1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/spa.h>
29#include <sys/zio.h>
30#include <sys/zio_checksum.h>
31#include <sys/zil.h>
32#include <zfs_fletcher.h>
33
34/*
35 * Checksum vectors.
36 *
37 * In the SPA, everything is checksummed.  We support checksum vectors
38 * for three distinct reasons:
39 *
40 *   1. Different kinds of data need different levels of protection.
41 *	For SPA metadata, we always want a very strong checksum.
42 *	For user data, we let users make the trade-off between speed
43 *	and checksum strength.
44 *
45 *   2. Cryptographic hash and MAC algorithms are an area of active research.
46 *	It is likely that in future hash functions will be at least as strong
47 *	as current best-of-breed, and may be substantially faster as well.
48 *	We want the ability to take advantage of these new hashes as soon as
49 *	they become available.
50 *
51 *   3. If someone develops hardware that can compute a strong hash quickly,
52 *	we want the ability to take advantage of that hardware.
53 *
54 * Of course, we don't want a checksum upgrade to invalidate existing
55 * data, so we store the checksum *function* in eight bits of the bp.
56 * This gives us room for up to 256 different checksum functions.
57 *
58 * When writing a block, we always checksum it with the latest-and-greatest
59 * checksum function of the appropriate strength.  When reading a block,
60 * we compare the expected checksum against the actual checksum, which we
61 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
62 */
63
64/*ARGSUSED*/
65static void
66zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
67{
68	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
69}
70
71zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
72	{{NULL,			NULL},			0, 0, 0, "inherit"},
73	{{NULL,			NULL},			0, 0, 0, "on"},
74	{{zio_checksum_off,	zio_checksum_off},	0, 0, 0, "off"},
75	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1, 0, "label"},
76	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1, 0, "gang_header"},
77	{{fletcher_2_native,	fletcher_2_byteswap},	0, 1, 0, "zilog"},
78	{{fletcher_2_native,	fletcher_2_byteswap},	0, 0, 0, "fletcher2"},
79	{{fletcher_4_native,	fletcher_4_byteswap},	1, 0, 0, "fletcher4"},
80	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 0, 1, "sha256"},
81	{{fletcher_4_native,	fletcher_4_byteswap},	0, 1, 0, "zilog2"},
82	{{zio_checksum_off,	zio_checksum_off},	0, 0, 0, "noparity"},
83};
84
85enum zio_checksum
86zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
87{
88	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
89	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
90	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
91
92	if (child == ZIO_CHECKSUM_INHERIT)
93		return (parent);
94
95	if (child == ZIO_CHECKSUM_ON)
96		return (ZIO_CHECKSUM_ON_VALUE);
97
98	return (child);
99}
100
101enum zio_checksum
102zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
103    enum zio_checksum parent)
104{
105	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
106	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
107	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
108
109	if (child == ZIO_CHECKSUM_INHERIT)
110		return (parent);
111
112	if (child == ZIO_CHECKSUM_ON)
113		return (spa_dedup_checksum(spa));
114
115	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
116		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
117
118	ASSERT(zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_dedup ||
119	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
120
121	return (child);
122}
123
124/*
125 * Set the external verifier for a gang block based on <vdev, offset, txg>,
126 * a tuple which is guaranteed to be unique for the life of the pool.
127 */
128static void
129zio_checksum_gang_verifier(zio_cksum_t *zcp, blkptr_t *bp)
130{
131	dva_t *dva = BP_IDENTITY(bp);
132	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
133
134	ASSERT(BP_IS_GANG(bp));
135
136	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
137}
138
139/*
140 * Set the external verifier for a label block based on its offset.
141 * The vdev is implicit, and the txg is unknowable at pool open time --
142 * hence the logic in vdev_uberblock_load() to find the most recent copy.
143 */
144static void
145zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
146{
147	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
148}
149
150/*
151 * Generate the checksum.
