1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/fm/fs/zfs.h>
28#include <sys/spa.h>
29#include <sys/txg.h>
30#include <sys/spa_impl.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio_impl.h>
33#include <sys/zio_compress.h>
34#include <sys/zio_checksum.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/ddt.h>
38#include <sys/trim_map.h>
39
40SYSCTL_DECL(_vfs_zfs);
41SYSCTL_NODE(_vfs_zfs, OID_AUTO, zio, CTLFLAG_RW, 0, "ZFS ZIO");
42static int zio_use_uma = 0;
43TUNABLE_INT("vfs.zfs.zio.use_uma", &zio_use_uma);
44SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, use_uma, CTLFLAG_RDTUN, &zio_use_uma, 0,
45    "Use uma(9) for ZIO allocations");
46static int zio_exclude_metadata = 0;
47TUNABLE_INT("vfs.zfs.zio.exclude_metadata", &zio_exclude_metadata);
48SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, exclude_metadata, CTLFLAG_RDTUN, &zio_exclude_metadata, 0,
49    "Exclude metadata buffers from dumps as well");
50
51zio_trim_stats_t zio_trim_stats = {
52	{ "bytes",		KSTAT_DATA_UINT64,
53	  "Number of bytes successfully TRIMmed" },
54	{ "success",		KSTAT_DATA_UINT64,
55	  "Number of successful TRIM requests" },
56	{ "unsupported",	KSTAT_DATA_UINT64,
57	  "Number of TRIM requests that failed because TRIM is not supported" },
58	{ "failed",		KSTAT_DATA_UINT64,
59	  "Number of TRIM requests that failed for reasons other than not supported" },
60};
61
62static kstat_t *zio_trim_ksp;
63
64/*
65 * ==========================================================================
66 * I/O priority table
67 * ==========================================================================
68 */
69uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
70	0,	/* ZIO_PRIORITY_NOW		*/
71	0,	/* ZIO_PRIORITY_SYNC_READ	*/
72	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
73	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
74	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
75	1,	/* ZIO_PRIORITY_AGG		*/
76	4,	/* ZIO_PRIORITY_FREE		*/
77	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
78	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
79	10,	/* ZIO_PRIORITY_RESILVER	*/
80	20,	/* ZIO_PRIORITY_SCRUB		*/
81	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
82	30,	/* ZIO_PRIORITY_TRIM		*/
83};
84
85/*
86 * ==========================================================================
87 * I/O type descriptions
88 * ==========================================================================
89 */
90char *zio_type_name[ZIO_TYPES] = {
91	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
92	"zio_ioctl"
93};
94
95/*
96 * ==========================================================================
97 * I/O kmem caches
98 * ==========================================================================
99 */
100kmem_cache_t *zio_cache;
101kmem_cache_t *zio_link_cache;
102kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
103kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
104
105#ifdef _KERNEL
106extern vmem_t *zio_alloc_arena;
107#endif
108extern int zfs_mg_alloc_failures;
109
110/*
111 * The following actions directly effect the spa's sync-to-convergence logic.
112 * The values below define the sync pass when we start performing the action.
113 * Care should be taken when changing these values as they directly impact
114 * spa_sync() performance. Tuning these values may introduce subtle performance
115 * pathologies and should only be done in the context of performance analysis.
116 * These tunables will eventually be removed and replaced with #defines once
117 * enough analysis has been done to determine optimal values.
118 *
119 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
120 * regular blocks are not deferred.
121 */
122int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
123TUNABLE_INT("vfs.zfs.sync_pass_deferred_free", &zfs_sync_pass_deferred_free);
124SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_deferred_free, CTLFLAG_RDTUN,
125    &zfs_sync_pass_deferred_free, 0, "defer frees starting in this pass");
126int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
127TUNABLE_INT("vfs.zfs.sync_pass_dont_compress", &zfs_sync_pass_dont_compress);
128SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_dont_compress, CTLFLAG_RDTUN,
129    &zfs_sync_pass_dont_compress, 0, "don't compress starting in this pass");
130int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
131TUNABLE_INT("vfs.zfs.sync_pass_rewrite", &zfs_sync_pass_rewrite);
132SYSCTL_INT(_vfs_zfs, OID_AUTO, sync_pass_rewrite, CTLFLAG_RDTUN,
133    &zfs_sync_pass_rewrite, 0, "rewrite new bps starting in this pass");
134
135/*
136 * An allocating zio is one that either currently has the DVA allocate
137 * stage set or will have it later in its lifetime.
138 */
139#define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
140
141boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
142
143#ifdef ZFS_DEBUG
144int zio_buf_debug_limit = 16384;
145#else
146int zio_buf_debug_limit = 0;
147#endif
148
149void
150zio_init(void)
151{
152	size_t c;
153	zio_cache = kmem_cache_create("zio_cache",
154	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155	zio_link_cache = kmem_cache_create("zio_link_cache",
156	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157	if (!zio_use_uma)
158		goto out;
159
160	/*
161	 * For small buffers, we want a cache for each multiple of
162	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
163	 * for each quarter-power of 2.  For large buffers, we want
164	 * a cache for each multiple of PAGESIZE.
