVAL;
4606			goto donenolock;
4607		}
4608		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4609			fp->fr_names[fp->fr_grhead] = '\0';
4610	}
4611
4612	if (fp->fr_group != -1) {
4613		if ((fp->fr_group < 0) ||
4614		    (fp->fr_group >= fp->fr_namelen)) {
4615			IPFERROR(138);
4616			error = EINVAL;
4617			goto donenolock;
4618		}
4619		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4620			/*
4621			 * Allow loading rules that are in groups to cause
4622			 * them to be created if they don't already exit.
4623			 */
4624			group = FR_NAME(fp, fr_group);
4625			if (addrem == 0) {
4626				fg = ipf_group_add(softc, group, NULL,
4627						   fp->fr_flags, unit, set);
4628				fp->fr_grp = fg;
4629			} else {
4630				fg = ipf_findgroup(softc, group, unit,
4631						   set, NULL);
4632				if (fg == NULL) {
4633					IPFERROR(12);
4634					error = ESRCH;
4635					goto donenolock;
4636				}
4637			}
4638
4639			if (fg->fg_flags == 0) {
4640				fg->fg_flags = fp->fr_flags & FR_INOUT;
4641			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4642				IPFERROR(13);
4643				error = ESRCH;
4644				goto donenolock;
4645			}
4646		}
4647	} else {
4648		/*
4649		 * If a rule is going to be part of a group then it does
4650		 * not matter whether it is an in or out rule, but if it
4651		 * isn't in a group, then it does...
4652		 */
4653		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4654			IPFERROR(14);
4655			error = EINVAL;
4656			goto donenolock;
4657		}
4658	}
4659	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4660
4661	/*
4662	 * Work out which rule list this change is being applied to.
4663	 */
4664	ftail = NULL;
4665	fprev = NULL;
4666	if (unit == IPL_LOGAUTH) {
4667                if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4668		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4669		    (fp->fr_dif.fd_ptr != NULL) ||
4670		    (fp->fr_flags & FR_FASTROUTE)) {
4671			softc->ipf_interror = 145;
4672			error = EINVAL;
4673			goto donenolock;
4674		}
4675		fprev = ipf_auth_rulehead(softc);
4676	} else {
4677		if (FR_ISACCOUNT(fp->fr_flags))
4678			fprev = &softc->ipf_acct[in][set];
4679		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4680			fprev = &softc->ipf_rules[in][set];
4681	}
4682	if (fprev == NULL) {
4683		IPFERROR(15);
4684		error = ESRCH;
4685		goto donenolock;
4686	}
4687
4688	if (fg != NULL)
4689		fprev = &fg->fg_start;
4690
4691	/*
4692	 * Copy in extra data for the rule.
4693	 */
4694	if (fp->fr_dsize != 0) {
4695		if (makecopy != 0) {
4696			KMALLOCS(ptr, void *, fp->fr_dsize);
4697			if (ptr == NULL) {
4698				IPFERROR(16);
4699				error = ENOMEM;
4700				goto donenolock;
4701			}
4702
4703			/*
4704			 * The bcopy case is for when the data is appended
4705			 * to the rule by ipf_in_compat().
4706			 */
4707			if (uptr >= (void *)fp &&
4708			    uptr < (void *)((char *)fp + fp->fr_size)) {
4709				bcopy(uptr, ptr, fp->fr_dsize);
4710				error = 0;
4711			} else {
4712				error = COPYIN(uptr, ptr, fp->fr_dsize);
4713				if (error != 0) {
4714					IPFERROR(17);
4715					error = EFAULT;
4716					goto donenolock;
4717				}
4718			}
4719		} else {
4720			ptr = uptr;
4721		}
4722		fp->fr_data = ptr;
4723	} else {
4724		fp->fr_data = NULL;
4725	}
4726
4727	/*
4728	 * Perform per-rule type sanity checks of their members.
4729	 * All code after this needs to be aware that allocated memory
4730	 * may need to be free'd before exiting.
4731	 */
4732	switch (fp->fr_type & ~FR_T_BUILTIN)
4733	{
4734#if defined(IPFILTER_BPF)
4735	case FR_T_BPFOPC :
4736		if (fp->fr_dsize == 0) {
4737			IPFERROR(19);
4738			error = EINVAL;
4739			break;
4740		}
4741		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4742			IPFERROR(20);
4743			error = EINVAL;
4744			break;
4745		}
4746		break;
4747#endif
4748	case FR_T_IPF :
4749		/*
4750		 * Preparation for error case at the bottom of this function.
4751		 */
4752		if (fp->fr_datype == FRI_LOOKUP)
4753			fp->fr_dstptr = NULL;
4754		if (fp->fr_satype == FRI_LOOKUP)
4755			fp->fr_srcptr = NULL;
4756
4757		if (fp->fr_dsize != sizeof(fripf_t)) {
4758			IPFERROR(21);
4759			error = EINVAL;
4760			break;
4761		}
4762
4763		/*
4764		 * Allowing a rule with both "keep state" and "with oow" is
4765		 * pointless because adding a state entry to the table will
4766		 * fail with the out of window (oow) flag set.
4767		 */
4768		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4769			IPFERROR(22);
4770			error = EINVAL;
4771			break;
4772		}
4773
4774		switch (fp->fr_satype)
4775		{
4776		case FRI_BROADCAST :
4777		case FRI_DYNAMIC :
4778		case FRI_NETWORK :
4779		case FRI_NETMASKED :
4780		case FRI_PEERADDR :
4781			if (fp->fr_sifpidx < 0) {
4782				IPFERROR(23);
4783				error = EINVAL;
4784			}
4785			break;
4786		case FRI_LOOKUP :
4787			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4788						       &fp->fr_src6,
4789						       &fp->fr_smsk6);
4790			if (fp->fr_srcfunc == NULL) {
4791				IPFERROR(132);
4792				error = ESRCH;
4793				break;
4794			}
4795			break;
4796		case FRI_NORMAL :
4797			break;
4798		default :
4799			IPFERROR(133);
4800			error = EINVAL;
4801			break;
4802		}
4803		if (error != 0)
4804			break;
4805
4806		switch (fp->fr_datype)
4807		{
4808		case FRI_BROADCAST :
4809		case FRI_DYNAMIC :
4810		case FRI_NETWORK :
4811		case FRI_NETMASKED :
4812		case FRI_PEERADDR :
4813			if (fp->fr_difpidx < 0) {
4814				IPFERROR(24);
4815				error = EINVAL;
4816			}
4817			break;
4818		case FRI_LOOKUP :
4819			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4820						       &fp->fr_dst6,
4821						       &fp->fr_dmsk6);
4822			if (fp->fr_dstfunc == NULL) {
4823				IPFERROR(134);
4824				error = ESRCH;
4825			}
4826			break;
4827		case FRI_NORMAL :
4828			break;
4829		default :
4830			IPFERROR(135);
4831			error = EINVAL;
4832		}
4833		break;
4834
4835	case FR_T_NONE :
4836	case FR_T_CALLFUNC :
4837	case FR_T_COMPIPF :
4838		break;
4839
4840	case FR_T_IPFEXPR :
4841		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4842			IPFERROR(25);
4843			error = EINVAL;
4844		}
4845		break;
4846
4847	default :
4848		IPFERROR(26);
4849		error = EINVAL;
4850		break;
4851	}
4852	if (error != 0)
4853		goto donenolock;
4854
4855	if (fp->fr_tif.fd_name != -1) {
4856		if ((fp->fr_tif.fd_name < 0) ||
4857		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4858			IPFERROR(139);
4859			error = EINVAL;
4860			goto donenolock;
4861		}
4862	}
4863
4864	if (fp->fr_dif.fd_name != -1) {
4865		if ((fp->fr_dif.fd_name < 0) ||
4866		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4867			IPFERROR(140);
4868			error = EINVAL;
4869			goto donenolock;
4870		}
4871	}
4872
4873	if (fp->fr_rif.fd_name != -1) {
4874		if ((fp->fr_rif.fd_name < 0) ||
4875		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4876			IPFERROR(141);
4877			error = EINVAL;
4878			goto donenolock;
4879		}
4880	}
4881
4882	/*
4883	 * Lookup all the interface names that are part of the rule.
4884	 */
4885	error = ipf_synclist(softc, fp, NULL);
4886	if (error != 0)
4887		goto donenolock;
4888	fp->fr_statecnt = 0;
4889	if (fp->fr_srctrack.ht_max_nodes != 0)
4890		ipf_rb_ht_init(&fp->fr_srctrack);
4891
4892	/*
4893	 * Look for an existing matching filter rule, but don't include the
4894	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4895	 * This elminates rules which are indentical being loaded.  Checksum
4896	 * the constant part of the filter rule to make comparisons quicker
4897	 * (this meaning no pointers are included).
4898	 */
4899	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4900	     p < pp; p++)
4901		fp->fr_cksum += *p;
4902	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4903	for (p = (u_int *)fp->fr_data; p < pp; p++)
4904		fp->fr_cksum += *p;
4905
4906	WRITE_ENTER(&softc->ipf_mutex);
4907
4908	/*
4909	 * Now that the filter rule lists are locked, we can walk the
4910	 * chain of them without fear.
4911	 */
4912	ftail = fprev;
4913	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4914		if (fp->fr_collect <= f->fr_collect) {
4915			ftail = fprev;
4916			f = NULL;
4917			break;
4918		}
4919		fprev = ftail;
4920	}
4921
4922	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4923		DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4924		if ((fp->fr_cksum != f->fr_cksum) ||
4925		    (fp->fr_size != f->fr_size) ||
4926		    (f->fr_dsize != fp->fr_dsize))
4927			continue;
4928		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func,
4929			 fp->fr_size - offsetof(struct frentry, fr_func)) != 0)
4930			continue;
4931		if ((!ptr && !f->fr_data) ||
4932		    (ptr && f->fr_data &&
4933		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4934			break;
4935	}
4936
4937	/*
4938	 * If zero'ing statistics, copy current to caller and zero.
4939	 */
4940	if (addrem == 2) {
4941		if (f == NULL) {
4942			IPFERROR(27);
4943			error = ESRCH;
4944		} else {
4945			/*
4946			 * Copy and reduce lock because of impending copyout.
4947			 * Well we should, but if we do then the atomicity of
4948			 * this call and the correctness of fr_hits and
4949			 * fr_bytes cannot be guaranteed.  As it is, this code
4950			 * only resets them to 0 if they are successfully
4951			 * copied out into user space.
4952			 */
4953			bcopy((char *)f, (char *)fp, f->fr_size);
4954			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4955
4956			/*
4957			 * When we copy this rule back out, set the data
4958			 * pointer to be what it was in user space.
4959			 */
4960			fp->fr_data = uptr;
4961			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4962
4963			if (error == 0) {
4964				if ((f->fr_dsize != 0) && (uptr != NULL))
4965					error = COPYOUT(f->fr_data, uptr,
4966							f->fr_dsize);
4967					if (error != 0) {
4968						IPFERROR(28);
4969						error = EFAULT;
4970					}
4971				if (error == 0) {
4972					f->fr_hits = 0;
4973					f->fr_bytes = 0;
4974				}
4975			}
4976		}
4977
4978		if (makecopy != 0) {
4979			if (ptr != NULL) {
4980				KFREES(ptr, fp->fr_dsize);
4981			}
4982			KFREES(fp, fp->fr_size);
4983		}
4984		RWLOCK_EXIT(&softc->ipf_mutex);
4985		return error;
4986	}
4987
4988  	if (!f) {
4989		/*
4990		 * At the end of this, ftail must point to the place where the
4991		 * new rule is to be saved/inserted/added.
4992		 * For SIOCAD*FR, this should be the last rule in the group of
4993		 * rules that have equal fr_collect fields.
4994		 * For SIOCIN*FR, ...
4995		 */
4996		if (req == (ioctlcmd_t)SIOCADAFR ||
4997		    req == (ioctlcmd_t)SIOCADIFR) {
4998
4999			for (ftail = fprev; (f = *ftail) != NULL; ) {
5000				if (f->fr_collect > fp->fr_collect)
5001					break;
5002				ftail = &f->fr_next;
5003			}
5004			f = NULL;
5005			ptr = NULL;
5006		} else if (req == (ioctlcmd_t)SIOCINAFR ||
5007			   req == (ioctlcmd_t)SIOCINIFR) {
5008			while ((f = *fprev) != NULL) {
5009				if (f->fr_collect >= fp->fr_collect)
5010					break;
5011				fprev = &f->fr_next;
5012			}
5013  			ftail = fprev;
5014  			if (fp->fr_hits != 0) {
5015				while (fp->fr_hits && (f = *ftail)) {
5016					if (f->fr_collect != fp->fr_collect)
5017						break;
5018					fprev = ftail;
5019  					ftail = &f->fr_next;
5020					fp->fr_hits--;
5021				}
5022  			}
5023  			f = NULL;
5024  			ptr = NULL;
5025		}
5026	}
5027
5028	/*
5029	 * Request to remove a rule.
5030	 */
5031	if (addrem == 1) {
5032		if (!f) {
5033			IPFERROR(29);
5034			error = ESRCH;
5035		} else {
5036			/*
5037			 * Do not allow activity from user space to interfere
5038			 * with rules not loaded that way.
5039			 */
5040			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
5041				IPFERROR(30);
5042				error = EPERM;
5043				goto done;
5044			}
5045
5046			/*
5047			 * Return EBUSY if the rule is being reference by
5048			 * something else (eg state information.)
5049			 */
5050			if (f->fr_ref > 1) {
5051				IPFERROR(31);
5052				error = EBUSY;
5053				goto done;
5054			}
5055#ifdef	IPFILTER_SCAN
5056			if (f->fr_isctag != -1 &&
5057			    (f->fr_isc != (struct ipscan *)-1))
5058				ipf_scan_detachfr(f);
5059#endif
5060
5061			if (unit == IPL_LOGAUTH) {
5062				error = ipf_auth_precmd(softc, req, f, ftail);
5063				goto done;
5064			}
5065
5066			ipf_rule_delete(softc, f, unit, set);
5067
5068			need_free = makecopy;
5069		}
5070	} else {
5071		/*
5072		 * Not removing, so we must be adding/inserting a rule.
5073		 */
5074		if (f != NULL) {
5075			IPFERROR(32);
5076			error = EEXIST;
5077			goto done;
5078		}
5079		if (unit == IPL_LOGAUTH) {
5080			error = ipf_auth_precmd(softc, req, fp, ftail);
5081			goto done;
5082		}
5083
5084		MUTEX_NUKE(&fp->fr_lock);
5085		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5086		if (fp->fr_die != 0)
5087			ipf_rule_expire_insert(softc, fp, set);
5088
5089		fp->fr_hits = 0;
5090		if (makecopy != 0)
5091			fp->fr_ref = 1;
5092		fp->fr_pnext = ftail;
5093		fp->fr_next = *ftail;
5094		*ftail = fp;
5095		if (addrem == 0)
5096			ipf_fixskip(ftail, fp, 1);
5097
5098		fp->fr_icmpgrp = NULL;
5099		if (fp->fr_icmphead != -1) {
5100			group = FR_NAME(fp, fr_icmphead);
5101			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5102			fp->fr_icmpgrp = fg;
5103		}
5104
5105		fp->fr_grphead = NULL;
5106		if (fp->fr_grhead != -1) {
5107			group = FR_NAME(fp, fr_grhead);
5108			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5109					   unit, set);
5110			fp->fr_grphead = fg;
5111		}
5112	}
5113done:
5114	RWLOCK_EXIT(&softc->ipf_mutex);
5115donenolock:
5116	if (need_free || (error != 0)) {
5117		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5118			if ((fp->fr_satype == FRI_LOOKUP) &&
5119			    (fp->fr_srcptr != NULL))
5120				ipf_lookup_deref(softc, fp->fr_srctype,
5121						 fp->fr_srcptr);
5122			if ((fp->fr_datype == FRI_LOOKUP) &&
5123			    (fp->fr_dstptr != NULL))
5124				ipf_lookup_deref(softc, fp->fr_dsttype,
5125						 fp->fr_dstptr);
5126		}
5127		if (fp->fr_grp != NULL) {
5128			WRITE_ENTER(&softc->ipf_mutex);
5129			ipf_group_del(softc, fp->fr_grp, fp);
5130			RWLOCK_EXIT(&softc->ipf_mutex);
5131		}
5132		if ((ptr != NULL) && (makecopy != 0)) {
5133			KFREES(ptr, fp->fr_dsize);
5134		}
5135		KFREES(fp, fp->fr_size);
5136	}
5137	return (error);
5138}
5139
5140
5141/* ------------------------------------------------------------------------ */
5142/* Function:   ipf_rule_delete                                              */
5143/* Returns:    Nil                                                          */
5144/* Parameters: softc(I) - pointer to soft context main structure            */
5145/*             f(I)     - pointer to the rule being deleted                 */
5146/*             ftail(I) - pointer to the pointer to f                       */
5147/*             unit(I)  - device for which this is for                      */
5148/*             set(I)   - 1 or 0 (filter set)                               */
5149/*                                                                          */
5150/* This function attempts to do what it can to delete a filter rule: remove */
5151/* it from any linked lists and remove any groups it is responsible for.    */
5152/* But in the end, removing a rule can only drop the reference count - we   */
5153/* must use that as the guide for whether or not it can be freed.           */
5154/* ------------------------------------------------------------------------ */
5155static void
5156ipf_rule_delete(softc, f, unit, set)
5157	ipf_main_softc_t *softc;
5158	frentry_t *f;
5159	int unit, set;
5160{
5161
5162	/*
5163	 * If fr_pdnext is set, then the rule is on the expire list, so
5164	 * remove it from there.
5165	 */
5166	if (f->fr_pdnext != NULL) {
5167		*f->fr_pdnext = f->fr_dnext;
5168		if (f->fr_dnext != NULL)
5169			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5170		f->fr_pdnext = NULL;
5171		f->fr_dnext = NULL;
5172	}
5173
5174	ipf_fixskip(f->fr_pnext, f, -1);
5175	if (f->fr_pnext != NULL)
5176		*f->fr_pnext = f->fr_next;
5177	if (f->fr_next != NULL)
5178		f->fr_next->fr_pnext = f->fr_pnext;
5179	f->fr_pnext = NULL;
5180	f->fr_next = NULL;
5181
5182	(void) ipf_derefrule(softc, &f);
5183}
5184
5185/* ------------------------------------------------------------------------ */
5186/* Function:   ipf_rule_expire_insert                                       */
5187/* Returns:    Nil                                                          */
5188/* Parameters: softc(I) - pointer to soft context main structure            */
5189/*             f(I)     - pointer to rule to be added to expire list        */
5190/*             set(I)   - 1 or 0 (filter set)                               */
5191/*                                                                          */
5192/* If the new rule has a given expiration time, insert it into the list of  */
5193/* expiring rules with the ones to be removed first added to the front of   */
5194/* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5195/* expiration interval checks.                                              */
5196/* ------------------------------------------------------------------------ */
5197static void
5198ipf_rule_expire_insert(softc, f, set)
5199	ipf_main_softc_t *softc;
5200	frentry_t *f;
5201	int set;
5202{
5203	frentry_t *fr;
5204
5205	/*
5206	 */
5207
5208	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5209	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5210	     fr = fr->fr_dnext) {
5211		if (f->fr_die < fr->fr_die)
5212			break;
5213		if (fr->fr_dnext == NULL) {
5214			/*
5215			 * We've got to the last rule and everything
5216			 * wanted to be expired before this new node,
5217			 * so we have to tack it on the end...
5218			 */
5219			fr->fr_dnext = f;
5220			f->fr_pdnext = &fr->fr_dnext;
5221			fr = NULL;
5222			break;
5223		}
5224	}
5225
5226	if (softc->ipf_rule_explist[set] == NULL) {
5227		softc->ipf_rule_explist[set] = f;
5228		f->fr_pdnext = &softc->ipf_rule_explist[set];
5229	} else if (fr != NULL) {
5230		f->fr_dnext = fr;
5231		f->fr_pdnext = fr->fr_pdnext;
5232		fr->fr_pdnext = &f->fr_dnext;
5233	}
5234}
5235
5236
5237/* ------------------------------------------------------------------------ */
5238/* Function:   ipf_findlookup                                               */
5239/* Returns:    NULL = failure, else success                                 */
5240/* Parameters: softc(I) - pointer to soft context main structure            */
5241/*             unit(I)  - ipf device we want to find match for              */
5242/*             fp(I)    - rule for which lookup is for                      */
5243/*             addrp(I) - pointer to lookup information in address struct   */
5244/*             maskp(O) - pointer to lookup information for storage         */
5245/*                                                                          */
5246/* When using pools and hash tables to store addresses for matching in      */
5247/* rules, it is necessary to resolve both the object referred to by the     */
5248/* name or address (and return that pointer) and also provide the means by  */
5249/* which to determine if an address belongs to that object to make the      */
5250/* packet matching quicker.                                                 */
5251/* ------------------------------------------------------------------------ */
5252static void *
5253ipf_findlookup(softc, unit, fr, addrp, maskp)
5254	ipf_main_softc_t *softc;
5255	int unit;
5256	frentry_t *fr;
5257	i6addr_t *addrp, *maskp;
5258{
5259	void *ptr = NULL;
5260
5261	switch (addrp->iplookupsubtype)
5262	{
5263	case 0 :
5264		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5265					 addrp->iplookupnum,
5266					 &maskp->iplookupfunc);
5267		break;
5268	case 1 :
5269		if (addrp->iplookupname < 0)
5270			break;
5271		if (addrp->iplookupname >= fr->fr_namelen)
5272			break;
5273		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5274					  fr->fr_names + addrp->iplookupname,
5275					  &maskp->iplookupfunc);
5276		break;
5277	default :
5278		break;
5279	}
5280
5281	return ptr;
5282}
5283
5284
5285/* ------------------------------------------------------------------------ */
5286/* Function:    ipf_funcinit                                                */
5287/* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5288/* Parameters:  softc(I) - pointer to soft context main structure           */
5289/*              fr(I)    - pointer to filter rule                           */
5290/*                                                                          */
5291/* If a rule is a call rule, then check if the function it points to needs  */
5292/* an init function to be called now the rule has been loaded.              */
5293/* ------------------------------------------------------------------------ */
5294static int
5295ipf_funcinit(softc, fr)
5296	ipf_main_softc_t *softc;
5297	frentry_t *fr;
5298{
5299	ipfunc_resolve_t *ft;
5300	int err;
5301
5302	IPFERROR(34);
5303	err = ESRCH;
5304
5305	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5306		if (ft->ipfu_addr == fr->fr_func) {
5307			err = 0;
5308			if (ft->ipfu_init != NULL)
5309				err = (*ft->ipfu_init)(softc, fr);
5310			break;
5311		}
5312	return err;
5313}
5314
5315
5316/* ------------------------------------------------------------------------ */
5317/* Function:    ipf_funcfini                                                */
5318/* Returns:     Nil                                                         */
5319/* Parameters:  softc(I) - pointer to soft context main structure           */
5320/*              fr(I)    - pointer to filter rule                           */
5321/*                                                                          */
5322/* For a given filter rule, call the matching "fini" function if the rule   */
5323/* is using a known function that would have resulted in the "init" being   */
5324/* called for ealier.                                                       */
5325/* ------------------------------------------------------------------------ */
5326static void
5327ipf_funcfini(softc, fr)
5328	ipf_main_softc_t *softc;
5329	frentry_t *fr;
5330{
5331	ipfunc_resolve_t *ft;
5332
5333	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5334		if (ft->ipfu_addr == fr->fr_func) {
5335			if (ft->ipfu_fini != NULL)
5336				(void) (*ft->ipfu_fini)(softc, fr);
5337			break;
5338		}
5339}
5340
5341
5342/* ------------------------------------------------------------------------ */
5343/* Function:    ipf_findfunc                                                */
5344/* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5345/* Parameters:  funcptr(I) - function pointer to lookup                     */
5346/*                                                                          */
5347/* Look for a function in the table of known functions.                     */
5348/* ------------------------------------------------------------------------ */
5349static ipfunc_t
5350ipf_findfunc(funcptr)
5351	ipfunc_t funcptr;
5352{
5353	ipfunc_resolve_t *ft;
5354
5355	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5356		if (ft->ipfu_addr == funcptr)
5357			return funcptr;
5358	return NULL;
5359}
5360
5361
5362/* ------------------------------------------------------------------------ */
5363/* Function:    ipf_resolvefunc                                             */
5364/* Returns:     int - 0 == success, else error                              */
5365/* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5366/*                                                                          */
5367/* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5368/* This will either be the function name (if the pointer is set) or the     */
5369/* function pointer if the name is set.  When found, fill in the other one  */
5370/* so that the entire, complete, structure can be copied back to user space.*/
5371/* ------------------------------------------------------------------------ */
5372int
5373ipf_resolvefunc(softc, data)
5374	ipf_main_softc_t *softc;
5375	void *data;
5376{
5377	ipfunc_resolve_t res, *ft;
5378	int error;
5379
5380	error = BCOPYIN(data, &res, sizeof(res));
5381	if (error != 0) {
5382		IPFERROR(123);
5383		return EFAULT;
5384	}
5385
5386	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5387		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5388			if (strncmp(res.ipfu_name, ft->ipfu_name,
5389				    sizeof(res.ipfu_name)) == 0) {
5390				res.ipfu_addr = ft->ipfu_addr;
5391				res.ipfu_init = ft->ipfu_init;
5392				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5393					IPFERROR(35);
5394					return EFAULT;
5395				}
5396				return 0;
5397			}
5398	}
5399	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5400		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5401			if (ft->ipfu_addr == res.ipfu_addr) {
5402				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5403					       sizeof(res.ipfu_name));
5404				res.ipfu_init = ft->ipfu_init;
5405				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5406					IPFERROR(36);
5407					return EFAULT;
5408				}
5409				return 0;
5410			}
5411	}
5412	IPFERROR(37);
5413	return ESRCH;
5414}
5415
5416
5417#if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5418     !defined(__FreeBSD__)) || \
5419    FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5420    OPENBSD_LT_REV(200006)
5421/*
5422 * From: NetBSD
5423 * ppsratecheck(): packets (or events) per second limitation.