152 */
153void
154zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
155	void *data, uint64_t size)
156{
157	blkptr_t *bp = zio->io_bp;
158	uint64_t offset = zio->io_offset;
159	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
160	zio_cksum_t cksum;
161
162	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
163	ASSERT(ci->ci_func[0] != NULL);
164
165	if (ci->ci_eck) {
166		zio_eck_t *eck;
167
168		if (checksum == ZIO_CHECKSUM_ZILOG2) {
169			zil_chain_t *zilc = data;
170
171			size = P2ROUNDUP_TYPED(zilc->zc_nused, ZIL_MIN_BLKSZ,
172			    uint64_t);
173			eck = &zilc->zc_eck;
174		} else {
175			eck = (zio_eck_t *)((char *)data + size) - 1;
176		}
177		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
178			zio_checksum_gang_verifier(&eck->zec_cksum, bp);
179		else if (checksum == ZIO_CHECKSUM_LABEL)
180			zio_checksum_label_verifier(&eck->zec_cksum, offset);
181		else
182			bp->blk_cksum = eck->zec_cksum;
183		eck->zec_magic = ZEC_MAGIC;
184		ci->ci_func[0](data, size, &cksum);
185		eck->zec_cksum = cksum;
186	} else {
187		ci->ci_func[0](data, size, &bp->blk_cksum);
188	}
189}
190
191int
192zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
193{
194	blkptr_t *bp = zio->io_bp;
195	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
196	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
197	int byteswap;
198	int error;
199	uint64_t size = (bp == NULL ? zio->io_size :
200	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
201	uint64_t offset = zio->io_offset;
202	void *data = zio->io_data;
203	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
204	zio_cksum_t actual_cksum, expected_cksum, verifier;
205
206	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
207		return (SET_ERROR(EINVAL));
208
209	if (ci->ci_eck) {
210		zio_eck_t *eck;
211
212		if (checksum == ZIO_CHECKSUM_ZILOG2) {
213			zil_chain_t *zilc = data;
214			uint64_t nused;
215
216			eck = &zilc->zc_eck;
217			if (eck->zec_magic == ZEC_MAGIC)
218				nused = zilc->zc_nused;
219			else if (eck->zec_magic == BSWAP_64(ZEC_MAGIC))
220				nused = BSWAP_64(zilc->zc_nused);
221			else
222				return (SET_ERROR(ECKSUM));
223
224			if (nused > size)
225				return (SET_ERROR(ECKSUM));
226
227			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
228		} else {
229			eck = (zio_eck_t *)((char *)data + size) - 1;
230		}
231
232		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
233			zio_checksum_gang_verifier(&verifier, bp);
234		else if (checksum == ZIO_CHECKSUM_LABEL)
235			zio_checksum_label_verifier(&verifier, offset);
236		else
237			verifier = bp->blk_cksum;
238
239		byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
240
241		if (byteswap)
242			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
243
244		expected_cksum = eck->zec_cksum;
245		eck->zec_cksum = verifier;
246		ci->ci_func[byteswap](data, size, &actual_cksum);
247		eck->zec_cksum = expected_cksum;
248
249		if (byteswap)
250			byteswap_uint64_array(&expected_cksum,
251			    sizeof (zio_cksum_t));
252	} else {
253		ASSERT(!BP_IS_GANG(bp));
254		byteswap = BP_SHOULD_BYTESWAP(bp);
255		expected_cksum = bp->blk_cksum;
256		ci->ci_func[byteswap](data, size, &actual_cksum);
257	}
258
259	info->zbc_expected = expected_cksum;
260	info->zbc_actual = actual_cksum;
261	info->zbc_checksum_name = ci->ci_name;
262	info->zbc_byteswapped = byteswap;
263	info->zbc_injected = 0;
264	info->zbc_has_cksum = 1;
265
266	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
267		return (SET_ERROR(ECKSUM));
268
269	if (zio_injection_enabled && !zio->io_error &&
270	    (error = zio_handle_fault_injection(zio, ECKSUM)) != 0) {
271
272		info->zbc_injected = 1;
273		return (error);
274	}
275
276	return (0);
277}
278