165	 */
166	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168		size_t p2 = size;
169		size_t align = 0;
170		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
171
172		while (p2 & (p2 - 1))
173			p2 &= p2 - 1;
174
175#ifdef illumos
176#ifndef _KERNEL
177		/*
178		 * If we are using watchpoints, put each buffer on its own page,
179		 * to eliminate the performance overhead of trapping to the
180		 * kernel when modifying a non-watched buffer that shares the
181		 * page with a watched buffer.
182		 */
183		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
184			continue;
185#endif
186#endif /* illumos */
187		if (size <= 4 * SPA_MINBLOCKSIZE) {
188			align = SPA_MINBLOCKSIZE;
189		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
190			align = PAGESIZE;
191		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
192			align = p2 >> 2;
193		}
194
195		if (align != 0) {
196			char name[36];
197			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
198			zio_buf_cache[c] = kmem_cache_create(name, size,
199			    align, NULL, NULL, NULL, NULL, NULL, cflags);
200
201			/*
202			 * Since zio_data bufs do not appear in crash dumps, we
203			 * pass KMC_NOTOUCH so that no allocator metadata is
204			 * stored with the buffers.
205			 */
206			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
207			zio_data_buf_cache[c] = kmem_cache_create(name, size,
208			    align, NULL, NULL, NULL, NULL, NULL,
209			    cflags | KMC_NOTOUCH | KMC_NODEBUG);
210		}
211	}
212
213	while (--c != 0) {
214		ASSERT(zio_buf_cache[c] != NULL);
215		if (zio_buf_cache[c - 1] == NULL)
216			zio_buf_cache[c - 1] = zio_buf_cache[c];
217
218		ASSERT(zio_data_buf_cache[c] != NULL);
219		if (zio_data_buf_cache[c - 1] == NULL)
220			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
221	}
222out:
223
224	/*
225	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
226	 * to fail 3 times per txg or 8 failures, whichever is greater.
227	 */
228	if (zfs_mg_alloc_failures == 0)
229		zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
230	else if (zfs_mg_alloc_failures < 8)
231		zfs_mg_alloc_failures = 8;
232
233	zio_inject_init();
234
235	zio_trim_ksp = kstat_create("zfs", 0, "zio_trim", "misc",
236	    KSTAT_TYPE_NAMED,
237	    sizeof(zio_trim_stats) / sizeof(kstat_named_t),
238	    KSTAT_FLAG_VIRTUAL);
239
240	if (zio_trim_ksp != NULL) {
241		zio_trim_ksp->ks_data = &zio_trim_stats;
242		kstat_install(zio_trim_ksp);
243	}
244}
245
246void
247zio_fini(void)
248{
249	size_t c;
250	kmem_cache_t *last_cache = NULL;
251	kmem_cache_t *last_data_cache = NULL;
252
253	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
254		if (zio_buf_cache[c] != last_cache) {
255			last_cache = zio_buf_cache[c];
256			kmem_cache_destroy(zio_buf_cache[c]);
257		}
258		zio_buf_cache[c] = NULL;
259
260		if (zio_data_buf_cache[c] != last_data_cache) {
261			last_data_cache = zio_data_buf_cache[c];
262			kmem_cache_destroy(zio_data_buf_cache[c]);
263		}
264		zio_data_buf_cache[c] = NULL;
265	}
266
267	kmem_cache_destroy(zio_link_cache);
268	kmem_cache_destroy(zio_cache);
269
270	zio_inject_fini();
271
272	if (zio_trim_ksp != NULL) {
273		kstat_delete(zio_trim_ksp);
274		zio_trim_ksp = NULL;
275	}
276}
277
278/*
279 * ==========================================================================
280 * Allocate and free I/O buffers
281 * ==========================================================================
282 */
283
284/*
285 * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
286 * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
287 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
288 * excess / transient data in-core during a crashdump.