5424 */
5425int
5426ppsratecheck(lasttime, curpps, maxpps)
5427	struct timeval *lasttime;
5428	int *curpps;
5429	int maxpps;	/* maximum pps allowed */
5430{
5431	struct timeval tv, delta;
5432	int rv;
5433
5434	GETKTIME(&tv);
5435
5436	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5437	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5438	if (delta.tv_usec < 0) {
5439		delta.tv_sec--;
5440		delta.tv_usec += 1000000;
5441	}
5442
5443	/*
5444	 * check for 0,0 is so that the message will be seen at least once.
5445	 * if more than one second have passed since the last update of
5446	 * lasttime, reset the counter.
5447	 *
5448	 * we do increment *curpps even in *curpps < maxpps case, as some may
5449	 * try to use *curpps for stat purposes as well.
5450	 */
5451	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5452	    delta.tv_sec >= 1) {
5453		*lasttime = tv;
5454		*curpps = 0;
5455		rv = 1;
5456	} else if (maxpps < 0)
5457		rv = 1;
5458	else if (*curpps < maxpps)
5459		rv = 1;
5460	else
5461		rv = 0;
5462	*curpps = *curpps + 1;
5463
5464	return (rv);
5465}
5466#endif
5467
5468
5469/* ------------------------------------------------------------------------ */
5470/* Function:    ipf_derefrule                                               */
5471/* Returns:     int   - 0 == rule freed up, else rule not freed             */
5472/* Parameters:  fr(I) - pointer to filter rule                              */
5473/*                                                                          */
5474/* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5475/* free it and any associated storage space being used by it.               */
5476/* ------------------------------------------------------------------------ */
5477int
5478ipf_derefrule(softc, frp)
5479	ipf_main_softc_t *softc;
5480	frentry_t **frp;
5481{
5482	frentry_t *fr;
5483	frdest_t *fdp;
5484
5485	fr = *frp;
5486	*frp = NULL;
5487
5488	MUTEX_ENTER(&fr->fr_lock);
5489	fr->fr_ref--;
5490	if (fr->fr_ref == 0) {
5491		MUTEX_EXIT(&fr->fr_lock);
5492		MUTEX_DESTROY(&fr->fr_lock);
5493
5494		ipf_funcfini(softc, fr);
5495
5496		fdp = &fr->fr_tif;
5497		if (fdp->fd_type == FRD_DSTLIST)
5498			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5499
5500		fdp = &fr->fr_rif;
5501		if (fdp->fd_type == FRD_DSTLIST)
5502			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5503
5504		fdp = &fr->fr_dif;
5505		if (fdp->fd_type == FRD_DSTLIST)
5506			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5507
5508		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5509		    fr->fr_satype == FRI_LOOKUP)
5510			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5511		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5512		    fr->fr_datype == FRI_LOOKUP)
5513			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5514
5515		if (fr->fr_grp != NULL)
5516			ipf_group_del(softc, fr->fr_grp, fr);
5517
5518		if (fr->fr_grphead != NULL)
5519			ipf_group_del(softc, fr->fr_grphead, fr);
5520
5521		if (fr->fr_icmpgrp != NULL)
5522			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5523
5524		if ((fr->fr_flags & FR_COPIED) != 0) {
5525			if (fr->fr_dsize) {
5526				KFREES(fr->fr_data, fr->fr_dsize);
5527			}
5528			KFREES(fr, fr->fr_size);
5529			return 0;
5530		}
5531		return 1;
5532	} else {
5533		MUTEX_EXIT(&fr->fr_lock);
5534	}
5535	return -1;
5536}
5537
5538
5539/* ------------------------------------------------------------------------ */
5540/* Function:    ipf_grpmapinit                                              */
5541/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5542/* Parameters:  fr(I) - pointer to rule to find hash table for              */
5543/*                                                                          */
5544/* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5545/* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5546/* ------------------------------------------------------------------------ */
5547static int
5548ipf_grpmapinit(softc, fr)
5549	ipf_main_softc_t *softc;
5550	frentry_t *fr;
5551{
5552	char name[FR_GROUPLEN];
5553	iphtable_t *iph;
5554
5555#if defined(SNPRINTF) && defined(_KERNEL)
5556	SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
5557#else
5558	(void) sprintf(name, "%d", fr->fr_arg);
5559#endif
5560	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5561	if (iph == NULL) {
5562		IPFERROR(38);
5563		return ESRCH;
5564	}
5565	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5566		IPFERROR(39);
5567		return ESRCH;
5568	}
5569	iph->iph_ref++;
5570	fr->fr_ptr = iph;
5571	return 0;
5572}
5573
5574
5575/* ------------------------------------------------------------------------ */
5576/* Function:    ipf_grpmapfini                                              */
5577/* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5578/* Parameters:  softc(I) - pointer to soft context main structure           */
5579/*              fr(I)    - pointer to rule to release hash table for        */
5580/*                                                                          */
5581/* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5582/* be called to undo what ipf_grpmapinit caused to be done.                 */
5583/* ------------------------------------------------------------------------ */
5584static int
5585ipf_grpmapfini(softc, fr)
5586	ipf_main_softc_t *softc;
5587	frentry_t *fr;
5588{
5589	iphtable_t *iph;
5590	iph = fr->fr_ptr;
5591	if (iph != NULL)
5592		ipf_lookup_deref(softc, IPLT_HASH, iph);
5593	return 0;
5594}
5595
5596
5597/* ------------------------------------------------------------------------ */
5598/* Function:    ipf_srcgrpmap                                               */
5599/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5600/* Parameters:  fin(I)    - pointer to packet information                   */
5601/*              passp(IO) - pointer to current/new filter decision (unused) */
5602/*                                                                          */
5603/* Look for a rule group head in a hash table, using the source address as  */
5604/* the key, and descend into that group and continue matching rules against */
5605/* the packet.                                                              */
5606/* ------------------------------------------------------------------------ */
5607frentry_t *
5608ipf_srcgrpmap(fin, passp)
5609	fr_info_t *fin;
5610	u_32_t *passp;
5611{
5612	frgroup_t *fg;
5613	void *rval;
5614
5615	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5616				 &fin->fin_src);
5617	if (rval == NULL)
5618		return NULL;
5619
5620	fg = rval;
5621	fin->fin_fr = fg->fg_start;
5622	(void) ipf_scanlist(fin, *passp);
5623	return fin->fin_fr;
5624}
5625
5626
5627/* ------------------------------------------------------------------------ */
5628/* Function:    ipf_dstgrpmap                                               */
5629/* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5630/* Parameters:  fin(I)    - pointer to packet information                   */
5631/*              passp(IO) - pointer to current/new filter decision (unused) */
5632/*                                                                          */
5633/* Look for a rule group head in a hash table, using the destination        */
5634/* address as the key, and descend into that group and continue matching    */
5635/* rules against  the packet.                                               */
5636/* ------------------------------------------------------------------------ */
5637frentry_t *
5638ipf_dstgrpmap(fin, passp)
5639	fr_info_t *fin;
5640	u_32_t *passp;
5641{
5642	frgroup_t *fg;
5643	void *rval;
5644
5645	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5646				 &fin->fin_dst);
5647	if (rval == NULL)
5648		return NULL;
5649
5650	fg = rval;
5651	fin->fin_fr = fg->fg_start;
5652	(void) ipf_scanlist(fin, *passp);
5653	return fin->fin_fr;
5654}
5655
5656/*
5657 * Queue functions
5658 * ===============
5659 * These functions manage objects on queues for efficient timeouts.  There
5660 * are a number of system defined queues as well as user defined timeouts.
5661 * It is expected that a lock is held in the domain in which the queue
5662 * belongs (i.e. either state or NAT) when calling any of these functions
5663 * that prevents ipf_freetimeoutqueue() from being called at the same time
5664 * as any other.
5665 */
5666
5667
5668/* ------------------------------------------------------------------------ */
5669/* Function:    ipf_addtimeoutqueue                                         */
5670/* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5671/*                               timeout queue with given interval.         */
5672/* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5673/*                           of interface queues.                           */
5674/*              seconds(I) - timeout value in seconds for this queue.       */
5675/*                                                                          */
5676/* This routine first looks for a timeout queue that matches the interval   */
5677/* being requested.  If it finds one, increments the reference counter and  */
5678/* returns a pointer to it.  If none are found, it allocates a new one and  */
5679/* inserts it at the top of the list.                                       */
5680/*                                                                          */
5681/* Locking.                                                                 */
5682/* It is assumed that the caller of this function has an appropriate lock   */
5683/* held (exclusively) in the domain that encompases 'parent'.               */
5684/* ------------------------------------------------------------------------ */
5685ipftq_t *
5686ipf_addtimeoutqueue(softc, parent, seconds)
5687	ipf_main_softc_t *softc;
5688	ipftq_t **parent;
5689	u_int seconds;
5690{
5691	ipftq_t *ifq;
5692	u_int period;
5693
5694	period = seconds * IPF_HZ_DIVIDE;
5695
5696	MUTEX_ENTER(&softc->ipf_timeoutlock);
5697	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5698		if (ifq->ifq_ttl == period) {
5699			/*
5700			 * Reset the delete flag, if set, so the structure
5701			 * gets reused rather than freed and reallocated.
5702			 */
5703			MUTEX_ENTER(&ifq->ifq_lock);
5704			ifq->ifq_flags &= ~IFQF_DELETE;
5705			ifq->ifq_ref++;
5706			MUTEX_EXIT(&ifq->ifq_lock);
5707			MUTEX_EXIT(&softc->ipf_timeoutlock);
5708
5709			return ifq;
5710		}
5711	}
5712
5713	KMALLOC(ifq, ipftq_t *);
5714	if (ifq != NULL) {
5715		MUTEX_NUKE(&ifq->ifq_lock);
5716		IPFTQ_INIT(ifq, period, "ipftq mutex");
5717		ifq->ifq_next = *parent;
5718		ifq->ifq_pnext = parent;
5719		ifq->ifq_flags = IFQF_USER;
5720		ifq->ifq_ref++;
5721		*parent = ifq;
5722		softc->ipf_userifqs++;
5723	}
5724	MUTEX_EXIT(&softc->ipf_timeoutlock);
5725	return ifq;
5726}
5727
5728
5729/* ------------------------------------------------------------------------ */
5730/* Function:    ipf_deletetimeoutqueue                                      */
5731/* Returns:     int    - new reference count value of the timeout queue     */
5732/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5733/* Locks:       ifq->ifq_lock                                               */
5734/*                                                                          */
5735/* This routine must be called when we're discarding a pointer to a timeout */
5736/* queue object, taking care of the reference counter.                      */
5737/*                                                                          */
5738/* Now that this just sets a DELETE flag, it requires the expire code to    */
5739/* check the list of user defined timeout queues and call the free function */
5740/* below (currently commented out) to stop memory leaking.  It is done this */
5741/* way because the locking may not be sufficient to safely do a free when   */
5742/* this function is called.                                                 */
5743/* ------------------------------------------------------------------------ */
5744int
5745ipf_deletetimeoutqueue(ifq)
5746	ipftq_t *ifq;
5747{
5748
5749	ifq->ifq_ref--;
5750	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5751		ifq->ifq_flags |= IFQF_DELETE;
5752	}
5753
5754	return ifq->ifq_ref;
5755}
5756
5757
5758/* ------------------------------------------------------------------------ */
5759/* Function:    ipf_freetimeoutqueue                                        */
5760/* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5761/* Returns:     Nil                                                         */
5762/*                                                                          */
5763/* Locking:                                                                 */
5764/* It is assumed that the caller of this function has an appropriate lock   */
5765/* held (exclusively) in the domain that encompases the callers "domain".   */
5766/* The ifq_lock for this structure should not be held.                      */
5767/*                                                                          */
5768/* Remove a user defined timeout queue from the list of queues it is in and */
5769/* tidy up after this is done.                                              */
5770/* ------------------------------------------------------------------------ */
5771void
5772ipf_freetimeoutqueue(softc, ifq)
5773	ipf_main_softc_t *softc;
5774	ipftq_t *ifq;
5775{
5776
5777	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5778	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5779		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5780		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5781		       ifq->ifq_ref);
5782		return;
5783	}
5784
5785	/*
5786	 * Remove from its position in the list.
5787	 */
5788	*ifq->ifq_pnext = ifq->ifq_next;
5789	if (ifq->ifq_next != NULL)
5790		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5791	ifq->ifq_next = NULL;
5792	ifq->ifq_pnext = NULL;
5793
5794	MUTEX_DESTROY(&ifq->ifq_lock);
5795	ATOMIC_DEC(softc->ipf_userifqs);
5796	KFREE(ifq);
5797}
5798
5799
5800/* ------------------------------------------------------------------------ */
5801/* Function:    ipf_deletequeueentry                                        */
5802/* Returns:     Nil                                                         */
5803/* Parameters:  tqe(I) - timeout queue entry to delete                      */
5804/*                                                                          */
5805/* Remove a tail queue entry from its queue and make it an orphan.          */
5806/* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5807/* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5808/* the correct lock(s) may not be held that would make it safe to do so.    */
5809/* ------------------------------------------------------------------------ */
5810void
5811ipf_deletequeueentry(tqe)
5812	ipftqent_t *tqe;
5813{
5814	ipftq_t *ifq;
5815
5816	ifq = tqe->tqe_ifq;
5817
5818	MUTEX_ENTER(&ifq->ifq_lock);
5819
5820	if (tqe->tqe_pnext != NULL) {
5821		*tqe->tqe_pnext = tqe->tqe_next;
5822		if (tqe->tqe_next != NULL)
5823			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5824		else    /* we must be the tail anyway */
5825			ifq->ifq_tail = tqe->tqe_pnext;
5826
5827		tqe->tqe_pnext = NULL;
5828		tqe->tqe_ifq = NULL;
5829	}
5830
5831	(void) ipf_deletetimeoutqueue(ifq);
5832	ASSERT(ifq->ifq_ref > 0);
5833
5834	MUTEX_EXIT(&ifq->ifq_lock);
5835}
5836
5837
5838/* ------------------------------------------------------------------------ */
5839/* Function:    ipf_queuefront                                              */
5840/* Returns:     Nil                                                         */
5841/* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5842/*                                                                          */
5843/* Move a queue entry to the front of the queue, if it isn't already there. */
5844/* ------------------------------------------------------------------------ */
5845void
5846ipf_queuefront(tqe)
5847	ipftqent_t *tqe;
5848{
5849	ipftq_t *ifq;
5850
5851	ifq = tqe->tqe_ifq;
5852	if (ifq == NULL)
5853		return;
5854
5855	MUTEX_ENTER(&ifq->ifq_lock);
5856	if (ifq->ifq_head != tqe) {
5857		*tqe->tqe_pnext = tqe->tqe_next;
5858		if (tqe->tqe_next)
5859			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5860		else
5861			ifq->ifq_tail = tqe->tqe_pnext;
5862
5863		tqe->tqe_next = ifq->ifq_head;
5864		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5865		ifq->ifq_head = tqe;
5866		tqe->tqe_pnext = &ifq->ifq_head;
5867	}
5868	MUTEX_EXIT(&ifq->ifq_lock);
5869}
5870
5871
5872/* ------------------------------------------------------------------------ */
5873/* Function:    ipf_queueback                                               */
5874/* Returns:     Nil                                                         */
5875/* Parameters:  ticks(I) - ipf tick time to use with this call              */
5876/*              tqe(I)   - pointer to timeout queue entry                   */
5877/*                                                                          */
5878/* Move a queue entry to the back of the queue, if it isn't already there.  */
5879/* We use use ticks to calculate the expiration and mark for when we last   */
5880/* touched the structure.                                                   */
5881/* ------------------------------------------------------------------------ */
5882void
5883ipf_queueback(ticks, tqe)
5884	u_long ticks;
5885	ipftqent_t *tqe;
5886{
5887	ipftq_t *ifq;
5888
5889	ifq = tqe->tqe_ifq;
5890	if (ifq == NULL)
5891		return;
5892	tqe->tqe_die = ticks + ifq->ifq_ttl;
5893	tqe->tqe_touched = ticks;
5894
5895	MUTEX_ENTER(&ifq->ifq_lock);
5896	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5897		/*
5898		 * Remove from list
5899		 */
5900		*tqe->tqe_pnext = tqe->tqe_next;
5901		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5902
5903		/*
5904		 * Make it the last entry.
5905		 */
5906		tqe->tqe_next = NULL;
5907		tqe->tqe_pnext = ifq->ifq_tail;
5908		*ifq->ifq_tail = tqe;
5909		ifq->ifq_tail = &tqe->tqe_next;
5910	}
5911	MUTEX_EXIT(&ifq->ifq_lock);
5912}
5913
5914
5915/* ------------------------------------------------------------------------ */
5916/* Function:    ipf_queueappend                                             */
5917/* Returns:     Nil                                                         */
5918/* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5919/*              tqe(I)    - pointer to timeout queue entry                  */
5920/*              ifq(I)    - pointer to timeout queue                        */
5921/*              parent(I) - owing object pointer                            */
5922/*                                                                          */
5923/* Add a new item to this queue and put it on the very end.                 */
5924/* We use use ticks to calculate the expiration and mark for when we last   */
5925/* touched the structure.                                                   */
5926/* ------------------------------------------------------------------------ */
5927void
5928ipf_queueappend(ticks, tqe, ifq, parent)
5929	u_long ticks;
5930	ipftqent_t *tqe;
5931	ipftq_t *ifq;
5932	void *parent;
5933{
5934
5935	MUTEX_ENTER(&ifq->ifq_lock);
5936	tqe->tqe_parent = parent;
5937	tqe->tqe_pnext = ifq->ifq_tail;
5938	*ifq->ifq_tail = tqe;
5939	ifq->ifq_tail = &tqe->tqe_next;
5940	tqe->tqe_next = NULL;
5941	tqe->tqe_ifq = ifq;
5942	tqe->tqe_die = ticks + ifq->ifq_ttl;
5943	tqe->tqe_touched = ticks;
5944	ifq->ifq_ref++;
5945	MUTEX_EXIT(&ifq->ifq_lock);
5946}
5947
5948
5949/* ------------------------------------------------------------------------ */
5950/* Function:    ipf_movequeue                                               */
5951/* Returns:     Nil                                                         */
5952/* Parameters:  tq(I)   - pointer to timeout queue information              */
5953/*              oifp(I) - old timeout queue entry was on                    */
5954/*              nifp(I) - new timeout queue to put entry on                 */
5955/*                                                                          */
5956/* Move a queue entry from one timeout queue to another timeout queue.      */
5957/* If it notices that the current entry is already last and does not need   */
5958/* to move queue, the return.                                               */
5959/* ------------------------------------------------------------------------ */
5960void
5961ipf_movequeue(ticks, tqe, oifq, nifq)
5962	u_long ticks;
5963	ipftqent_t *tqe;
5964	ipftq_t *oifq, *nifq;
5965{
5966
5967	/*
5968	 * If the queue hasn't changed and we last touched this entry at the
5969	 * same ipf time, then we're not going to achieve anything by either
5970	 * changing the ttl or moving it on the queue.
5971	 */
5972	if (oifq == nifq && tqe->tqe_touched == ticks)
5973		return;
5974
5975	/*
5976	 * For any of this to be outside the lock, there is a risk that two
5977	 * packets entering simultaneously, with one changing to a different
5978	 * queue and one not, could end up with things in a bizarre state.
5979	 */
5980	MUTEX_ENTER(&oifq->ifq_lock);
5981
5982	tqe->tqe_touched = ticks;
5983	tqe->tqe_die = ticks + nifq->ifq_ttl;
5984	/*
5985	 * Is the operation here going to be a no-op ?
5986	 */
5987	if (oifq == nifq) {
5988		if ((tqe->tqe_next == NULL) ||
5989		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5990			MUTEX_EXIT(&oifq->ifq_lock);
5991			return;
5992		}
5993	}
5994
5995	/*
5996	 * Remove from the old queue
5997	 */
5998	*tqe->tqe_pnext = tqe->tqe_next;
5999	if (tqe->tqe_next)
6000		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
6001	else
6002		oifq->ifq_tail = tqe->tqe_pnext;
6003	tqe->tqe_next = NULL;
6004
6005	/*
6006	 * If we're moving from one queue to another, release the
6007	 * lock on the old queue and get a lock on the new queue.
6008	 * For user defined queues, if we're moving off it, call
6009	 * delete in case it can now be freed.
6010	 */
6011	if (oifq != nifq) {
6012		tqe->tqe_ifq = NULL;
6013
6014		(void) ipf_deletetimeoutqueue(oifq);
6015
6016		MUTEX_EXIT(&oifq->ifq_lock);
6017
6018		MUTEX_ENTER(&nifq->ifq_lock);
6019
6020		tqe->tqe_ifq = nifq;
6021		nifq->ifq_ref++;
6022	}
6023
6024	/*
6025	 * Add to the bottom of the new queue
6026	 */
6027	tqe->tqe_pnext = nifq->ifq_tail;
6028	*nifq->ifq_tail = tqe;
6029	nifq->ifq_tail = &tqe->tqe_next;
6030	MUTEX_EXIT(&nifq->ifq_lock);
6031}
6032
6033
6034/* ------------------------------------------------------------------------ */
6035/* Function:    ipf_updateipid                                              */
6036/* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
6037/* Parameters:  fin(I) - pointer to packet information                      */
6038/*                                                                          */
6039/* When we are doing NAT, change the IP of every packet to represent a      */
6040/* single sequence of packets coming from the host, hiding any host         */
6041/* specific sequencing that might otherwise be revealed.  If the packet is  */
6042/* a fragment, then store the 'new' IPid in the fragment cache and look up  */
6043/* the fragment cache for non-leading fragments.  If a non-leading fragment */
6044/* has no match in the cache, return an error.                              */
6045/* ------------------------------------------------------------------------ */
6046static int
6047ipf_updateipid(fin)
6048	fr_info_t *fin;
6049{
6050	u_short id, ido, sums;
6051	u_32_t sumd, sum;
6052	ip_t *ip;
6053
6054	if (fin->fin_off != 0) {
6055		sum = ipf_frag_ipidknown(fin);
6056		if (sum == 0xffffffff)
6057			return -1;
6058		sum &= 0xffff;
6059		id = (u_short)sum;
6060	} else {
6061		id = ipf_nextipid(fin);
6062		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
6063			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
6064	}
6065
6066	ip = fin->fin_ip;
6067	ido = ntohs(ip->ip_id);
6068	if (id == ido)
6069		return 0;
6070	ip->ip_id = htons(id);
6071	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
6072	sum = (~ntohs(ip->ip_sum)) & 0xffff;
6073	sum += sumd;
6074	sum = (sum >> 16) + (sum & 0xffff);
6075	sum = (sum >> 16) + (sum & 0xffff);
6076	sums = ~(u_short)sum;
6077	ip->ip_sum = htons(sums);
6078	return 0;
6079}
6080
6081
6082#ifdef	NEED_FRGETIFNAME
6083/* ------------------------------------------------------------------------ */
6084/* Function:    ipf_getifname                                               */
6085/* Returns:     char *    - pointer to interface name                       */
6086/* Parameters:  ifp(I)    - pointer to network interface                    */
6087/*              buffer(O) - pointer to where to store interface name        */
6088/*                                                                          */
6089/* Constructs an interface name in the buffer passed.  The buffer passed is */
6090/* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
6091/* as a NULL pointer then return a pointer to a static array.               */
6092/* ------------------------------------------------------------------------ */
6093char *
6094ipf_getifname(ifp, buffer)
6095	struct ifnet *ifp;
6096	char *buffer;
6097{
6098	static char namebuf[LIFNAMSIZ];
6099# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6100     defined(__sgi) || defined(linux) || defined(_AIX51) || \
6101     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6102	int unit, space;
6103	char temp[20];
6104	char *s;
6105# endif
6106
6107	if (buffer == NULL)
6108		buffer = namebuf;
6109	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
6110	buffer[LIFNAMSIZ - 1] = '\0';
6111# if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
6112     defined(__sgi) || defined(_AIX51) || \
6113     (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
6114	for (s = buffer; *s; s++)
6115		;
6116	unit = ifp->if_unit;
6117	space = LIFNAMSIZ - (s - buffer);
6118	if ((space > 0) && (unit >= 0)) {
6119#  if defined(SNPRINTF) && defined(_KERNEL)
6120		SNPRINTF(temp, sizeof(temp), "%d", unit);
6121#  else
6122		(void) sprintf(temp, "%d", unit);
6123#  endif
6124		(void) strncpy(s, temp, space);
6125	}
6126# endif
6127	return buffer;
6128}
6129#endif
6130
6131
6132/* ------------------------------------------------------------------------ */
6133/* Function:    ipf_ioctlswitch                                             */
6134/* Returns:     int     - -1 continue processing, else ioctl return value   */
6135/* Parameters:  unit(I) - device unit opened                                */
6136/*              data(I) - pointer to ioctl data                             */
6137/*              cmd(I)  - ioctl command                                     */
6138/*              mode(I) - mode value                                        */
6139/*              uid(I)  - uid making the ioctl call                         */
6140/*              ctx(I)  - pointer to context data                           */
6141/*                                                                          */
6142/* Based on the value of unit, call the appropriate ioctl handler or return */
6143/* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6144/* for the device in order to execute the ioctl.  A special case is made    */
6145/* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6146/* The context data pointer is passed through as this is used as the key    */
6147/* for locating a matching token for continued access for walking lists,    */
6148/* etc.                                                                     */
6149/* ------------------------------------------------------------------------ */
6150int
6151ipf_ioctlswitch(softc, unit, data, cmd, mode, uid, ctx)
6152	ipf_main_softc_t *softc;
6153	int unit, mode, uid;
6154	ioctlcmd_t cmd;
6155	void *data, *ctx;
6156{
6157	int error = 0;
6158
6159	switch (cmd)
6160	{
6161	case SIOCIPFINTERROR :
6162		error = BCOPYOUT(&softc->ipf_interror, data,
6163				 sizeof(softc->ipf_interror));
6164		if (error != 0) {
6165			IPFERROR(40);
6166			error = EFAULT;
6167		}
6168		return error;
6169	default :
6170		break;
6171	}
6172
6173	switch (unit)
6174	{
6175	case IPL_LOGIPF :
6176		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6177		break;
6178	case IPL_LOGNAT :
6179		if (softc->ipf_running > 0) {
6180			error = ipf_nat_ioctl(softc, data, cmd, mode,
6181					      uid, ctx);
6182		} else {
6183			IPFERROR(42);
6184			error = EIO;
6185		}
6186		break;
6187	case IPL_LOGSTATE :
6188		if (softc->ipf_running > 0) {
6189			error = ipf_state_ioctl(softc, data, cmd, mode,
6190						uid, ctx);
6191		} else {
6192			IPFERROR(43);
6193			error = EIO;
6194		}
6195		break;
6196	case IPL_LOGAUTH :
6197		if (softc->ipf_running > 0) {
6198			error = ipf_auth_ioctl(softc, data, cmd, mode,
6199					       uid, ctx);
6200		} else {
6201			IPFERROR(44);
6202			error = EIO;
6203		}
6204		break;
6205	case IPL_LOGSYNC :
6206		if (softc->ipf_running > 0) {
6207			error = ipf_sync_ioctl(softc, data, cmd, mode,
6208					       uid, ctx);
6209		} else {
6210			error = EIO;
6211			IPFERROR(45);
6212		}
6213		break;
6214	case IPL_LOGSCAN :
6215#ifdef IPFILTER_SCAN
6216		if (softc->ipf_running > 0)
6217			error = ipf_scan_ioctl(softc, data, cmd, mode,
6218					       uid, ctx);
6219		else
6220#endif
6221		{
6222			error = EIO;
6223			IPFERROR(46);
6224		}
6225		break;
6226	case IPL_LOGLOOKUP :
6227		if (softc->ipf_running > 0) {
6228			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6229						 uid, ctx);
6230		} else {
6231			error = EIO;
6232			IPFERROR(47);
6233		}
6234		break;
6235	default :
6236		IPFERROR(48);
6237		error = EIO;
6238		break;
6239	}
6240
6241	return error;
6242}
6243
6244
6245/*
6246 * This array defines the expected size of objects coming into the kernel
6247 * for the various recognised object types. The first column is flags (see
6248 * below), 2nd column is current size, 3rd column is the version number of
6249 * when the current size became current.
6250 * Flags:
6251 * 1 = minimum size, not absolute size
6252 */
6253static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6254	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6255	{ 1,	sizeof(struct friostat),	5010000 },
6256	{ 0,	sizeof(struct fr_info),		5010000 },
6257	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6258	{ 0,	sizeof(struct ipfrstat),	5010000 },
6259	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6260	{ 0,	sizeof(struct natstat),		5010000 },
6261	{ 0,	sizeof(struct ipstate_save),	5010000 },
6262	{ 1,	sizeof(struct nat_save),	5010000 },
6263	{ 0,	sizeof(struct natlookup),	5010000 },
6264	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6265	{ 0,	sizeof(struct ips_stat),	5010000 },
6266	{ 0,	sizeof(struct frauth),		5010000 },
6267	{ 0,	sizeof(struct ipftune),		4010100 },
6268	{ 0,	sizeof(struct nat),		5010000 },
6269	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6270	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6271	{ 0,	sizeof(struct ipftable),	4011400 },
6272	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6273	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6274	{ 1,	0,				0	}, /* IPFEXPR */
6275	{ 0,	0,				0	}, /* PROXYCTL */
6276	{ 0,	sizeof (struct fripf),		5010000	}
6277};
6278
6279
6280/* ------------------------------------------------------------------------ */
6281/* Function:    ipf_inobj                                                   */
6282/* Returns:     int     - 0 = success, else failure                         */
6283/* Parameters:  softc(I) - soft context pointerto work with                 */
6284/*              data(I)  - pointer to ioctl data                            */
6285/*              objp(O)  - where to store ipfobj structure                  */
6286/*              ptr(I)   - pointer to data to copy out                      */
6287/*              type(I)  - type of structure being moved                    */
6288/*                                                                          */
6289/* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6290/* add things to check for version numbers, sizes, etc, to make it backward */
6291/* compatible at the ABI for user land.                                     */
6292/* If objp is not NULL then we assume that the caller wants to see what is  */
6293/* in the ipfobj_t structure being copied in. As an example, this can tell  */
6294/* the caller what version of ipfilter the ioctl program was written to.    */
6295/* ------------------------------------------------------------------------ */
6296int
6297ipf_inobj(softc, data, objp, ptr, type)
6298	ipf_main_softc_t *softc;
6299	void *data;
6300	ipfobj_t *objp;
6301	void *ptr;
6302	int type;
6303{
6304	ipfobj_t obj;
6305	int error;
6306	int size;
6307
6308	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6309		IPFERROR(49);
6310		return EINVAL;
6311	}
6312
6313	if (objp == NULL)
6314		objp = &obj;
6315	error = BCOPYIN(data, objp, sizeof(*objp));
6316	if (error != 0) {
6317		IPFERROR(124);
6318		return EFAULT;
6319	}
6320
6321	if (objp->ipfo_type != type) {
6322		IPFERROR(50);
6323		return EINVAL;
6324	}
6325
6326	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6327		if ((ipf_objbytes[type][0] & 1) != 0) {
6328			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6329				IPFERROR(51);
6330				return EINVAL;
6331			}
6332			size =  ipf_objbytes[type][1];
6333		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6334			size =  objp->ipfo_size;
6335		} else {
6336			IPFERROR(52);
6337			return EINVAL;
6338		}
6339		error = COPYIN(objp->ipfo_ptr, ptr, size);
6340		if (error != 0) {
6341			IPFERROR(55);
6342			error = EFAULT;
6343		}
6344	} else {
6345#ifdef  IPFILTER_COMPAT
6346		error = ipf_in_compat(softc, objp, ptr, 0);
6347#else
6348		IPFERROR(54);
6349		error = EINVAL;
6350#endif
6351	}
6352	return error;
6353}
6354
6355
6356/* ------------------------------------------------------------------------ */
6357/* Function:    ipf_inobjsz                                                 */
6358/* Returns:     int     - 0 = success, else failure                         */
6359/* Parameters:  softc(I) - soft context pointerto work with                 */
6360/*              data(I)  - pointer to ioctl data                            */
6361/*              ptr(I)   - pointer to store real data in                    */
6362/*              type(I)  - type of structure being moved                    */
6363/*              sz(I)    - size of data to copy                             */
6364/*                                                                          */
6365/* As per ipf_inobj, except the size of the object to copy in is passed in  */
6366/* but it must not be smaller than the size defined for the type and the    */
6367/* type must allow for varied sized objects.  The extra requirement here is */
6368/* that sz must match the size of the object being passed in - this is not  */
6369/* not possible nor required in ipf_inobj().                                */
6370/* ------------------------------------------------------------------------ */
6371int
6372ipf_inobjsz(softc, data, ptr, type, sz)
6373	ipf_main_softc_t *softc;
6374	void *data;
6375	void *ptr;
6376	int type, sz;
6377{
6378	ipfobj_t obj;
6379	int error;
6380
6381	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6382		IPFERROR(56);
6383		return EINVAL;
6384	}
6385
6386	error = BCOPYIN(data, &obj, sizeof(obj));
6387	if (error != 0) {
6388		IPFERROR(125);
6389		return EFAULT;
6390	}
6391
6392	if (obj.ipfo_type != type) {
6393		IPFERROR(58);
6394		return EINVAL;
6395	}
6396
6397	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6398		if (((ipf_objbytes[type][0] & 1) == 0) ||
6399		    (sz < ipf_objbytes[type][1])) {
6400			IPFERROR(57);
6401			return EINVAL;
6402		}
6403		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6404		if (error != 0) {
6405			IPFERROR(61);
6406			error = EFAULT;
6407		}
6408	} else {
6409#ifdef	IPFILTER_COMPAT
6410		error = ipf_in_compat(softc, &obj, ptr, sz);
6411#else
6412		IPFERROR(60);
6413		error = EINVAL;
6414#endif
6415	}
6416	return error;
6417}
6418
6419
6420/* ------------------------------------------------------------------------ */
6421/* Function:    ipf_outobjsz                                                */
6422/* Returns:     int     - 0 = success, else failure                         */
6423/* Parameters:  data(I) - pointer to ioctl data                             */
6424/*              ptr(I)  - pointer to store real data in                     */
6425/*              type(I) - type of structure being moved                     */
6426/*              sz(I)   - size of data to copy                              */
6427/*                                                                          */
6428/* As per ipf_outobj, except the size of the object to copy out is passed in*/
6429/* but it must not be smaller than the size defined for the type and the    */
6430/* type must allow for varied sized objects.  The extra requirement here is */
6431/* that sz must match the size of the object being passed in - this is not  */
6432/* not possible nor required in ipf_outobj().                               */
6433/* ------------------------------------------------------------------------ */
6434int
6435ipf_outobjsz(softc, data, ptr, type, sz)
6436	ipf_main_softc_t *softc;
6437	void *data;
6438	void *ptr;
6439	int type, sz;
6440{
6441	ipfobj_t obj;
6442	int error;
6443
6444	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6445		IPFERROR(62);
6446		return EINVAL;
6447	}
6448
6449	error = BCOPYIN(data, &obj, sizeof(obj));
6450	if (error != 0) {
6451		IPFERROR(127);
6452		return EFAULT;
6453	}
6454
6455	if (obj.ipfo_type != type) {
6456		IPFERROR(63);
6457		return EINVAL;
6458	}
6459
6460	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6461		if (((ipf_objbytes[type][0] & 1) == 0) ||
6462		    (sz < ipf_objbytes[type][1])) {
6463			IPFERROR(146);
6464			return EINVAL;
6465		}
6466		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6467		if (error != 0) {
6468			IPFERROR(66);
6469			error = EFAULT;
6470		}
6471	} else {
6472#ifdef	IPFILTER_COMPAT
6473		error = ipf_out_compat(softc, &obj, ptr);
6474#else
6475		IPFERROR(65);
6476		error = EINVAL;
6477#endif
6478	}
6479	return error;
6480}
6481
6482
6483/* ------------------------------------------------------------------------ */
6484/* Function:    ipf_outobj                                                  */
6485/* Returns:     int     - 0 = success, else failure                         */
6486/* Parameters:  data(I) - pointer to ioctl data                             */
6487/*              ptr(I)  - pointer to store real data in                     */
6488/*              type(I) - type of structure being moved                     */
6489/*                                                                          */
6490/* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6491/* future, we add things to check for version numbers, sizes, etc, to make  */
6492/* it backward  compatible at the ABI for user land.                        */
6493/* ------------------------------------------------------------------------ */
6494int
6495ipf_outobj(softc, data, ptr, type)
6496	ipf_main_softc_t *softc;
6497	void *data;
6498	void *ptr;
6499	int type;
6500{
6501	ipfobj_t obj;
6502	int error;
6503
6504	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6505		IPFERROR(67);
6506		return EINVAL;
6507	}
6508
6509	error = BCOPYIN(data, &obj, sizeof(obj));
6510	if (error != 0) {
6511		IPFERROR(126);
6512		return EFAULT;
6513	}
6514
6515	if (obj.ipfo_type != type) {
6516		IPFERROR(68);
6517		return EINVAL;
6518	}
6519
6520	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6521		if ((ipf_objbytes[type][0] & 1) != 0) {
6522			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6523				IPFERROR(69);
6524				return EINVAL;
6525			}
6526		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6527			IPFERROR(70);
6528			return EINVAL;
6529		}
6530
6531		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6532		if (error != 0) {
6533			IPFERROR(73);
6534			error = EFAULT;
6535		}
6536	} else {
6537#ifdef	IPFILTER_COMPAT
6538		error = ipf_out_compat(softc, &obj, ptr);
6539#else
6540		IPFERROR(72);
6541		error = EINVAL;
6542#endif
6543	}
6544	return error;
6545}
6546
6547
6548/* ------------------------------------------------------------------------ */
6549/* Function:    ipf_outobjk                                                 */
6550/* Returns:     int     - 0 = success, else failure                         */
6551/* Parameters:  obj(I)  - pointer to data description structure             */
6552/*              ptr(I)  - pointer to kernel data to copy out                */
6553/*                                                                          */
6554/* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6555/* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6556/* already populated with information and now we just need to use it.       */
6557/* There is no need for this function to have a "type" parameter as there   */
6558/* is no point in validating information that comes from the kernel with    */
6559/* itself.                                                                  */
6560/* ------------------------------------------------------------------------ */
6561int
6562ipf_outobjk(softc, obj, ptr)
6563	ipf_main_softc_t *softc;
6564	ipfobj_t *obj;
6565	void *ptr;
6566{
6567	int type = obj->ipfo_type;
6568	int error;
6569
6570	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6571		IPFERROR(147);
6572		return EINVAL;
6573	}
6574
6575	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6576		if ((ipf_objbytes[type][0] & 1) != 0) {
6577			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6578				IPFERROR(148);
6579				return EINVAL;
6580			}
6581
6582		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6583			IPFERROR(149);
6584			return EINVAL;
6585		}
6586
6587		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6588		if (error != 0) {
6589			IPFERROR(150);
6590			error = EFAULT;
6591		}
6592	} else {
6593#ifdef  IPFILTER_COMPAT
6594		error = ipf_out_compat(softc, obj, ptr);
6595#else
6596		IPFERROR(151);
6597		error = EINVAL;
6598#endif
6599	}
6600	return error;
6601}
6602
6603
6604/* ------------------------------------------------------------------------ */
6605/* Function:    ipf_checkl4sum                                              */
6606/* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6607/* Parameters:  fin(I) - pointer to packet information                      */
6608/*                                                                          */
6609/* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6610/* not possible, return without indicating a failure or success but in a    */
6611/* way that is ditinguishable. This function should only be called by the   */
6612/* ipf_checkv6sum() for each platform.                                      */
6613/* ------------------------------------------------------------------------ */
6614INLINE int
6615ipf_checkl4sum(fin)
6616	fr_info_t *fin;
6617{
6618	u_short sum, hdrsum, *csump;
6619	udphdr_t *udp;
6620	int dosum;
6621
6622	/*
6623	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6624	 * isn't already considered "bad", then validate the checksum.  If
6625	 * this check fails then considered the packet to be "bad".
6626	 */
6627	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6628		return 1;
6629
6630	csump = NULL;
6631	hdrsum = 0;
6632	dosum = 0;
6633	sum = 0;
6634
6635	switch (fin->fin_p)
6636	{
6637	case IPPROTO_TCP :
6638		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6639		dosum = 1;
6640		break;
6641
6642	case IPPROTO_UDP :
6643		udp = fin->fin_dp;
6644		if (udp->uh_sum != 0) {
6645			csump = &udp->uh_sum;
6646			dosum = 1;
6647		}
6648		break;
6649
6650#ifdef USE_INET6
6651	case IPPROTO_ICMPV6 :
6652		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6653		dosum = 1;
6654		break;
6655#endif
6656
6657	case IPPROTO_ICMP :
6658		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6659		dosum = 1;
6660		break;
6661
6662	default :
6663		return 1;
6664		/*NOTREACHED*/
6665	}
6666
6667	if (csump != NULL)
6668		hdrsum = *csump;
6669
6670	if (dosum) {
6671		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6672	}
6673#if !defined(_KERNEL)
6674	if (sum == hdrsum) {
6675		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6676	} else {
6677		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6678	}
6679#endif
6680	DT2(l4sums, u_short, hdrsum, u_short, sum);
6681	if (hdrsum == sum) {
6682		fin->fin_cksum = FI_CK_SUMOK;
6683		return 0;
6684	}
6685	fin->fin_cksum = FI_CK_BAD;
6686	return -1;
6687}
6688
6689
6690/* ------------------------------------------------------------------------ */
6691/* Function:    ipf_ifpfillv4addr                                           */
6692/* Returns:     int     - 0 = address update, -1 = address not updated      */
6693/* Parameters:  atype(I)   - type of network address update to perform      */
6694/*              sin(I)     - pointer to source of address information       */
6695/*              mask(I)    - pointer to source of netmask information       */
6696/*              inp(I)     - pointer to destination address store           */
6697/*              inpmask(I) - pointer to destination netmask store           */
6698/*                                                                          */
6699/* Given a type of network address update (atype) to perform, copy          */
6700/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6701/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6702/* which case the operation fails.  For all values of atype other than      */
6703/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6704/* value.                                                                   */
6705/* ------------------------------------------------------------------------ */
6706int
6707ipf_ifpfillv4addr(atype, sin, mask, inp, inpmask)
6708	int atype;
6709	struct sockaddr_in *sin, *mask;
6710	struct in_addr *inp, *inpmask;
6711{
6712	if (inpmask != NULL && atype != FRI_NETMASKED)
6713		inpmask->s_addr = 0xffffffff;
6714
6715	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6716		if (atype == FRI_NETMASKED) {
6717			if (inpmask == NULL)
6718				return -1;
6719			inpmask->s_addr = mask->sin_addr.s_addr;
6720		}
6721		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6722	} else {
6723		inp->s_addr = sin->sin_addr.s_addr;
6724	}
6725	return 0;
6726}
6727
6728
6729#ifdef	USE_INET6
6730/* ------------------------------------------------------------------------ */
6731/* Function:    ipf_ifpfillv6addr                                           */
6732/* Returns:     int     - 0 = address update, -1 = address not updated      */
6733/* Parameters:  atype(I)   - type of network address update to perform      */
6734/*              sin(I)     - pointer to source of address information       */
6735/*              mask(I)    - pointer to source of netmask information       */
6736/*              inp(I)     - pointer to destination address store           */
6737/*              inpmask(I) - pointer to destination netmask store           */
6738/*                                                                          */
6739/* Given a type of network address update (atype) to perform, copy          */
6740/* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6741/* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6742/* which case the operation fails.  For all values of atype other than      */
6743/* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6744/* value.                                                                   */
6745/* ------------------------------------------------------------------------ */
6746int
6747ipf_ifpfillv6addr(atype, sin, mask, inp, inpmask)
6748	int atype;
6749	struct sockaddr_in6 *sin, *mask;
6750	i6addr_t *inp, *inpmask;
6751{
6752	i6addr_t *src, *and;
6753
6754	src = (i6addr_t *)&sin->sin6_addr;
6755	and = (i6addr_t *)&mask->sin6_addr;
6756
6757	if (inpmask != NULL && atype != FRI_NETMASKED) {
6758		inpmask->i6[0] = 0xffffffff;
6759		inpmask->i6[1] = 0xffffffff;
6760		inpmask->i6[2] = 0xffffffff;
6761		inpmask->i6[3] = 0xffffffff;
6762	}
6763
6764	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6765		if (atype == FRI_NETMASKED) {
6766			if (inpmask == NULL)
6767				return -1;
6768			inpmask->i6[0] = and->i6[0];
6769			inpmask->i6[1] = and->i6[1];
6770			inpmask->i6[2] = and->i6[2];
6771			inpmask->i6[3] = and->i6[3];
6772		}
6773
6774		inp->i6[0] = src->i6[0] & and->i6[0];
6775		inp->i6[1] = src->i6[1] & and->i6[1];
6776		inp->i6[2] = src->i6[2] & and->i6[2];
6777		inp->i6[3] = src->i6[3] & and->i6[3];
6778	} else {
6779		inp->i6[0] = src->i6[0];
6780		inp->i6[1] = src->i6[1];
6781		inp->i6[2] = src->i6[2];
6782		inp->i6[3] = src->i6[3];
6783	}
6784	return 0;
6785}
6786#endif
6787
6788
6789/* ------------------------------------------------------------------------ */
6790/* Function:    ipf_matchtag                                                */
6791/* Returns:     0 == mismatch, 1 == match.                                  */
6792/* Parameters:  tag1(I) - pointer to first tag to compare                   */
6793/*              tag2(I) - pointer to second tag to compare                  */
6794/*                                                                          */
6795/* Returns true (non-zero) or false(0) if the two tag structures can be     */
6796/* considered to be a match or not match, respectively.  The tag is 16      */
6797/* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6798/* compare the ints instead, for speed. tag1 is the master of the           */
6799/* comparison.  This function should only be called with both tag1 and tag2 */
6800/* as non-NULL pointers.                                                    */
6801/* ------------------------------------------------------------------------ */
6802int
6803ipf_matchtag(tag1, tag2)
6804	ipftag_t *tag1, *tag2;
6805{
6806	if (tag1 == tag2)
6807		return 1;
6808
6809	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6810		return 1;
6811
6812	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6813	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6814	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6815	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6816		return 1;
6817	return 0;
6818}
6819
6820
6821/* ------------------------------------------------------------------------ */
6822/* Function:    ipf_coalesce                                                */
6823/* Returns:     1 == success, -1 == failure, 0 == no change                 */
6824/* Parameters:  fin(I) - pointer to packet information                      */
6825/*                                                                          */
6826/* Attempt to get all of the packet data into a single, contiguous buffer.  */
6827/* If this call returns a failure then the buffers have also been freed.    */
6828/* ------------------------------------------------------------------------ */
6829int
6830ipf_coalesce(fin)
6831	fr_info_t *fin;
6832{
6833
6834	if ((fin->fin_flx & FI_COALESCE) != 0)
6835		return 1;
6836
6837	/*
6838	 * If the mbuf pointers indicate that there is no mbuf to work with,
6839	 * return but do not indicate success or failure.
6840	 */
6841	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6842		return 0;
6843
6844#if defined(_KERNEL)
6845	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6846		ipf_main_softc_t *softc = fin->fin_main_soft;
6847
6848		DT1(frb_coalesce, fr_info_t *, fin);
6849		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6850# ifdef MENTAT
6851		FREE_MB_T(*fin->fin_mp);
6852# endif
6853		fin->fin_reason = FRB_COALESCE;
6854		*fin->fin_mp = NULL;
6855		fin->fin_m = NULL;
6856		return -1;
6857	}
6858#else
6859	fin = fin;	/* LINT */
6860#endif
6861	return 1;
6862}
6863
6864
6865/*
6866 * The following table lists all of the tunable variables that can be
6867 * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6868 * in the table below is as follows:
6869 *
6870 * pointer to value, name of value, minimum, maximum, size of the value's
6871 *     container, value attribute flags
6872 *
6873 * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6874 * means the value can only be written to when IPFilter is loaded but disabled.
6875 * The obvious implication is if neither of these are set then the value can be
6876 * changed at any time without harm.
6877 */
6878
6879
6880/* ------------------------------------------------------------------------ */
6881/* Function:    ipf_tune_findbycookie                                       */
6882/* Returns:     NULL = search failed, else pointer to tune struct           */
6883/* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6884/*              next(O)   - pointer to place to store the cookie for the    */
6885/*                          "next" tuneable, if it is desired.              */
6886/*                                                                          */
6887/* This function is used to walk through all of the existing tunables with  */
6888/* successive calls.  It searches the known tunables for the one which has  */
6889/* a matching value for "cookie" - ie its address.  When returning a match, */
6890/* the next one to be found may be returned inside next.                    */
6891/* ------------------------------------------------------------------------ */
6892static ipftuneable_t *
6893ipf_tune_findbycookie(ptop, cookie, next)
6894	ipftuneable_t **ptop;
6895	void *cookie, **next;
6896{
6897	ipftuneable_t *ta, **tap;
6898
6899	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6900		if (ta == cookie) {
6901			if (next != NULL) {
6902				/*
6903				 * If the next entry in the array has a name
6904				 * present, then return a pointer to it for
6905				 * where to go next, else return a pointer to
6906				 * the dynaminc list as a key to search there
6907				 * next.  This facilitates a weak linking of
6908				 * the two "lists" together.
6909				 */
6910				if ((ta + 1)->ipft_name != NULL)
6911					*next = ta + 1;
6912				else
6913					*next = ptop;
6914			}
6915			return ta;
6916		}
6917
6918	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6919		if (tap == cookie) {
6920			if (next != NULL)
6921				*next = &ta->ipft_next;
6922			return ta;
6923		}
6924
6925	if (next != NULL)
6926		*next = NULL;
6927	return NULL;
6928}
6929
6930
6931/* ------------------------------------------------------------------------ */
6932/* Function:    ipf_tune_findbyname                                         */
6933/* Returns:     NULL = search failed, else pointer to tune struct           */
6934/* Parameters:  name(I) - name of the tuneable entry to find.               */
6935/*                                                                          */
6936/* Search the static array of tuneables and the list of dynamic tuneables   */
6937/* for an entry with a matching name.  If we can find one, return a pointer */
6938/* to the matching structure.                                               */
6939/* ------------------------------------------------------------------------ */
6940static ipftuneable_t *
6941ipf_tune_findbyname(top, name)
6942	ipftuneable_t *top;
6943	const char *name;
6944{
6945	ipftuneable_t *ta;
6946
6947	for (ta = top; ta != NULL; ta = ta->ipft_next)
6948		if (!strcmp(ta->ipft_name, name)) {
6949			return ta;
6950		}
6951
6952	return NULL;
6953}
6954
6955
6956/* ------------------------------------------------------------------------ */
6957/* Function:    ipf_tune_add_array                                          */
6958/* Returns:     int - 0 == success, else failure                            */
6959/* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6960/*                                                                          */
6961/* Appends tune structures from the array passed in (newtune) to the end of */
6962/* the current list of "dynamic" tuneable parameters.                       */
6963/* If any entry to be added is already present (by name) then the operation */
6964/* is aborted - entries that have been added are removed before returning.  */
6965/* An entry with no name (NULL) is used as the indication that the end of   */
6966/* the array has been reached.                                              */
6967/* ------------------------------------------------------------------------ */
6968int
6969ipf_tune_add_array(softc, newtune)
6970	ipf_main_softc_t *softc;
6971	ipftuneable_t *newtune;
6972{
6973	ipftuneable_t *nt, *dt;
6974	int error = 0;
6975
6976	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6977		error = ipf_tune_add(softc, nt);
6978		if (error != 0) {
6979			for (dt = newtune; dt != nt; dt++) {
6980				(void) ipf_tune_del(softc, dt);
6981			}
6982		}
6983	}
6984
6985	return error;
6986}
6987
6988
6989/* ------------------------------------------------------------------------ */
6990/* Function:    ipf_tune_array_link                                         */
6991/* Returns:     0 == success, -1 == failure                                 */
6992/* Parameters:  softc(I) - soft context pointerto work with                 */
6993/*              array(I) - pointer to an array of tuneables                 */
6994/*                                                                          */
6995/* Given an array of tunables (array), append them to the current list of   */
6996/* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6997/* the array for being appended to the list, initialise all of the next     */
6998/* pointers so we don't need to walk parts of it with ++ and others with    */
6999/* next. The array is expected to have an entry with a NULL name as the     */
7000/* terminator. Trying to add an array with no non-NULL names will return as */
7001/* a failure.                                                               */
7002/* ------------------------------------------------------------------------ */
7003int
7004ipf_tune_array_link(softc, array)
7005	ipf_main_softc_t *softc;
7006	ipftuneable_t *array;
7007{
7008	ipftuneable_t *t, **p;
7009
7010	t = array;
7011	if (t->ipft_name == NULL)
7012		return -1;
7013
7014	for (; t[1].ipft_name != NULL; t++)
7015		t[0].ipft_next = &t[1];
7016	t->ipft_next = NULL;
7017
7018	/*
7019	 * Since a pointer to the last entry isn't kept, we need to find it
7020	 * each time we want to add new variables to the list.
7021	 */
7022	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7023		if (t->ipft_name == NULL)
7024			break;
7025	*p = array;
7026
7027	return 0;
7028}
7029
7030
7031/* ------------------------------------------------------------------------ */
7032/* Function:    ipf_tune_array_unlink                                       */
7033/* Returns:     0 == success, -1 == failure                                 */
7034/* Parameters:  softc(I) - soft context pointerto work with                 */
7035/*              array(I) - pointer to an array of tuneables                 */
7036/*                                                                          */
7037/* ------------------------------------------------------------------------ */
7038int
7039ipf_tune_array_unlink(softc, array)
7040	ipf_main_softc_t *softc;
7041	ipftuneable_t *array;
7042{
7043	ipftuneable_t *t, **p;
7044
7045	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
7046		if (t == array)
7047			break;
7048	if (t == NULL)
7049		return -1;
7050
7051	for (; t[1].ipft_name != NULL; t++)
7052		;
7053
7054	*p = t->ipft_next;
7055
7056	return 0;
7057}
7058
7059
7060/* ------------------------------------------------------------------------ */
7061/* Function:   ipf_tune_array_copy                                          */
7062/* Returns:    NULL = failure, else pointer to new array                    */
7063/* Parameters: base(I)     - pointer to structure base                      */
7064/*             size(I)     - size of the array at template                  */
7065/*             template(I) - original array to copy                         */
7066/*                                                                          */
7067/* Allocate memory for a new set of tuneable values and copy everything     */
7068/* from template into the new region of memory.  The new region is full of  */
7069/* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
7070/*                                                                          */
7071/* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
7072/* In the array template, ipftp_offset is the offset (in bytes) of the      */
7073/* location of the tuneable value inside the structure pointed to by base.  */
7074/* As ipftp_offset is a union over the pointers to the tuneable values, if  */
7075/* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
7076/* ipftp_void that points to the stored value.                              */
7077/* ------------------------------------------------------------------------ */
7078ipftuneable_t *
7079ipf_tune_array_copy(base, size, template)
7080	void *base;
7081	size_t size;
7082	ipftuneable_t *template;
7083{
7084	ipftuneable_t *copy;
7085	int i;
7086
7087
7088	KMALLOCS(copy, ipftuneable_t *, size);
7089	if (copy == NULL) {
7090		return NULL;
7091	}
7092	bcopy(template, copy, size);
7093
7094	for (i = 0; copy[i].ipft_name; i++) {
7095		copy[i].ipft_una.ipftp_offset += (u_long)base;
7096		copy[i].ipft_next = copy + i + 1;
7097	}
7098
7099	return copy;
7100}
7101
7102
7103/* ------------------------------------------------------------------------ */
7104/* Function:    ipf_tune_add                                                */
7105/* Returns:     int - 0 == success, else failure                            */
7106/* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
7107/*                                                                          */
7108/* Appends tune structures from the array passed in (newtune) to the end of */
7109/* the current list of "dynamic" tuneable parameters.  Once added, the      */
7110/* owner of the object is not expected to ever change "ipft_next".          */
7111/* ------------------------------------------------------------------------ */
7112int
7113ipf_tune_add(softc, newtune)
7114	ipf_main_softc_t *softc;
7115	ipftuneable_t *newtune;
7116{
7117	ipftuneable_t *ta, **tap;
7118
7119	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
7120	if (ta != NULL) {
7121		IPFERROR(74);
7122		return EEXIST;
7123	}
7124
7125	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
7126		;
7127
7128	newtune->ipft_next = NULL;
7129	*tap = newtune;
7130	return 0;
7131}
7132
7133
7134/* ------------------------------------------------------------------------ */
7135/* Function:    ipf_tune_del                                                */
7136/* Returns:     int - 0 == success, else failure                            */
7137/* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
7138/*                        current dynamic tuneables                         */
7139/*                                                                          */
7140/* Search for the tune structure, by pointer, in the list of those that are */
7141/* dynamically added at run time.  If found, adjust the list so that this   */
7142/* structure is no longer part of it.                                       */
7143/* ------------------------------------------------------------------------ */
7144int
7145ipf_tune_del(softc, oldtune)
7146	ipf_main_softc_t *softc;
7147	ipftuneable_t *oldtune;
7148{
7149	ipftuneable_t *ta, **tap;
7150	int error = 0;
7151
7152	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7153	     tap = &ta->ipft_next) {
7154		if (ta == oldtune) {
7155			*tap = oldtune->ipft_next;
7156			oldtune->ipft_next = NULL;
7157			break;
7158		}
7159	}
7160
7161	if (ta == NULL) {
7162		error = ESRCH;
7163		IPFERROR(75);
7164	}
7165	return error;
7166}
7167
7168
7169/* ------------------------------------------------------------------------ */
7170/* Function:    ipf_tune_del_array                                          */
7171/* Returns:     int - 0 == success, else failure                            */
7172/* Parameters:  oldtune - pointer to tuneables array                        */
7173/*                                                                          */
7174/* Remove each tuneable entry in the array from the list of "dynamic"       */
7175/* tunables.  If one entry should fail to be found, an error will be        */
7176/* returned and no further ones removed.                                    */
7177/* An entry with a NULL name is used as the indicator of the last entry in  */
7178/* the array.                                                               */
7179/* ------------------------------------------------------------------------ */
7180int
7181ipf_tune_del_array(softc, oldtune)
7182	ipf_main_softc_t *softc;
7183	ipftuneable_t *oldtune;
7184{
7185	ipftuneable_t *ot;
7186	int error = 0;
7187
7188	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7189		error = ipf_tune_del(softc, ot);
7190		if (error != 0)
7191			break;
7192	}
7193
7194	return error;
7195
7196}
7197
7198
7199/* ------------------------------------------------------------------------ */
7200/* Function:    ipf_tune                                                    */
7201/* Returns:     int - 0 == success, else failure                            */
7202/* Parameters:  cmd(I)  - ioctl command number                              */
7203/*              data(I) - pointer to ioctl data structure                   */
7204/*                                                                          */
7205/* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7206/* three ioctls provide the means to access and control global variables    */
7207/* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7208/* changed without rebooting, reloading or recompiling.  The initialisation */
7209/* and 'destruction' routines of the various components of ipfilter are all */
7210/* each responsible for handling their own values being too big.            */
7211/* ------------------------------------------------------------------------ */
7212int
7213ipf_ipftune(softc, cmd, data)
7214	ipf_main_softc_t *softc;
7215	ioctlcmd_t cmd;
7216	void *data;
7217{
7218	ipftuneable_t *ta;
7219	ipftune_t tu;
7220	void *cookie;
7221	int error;
7222
7223	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7224	if (error != 0)
7225		return error;
7226
7227	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7228	cookie = tu.ipft_cookie;
7229	ta = NULL;
7230
7231	switch (cmd)
7232	{
7233	case SIOCIPFGETNEXT :
7234		/*
7235		 * If cookie is non-NULL, assume it to be a pointer to the last
7236		 * entry we looked at, so find it (if possible) and return a
7237		 * pointer to the next one after it.  The last entry in the
7238		 * the table is a NULL entry, so when we get to it, set cookie
7239		 * to NULL and return that, indicating end of list, erstwhile
7240		 * if we come in with cookie set to NULL, we are starting anew
7241		 * at the front of the list.
7242		 */
7243		if (cookie != NULL) {
7244			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7245						   cookie, &tu.ipft_cookie);
7246		} else {
7247			ta = softc->ipf_tuners;
7248			tu.ipft_cookie = ta + 1;
7249		}
7250		if (ta != NULL) {
7251			/*
7252			 * Entry found, but does the data pointed to by that
7253			 * row fit in what we can return?
7254			 */
7255			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7256				IPFERROR(76);
7257				return EINVAL;
7258			}
7259
7260			tu.ipft_vlong = 0;
7261			if (ta->ipft_sz == sizeof(u_long))
7262				tu.ipft_vlong = *ta->ipft_plong;
7263			else if (ta->ipft_sz == sizeof(u_int))
7264				tu.ipft_vint = *ta->ipft_pint;
7265			else if (ta->ipft_sz == sizeof(u_short))
7266				tu.ipft_vshort = *ta->ipft_pshort;
7267			else if (ta->ipft_sz == sizeof(u_char))
7268				tu.ipft_vchar = *ta->ipft_pchar;
7269
7270			tu.ipft_sz = ta->ipft_sz;
7271			tu.ipft_min = ta->ipft_min;
7272			tu.ipft_max = ta->ipft_max;
7273			tu.ipft_flags = ta->ipft_flags;
7274			bcopy(ta->ipft_name, tu.ipft_name,
7275			      MIN(sizeof(tu.ipft_name),
7276				  strlen(ta->ipft_name) + 1));
7277		}
7278		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7279		break;
7280
7281	case SIOCIPFGET :
7282	case SIOCIPFSET :
7283		/*
7284		 * Search by name or by cookie value for a particular entry
7285		 * in the tuning paramter table.
7286		 */
7287		IPFERROR(77);
7288		error = ESRCH;
7289		if (cookie != NULL) {
7290			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7291						   cookie, NULL);
7292			if (ta != NULL)
7293				error = 0;
7294		} else if (tu.ipft_name[0] != '\0') {
7295			ta = ipf_tune_findbyname(softc->ipf_tuners,
7296						 tu.ipft_name);
7297			if (ta != NULL)
7298				error = 0;
7299		}
7300		if (error != 0)
7301			break;
7302
7303		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7304			/*
7305			 * Fetch the tuning parameters for a particular value
7306			 */
7307			tu.ipft_vlong = 0;
7308			if (ta->ipft_sz == sizeof(u_long))
7309				tu.ipft_vlong = *ta->ipft_plong;
7310			else if (ta->ipft_sz == sizeof(u_int))
7311				tu.ipft_vint = *ta->ipft_pint;
7312			else if (ta->ipft_sz == sizeof(u_short))
7313				tu.ipft_vshort = *ta->ipft_pshort;
7314			else if (ta->ipft_sz == sizeof(u_char))
7315				tu.ipft_vchar = *ta->ipft_pchar;
7316			tu.ipft_cookie = ta;
7317			tu.ipft_sz = ta->ipft_sz;
7318			tu.ipft_min = ta->ipft_min;
7319			tu.ipft_max = ta->ipft_max;
7320			tu.ipft_flags = ta->ipft_flags;
7321			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7322
7323		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7324			/*
7325			 * Set an internal parameter.  The hard part here is
7326			 * getting the new value safely and correctly out of
7327			 * the kernel (given we only know its size, not type.)
7328			 */
7329			u_long in;
7330
7331			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7332			    (softc->ipf_running > 0)) {
7333				IPFERROR(78);
7334				error = EBUSY;
7335				break;
7336			}
7337
7338			in = tu.ipft_vlong;
7339			if (in < ta->ipft_min || in > ta->ipft_max) {
7340				IPFERROR(79);
7341				error = EINVAL;
7342				break;
7343			}
7344
7345			if (ta->ipft_func != NULL) {
7346				SPL_INT(s);
7347
7348				SPL_NET(s);
7349				error = (*ta->ipft_func)(softc, ta,
7350							 &tu.ipft_un);
7351				SPL_X(s);
7352
7353			} else if (ta->ipft_sz == sizeof(u_long)) {
7354				tu.ipft_vlong = *ta->ipft_plong;
7355				*ta->ipft_plong = in;
7356
7357			} else if (ta->ipft_sz == sizeof(u_int)) {
7358				tu.ipft_vint = *ta->ipft_pint;
7359				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7360
7361			} else if (ta->ipft_sz == sizeof(u_short)) {
7362				tu.ipft_vshort = *ta->ipft_pshort;
7363				*ta->ipft_pshort = (u_short)(in & 0xffff);
7364
7365			} else if (ta->ipft_sz == sizeof(u_char)) {
7366				tu.ipft_vchar = *ta->ipft_pchar;
7367				*ta->ipft_pchar = (u_char)(in & 0xff);
7368			}
7369			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7370		}
7371		break;
7372
7373	default :
7374		IPFERROR(80);
7375		error = EINVAL;
7376		break;
7377	}
7378
7379	return error;
7380}
7381
7382
7383/* ------------------------------------------------------------------------ */
7384/* Function:    ipf_zerostats                                               */
7385/* Returns:     int - 0 = success, else failure                             */
7386/* Parameters:  data(O) - pointer to pointer for copying data back to       */
7387/*                                                                          */
7388/* Copies the current statistics out to userspace and then zero's the       */
7389/* current ones in the kernel. The lock is only held across the bzero() as  */
7390/* the copyout may result in paging (ie network activity.)                  */
7391/* ------------------------------------------------------------------------ */
7392int
7393ipf_zerostats(softc, data)
7394	ipf_main_softc_t *softc;
7395	caddr_t	data;
7396{
7397	friostat_t fio;
7398	ipfobj_t obj;
7399	int error;
7400
7401	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7402	if (error != 0)
7403		return error;
7404	ipf_getstat(softc, &fio, obj.ipfo_rev);
7405	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7406	if (error != 0)
7407		return error;
7408
7409	WRITE_ENTER(&softc->ipf_mutex);
7410	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7411	RWLOCK_EXIT(&softc->ipf_mutex);
7412
7413	return 0;
7414}
7415
7416
7417/* ------------------------------------------------------------------------ */
7418/* Function:    ipf_resolvedest                                             */
7419/* Returns:     Nil                                                         */
7420/* Parameters:  softc(I) - pointer to soft context main structure           */
7421/*              base(I)  - where strings are stored                         */
7422/*              fdp(IO)  - pointer to destination information to resolve    */
7423/*              v(I)     - IP protocol version to match                     */
7424/*                                                                          */
7425/* Looks up an interface name in the frdest structure pointed to by fdp and */
7426/* if a matching name can be found for the particular IP protocol version   */
7427/* then store the interface pointer in the frdest struct.  If no match is   */
7428/* found, then set the interface pointer to be -1 as NULL is considered to  */
7429/* indicate there is no information at all in the structure.                */
7430/* ------------------------------------------------------------------------ */
7431int
7432ipf_resolvedest(softc, base, fdp, v)
7433	ipf_main_softc_t *softc;
7434	char *base;
7435	frdest_t *fdp;
7436	int v;
7437{
7438	int errval = 0;
7439	void *ifp;
7440
7441	ifp = NULL;
7442
7443	if (fdp->fd_name != -1) {
7444		if (fdp->fd_type == FRD_DSTLIST) {
7445			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7446						  IPLT_DSTLIST,
7447						  base + fdp->fd_name,
7448						  NULL);
7449			if (ifp == NULL) {
7450				IPFERROR(144);
7451				errval = ESRCH;
7452			}
7453		} else {
7454			ifp = GETIFP(base + fdp->fd_name, v);
7455			if (ifp == NULL)
7456				ifp = (void *)-1;
7457		}
7458	}
7459	fdp->fd_ptr = ifp;
7460
7461	if ((ifp != NULL) && (ifp != (void *)-1)) {
7462		fdp->fd_local = ipf_deliverlocal(softc, v, ifp, &fdp->fd_ip6);
7463	}
7464
7465	return errval;
7466}
7467
7468
7469/* ------------------------------------------------------------------------ */
7470/* Function:    ipf_resolvenic                                              */
7471/* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7472/*                      pointer to interface structure for NIC              */
7473/* Parameters:  softc(I)- pointer to soft context main structure            */
7474/*              name(I) - complete interface name                           */
7475/*              v(I)    - IP protocol version                               */
7476/*                                                                          */
7477/* Look for a network interface structure that firstly has a matching name  */
7478/* to that passed in and that is also being used for that IP protocol       */
7479/* version (necessary on some platforms where there are separate listings   */
7480/* for both IPv4 and IPv6 on the same physical NIC.                         */
7481/* ------------------------------------------------------------------------ */
7482void *
7483ipf_resolvenic(softc, name, v)
7484	ipf_main_softc_t *softc;
7485	char *name;
7486	int v;
7487{
7488	void *nic;
7489
7490	softc = softc;	/* gcc -Wextra */
7491	if (name[0] == '\0')
7492		return NULL;
7493
7494	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7495		return NULL;
7496	}
7497
7498	nic = GETIFP(name, v);
7499	if (nic == NULL)
7500		nic = (void *)-1;
7501	return nic;
7502}
7503
7504
7505/* ------------------------------------------------------------------------ */
7506/* Function:    ipf_token_expire                                            */
7507/* Returns:     None.                                                       */
7508/* Parameters:  softc(I) - pointer to soft context main structure           */
7509/*                                                                          */
7510/* This function is run every ipf tick to see if there are any tokens that  */
7511/* have been held for too long and need to be freed up.                     */
7512/* ------------------------------------------------------------------------ */
7513void
7514ipf_token_expire(softc)
7515	ipf_main_softc_t *softc;
7516{
7517	ipftoken_t *it;
7518
7519	WRITE_ENTER(&softc->ipf_tokens);
7520	while ((it = softc->ipf_token_head) != NULL) {
7521		if (it->ipt_die > softc->ipf_ticks)
7522			break;
7523
7524		ipf_token_deref(softc, it);
7525	}
7526	RWLOCK_EXIT(&softc->ipf_tokens);
7527}
7528
7529
7530/* ------------------------------------------------------------------------ */
7531/* Function:    ipf_token_flush                                             */
7532/* Returns:     None.                                                       */
7533/* Parameters:  softc(I) - pointer to soft context main structure           */
7534/*                                                                          */
7535/* Loop through all of the existing tokens and call deref to see if they    */
7536/* can be freed. Normally a function like this might just loop on           */
7537/* ipf_token_head but there is a chance that a token might have a ref count */
7538/* of greater than one and in that case the the reference would drop twice  */
7539/* by code that is only entitled to drop it once.                           */
7540/* ------------------------------------------------------------------------ */
7541static void
7542ipf_token_flush(softc)
7543	ipf_main_softc_t *softc;
7544{
7545	ipftoken_t *it, *next;
7546
7547	WRITE_ENTER(&softc->ipf_tokens);
7548	for (it = softc->ipf_token_head; it != NULL; it = next) {
7549		next = it->ipt_next;
7550		(void) ipf_token_deref(softc, it);
7551	}
7552	RWLOCK_EXIT(&softc->ipf_tokens);
7553}
7554
7555
7556/* ------------------------------------------------------------------------ */
7557/* Function:    ipf_token_del                                               */
7558/* Returns:     int     - 0 = success, else error                           */
7559/* Parameters:  softc(I)- pointer to soft context main structure            */
7560/*              type(I) - the token type to match                           */
7561/*              uid(I)  - uid owning the token                              */
7562/*              ptr(I)  - context pointer for the token                     */
7563/*                                                                          */
7564/* This function looks for a a token in the current list that matches up    */
7565/* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7566/* call ipf_token_dewref() to remove it from the list. In the event that    */
7567/* the token has a reference held elsewhere, setting ipt_complete to 2      */
7568/* enables debugging to distinguish between the two paths that ultimately   */
7569/* lead to a token to be deleted.                                           */
7570/* ------------------------------------------------------------------------ */
7571int
7572ipf_token_del(softc, type, uid, ptr)
7573	ipf_main_softc_t *softc;
7574	int type, uid;
7575	void *ptr;
7576{
7577	ipftoken_t *it;
7578	int error;
7579
7580	IPFERROR(82);
7581	error = ESRCH;
7582
7583	WRITE_ENTER(&softc->ipf_tokens);
7584	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7585		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7586		    uid == it->ipt_uid) {
7587			it->ipt_complete = 2;
7588			ipf_token_deref(softc, it);
7589			error = 0;
7590			break;
7591		}
7592	}
7593	RWLOCK_EXIT(&softc->ipf_tokens);
7594
7595	return error;
7596}
7597
7598
7599/* ------------------------------------------------------------------------ */
7600/* Function:    ipf_token_mark_complete                                     */
7601/* Returns:     None.                                                       */
7602/* Parameters:  token(I) - pointer to token structure                       */
7603/*                                                                          */
7604/* Mark a token as being ineligable for being found with ipf_token_find.    */
7605/* ------------------------------------------------------------------------ */
7606void
7607ipf_token_mark_complete(token)
7608	ipftoken_t *token;
7609{
7610	if (token->ipt_complete == 0)
7611		token->ipt_complete = 1;
7612}
7613
7614
7615/* ------------------------------------------------------------------------ */
7616/* Function:    ipf_token_find                                               */
7617/* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7618/* Parameters:  softc(I)- pointer to soft context main structure            */
7619/*              type(I) - the token type to match                           */
7620/*              uid(I)  - uid owning the token                              */
7621/*              ptr(I)  - context pointer for the token                     */
7622/*                                                                          */
7623/* This function looks for a live token in the list of current tokens that  */
7624/* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7625/* allocated.  If one is found then it is moved to the top of the list of   */
7626/* currently active tokens.                                                 */
7627/* ------------------------------------------------------------------------ */
7628ipftoken_t *
7629ipf_token_find(softc, type, uid, ptr)
7630	ipf_main_softc_t *softc;
7631	int type, uid;
7632	void *ptr;
7633{
7634	ipftoken_t *it, *new;
7635
7636	KMALLOC(new, ipftoken_t *);
7637	if (new != NULL)
7638		bzero((char *)new, sizeof(*new));
7639
7640	WRITE_ENTER(&softc->ipf_tokens);
7641	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7642		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7643		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7644			break;
7645	}
7646
7647	if (it == NULL) {
7648		it = new;
7649		new = NULL;
7650		if (it == NULL) {
7651			RWLOCK_EXIT(&softc->ipf_tokens);
7652			return NULL;
7653		}
7654		it->ipt_ctx = ptr;
7655		it->ipt_uid = uid;
7656		it->ipt_type = type;
7657		it->ipt_ref = 1;
7658	} else {
7659		if (new != NULL) {
7660			KFREE(new);
7661			new = NULL;
7662		}
7663
7664		if (it->ipt_complete > 0)
7665			it = NULL;
7666		else
7667			ipf_token_unlink(softc, it);
7668	}
7669
7670	if (it != NULL) {
7671		it->ipt_pnext = softc->ipf_token_tail;
7672		*softc->ipf_token_tail = it;
7673		softc->ipf_token_tail = &it->ipt_next;
7674		it->ipt_next = NULL;
7675		it->ipt_ref++;
7676
7677		it->ipt_die = softc->ipf_ticks + 20;
7678	}
7679
7680	RWLOCK_EXIT(&softc->ipf_tokens);
7681
7682	return it;
7683}
7684
7685
7686/* ------------------------------------------------------------------------ */
7687/* Function:    ipf_token_unlink                                            */
7688/* Returns:     None.                                                       */
7689/* Parameters:  softc(I) - pointer to soft context main structure           */
7690/*              token(I) - pointer to token structure                       */
7691/* Write Locks: ipf_tokens                                                  */
7692/*                                                                          */
7693/* This function unlinks a token structure from the linked list of tokens   */
7694/* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7695/* but the tail does due to the linked list implementation.                 */
7696/* ------------------------------------------------------------------------ */
7697static void
7698ipf_token_unlink(softc, token)
7699	ipf_main_softc_t *softc;
7700	ipftoken_t *token;
7701{
7702
7703	if (softc->ipf_token_tail == &token->ipt_next)
7704		softc->ipf_token_tail = token->ipt_pnext;
7705
7706	*token->ipt_pnext = token->ipt_next;
7707	if (token->ipt_next != NULL)
7708		token->ipt_next->ipt_pnext = token->ipt_pnext;
7709	token->ipt_next = NULL;
7710	token->ipt_pnext = NULL;
7711}
7712
7713
7714/* ------------------------------------------------------------------------ */
7715/* Function:    ipf_token_deref                                             */
7716/* Returns:     int      - 0 == token freed, else reference count           */
7717/* Parameters:  softc(I) - pointer to soft context main structure           */
7718/*              token(I) - pointer to token structure                       */
7719/* Write Locks: ipf_tokens                                                  */
7720/*                                                                          */
7721/* Drop the reference count on the token structure and if it drops to zero, */
7722/* call the dereference function for the token type because it is then      */
7723/* possible to free the token data structure.                               */
7724/* ------------------------------------------------------------------------ */
7725int
7726ipf_token_deref(softc, token)
7727	ipf_main_softc_t *softc;
7728	ipftoken_t *token;
7729{
7730	void *data, **datap;
7731
7732	ASSERT(token->ipt_ref > 0);
7733	token->ipt_ref--;
7734	if (token->ipt_ref > 0)
7735		return token->ipt_ref;
7736
7737	data = token->ipt_data;
7738	datap = &data;
7739
7740	if ((data != NULL) && (data != (void *)-1)) {
7741		switch (token->ipt_type)
7742		{
7743		case IPFGENITER_IPF :
7744			(void) ipf_derefrule(softc, (frentry_t **)datap);
7745			break;
7746		case IPFGENITER_IPNAT :
7747			WRITE_ENTER(&softc->ipf_nat);
7748			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7749			RWLOCK_EXIT(&softc->ipf_nat);
7750			break;
7751		case IPFGENITER_NAT :
7752			ipf_nat_deref(softc, (nat_t **)datap);
7753			break;
7754		case IPFGENITER_STATE :
7755			ipf_state_deref(softc, (ipstate_t **)datap);
7756			break;
7757		case IPFGENITER_FRAG :
7758			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7759			break;
7760		case IPFGENITER_NATFRAG :
7761			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7762			break;
7763		case IPFGENITER_HOSTMAP :
7764			WRITE_ENTER(&softc->ipf_nat);
7765			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7766			RWLOCK_EXIT(&softc->ipf_nat);
7767			break;
7768		default :
7769			ipf_lookup_iterderef(softc, token->ipt_type, data);
7770			break;
7771		}
7772	}
7773
7774	ipf_token_unlink(softc, token);
7775	KFREE(token);
7776	return 0;
7777}
7778
7779
7780/* ------------------------------------------------------------------------ */
7781/* Function:    ipf_nextrule                                                */
7782/* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7783/* Parameters:  softc(I)    - pointer to soft context main structure        */
7784/*              fr(I)       - pointer to filter rule                        */
7785/*              out(I)      - 1 == out rules, 0 == input rules              */
7786/*                                                                          */
7787/* Starting with "fr", find the next rule to visit. This includes visiting  */
7788/* the list of rule groups if either fr is NULL (empty list) or it is the   */
7789/* last rule in the list. When walking rule lists, it is either input or    */
7790/* output rules that are returned, never both.                              */
7791/* ------------------------------------------------------------------------ */
7792static frentry_t *
7793ipf_nextrule(softc, active, unit, fr, out)
7794	ipf_main_softc_t *softc;
7795	int active, unit;
7796	frentry_t *fr;
7797	int out;
7798{
7799	frentry_t *next;
7800	frgroup_t *fg;
7801
7802	if (fr != NULL && fr->fr_group != -1) {
7803		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7804				   unit, active, NULL);
7805		if (fg != NULL)
7806			fg = fg->fg_next;
7807	} else {
7808		fg = softc->ipf_groups[unit][active];
7809	}
7810
7811	while (fg != NULL) {
7812		next = fg->fg_start;
7813		while (next != NULL) {
7814			if (out) {
7815				if (next->fr_flags & FR_OUTQUE)
7816					return next;
7817			} else if (next->fr_flags & FR_INQUE) {
7818				return next;
7819			}
7820			next = next->fr_next;
7821		}
7822		if (next == NULL)
7823			fg = fg->fg_next;
7824	}
7825
7826	return NULL;
7827}
7828
7829/* ------------------------------------------------------------------------ */
7830/* Function:    ipf_getnextrule                                             */
7831/* Returns:     int - 0 = success, else error                               */
7832/* Parameters:  softc(I)- pointer to soft context main structure            */
7833/*              t(I)   - pointer to destination information to resolve      */
7834/*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7835/*                                                                          */
7836/* This function's first job is to bring in the ipfruleiter_t structure via */
7837/* the ipfobj_t structure to determine what should be the next rule to      */
7838/* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7839/* find the 'next rule'.  This may include searching rule group lists or    */
7840/* just be as simple as looking at the 'next' field in the rule structure.  */
7841/* When we have found the rule to return, increase its reference count and  */
7842/* if we used an existing rule to get here, decrease its reference count.   */
7843/* ------------------------------------------------------------------------ */
7844int
7845ipf_getnextrule(softc, t, ptr)
7846	ipf_main_softc_t *softc;
7847	ipftoken_t *t;
7848	void *ptr;
7849{
7850	frentry_t *fr, *next, zero;
7851	ipfruleiter_t it;
7852	int error, out;
7853	frgroup_t *fg;
7854	ipfobj_t obj;
7855	int predict;
7856	char *dst;
7857	int unit;
7858
7859	if (t == NULL || ptr == NULL) {
7860		IPFERROR(84);
7861		return EFAULT;
7862	}
7863
7864	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7865	if (error != 0)
7866		return error;
7867
7868	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7869		IPFERROR(85);
7870		return EINVAL;
7871	}
7872	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7873		IPFERROR(86);
7874		return EINVAL;
7875	}
7876	if (it.iri_nrules == 0) {
7877		IPFERROR(87);
7878		return ENOSPC;
7879	}
7880	if (it.iri_rule == NULL) {
7881		IPFERROR(88);
7882		return EFAULT;
7883	}
7884
7885	fg = NULL;
7886	fr = t->ipt_data;
7887	if ((it.iri_inout & F_OUT) != 0)
7888		out = 1;
7889	else
7890		out = 0;
7891	if ((it.iri_inout & F_ACIN) != 0)
7892		unit = IPL_LOGCOUNT;
7893	else
7894		unit = IPL_LOGIPF;
7895
7896	READ_ENTER(&softc->ipf_mutex);
7897	if (fr == NULL) {
7898		if (*it.iri_group == '\0') {
7899			if (unit == IPL_LOGCOUNT) {
7900				next = softc->ipf_acct[out][it.iri_active];
7901			} else {
7902				next = softc->ipf_rules[out][it.iri_active];
7903			}
7904			if (next == NULL)
7905				next = ipf_nextrule(softc, it.iri_active,
7906						    unit, NULL, out);
7907		} else {
7908			fg = ipf_findgroup(softc, it.iri_group, unit,
7909					   it.iri_active, NULL);
7910			if (fg != NULL)
7911				next = fg->fg_start;
7912			else
7913				next = NULL;
7914		}
7915	} else {
7916		next = fr->fr_next;
7917		if (next == NULL)
7918			next = ipf_nextrule(softc, it.iri_active, unit,
7919					    fr, out);
7920	}
7921
7922	if (next != NULL && next->fr_next != NULL)
7923		predict = 1;
7924	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7925		predict = 1;
7926	else
7927		predict = 0;
7928
7929	if (fr != NULL)
7930		(void) ipf_derefrule(softc, &fr);
7931
7932	obj.ipfo_type = IPFOBJ_FRENTRY;
7933	dst = (char *)it.iri_rule;
7934
7935	if (next != NULL) {
7936		obj.ipfo_size = next->fr_size;
7937		MUTEX_ENTER(&next->fr_lock);
7938		next->fr_ref++;
7939		MUTEX_EXIT(&next->fr_lock);
7940		t->ipt_data = next;
7941	} else {
7942		obj.ipfo_size = sizeof(frentry_t);
7943		bzero(&zero, sizeof(zero));
7944		next = &zero;
7945		t->ipt_data = NULL;
7946	}
7947	it.iri_rule = predict ? next : NULL;
7948	if (predict == 0)
7949		ipf_token_mark_complete(t);
7950
7951	RWLOCK_EXIT(&softc->ipf_mutex);
7952
7953	obj.ipfo_ptr = dst;
7954	error = ipf_outobjk(softc, &obj, next);
7955	if (error == 0 && t->ipt_data != NULL) {
7956		dst += obj.ipfo_size;
7957		if (next->fr_data != NULL) {
7958			ipfobj_t dobj;
7959
7960			if (next->fr_type == FR_T_IPFEXPR)
7961				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7962			else
7963				dobj.ipfo_type = IPFOBJ_FRIPF;
7964			dobj.ipfo_size = next->fr_dsize;
7965			dobj.ipfo_rev = obj.ipfo_rev;
7966			dobj.ipfo_ptr = dst;
7967			error = ipf_outobjk(softc, &dobj, next->fr_data);
7968		}
7969	}
7970
7971	if ((fr != NULL) && (next == &zero))
7972		(void) ipf_derefrule(softc, &fr);
7973
7974	return error;
7975}
7976
7977
7978/* ------------------------------------------------------------------------ */
7979/* Function:    ipf_frruleiter                                              */
7980/* Returns:     int - 0 = success, else error                               */
7981/* Parameters:  softc(I)- pointer to soft context main structure            */
7982/*              data(I) - the token type to match                           */
7983/*              uid(I)  - uid owning the token                              */
7984/*              ptr(I)  - context pointer for the token                     */
7985/*                                                                          */
7986/* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7987/* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7988/* the process doing the ioctl and use that to ask for the next rule.       */
7989/* ------------------------------------------------------------------------ */
7990static int
7991ipf_frruleiter(softc, data, uid, ctx)
7992	ipf_main_softc_t *softc;
7993	void *data, *ctx;
7994	int uid;
7995{
7996	ipftoken_t *token;
7997	ipfruleiter_t it;
7998	ipfobj_t obj;
7999	int error;
8000
8001	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
8002	if (token != NULL) {
8003		error = ipf_getnextrule(softc, token, data);
8004		WRITE_ENTER(&softc->ipf_tokens);
8005		ipf_token_deref(softc, token);
8006		RWLOCK_EXIT(&softc->ipf_tokens);
8007	} else {
8008		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
8009		if (error != 0)
8010			return error;
8011		it.iri_rule = NULL;
8012		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
8013	}
8014
8015	return error;
8016}
8017
8018
8019/* ------------------------------------------------------------------------ */
8020/* Function:    ipf_geniter                                                 */
8021/* Returns:     int - 0 = success, else error                               */
8022/* Parameters:  softc(I) - pointer to soft context main structure           */
8023/*              token(I) - pointer to ipftoken_t structure                  */
8024/*              itp(I)   - pointer to iterator data                         */
8025/*                                                                          */
8026/* Decide which iterator function to call using information passed through  */
8027/* the ipfgeniter_t structure at itp.                                       */
8028/* ------------------------------------------------------------------------ */
8029static int
8030ipf_geniter(softc, token, itp)
8031	ipf_main_softc_t *softc;
8032	ipftoken_t *token;
8033	ipfgeniter_t *itp;
8034{
8035	int error;
8036
8037	switch (itp->igi_type)
8038	{
8039	case IPFGENITER_FRAG :
8040		error = ipf_frag_pkt_next(softc, token, itp);
8041		break;
8042	default :
8043		IPFERROR(92);
8044		error = EINVAL;
8045		break;
8046	}
8047
8048	return error;
8049}
8050
8051
8052/* ------------------------------------------------------------------------ */
8053/* Function:    ipf_genericiter                                             */
8054/* Returns:     int - 0 = success, else error                               */
8055/* Parameters:  softc(I)- pointer to soft context main structure            */
8056/*              data(I) - the token type to match                           */
8057/*              uid(I)  - uid owning the token                              */
8058/*              ptr(I)  - context pointer for the token                     */
8059/*                                                                          */
8060/* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
8061/* ------------------------------------------------------------------------ */
8062int
8063ipf_genericiter(softc, data, uid, ctx)
8064	ipf_main_softc_t *softc;
8065	void *data, *ctx;
8066	int uid;
8067{
8068	ipftoken_t *token;
8069	ipfgeniter_t iter;
8070	int error;
8071
8072	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
8073	if (error != 0)
8074		return error;
8075
8076	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
8077	if (token != NULL) {
8078		token->ipt_subtype = iter.igi_type;
8079		error = ipf_geniter(softc, token, &iter);
8080		WRITE_ENTER(&softc->ipf_tokens);
8081		ipf_token_deref(softc, token);
8082		RWLOCK_EXIT(&softc->ipf_tokens);
8083	} else {
8084		IPFERROR(93);
8085		error = 0;
8086	}
8087
8088	return error;
8089}
8090
8091
8092/* ------------------------------------------------------------------------ */
8093/* Function:    ipf_ipf_ioctl                                               */
8094/* Returns:     int - 0 = success, else error                               */
8095/* Parameters:  softc(I)- pointer to soft context main structure           */
8096/*              data(I) - the token type to match                           */
8097/*              cmd(I)  - the ioctl command number                          */
8098/*              mode(I) - mode flags for the ioctl                          */
8099/*              uid(I)  - uid owning the token                              */
8100/*              ptr(I)  - context pointer for the token                     */
8101/*                                                                          */
8102/* This function handles all of the ioctl command that are actually isssued */
8103/* to the /dev/ipl device.                                                  */
8104/* ------------------------------------------------------------------------ */
8105int
8106ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx)
8107	ipf_main_softc_t *softc;
8108	caddr_t data;
8109	ioctlcmd_t cmd;
8110	int mode, uid;
8111	void *ctx;
8112{
8113	friostat_t fio;
8114	int error, tmp;
8115	ipfobj_t obj;
8116	SPL_INT(s);
8117
8118	switch (cmd)
8119	{
8120	case SIOCFRENB :
8121		if (!(mode & FWRITE)) {
8122			IPFERROR(94);
8123			error = EPERM;
8124		} else {
8125			error = BCOPYIN(data, &tmp, sizeof(tmp));
8126			if (error != 0) {
8127				IPFERROR(95);
8128				error = EFAULT;
8129				break;
8130			}
8131
8132			WRITE_ENTER(&softc->ipf_global);
8133			if (tmp) {
8134				if (softc->ipf_running > 0)
8135					error = 0;
8136				else
8137					error = ipfattach(softc);
8138				if (error == 0)
8139					softc->ipf_running = 1;
8140				else
8141					(void) ipfdetach(softc);
8142			} else {
8143				if (softc->ipf_running == 1)
8144					error = ipfdetach(softc);
8145				else
8146					error = 0;
8147				if (error == 0)
8148					softc->ipf_running = -1;
8149			}
8150			RWLOCK_EXIT(&softc->ipf_global);
8151		}
8152		break;
8153
8154	case SIOCIPFSET :
8155		if (!(mode & FWRITE)) {
8156			IPFERROR(96);
8157			error = EPERM;
8158			break;
8159		}
8160		/* FALLTHRU */
8161	case SIOCIPFGETNEXT :
8162	case SIOCIPFGET :
8163		error = ipf_ipftune(softc, cmd, (void *)data);
8164		break;
8165
8166	case SIOCSETFF :
8167		if (!(mode & FWRITE)) {
8168			IPFERROR(97);
8169			error = EPERM;
8170		} else {
8171			error = BCOPYIN(data, &softc->ipf_flags,
8172					sizeof(softc->ipf_flags));
8173			if (error != 0) {
8174				IPFERROR(98);
8175				error = EFAULT;
8176			}
8177		}
8178		break;
8179
8180	case SIOCGETFF :
8181		error = BCOPYOUT(&softc->ipf_flags, data,
8182				 sizeof(softc->ipf_flags));
8183		if (error != 0) {
8184			IPFERROR(99);
8185			error = EFAULT;
8186		}
8187		break;
8188
8189	case SIOCFUNCL :
8190		error = ipf_resolvefunc(softc, (void *)data);
8191		break;
8192
8193	case SIOCINAFR :
8194	case SIOCRMAFR :
8195	case SIOCADAFR :
8196	case SIOCZRLST :
8197		if (!(mode & FWRITE)) {
8198			IPFERROR(100);
8199			error = EPERM;
8200		} else {
8201			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8202					  softc->ipf_active, 1);
8203		}
8204		break;
8205
8206	case SIOCINIFR :
8207	case SIOCRMIFR :
8208	case SIOCADIFR :
8209		if (!(mode & FWRITE)) {
8210			IPFERROR(101);
8211			error = EPERM;
8212		} else {
8213			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8214					  1 - softc->ipf_active, 1);
8215		}
8216		break;
8217
8218	case SIOCSWAPA :
8219		if (!(mode & FWRITE)) {
8220			IPFERROR(102);
8221			error = EPERM;
8222		} else {
8223			WRITE_ENTER(&softc->ipf_mutex);
8224			error = BCOPYOUT(&softc->ipf_active, data,
8225					 sizeof(softc->ipf_active));
8226			if (error != 0) {
8227				IPFERROR(103);
8228				error = EFAULT;
8229			} else {
8230				softc->ipf_active = 1 - softc->ipf_active;
8231			}
8232			RWLOCK_EXIT(&softc->ipf_mutex);
8233		}
8234		break;
8235
8236	case SIOCGETFS :
8237		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8238				  IPFOBJ_IPFSTAT);
8239		if (error != 0)
8240			break;
8241		ipf_getstat(softc, &fio, obj.ipfo_rev);
8242		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8243		break;
8244
8245	case SIOCFRZST :
8246		if (!(mode & FWRITE)) {
8247			IPFERROR(104);
8248			error = EPERM;
8249		} else
8250			error = ipf_zerostats(softc, (caddr_t)data);
8251		break;
8252
8253	case SIOCIPFFL :
8254		if (!(mode & FWRITE)) {
8255			IPFERROR(105);
8256			error = EPERM;
8257		} else {
8258			error = BCOPYIN(data, &tmp, sizeof(tmp));
8259			if (!error) {
8260				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8261				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8262				if (error != 0) {
8263					IPFERROR(106);
8264					error = EFAULT;
8265				}
8266			} else {
8267				IPFERROR(107);
8268				error = EFAULT;
8269			}
8270		}
8271		break;
8272
8273#ifdef USE_INET6
8274	case SIOCIPFL6 :
8275		if (!(mode & FWRITE)) {
8276			IPFERROR(108);
8277			error = EPERM;
8278		} else {
8279			error = BCOPYIN(data, &tmp, sizeof(tmp));
8280			if (!error) {
8281				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8282				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8283				if (error != 0) {
8284					IPFERROR(109);
8285					error = EFAULT;
8286				}
8287			} else {
8288				IPFERROR(110);
8289				error = EFAULT;
8290			}
8291		}
8292		break;
8293#endif
8294
8295	case SIOCSTLCK :
8296		if (!(mode & FWRITE)) {
8297			IPFERROR(122);
8298			error = EPERM;
8299		} else {
8300			error = BCOPYIN(data, &tmp, sizeof(tmp));
8301			if (error == 0) {
8302				ipf_state_setlock(softc->ipf_state_soft, tmp);
8303				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8304				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8305				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8306			} else {
8307				IPFERROR(111);
8308				error = EFAULT;
8309			}
8310		}
8311		break;
8312
8313#ifdef	IPFILTER_LOG
8314	case SIOCIPFFB :
8315		if (!(mode & FWRITE)) {
8316			IPFERROR(112);
8317			error = EPERM;
8318		} else {
8319			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8320			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8321			if (error) {
8322				IPFERROR(113);
8323				error = EFAULT;
8324			}
8325		}
8326		break;
8327#endif /* IPFILTER_LOG */
8328
8329	case SIOCFRSYN :
8330		if (!(mode & FWRITE)) {
8331			IPFERROR(114);
8332			error = EPERM;
8333		} else {
8334			WRITE_ENTER(&softc->ipf_global);
8335#if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8336			error = ipfsync();
8337#else
8338			ipf_sync(softc, NULL);
8339			error = 0;
8340#endif
8341			RWLOCK_EXIT(&softc->ipf_global);
8342
8343		}
8344		break;
8345
8346	case SIOCGFRST :
8347		error = ipf_outobj(softc, (void *)data,
8348				   ipf_frag_stats(softc->ipf_frag_soft),
8349				   IPFOBJ_FRAGSTAT);
8350		break;
8351
8352#ifdef	IPFILTER_LOG
8353	case FIONREAD :
8354		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8355		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8356		break;
8357#endif
8358
8359	case SIOCIPFITER :
8360		SPL_SCHED(s);
8361		error = ipf_frruleiter(softc, data, uid, ctx);
8362		SPL_X(s);
8363		break;
8364
8365	case SIOCGENITER :
8366		SPL_SCHED(s);
8367		error = ipf_genericiter(softc, data, uid, ctx);
8368		SPL_X(s);
8369		break;
8370
8371	case SIOCIPFDELTOK :
8372		error = BCOPYIN(data, &tmp, sizeof(tmp));
8373		if (error == 0) {
8374			SPL_SCHED(s);
8375			error = ipf_token_del(softc, tmp, uid, ctx);
8376			SPL_X(s);
8377		}
8378		break;
8379
8380	default :
8381		IPFERROR(115);
8382		error = EINVAL;
8383		break;
8384	}
8385
8386	return error;
8387}
8388
8389
8390/* ------------------------------------------------------------------------ */
8391/* Function:    ipf_decaps                                                  */
8392/* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8393/*                           flags indicating packet filtering decision.    */
8394/* Parameters:  fin(I)     - pointer to packet information                  */
8395/*              pass(I)    - IP protocol version to match                   */
8396/*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8397/*                                                                          */
8398/* This function is called for packets that are wrapt up in other packets,  */
8399/* for example, an IP packet that is the entire data segment for another IP */
8400/* packet.  If the basic constraints for this are satisfied, change the     */
8401/* buffer to point to the start of the inner packet and start processing    */
8402/* rules belonging to the head group this rule specifies.                   */
8403/* ------------------------------------------------------------------------ */
8404u_32_t
8405ipf_decaps(fin, pass, l5proto)
8406	fr_info_t *fin;
8407	u_32_t pass;
8408	int l5proto;
8409{
8410	fr_info_t fin2, *fino = NULL;
8411	int elen, hlen, nh;
8412	grehdr_t gre;
8413	ip_t *ip;
8414	mb_t *m;
8415
8416	if ((fin->fin_flx & FI_COALESCE) == 0)
8417		if (ipf_coalesce(fin) == -1)
8418			goto cantdecaps;
8419
8420	m = fin->fin_m;
8421	hlen = fin->fin_hlen;
8422
8423	switch (fin->fin_p)
8424	{
8425	case IPPROTO_UDP :
8426		/*
8427		 * In this case, the specific protocol being decapsulated
8428		 * inside UDP frames comes from the rule.
8429		 */
8430		nh = fin->fin_fr->fr_icode;
8431		break;
8432
8433	case IPPROTO_GRE :	/* 47 */
8434		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8435		hlen += sizeof(grehdr_t);
8436		if (gre.gr_R|gre.gr_s)
8437			goto cantdecaps;
8438		if (gre.gr_C)
8439			hlen += 4;
8440		if (gre.gr_K)
8441			hlen += 4;
8442		if (gre.gr_S)
8443			hlen += 4;
8444
8445		nh = IPPROTO_IP;
8446
8447		/*
8448		 * If the routing options flag is set, validate that it is
8449		 * there and bounce over it.
8450		 */
8451#if 0
8452		/* This is really heavy weight and lots of room for error, */
8453		/* so for now, put it off and get the simple stuff right.  */
8454		if (gre.gr_R) {
8455			u_char off, len, *s;
8456			u_short af;
8457			int end;
8458
8459			end = 0;
8460			s = fin->fin_dp;
8461			s += hlen;
8462			aplen = fin->fin_plen - hlen;
8463			while (aplen > 3) {
8464				af = (s[0] << 8) | s[1];
8465				off = s[2];
8466				len = s[3];
8467				aplen -= 4;
8468				s += 4;
8469				if (af == 0 && len == 0) {
8470					end = 1;
8471					break;
8472				}
8473				if (aplen < len)
8474					break;
8475				s += len;
8476				aplen -= len;
8477			}
8478			if (end != 1)
8479				goto cantdecaps;
8480			hlen = s - (u_char *)fin->fin_dp;
8481		}
8482#endif
8483		break;
8484
8485#ifdef IPPROTO_IPIP
8486	case IPPROTO_IPIP :	/* 4 */
8487#endif
8488		nh = IPPROTO_IP;
8489		break;
8490
8491	default :	/* Includes ESP, AH is special for IPv4 */
8492		goto cantdecaps;
8493	}
8494
8495	switch (nh)
8496	{
8497	case IPPROTO_IP :
8498	case IPPROTO_IPV6 :
8499		break;
8500	default :
8501		goto cantdecaps;
8502	}
8503
8504	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8505	fino = fin;
8506	fin = &fin2;
8507	elen = hlen;
8508#if defined(MENTAT) && defined(_KERNEL)
8509	m->b_rptr += elen;
8510#else
8511	m->m_data += elen;
8512	m->m_len -= elen;
8513#endif
8514	fin->fin_plen -= elen;
8515
8516	ip = (ip_t *)((char *)fin->fin_ip + elen);
8517
8518	/*
8519	 * Make sure we have at least enough data for the network layer
8520	 * header.
8521	 */
8522	if (IP_V(ip) == 4)
8523		hlen = IP_HL(ip) << 2;
8524#ifdef USE_INET6
8525	else if (IP_V(ip) == 6)
8526		hlen = sizeof(ip6_t);
8527#endif
8528	else
8529		goto cantdecaps2;
8530
8531	if (fin->fin_plen < hlen)
8532		goto cantdecaps2;
8533
8534	fin->fin_dp = (char *)ip + hlen;
8535
8536	if (IP_V(ip) == 4) {
8537		/*
8538		 * Perform IPv4 header checksum validation.
8539		 */
8540		if (ipf_cksum((u_short *)ip, hlen))
8541			goto cantdecaps2;
8542	}
8543
8544	if (ipf_makefrip(hlen, ip, fin) == -1) {
8545cantdecaps2:
8546		if (m != NULL) {
8547#if defined(MENTAT) && defined(_KERNEL)
8548			m->b_rptr -= elen;
8549#else
8550			m->m_data -= elen;
8551			m->m_len += elen;
8552#endif
8553		}
8554cantdecaps:
8555		DT1(frb_decapfrip, fr_info_t *, fin);
8556		pass &= ~FR_CMDMASK;
8557		pass |= FR_BLOCK|FR_QUICK;
8558		fin->fin_reason = FRB_DECAPFRIP;
8559		return -1;
8560	}
8561
8562	pass = ipf_scanlist(fin, pass);
8563
8564	/*
8565	 * Copy the packet filter "result" fields out of the fr_info_t struct
8566	 * that is local to the decapsulation processing and back into the
8567	 * one we were called with.
8568	 */
8569	fino->fin_flx = fin->fin_flx;
8570	fino->fin_rev = fin->fin_rev;
8571	fino->fin_icode = fin->fin_icode;
8572	fino->fin_rule = fin->fin_rule;
8573	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8574	fino->fin_fr = fin->fin_fr;
8575	fino->fin_error = fin->fin_error;
8576	fino->fin_mp = fin->fin_mp;
8577	fino->fin_m = fin->fin_m;
8578	m = fin->fin_m;
8579	if (m != NULL) {
8580#if defined(MENTAT) && defined(_KERNEL)
8581		m->b_rptr -= elen;
8582#else
8583		m->m_data -= elen;
8584		m->m_len += elen;
8585#endif
8586	}
8587	return pass;
8588}
8589
8590
8591/* ------------------------------------------------------------------------ */
8592/* Function:    ipf_matcharray_load                                         */
8593/* Returns:     int         - 0 = success, else error                       */
8594/* Parameters:  softc(I)    - pointer to soft context main structure        */
8595/*              data(I)     - pointer to ioctl data                         */
8596/*              objp(I)     - ipfobj_t structure to load data into          */
8597/*              arrayptr(I) - pointer to location to store array pointer    */
8598/*                                                                          */
8599/* This function loads in a mathing array through the ipfobj_t struct that  */
8600/* describes it.  Sanity checking and array size limitations are enforced   */
8601/* in this function to prevent userspace from trying to load in something   */
8602/* that is insanely big.  Once the size of the array is known, the memory   */
8603/* required is malloc'd and returned through changing *arrayptr.  The       */
8604/* contents of the array are verified before returning.  Only in the event  */
8605/* of a successful call is the caller required to free up the malloc area.  */
8606/* ------------------------------------------------------------------------ */
8607int
8608ipf_matcharray_load(softc, data, objp, arrayptr)
8609	ipf_main_softc_t *softc;
8610	caddr_t data;
8611	ipfobj_t *objp;
8612	int **arrayptr;
8613{
8614	int arraysize, *array, error;
8615
8616	*arrayptr = NULL;
8617
8618	error = BCOPYIN(data, objp, sizeof(*objp));
8619	if (error != 0) {
8620		IPFERROR(116);
8621		return EFAULT;
8622	}
8623
8624	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8625		IPFERROR(117);
8626		return EINVAL;
8627	}
8628
8629	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8630	    (objp->ipfo_size > 1024)) {
8631		IPFERROR(118);
8632		return EINVAL;
8633	}
8634
8635	arraysize = objp->ipfo_size * sizeof(*array);
8636	KMALLOCS(array, int *, arraysize);
8637	if (array == NULL) {
8638		IPFERROR(119);
8639		return ENOMEM;
8640	}
8641
8642	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8643	if (error != 0) {
8644		KFREES(array, arraysize);
8645		IPFERROR(120);
8646		return EFAULT;
8647	}
8648
8649	if (ipf_matcharray_verify(array, arraysize) != 0) {
8650		KFREES(array, arraysize);
8651		IPFERROR(121);
8652		return EINVAL;
8653	}
8654
8655	*arrayptr = array;
8656	return 0;
8657}
8658
8659
8660/* ------------------------------------------------------------------------ */
8661/* Function:    ipf_matcharray_verify                                       */
8662/* Returns:     Nil                                                         */
8663/* Parameters:  array(I)     - pointer to matching array                    */
8664/*              arraysize(I) - number of elements in the array              */
8665/*                                                                          */
8666/* Verify the contents of a matching array by stepping through each element */
8667/* in it.  The actual commands in the array are not verified for            */
8668/* correctness, only that all of the sizes are correctly within limits.     */
8669/* ------------------------------------------------------------------------ */
8670int
8671ipf_matcharray_verify(array, arraysize)
8672	int *array, arraysize;
8673{
8674	int i, nelem, maxidx;
8675	ipfexp_t *e;
8676
8677	nelem = arraysize / sizeof(*array);
8678
8679	/*
8680	 * Currently, it makes no sense to have an array less than 6
8681	 * elements long - the initial size at the from, a single operation
8682	 * (minimum 4 in length) and a trailer, for a total of 6.
8683	 */
8684	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8685		return -1;
8686	}
8687
8688	/*
8689	 * Verify the size of data pointed to by array with how long
8690	 * the array claims to be itself.
8691	 */
8692	if (array[0] * sizeof(*array) != arraysize) {
8693		return -1;
8694	}
8695
8696	maxidx = nelem - 1;
8697	/*
8698	 * The last opcode in this array should be an IPF_EXP_END.
8699	 */
8700	if (array[maxidx] != IPF_EXP_END) {
8701		return -1;
8702	}
8703
8704	for (i = 1; i < maxidx; ) {
8705		e = (ipfexp_t *)(array + i);
8706
8707		/*
8708		 * The length of the bits to check must be at least 1
8709		 * (or else there is nothing to comapre with!) and it
8710		 * cannot exceed the length of the data present.
8711		 */
8712		if ((e->ipfe_size < 1 ) ||
8713		    (e->ipfe_size + i > maxidx)) {
8714			return -1;
8715		}
8716		i += e->ipfe_size;
8717	}
8718	return 0;
8719}
8720
8721
8722/* ------------------------------------------------------------------------ */
8723/* Function:    ipf_fr_matcharray                                           */
8724/* Returns:     int      - 0 = match failed, else positive match            */
8725/* Parameters:  fin(I)   - pointer to packet information                    */
8726/*              array(I) - pointer to matching array                        */
8727/*                                                                          */
8728/* This function is used to apply a matching array against a packet and     */
8729/* return an indication of whether or not the packet successfully matches   */
8730/* all of the commands in it.                                               */
8731/* ------------------------------------------------------------------------ */
8732static int
8733ipf_fr_matcharray(fin, array)
8734	fr_info_t *fin;
8735	int *array;
8736{
8737	int i, n, *x, rv, p;
8738	ipfexp_t *e;
8739
8740	rv = 0;
8741	n = array[0];
8742	x = array + 1;
8743
8744	for (; n > 0; x += 3 + x[3], rv = 0) {
8745		e = (ipfexp_t *)x;
8746		if (e->ipfe_cmd == IPF_EXP_END)
8747			break;
8748		n -= e->ipfe_size;
8749
8750		/*
8751		 * The upper 16 bits currently store the protocol value.
8752		 * This is currently used with TCP and UDP port compares and
8753		 * allows "tcp.port = 80" without requiring an explicit
8754		 " "ip.pr = tcp" first.
8755		 */
8756		p = e->ipfe_cmd >> 16;
8757		if ((p != 0) && (p != fin->fin_p))
8758			break;
8759
8760		switch (e->ipfe_cmd)
8761		{
8762		case IPF_EXP_IP_PR :
8763			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8764				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8765			}
8766			break;
8767
8768		case IPF_EXP_IP_SRCADDR :
8769			if (fin->fin_v != 4)
8770				break;
8771			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8772				rv |= ((fin->fin_saddr &
8773					e->ipfe_arg0[i * 2 + 1]) ==
8774				       e->ipfe_arg0[i * 2]);
8775			}
8776			break;
8777
8778		case IPF_EXP_IP_DSTADDR :
8779			if (fin->fin_v != 4)
8780				break;
8781			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8782				rv |= ((fin->fin_daddr &
8783					e->ipfe_arg0[i * 2 + 1]) ==
8784				       e->ipfe_arg0[i * 2]);
8785			}
8786			break;
8787
8788		case IPF_EXP_IP_ADDR :
8789			if (fin->fin_v != 4)
8790				break;
8791			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8792				rv |= ((fin->fin_saddr &
8793					e->ipfe_arg0[i * 2 + 1]) ==
8794				       e->ipfe_arg0[i * 2]) ||
8795				      ((fin->fin_daddr &
8796					e->ipfe_arg0[i * 2 + 1]) ==
8797				       e->ipfe_arg0[i * 2]);
8798			}
8799			break;
8800
8801#ifdef USE_INET6
8802		case IPF_EXP_IP6_SRCADDR :
8803			if (fin->fin_v != 6)
8804				break;
8805			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8806				rv |= IP6_MASKEQ(&fin->fin_src6,
8807						 &e->ipfe_arg0[i * 8 + 4],
8808						 &e->ipfe_arg0[i * 8]);
8809			}
8810			break;
8811
8812		case IPF_EXP_IP6_DSTADDR :
8813			if (fin->fin_v != 6)
8814				break;
8815			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8816				rv |= IP6_MASKEQ(&fin->fin_dst6,
8817						 &e->ipfe_arg0[i * 8 + 4],
8818						 &e->ipfe_arg0[i * 8]);
8819			}
8820			break;
8821
8822		case IPF_EXP_IP6_ADDR :
8823			if (fin->fin_v != 6)
8824				break;
8825			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8826				rv |= IP6_MASKEQ(&fin->fin_src6,
8827						 &e->ipfe_arg0[i * 8 + 4],
8828						 &e->ipfe_arg0[i * 8]) ||
8829				      IP6_MASKEQ(&fin->fin_dst6,
8830						 &e->ipfe_arg0[i * 8 + 4],
8831						 &e->ipfe_arg0[i * 8]);
8832			}
8833			break;
8834#endif
8835
8836		case IPF_EXP_UDP_PORT :
8837		case IPF_EXP_TCP_PORT :
8838			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8839				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8840				      (fin->fin_dport == e->ipfe_arg0[i]);
8841			}
8842			break;
8843
8844		case IPF_EXP_UDP_SPORT :
8845		case IPF_EXP_TCP_SPORT :
8846			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8847				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8848			}
8849			break;
8850
8851		case IPF_EXP_UDP_DPORT :
8852		case IPF_EXP_TCP_DPORT :
8853			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8854				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8855			}
8856			break;
8857
8858		case IPF_EXP_TCP_FLAGS :
8859			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8860				rv |= ((fin->fin_tcpf &
8861					e->ipfe_arg0[i * 2 + 1]) ==
8862				       e->ipfe_arg0[i * 2]);
8863			}
8864			break;
8865		}
8866		rv ^= e->ipfe_not;
8867
8868		if (rv == 0)
8869			break;
8870	}
8871
8872	return rv;
8873}
8874
8875
8876/* ------------------------------------------------------------------------ */
8877/* Function:    ipf_queueflush                                              */
8878/* Returns:     int - number of entries flushed (0 = none)                  */
8879/* Parameters:  softc(I)    - pointer to soft context main structure        */
8880/*              deletefn(I) - function to call to delete entry              */
8881/*              ipfqs(I)    - top of the list of ipf internal queues        */
8882/*              userqs(I)   - top of the list of user defined timeouts      */
8883/*                                                                          */
8884/* This fucntion gets called when the state/NAT hash tables fill up and we  */
8885/* need to try a bit harder to free up some space.  The algorithm used here */
8886/* split into two parts but both halves have the same goal: to reduce the   */
8887/* number of connections considered to be "active" to the low watermark.    */
8888/* There are two steps in doing this:                                       */
8889/* 1) Remove any TCP connections that are already considered to be "closed" */
8890/*    but have not yet been removed from the state table.  The two states   */
8891/*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8892/*    candidates for this style of removal.  If freeing up entries in       */
8893/*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8894/*    we do not go on to step 2.                                            */
8895/*                                                                          */
8896/* 2) Look for the oldest entries on each timeout queue and free them if    */
8897/*    they are within the given window we are considering.  Where the       */
8898/*    window starts and the steps taken to increase its size depend upon    */
8899/*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8900/*    last 30 seconds is not touched.                                       */
8901/*                                              touched                     */
8902/*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8903/*           |          |        |           |     |     |                  */
8904/* future <--+----------+--------+-----------+-----+-----+-----------> past */
8905/*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8906/*                                                                          */
8907/* Points to note:                                                          */
8908/* - tqe_die is the time, in the future, when entries die.                  */
8909/* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8910/*   ticks.                                                                 */
8911/* - tqe_touched is when the entry was last used by NAT/state               */
8912/* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8913/*   ipf_ticks any given timeout queue and vice versa.                      */
8914/* - both tqe_die and tqe_touched increase over time                        */
8915/* - timeout queues are sorted with the highest value of tqe_die at the     */
8916/*   bottom and therefore the smallest values of each are at the top        */
8917/* - the pointer passed in as ipfqs should point to an array of timeout     */
8918/*   queues representing each of the TCP states                             */
8919/*                                                                          */
8920/* We start by setting up a maximum range to scan for things to move of     */
8921/* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8922/* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8923/* we start again with a new value for "iend" and "istart".  This is        */
8924/* continued until we either finish the scan of 30 second intervals or the  */
8925/* low water mark is reached.                                               */
8926/* ------------------------------------------------------------------------ */
8927int
8928ipf_queueflush(softc, deletefn, ipfqs, userqs, activep, size, low)
8929	ipf_main_softc_t *softc;
8930	ipftq_delete_fn_t deletefn;
8931	ipftq_t *ipfqs, *userqs;
8932	u_int *activep;
8933	int size, low;
8934{
8935	u_long interval, istart, iend;
8936	ipftq_t *ifq, *ifqnext;
8937	ipftqent_t *tqe, *tqn;
8938	int removed = 0;
8939
8940	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8941		tqn = tqe->tqe_next;
8942		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8943			removed++;
8944	}
8945	if ((*activep * 100 / size) > low) {
8946		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8947		     ((tqe = tqn) != NULL); ) {
8948			tqn = tqe->tqe_next;
8949			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8950				removed++;
8951		}
8952	}
8953
8954	if ((*activep * 100 / size) <= low) {
8955		return removed;
8956	}
8957
8958	/*
8959	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8960	 *       used then the operations are upgraded to floating point
8961	 *       and kernels don't like floating point...
8962	 */
8963	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8964		istart = IPF_TTLVAL(86400 * 4);
8965		interval = IPF_TTLVAL(43200);
8966	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8967		istart = IPF_TTLVAL(43200);
8968		interval = IPF_TTLVAL(1800);
8969	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8970		istart = IPF_TTLVAL(1800);
8971		interval = IPF_TTLVAL(30);
8972	} else {
8973		return 0;
8974	}
8975	if (istart > softc->ipf_ticks) {
8976		if (softc->ipf_ticks - interval < interval)
8977			istart = interval;
8978		else
8979			istart = (softc->ipf_ticks / interval) * interval;
8980	}
8981
8982	iend = softc->ipf_ticks - interval;
8983
8984	while ((*activep * 100 / size) > low) {
8985		u_long try;
8986
8987		try = softc->ipf_ticks - istart;
8988
8989		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8990			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8991				if (try < tqe->tqe_touched)
8992					break;
8993				tqn = tqe->tqe_next;
8994				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8995					removed++;
8996			}
8997		}
8998
8999		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
9000			ifqnext = ifq->ifq_next;
9001
9002			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
9003				if (try < tqe->tqe_touched)
9004					break;
9005				tqn = tqe->tqe_next;
9006				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
9007					removed++;
9008			}
9009		}
9010
9011		if (try >= iend) {
9012			if (interval == IPF_TTLVAL(43200)) {
9013				interval = IPF_TTLVAL(1800);
9014			} else if (interval == IPF_TTLVAL(1800)) {
9015				interval = IPF_TTLVAL(30);
9016			} else {
9017				break;
9018			}
9019			if (interval >= softc->ipf_ticks)
9020				break;
9021
9022			iend = softc->ipf_ticks - interval;
9023		}
9024		istart -= interval;
9025	}
9026
9027	return removed;
9028}
9029
9030
9031/* ------------------------------------------------------------------------ */
9032/* Function:    ipf_deliverlocal                                            */
9033/* Returns:     int - 1 = local address, 0 = non-local address              */
9034/* Parameters:  softc(I)     - pointer to soft context main structure       */
9035/*              ipversion(I) - IP protocol version (4 or 6)                 */
9036/*              ifp(I)       - network interface pointer                    */
9037/*              ipaddr(I)    - IPv4/6 destination address                   */
9038/*                                                                          */
9039/* This fucntion is used to determine in the address "ipaddr" belongs to    */
9040/* the network interface represented by ifp.                                */
9041/* ------------------------------------------------------------------------ */
9042int
9043ipf_deliverlocal(softc, ipversion, ifp, ipaddr)
9044	ipf_main_softc_t *softc;
9045	int ipversion;
9046	void *ifp;
9047	i6addr_t *ipaddr;
9048{
9049	i6addr_t addr;
9050	int islocal = 0;
9051
9052	if (ipversion == 4) {
9053		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9054			if (addr.in4.s_addr == ipaddr->in4.s_addr)
9055				islocal = 1;
9056		}
9057
9058#ifdef USE_INET6
9059	} else if (ipversion == 6) {
9060		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
9061			if (IP6_EQ(&addr, ipaddr))
9062				islocal = 1;
9063		}
9064#endif
9065	}
9066
9067	return islocal;
9068}
9069
9070
9071/* ------------------------------------------------------------------------ */
9072/* Function:    ipf_settimeout                                              */
9073/* Returns:     int - 0 = success, -1 = failure                             */
9074/* Parameters:  softc(I) - pointer to soft context main structure           */
9075/*              t(I)     - pointer to tuneable array entry                  */
9076/*              p(I)     - pointer to values passed in to apply             */
9077/*                                                                          */
9078/* This function is called to set the timeout values for each distinct      */
9079/* queue timeout that is available.  When called, it calls into both the    */
9080/* state and NAT code, telling them to update their timeout queues.         */
9081/* ------------------------------------------------------------------------ */
9082static int
9083ipf_settimeout(softc, t, p)
9084	struct ipf_main_softc_s *softc;
9085	ipftuneable_t *t;
9086	ipftuneval_t *p;
9087{
9088
9089	/*
9090	 * ipf_interror should be set by the functions called here, not
9091	 * by this function - it's just a middle man.
9092	 */
9093	if (ipf_state_settimeout(softc, t, p) == -1)
9094		return -1;
9095	if (ipf_nat_settimeout(softc, t, p) == -1)
9096		return -1;
9097	return 0;
9098}
9099
9100
9101/* ------------------------------------------------------------------------ */
9102/* Function:    ipf_apply_timeout                                           */
9103/* Returns:     int - 0 = success, -1 = failure                             */
9104/* Parameters:  head(I)    - pointer to tuneable array entry                */
9105/*              seconds(I) - pointer to values passed in to apply           */
9106/*                                                                          */
9107/* This function applies a timeout of "seconds" to the timeout queue that   */
9108/* is pointed to by "head".  All entries on this list have an expiration    */
9109/* set to be the current tick value of ipf plus the ttl.  Given that this   */
9110/* function should only be called when the delta is non-zero, the task is   */
9111/* to walk the entire list and apply the change.  The sort order will not   */
9112/* change.  The only catch is that this is O(n) across the list, so if the  */
9113/* queue has lots of entries (10s of thousands or 100s of thousands), it    */
9114/* could take a relatively long time to work through them all.              */
9115/* ------------------------------------------------------------------------ */
9116void
9117ipf_apply_timeout(head, seconds)
9118	ipftq_t *head;
9119	u_int seconds;
9120{
9121	u_int oldtimeout, newtimeout;
9122	ipftqent_t *tqe;
9123	int delta;
9124
9125	MUTEX_ENTER(&head->ifq_lock);
9126	oldtimeout = head->ifq_ttl;
9127	newtimeout = IPF_TTLVAL(seconds);
9128	delta = oldtimeout - newtimeout;
9129
9130	head->ifq_ttl = newtimeout;
9131
9132	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
9133		tqe->tqe_die += delta;
9134	}
9135	MUTEX_EXIT(&head->ifq_lock);
9136}
9137
9138
9139/* ------------------------------------------------------------------------ */
9140/* Function:   ipf_settimeout_tcp                                           */
9141/* Returns:    int - 0 = successfully applied, -1 = failed                  */
9142/* Parameters: t(I)   - pointer to tuneable to change                       */
9143/*             p(I)   - pointer to new timeout information                  */
9144/*             tab(I) - pointer to table of TCP queues                      */
9145/*                                                                          */
9146/* This function applies the new timeout (p) to the TCP tunable (t) and     */
9147/* updates all of the entries on the relevant timeout queue by calling      */
9148/* ipf_apply_timeout().                                                     */
9149/* ------------------------------------------------------------------------ */
9150int
9151ipf_settimeout_tcp(t, p, tab)
9152	ipftuneable_t *t;
9153	ipftuneval_t *p;
9154	ipftq_t *tab;
9155{
9156	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
9157	    !strcmp(t->ipft_name, "tcp_established")) {
9158		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
9159	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
9160		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
9161	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
9162		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
9163	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
9164		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9165		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9166		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9167	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
9168		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
9169	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
9170		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
9171	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
9172		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
9173	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
9174		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
9175	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
9176		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
9177	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
9178		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9179	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
9180		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
9181	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
9182		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
9183	} else {
9184		/*
9185		 * ipf_interror isn't set here because it should be set
9186		 * by whatever called this function.
9187		 */
9188		return -1;
9189	}
9190	return 0;
9191}
9192
9193
9194/* ------------------------------------------------------------------------ */
9195/* Function:   ipf_main_soft_create                                         */
9196/* Returns:    NULL = failure, else success                                 */
9197/* Parameters: arg(I) - pointer to soft context structure if already allocd */
9198/*                                                                          */
9199/* Create the foundation soft context structure. In circumstances where it  */
9200/* is not required to dynamically allocate the context, a pointer can be    */
9201/* passed in (rather than NULL) to a structure to be initialised.           */
9202/* The main thing of interest is that a number of locks are initialised     */
9203/* here instead of in the where might be expected - in the relevant create  */
9204/* function elsewhere.  This is done because the current locking design has */
9205/* some areas where these locks are used outside of their module.           */
9206/* Possibly the most important exercise that is done here is setting of all */
9207/* the timeout values, allowing them to be changed before init().           */
9208/* ------------------------------------------------------------------------ */
9209void *
9210ipf_main_soft_create(arg)
9211	void *arg;
9212{
9213	ipf_main_softc_t *softc;
9214
9215	if (arg == NULL) {
9216		KMALLOC(softc, ipf_main_softc_t *);
9217		if (softc == NULL)
9218			return NULL;
9219	} else {
9220		softc = arg;
9221	}
9222
9223	bzero((char *)softc, sizeof(*softc));
9224
9225	/*
9226	 * This serves as a flag as to whether or not the softc should be
9227	 * free'd when _destroy is called.
9228	 */
9229	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9230
9231	softc->ipf_tuners = ipf_tune_array_copy(softc,
9232						sizeof(ipf_main_tuneables),
9233						ipf_main_tuneables);
9234	if (softc->ipf_tuners == NULL) {
9235		ipf_main_soft_destroy(softc);
9236		return NULL;
9237	}
9238
9239	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9240	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9241	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9242	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9243	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9244	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9245	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9246	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9247	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9248
9249	softc->ipf_token_head = NULL;
9250	softc->ipf_token_tail = &softc->ipf_token_head;
9251
9252	softc->ipf_tcpidletimeout = FIVE_DAYS;
9253	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9254	softc->ipf_tcplastack = IPF_TTLVAL(30);
9255	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9256	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9257	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9258	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9259	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9260	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9261	softc->ipf_udptimeout = IPF_TTLVAL(120);
9262	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9263	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9264	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9265	softc->ipf_iptimeout = IPF_TTLVAL(60);
9266
9267#if defined(IPFILTER_DEFAULT_BLOCK)
9268	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9269#else
9270	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9271#endif
9272	softc->ipf_minttl = 4;
9273	softc->ipf_icmpminfragmtu = 68;
9274	softc->ipf_flags = IPF_LOGGING;
9275
9276	return softc;
9277}
9278
9279/* ------------------------------------------------------------------------ */
9280/* Function:   ipf_main_soft_init                                           */
9281/* Returns:    0 = success, -1 = failure                                    */
9282/* Parameters: softc(I) - pointer to soft context main structure            */
9283/*                                                                          */
9284/* A null-op function that exists as a placeholder so that the flow in      */
9285/* other functions is obvious.                                              */
9286/* ------------------------------------------------------------------------ */
9287/*ARGSUSED*/
9288int
9289ipf_main_soft_init(softc)
9290	ipf_main_softc_t *softc;
9291{
9292	return 0;
9293}
9294
9295
9296/* ------------------------------------------------------------------------ */
9297/* Function:   ipf_main_soft_destroy                                        */
9298/* Returns:    void                                                         */
9299/* Parameters: softc(I) - pointer to soft context main structure            */
9300/*                                                                          */
9301/* Undo everything that we did in ipf_main_soft_create.                     */
9302/*                                                                          */
9303/* The most important check that needs to be made here is whether or not    */
9304/* the structure was allocated by ipf_main_soft_create() by checking what   */
9305/* value is stored in ipf_dynamic_main.                                     */
9306/* ------------------------------------------------------------------------ */
9307/*ARGSUSED*/
9308void
9309ipf_main_soft_destroy(softc)
9310	ipf_main_softc_t *softc;
9311{
9312
9313	RW_DESTROY(&softc->ipf_frag);
9314	RW_DESTROY(&softc->ipf_poolrw);
9315	RW_DESTROY(&softc->ipf_nat);
9316	RW_DESTROY(&softc->ipf_state);
9317	RW_DESTROY(&softc->ipf_tokens);
9318	RW_DESTROY(&softc->ipf_mutex);
9319	RW_DESTROY(&softc->ipf_global);
9320	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9321	MUTEX_DESTROY(&softc->ipf_rw);
9322
9323	if (softc->ipf_tuners != NULL) {
9324		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9325	}
9326	if (softc->ipf_dynamic_softc == 1) {
9327		KFREE(softc);
9328	}
9329}
9330
9331
9332/* ------------------------------------------------------------------------ */
9333/* Function:   ipf_main_soft_fini                                           */
9334/* Returns:    0 = success, -1 = failure                                    */
9335/* Parameters: softc(I) - pointer to soft context main structure            */
9336/*                                                                          */
9337/* Clean out the rules which have been added since _init was last called,   */
9338/* the only dynamic part of the mainline.                                   */
9339/* ------------------------------------------------------------------------ */
9340int
9341ipf_main_soft_fini(softc)
9342	ipf_main_softc_t *softc;
9343{
9344	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9345	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9346	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9347	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9348
9349	return 0;
9350}
9351
9352
9353/* ------------------------------------------------------------------------ */
9354/* Function:   ipf_main_load                                                */
9355/* Returns:    0 = success, -1 = failure                                    */
9356/* Parameters: none                                                         */
9357/*                                                                          */
9358/* Handle global initialisation that needs to be done for the base part of  */
9359/* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9360/* arrays that get used by the state/NAT code.                              */
9361/* ------------------------------------------------------------------------ */
9362int
9363ipf_main_load()
9364{
9365	int i;
9366
9367	/* fill icmp reply type table */
9368	for (i = 0; i <= ICMP_MAXTYPE; i++)
9369		icmpreplytype4[i] = -1;
9370	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9371	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9372	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9373	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9374
9375#ifdef  USE_INET6
9376	/* fill icmp reply type table */
9377	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9378		icmpreplytype6[i] = -1;
9379	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9380	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9381	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9382	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9383	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9384#endif
9385
9386	return 0;
9387}
9388
9389
9390/* ------------------------------------------------------------------------ */
9391/* Function:   ipf_main_unload                                              */
9392/* Returns:    0 = success, -1 = failure                                    */
9393/* Parameters: none                                                         */
9394/*                                                                          */
9395/* A null-op function that exists as a placeholder so that the flow in      */
9396/* other functions is obvious.                                              */
9397/* ------------------------------------------------------------------------ */
9398int
9399ipf_main_unload()
9400{
9401	return 0;
9402}
9403
9404
9405/* ------------------------------------------------------------------------ */
9406/* Function:   ipf_load_all                                                 */
9407/* Returns:    0 = success, -1 = failure                                    */
9408/* Parameters: none                                                         */
9409/*                                                                          */
9410/* Work through all of the subsystems inside IPFilter and call the load     */
9411/* function for each in an order that won't lead to a crash :)              */
9412/* ------------------------------------------------------------------------ */
9413int
9414ipf_load_all()
9415{
9416	if (ipf_main_load() == -1)
9417		return -1;
9418
9419	if (ipf_state_main_load() == -1)
9420		return -1;
9421
9422	if (ipf_nat_main_load() == -1)
9423		return -1;
9424
9425	if (ipf_frag_main_load() == -1)
9426		return -1;
9427
9428	if (ipf_auth_main_load() == -1)
9429		return -1;
9430
9431	if (ipf_proxy_main_load() == -1)
9432		return -1;
9433
9434	return 0;
9435}
9436
9437
9438/* ------------------------------------------------------------------------ */
9439/* Function:   ipf_unload_all                                               */
9440/* Returns:    0 = success, -1 = failure                                    */
9441/* Parameters: none                                                         */
9442/*                                                                          */
9443/* Work through all of the subsystems inside IPFilter and call the unload   */
9444/* function for each in an order that won't lead to a crash :)              */
9445/* ------------------------------------------------------------------------ */
9446int
9447ipf_unload_all()
9448{
9449	if (ipf_proxy_main_unload() == -1)
9450		return -1;
9451
9452	if (ipf_auth_main_unload() == -1)
9453		return -1;
9454
9455	if (ipf_frag_main_unload() == -1)
9456		return -1;
9457
9458	if (ipf_nat_main_unload() == -1)
9459		return -1;
9460
9461	if (ipf_state_main_unload() == -1)
9462		return -1;
9463
9464	if (ipf_main_unload() == -1)
9465		return -1;
9466
9467	return 0;
9468}
9469
9470
9471/* ------------------------------------------------------------------------ */
9472/* Function:   ipf_create_all                                               */
9473/* Returns:    NULL = failure, else success                                 */
9474/* Parameters: arg(I) - pointer to soft context main structure              */
9475/*                                                                          */
9476/* Work through all of the subsystems inside IPFilter and call the create   */
9477/* function for each in an order that won't lead to a crash :)              */
9478/* ------------------------------------------------------------------------ */
9479ipf_main_softc_t *
9480ipf_create_all(arg)
9481	void *arg;
9482{
9483	ipf_main_softc_t *softc;
9484
9485	softc = ipf_main_soft_create(arg);
9486	if (softc == NULL)
9487		return NULL;
9488
9489#ifdef IPFILTER_LOG
9490	softc->ipf_log_soft = ipf_log_soft_create(softc);
9491	if (softc->ipf_log_soft == NULL) {
9492		ipf_destroy_all(softc);
9493		return NULL;
9494	}
9495#endif
9496
9497	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9498	if (softc->ipf_lookup_soft == NULL) {
9499		ipf_destroy_all(softc);
9500		return NULL;
9501	}
9502
9503	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9504	if (softc->ipf_sync_soft == NULL) {
9505		ipf_destroy_all(softc);
9506		return NULL;
9507	}
9508
9509	softc->ipf_state_soft = ipf_state_soft_create(softc);
9510	if (softc->ipf_state_soft == NULL) {
9511		ipf_destroy_all(softc);
9512		return NULL;
9513	}
9514
9515	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9516	if (softc->ipf_nat_soft == NULL) {
9517		ipf_destroy_all(softc);
9518		return NULL;
9519	}
9520
9521	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9522	if (softc->ipf_frag_soft == NULL) {
9523		ipf_destroy_all(softc);
9524		return NULL;
9525	}
9526
9527	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9528	if (softc->ipf_auth_soft == NULL) {
9529		ipf_destroy_all(softc);
9530		return NULL;
9531	}
9532
9533	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9534	if (softc->ipf_proxy_soft == NULL) {
9535		ipf_destroy_all(softc);
9536		return NULL;
9537	}
9538
9539	return softc;
9540}
9541
9542
9543/* ------------------------------------------------------------------------ */
9544/* Function:   ipf_destroy_all                                              */
9545/* Returns:    void                                                         */
9546/* Parameters: softc(I) - pointer to soft context main structure            */
9547/*                                                                          */
9548/* Work through all of the subsystems inside IPFilter and call the destroy  */
9549/* function for each in an order that won't lead to a crash :)              */
9550/*                                                                          */
9551/* Every one of these functions is expected to succeed, so there is no      */
9552/* checking of return values.                                               */
9553/* ------------------------------------------------------------------------ */
9554void
9555ipf_destroy_all(softc)
9556	ipf_main_softc_t *softc;
9557{
9558
9559	if (softc->ipf_state_soft != NULL) {
9560		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9561		softc->ipf_state_soft = NULL;
9562	}
9563
9564	if (softc->ipf_nat_soft != NULL) {
9565		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9566		softc->ipf_nat_soft = NULL;
9567	}
9568
9569	if (softc->ipf_frag_soft != NULL) {
9570		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9571		softc->ipf_frag_soft = NULL;
9572	}
9573
9574	if (softc->ipf_auth_soft != NULL) {
9575		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9576		softc->ipf_auth_soft = NULL;
9577	}
9578
9579	if (softc->ipf_proxy_soft != NULL) {
9580		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9581		softc->ipf_proxy_soft = NULL;
9582	}
9583
9584	if (softc->ipf_sync_soft != NULL) {
9585		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9586		softc->ipf_sync_soft = NULL;
9587	}
9588
9589	if (softc->ipf_lookup_soft != NULL) {
9590		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9591		softc->ipf_lookup_soft = NULL;
9592	}
9593
9594#ifdef IPFILTER_LOG
9595	if (softc->ipf_log_soft != NULL) {
9596		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9597		softc->ipf_log_soft = NULL;
9598	}
9599#endif
9600
9601	ipf_main_soft_destroy(softc);
9602}
9603
9604
9605/* ------------------------------------------------------------------------ */
9606/* Function:   ipf_init_all                                                 */
9607/* Returns:    0 = success, -1 = failure                                    */
9608/* Parameters: softc(I) - pointer to soft context main structure            */
9609/*                                                                          */
9610/* Work through all of the subsystems inside IPFilter and call the init     */
9611/* function for each in an order that won't lead to a crash :)              */
9612/* ------------------------------------------------------------------------ */
9613int
9614ipf_init_all(softc)
9615	ipf_main_softc_t *softc;
9616{
9617
9618	if (ipf_main_soft_init(softc) == -1)
9619		return -1;
9620
9621#ifdef IPFILTER_LOG
9622	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9623		return -1;
9624#endif
9625
9626	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9627		return -1;
9628
9629	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9630		return -1;
9631
9632	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9633		return -1;
9634
9635	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9636		return -1;
9637
9638	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9639		return -1;
9640
9641	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9642		return -1;
9643
9644	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9645		return -1;
9646
9647	return 0;
9648}
9649
9650
9651/* ------------------------------------------------------------------------ */
9652/* Function:   ipf_fini_all                                                 */
9653/* Returns:    0 = success, -1 = failure                                    */
9654/* Parameters: softc(I) - pointer to soft context main structure            */
9655/*                                                                          */
9656/* Work through all of the subsystems inside IPFilter and call the fini     */
9657/* function for each in an order that won't lead to a crash :)              */
9658/* ------------------------------------------------------------------------ */
9659int
9660ipf_fini_all(softc)
9661	ipf_main_softc_t *softc;
9662{
9663
9664	ipf_token_flush(softc);
9665
9666	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9667		return -1;
9668
9669	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9670		return -1;
9671
9672	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9673		return -1;
9674
9675	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9676		return -1;
9677
9678	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9679		return -1;
9680
9681	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9682		return -1;
9683
9684	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9685		return -1;
9686
9687#ifdef IPFILTER_LOG
9688	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9689		return -1;
9690#endif
9691
9692	if (ipf_main_soft_fini(softc) == -1)
9693		return -1;
9694
9695	return 0;
9696}
9697
9698
9699/* ------------------------------------------------------------------------ */
9700/* Function:    ipf_rule_expire                                             */
9701/* Returns:     Nil                                                         */
9702/* Parameters:  softc(I) - pointer to soft context main structure           */
9703/*                                                                          */
9704/* At present this function exists just to support temporary addition of    */
9705/* firewall rules. Both inactive and active lists are scanned for items to  */
9706/* purge, as by rights, the expiration is computed as soon as the rule is   */
9707/* loaded in.                                                               */
9708/* ------------------------------------------------------------------------ */
9709void
9710ipf_rule_expire(softc)
9711	ipf_main_softc_t *softc;
9712{
9713	frentry_t *fr;
9714
9715	if ((softc->ipf_rule_explist[0] == NULL) &&
9716	    (softc->ipf_rule_explist[1] == NULL))
9717		return;
9718
9719	WRITE_ENTER(&softc->ipf_mutex);
9720
9721	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9722		/*
9723		 * Because the list is kept sorted on insertion, the fist
9724		 * one that dies in the future means no more work to do.
9725		 */
9726		if (fr->fr_die > softc->ipf_ticks)
9727			break;
9728		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9729	}
9730
9731	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9732		/*
9733		 * Because the list is kept sorted on insertion, the fist
9734		 * one that dies in the future means no more work to do.
9735		 */
9736		if (fr->fr_die > softc->ipf_ticks)
9737			break;
9738		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9739	}
9740
9741	RWLOCK_EXIT(&softc->ipf_mutex);
9742}
9743
9744
9745static int ipf_ht_node_cmp __P((struct host_node_s *, struct host_node_s *));
9746static void ipf_ht_node_make_key __P((host_track_t *, host_node_t *, int,
9747				      i6addr_t *));
9748
9749host_node_t RBI_ZERO(ipf_rb);
9750RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9751
9752
9753/* ------------------------------------------------------------------------ */
9754/* Function:    ipf_ht_node_cmp                                             */
9755/* Returns:     int   - 0 == nodes are the same, ..                         */
9756/* Parameters:  k1(I) - pointer to first key to compare                     */
9757/*              k2(I) - pointer to second key to compare                    */
9758/*                                                                          */
9759/* The "key" for the node is a combination of two fields: the address       */
9760/* family and the address itself.                                           */
9761/*                                                                          */
9762/* Because we're not actually interpreting the address data, it isn't       */
9763/* necessary to convert them to/from network/host byte order. The mask is   */
9764/* just used to remove bits that aren't significant - it doesn't matter     */
9765/* where they are, as long as they're always in the same place.             */
9766/*                                                                          */
9767/* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9768/* this is where individual ones will differ the most - but not true for    */
9769/* for /48's, etc.                                                          */
9770/* ------------------------------------------------------------------------ */
9771static int
9772ipf_ht_node_cmp(k1, k2)
9773	struct host_node_s *k1, *k2;
9774{
9775	int i;
9776
9777	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9778	if (i != 0)
9779		return i;
9780
9781	if (k1->hn_addr.adf_family == AF_INET)
9782		return (k2->hn_addr.adf_addr.in4.s_addr -
9783			k1->hn_addr.adf_addr.in4.s_addr);
9784
9785	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9786	if (i != 0)
9787		return i;
9788	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9789	if (i != 0)
9790		return i;
9791	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9792	if (i != 0)
9793		return i;
9794	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9795	return i;
9796}
9797
9798
9799/* ------------------------------------------------------------------------ */
9800/* Function:    ipf_ht_node_make_key                                        */
9801/* Returns:     Nil                                                         */
9802/* parameters:  htp(I)    - pointer to address tracking structure           */
9803/*              key(I)    - where to store masked address for lookup        */
9804/*              family(I) - protocol family of address                      */
9805/*              addr(I)   - pointer to network address                      */
9806/*                                                                          */
9807/* Using the "netmask" (number of bits) stored parent host tracking struct, */
9808/* copy the address passed in into the key structure whilst masking out the */
9809/* bits that we don't want.                                                 */
9810/*                                                                          */
9811/* Because the parser will set ht_netmask to 128 if there is no protocol    */
9812/* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9813/* have to be wary of that and not allow 32-128 to happen.                  */
9814/* ------------------------------------------------------------------------ */
9815static void
9816ipf_ht_node_make_key(htp, key, family, addr)
9817	host_track_t *htp;
9818	host_node_t *key;
9819	int family;
9820	i6addr_t *addr;
9821{
9822	key->hn_addr.adf_family = family;
9823	if (family == AF_INET) {
9824		u_32_t mask;
9825		int bits;
9826
9827		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9828		bits = htp->ht_netmask;
9829		if (bits >= 32) {
9830			mask = 0xffffffff;
9831		} else {
9832			mask = htonl(0xffffffff << (32 - bits));
9833		}
9834		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9835#ifdef USE_INET6
9836	} else {
9837		int bits = htp->ht_netmask;
9838
9839		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9840		if (bits > 96) {
9841			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9842					     htonl(0xffffffff << (128 - bits));
9843			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9844			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9845			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9846		} else if (bits > 64) {
9847			key->hn_addr.adf_addr.i6[3] = 0;
9848			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9849					     htonl(0xffffffff << (96 - bits));
9850			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9851			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9852		} else if (bits > 32) {
9853			key->hn_addr.adf_addr.i6[3] = 0;
9854			key->hn_addr.adf_addr.i6[2] = 0;
9855			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9856					     htonl(0xffffffff << (64 - bits));
9857			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9858		} else {
9859			key->hn_addr.adf_addr.i6[3] = 0;
9860			key->hn_addr.adf_addr.i6[2] = 0;
9861			key->hn_addr.adf_addr.i6[1] = 0;
9862			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9863					     htonl(0xffffffff << (32 - bits));
9864		}
9865#endif
9866	}
9867}
9868
9869
9870/* ------------------------------------------------------------------------ */
9871/* Function:    ipf_ht_node_add                                             */
9872/* Returns:     int       - 0 == success,  -1 == failure                    */
9873/* Parameters:  softc(I)  - pointer to soft context main structure          */
9874/*              htp(I)    - pointer to address tracking structure           */
9875/*              family(I) - protocol family of address                      */
9876/*              addr(I)   - pointer to network address                      */
9877/*                                                                          */
9878/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9879/*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9880/*                                                                          */
9881/* After preparing the key with the address information to find, look in    */
9882/* the red-black tree to see if the address is known. A successful call to  */
9883/* this function can mean one of two things: a new node was added to the    */
9884/* tree or a matching node exists and we're able to bump up its activity.   */
9885/* ------------------------------------------------------------------------ */
9886int
9887ipf_ht_node_add(softc, htp, family, addr)
9888	ipf_main_softc_t *softc;
9889	host_track_t *htp;
9890	int family;
9891	i6addr_t *addr;
9892{
9893	host_node_t *h;
9894	host_node_t k;
9895
9896	ipf_ht_node_make_key(htp, &k, family, addr);
9897
9898	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9899	if (h == NULL) {
9900		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9901			return -1;
9902		KMALLOC(h, host_node_t *);
9903		if (h == NULL) {
9904			DT(ipf_rb_no_mem);
9905			LBUMP(ipf_rb_no_mem);
9906			return -1;
9907		}
9908
9909		/*
9910		 * If there was a macro to initialise the RB node then that
9911		 * would get used here, but there isn't...
9912		 */
9913		bzero((char *)h, sizeof(*h));
9914		h->hn_addr = k.hn_addr;
9915		h->hn_addr.adf_family = k.hn_addr.adf_family;
9916		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9917		htp->ht_cur_nodes++;
9918	} else {
9919		if ((htp->ht_max_per_node != 0) &&
9920		    (h->hn_active >= htp->ht_max_per_node)) {
9921			DT(ipf_rb_node_max);
9922			LBUMP(ipf_rb_node_max);
9923			return -1;
9924		}
9925	}
9926
9927	h->hn_active++;
9928
9929	return 0;
9930}
9931
9932
9933/* ------------------------------------------------------------------------ */
9934/* Function:    ipf_ht_node_del                                             */
9935/* Returns:     int       - 0 == success,  -1 == failure                    */
9936/* parameters:  htp(I)    - pointer to address tracking structure           */
9937/*              family(I) - protocol family of address                      */
9938/*              addr(I)   - pointer to network address                      */
9939/*                                                                          */
9940/* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9941/*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9942/*                                                                          */
9943/* Try and find the address passed in amongst the leavese on this tree to   */
9944/* be friend. If found then drop the active account for that node drops by  */
9945/* one. If that count reaches 0, it is time to free it all up.              */
9946/* ------------------------------------------------------------------------ */
9947int
9948ipf_ht_node_del(htp, family, addr)
9949	host_track_t *htp;
9950	int family;
9951	i6addr_t *addr;
9952{
9953	host_node_t *h;
9954	host_node_t k;
9955
9956	ipf_ht_node_make_key(htp, &k, family, addr);
9957
9958	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9959	if (h == NULL) {
9960		return -1;
9961	} else {
9962		h->hn_active--;
9963		if (h->hn_active == 0) {
9964			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9965			htp->ht_cur_nodes--;
9966			KFREE(h);
9967		}
9968	}
9969
9970	return 0;
9971}
9972
9973
9974/* ------------------------------------------------------------------------ */
9975/* Function:    ipf_rb_ht_init                                              */
9976/* Returns:     Nil                                                         */
9977/* Parameters:  head(I) - pointer to host tracking structure                */
9978/*                                                                          */
9979/* Initialise the host tracking structure to be ready for use above.        */
9980/* ------------------------------------------------------------------------ */
9981void
9982ipf_rb_ht_init(head)
9983	host_track_t *head;
9984{
9985	RBI_INIT(ipf_rb, &head->ht_root);
9986}
9987
9988
9989/* ------------------------------------------------------------------------ */
9990/* Function:    ipf_rb_ht_freenode                                          */
9991/* Returns:     Nil                                                         */
9992/* Parameters:  head(I) - pointer to host tracking structure                */
9993/*              arg(I)  - additional argument from walk caller              */
9994/*                                                                          */
9995/* Free an actual host_node_t structure.                                    */
9996/* ------------------------------------------------------------------------ */
9997void
9998ipf_rb_ht_freenode(node, arg)
9999	host_node_t *node;
10000	void *arg;
10001{
10002	KFREE(node);
10003}
10004
10005
10006/* ------------------------------------------------------------------------ */
10007/* Function:    ipf_rb_ht_flush                                             */
10008/* Returns:     Nil                                                         */
10009/* Parameters:  head(I) - pointer to host tracking structure                */
10010/*                                                                          */
10011/* Remove all of the nodes in the tree tracking hosts by calling a walker   */
10012/* and free'ing each one.                                                   */
10013/* ------------------------------------------------------------------------ */
10014void
10015ipf_rb_ht_flush(head)
10016	host_track_t *head;
10017{
10018	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
10019}
10020
10021
10022/* ------------------------------------------------------------------------ */
10023/* Function:    ipf_slowtimer                                               */
10024/* Returns:     Nil                                                         */
10025/* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
10026/*                                                                          */
10027/* Slowly expire held state for fragments.  Timeouts are set * in           */
10028/* expectation of this being called twice per second.                       */
10029/* ------------------------------------------------------------------------ */
10030void
10031ipf_slowtimer(softc)
10032	ipf_main_softc_t *softc;
10033{
10034
10035	ipf_token_expire(softc);
10036	ipf_frag_expire(softc);
10037	ipf_state_expire(softc);
10038	ipf_nat_expire(softc);
10039	ipf_auth_expire(softc);
10040	ipf_lookup_expire(softc);
10041	ipf_rule_expire(softc);
10042	ipf_sync_expire(softc);
10043	softc->ipf_ticks++;
10044#   if defined(__OpenBSD__)
10045	timeout_add(&ipf_slowtimer_ch, hz/2);
10046#   endif
10047}
10048
10049
10050/* ------------------------------------------------------------------------ */
10051/* Function:    ipf_inet_mask_add                                           */
10052/* Returns:     Nil                                                         */
10053/* Parameters:  bits(I) - pointer to nat context information                */
10054/*              mtab(I) - pointer to mask hash table structure              */
10055/*                                                                          */
10056/* When called, bits represents the mask of a new NAT rule that has just    */
10057/* been added. This function inserts a bitmask into the array of masks to   */
10058/* search when searching for a matching NAT rule for a packet.              */
10059/* Prevention of duplicate masks is achieved by checking the use count for  */
10060/* a given netmask.                                                         */
10061/* ------------------------------------------------------------------------ */
10062void
10063ipf_inet_mask_add(bits, mtab)
10064	int bits;
10065	ipf_v4_masktab_t *mtab;
10066{
10067	u_32_t mask;
10068	int i, j;
10069
10070	mtab->imt4_masks[bits]++;
10071	if (mtab->imt4_masks[bits] > 1)
10072		return;
10073
10074	if (bits == 0)
10075		mask = 0;
10076	else
10077		mask = 0xffffffff << (32 - bits);
10078
10079	for (i = 0; i < 33; i++) {
10080		if (ntohl(mtab->imt4_active[i]) < mask) {
10081			for (j = 32; j > i; j--)
10082				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
10083			mtab->imt4_active[i] = htonl(mask);
10084			break;
10085		}
10086	}
10087	mtab->imt4_max++;
10088}
10089
10090
10091/* ------------------------------------------------------------------------ */
10092/* Function:    ipf_inet_mask_del                                           */
10093/* Returns:     Nil                                                         */
10094/* Parameters:  bits(I) - number of bits set in the netmask                 */
10095/*              mtab(I) - pointer to mask hash table structure              */
10096/*                                                                          */
10097/* Remove the 32bit bitmask represented by "bits" from the collection of    */
10098/* netmasks stored inside of mtab.                                          */
10099/* ------------------------------------------------------------------------ */
10100void
10101ipf_inet_mask_del(bits, mtab)
10102	int bits;
10103	ipf_v4_masktab_t *mtab;
10104{
10105	u_32_t mask;
10106	int i, j;
10107
10108	mtab->imt4_masks[bits]--;
10109	if (mtab->imt4_masks[bits] > 0)
10110		return;
10111
10112	mask = htonl(0xffffffff << (32 - bits));
10113	for (i = 0; i < 33; i++) {
10114		if (mtab->imt4_active[i] == mask) {
10115			for (j = i + 1; j < 33; j++)
10116				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
10117			break;
10118		}
10119	}
10120	mtab->imt4_max--;
10121	ASSERT(mtab->imt4_max >= 0);
10122}
10123
10124
10125#ifdef USE_INET6
10126/* ------------------------------------------------------------------------ */
10127/* Function:    ipf_inet6_mask_add                                          */
10128/* Returns:     Nil                                                         */
10129/* Parameters:  bits(I) - number of bits set in mask                        */
10130/*              mask(I) - pointer to mask to add                            */
10131/*              mtab(I) - pointer to mask hash table structure              */
10132/*                                                                          */
10133/* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
10134/* has just been added. This function inserts a bitmask into the array of   */
10135/* masks to search when searching for a matching NAT rule for a packet.     */
10136/* Prevention of duplicate masks is achieved by checking the use count for  */
10137/* a given netmask.                                                         */
10138/* ------------------------------------------------------------------------ */
10139void
10140ipf_inet6_mask_add(bits, mask, mtab)
10141	int bits;
10142	i6addr_t *mask;
10143	ipf_v6_masktab_t *mtab;
10144{
10145	i6addr_t zero;
10146	int i, j;
10147
10148	mtab->imt6_masks[bits]++;
10149	if (mtab->imt6_masks[bits] > 1)
10150		return;
10151
10152	if (bits == 0) {
10153		mask = &zero;
10154		zero.i6[0] = 0;
10155		zero.i6[1] = 0;
10156		zero.i6[2] = 0;
10157		zero.i6[3] = 0;
10158	}
10159
10160	for (i = 0; i < 129; i++) {
10161		if (IP6_LT(&mtab->imt6_active[i], mask)) {
10162			for (j = 128; j > i; j--)
10163				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
10164			mtab->imt6_active[i] = *mask;
10165			break;
10166		}
10167	}
10168	mtab->imt6_max++;
10169}
10170
10171
10172/* ------------------------------------------------------------------------ */
10173/* Function:    ipf_inet6_mask_del                                          */
10174/* Returns:     Nil                                                         */
10175/* Parameters:  bits(I) - number of bits set in mask                        */
10176/*              mask(I) - pointer to mask to remove                         */
10177/*              mtab(I) - pointer to mask hash table structure              */
10178/*                                                                          */
10179/* Remove the 128bit bitmask represented by "bits" from the collection of   */
10180/* netmasks stored inside of mtab.                                          */
10181/* ------------------------------------------------------------------------ */
10182void
10183ipf_inet6_mask_del(bits, mask, mtab)
10184	int bits;
10185	i6addr_t *mask;
10186	ipf_v6_masktab_t *mtab;
10187{
10188	i6addr_t zero;
10189	int i, j;
10190
10191	mtab->imt6_masks[bits]--;
10192	if (mtab->imt6_masks[bits] > 0)
10193		return;
10194
10195	if (bits == 0)
10196		mask = &zero;
10197	zero.i6[0] = 0;
10198	zero.i6[1] = 0;
10199	zero.i6[2] = 0;
10200	zero.i6[3] = 0;
10201
10202	for (i = 0; i < 129; i++) {
10203		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
10204			for (j = i + 1; j < 129; j++) {
10205				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
10206				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
10207					break;
10208			}
10209			break;
10210		}
10211	}
10212	mtab->imt6_max--;
10213	ASSERT(mtab->imt6_max >= 0);
10214}
10215#endif
10216