289 */
290void *
291zio_buf_alloc(size_t size)
292{
293	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
294	int flags = zio_exclude_metadata ? KM_NODEBUG : 0;
295
296	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
297
298	if (zio_use_uma)
299		return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
300	else
301		return (kmem_alloc(size, KM_SLEEP|flags));
302}
303
304/*
305 * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
306 * crashdump if the kernel panics.  This exists so that we will limit the amount
307 * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
308 * of kernel heap dumped to disk when the kernel panics)
309 */
310void *
311zio_data_buf_alloc(size_t size)
312{
313	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
314
315	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
316
317	if (zio_use_uma)
318		return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319	else
320		return (kmem_alloc(size, KM_SLEEP | KM_NODEBUG));
321}
322
323void
324zio_buf_free(void *buf, size_t size)
325{
326	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
327
328	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
329
330	if (zio_use_uma)
331		kmem_cache_free(zio_buf_cache[c], buf);
332	else
333		kmem_free(buf, size);
334}
335
336void
337zio_data_buf_free(void *buf, size_t size)
338{
339	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343	if (zio_use_uma)
344		kmem_cache_free(zio_data_buf_cache[c], buf);
345	else
346		kmem_free(buf, size);
347}
348
349/*
350 * ==========================================================================
351 * Push and pop I/O transform buffers
352 * ==========================================================================
353 */
354static void
355zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
356	zio_transform_func_t *transform)
357{
358	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
359
360	zt->zt_orig_data = zio->io_data;
361	zt->zt_orig_size = zio->io_size;
362	zt->zt_bufsize = bufsize;
363	zt->zt_transform = transform;
364
365	zt->zt_next = zio->io_transform_stack;
366	zio->io_transform_stack = zt;
367
368	zio->io_data = data;
369	zio->io_size = size;
370}
371
372static void
373zio_pop_transforms(zio_t *zio)
374{
375	zio_transform_t *zt;
376
377	while ((zt = zio->io_transform_stack) != NULL) {
378		if (zt->zt_transform != NULL)
379			zt->zt_transform(zio,
380			    zt->zt_orig_data, zt->zt_orig_size);
381
382		if (zt->zt_bufsize != 0)
383			zio_buf_free(zio->io_data, zt->zt_bufsize);
384
385		zio->io_data = zt->zt_orig_data;
386		zio->io_size = zt->zt_orig_size;
387		zio->io_transform_stack = zt->zt_next;
388
389		kmem_free(zt, sizeof (zio_transform_t));
390	}
391}
392
393/*
394 * ==========================================================================
395 * I/O transform callbacks for subblocks and decompression
396 * ==========================================================================
397 */
398static void
399zio_subblock(zio_t *zio, void *data, uint64_t size)
400{
401	ASSERT(zio->io_size > size);
402
403	if (zio->io_type == ZIO_TYPE_READ)
404		bcopy(zio->io_data, data, size);
405}
406
407static void
408zio_decompress(zio_t *zio, void *data, uint64_t size)
409{
410	if (zio->io_error == 0 &&
411	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
412	    zio->io_data, data, zio->io_size, size) != 0)
413		zio->io_error = SET_ERROR(EIO);
414}
415
416/*
417 * ==========================================================================
418 * I/O parent/child relationships and pipeline interlocks
419 * ==========================================================================
420 */
421/*
422 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
423 *        continue calling these functions until they return NULL.
424 *        Otherwise, the next caller will pick up the list walk in
425 *        some indeterminate state.  (Otherwise every caller would
426 *        have to pass in a cookie to keep the state represented by
427 *        io_walk_link, which gets annoying.)
428 */
429zio_t *
430zio_walk_parents(zio_t *cio)
431{
432	zio_link_t *zl = cio->io_walk_link;
433	list_t *pl = &cio->io_parent_list;
434
435	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
436	cio->io_walk_link = zl;
437
438	if (zl == NULL)
439		return (NULL);
440
441	ASSERT(zl->zl_child == cio);
442	return (zl->zl_parent);
443}
444
445zio_t *
446zio_walk_children(zio_t *pio)
447{
448	zio_link_t *zl = pio->io_walk_link;
449	list_t *cl = &pio->io_child_list;
450
451	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
452	pio->io_walk_link = zl;
453
454	if (zl == NULL)
455		return (NULL);
456
457	ASSERT(zl->zl_parent == pio);
458	return (zl->zl_child);
459}
460
461zio_t *
462zio_unique_parent(zio_t *cio)
463{
464	zio_t *pio = zio_walk_parents(cio);
465
466	VERIFY(zio_walk_parents(cio) == NULL);
467	return (pio);
468}
469
470void
471zio_add_child(zio_t *pio, zio_t *cio)
472{
473	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
474
475	/*
476	 * Logical I/Os can have logical, gang, or vdev children.
477	 * Gang I/Os can have gang or vdev children.
478	 * Vdev I/Os can only have vdev children.
479	 * The following ASSERT captures all of these constraints.
480	 */
481	ASSERT(cio->io_child_type <= pio->io_child_type);
482
483	zl->zl_parent = pio;
484	zl->zl_child = cio;
485
486	mutex_enter(&cio->io_lock);
487	mutex_enter(&pio->io_lock);
488
489	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
490
491	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
492		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
493
494	list_insert_head(&pio->io_child_list, zl);
495	list_insert_head(&cio->io_parent_list, zl);
496
497	pio->io_child_count++;
498	cio->io_parent_count++;
499
500	mutex_exit(&pio->io_lock);
501	mutex_exit(&cio->io_lock);
502}
503
504static void
505zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
506{
507	ASSERT(zl->zl_parent == pio);
508	ASSERT(zl->zl_child == cio);
509
510	mutex_enter(&cio->io_lock);
511	mutex_enter(&pio->io_lock);
512
513	list_remove(&pio->io_child_list, zl);
514	list_remove(&cio->io_parent_list, zl);
515
516	pio->io_child_count--;
517	cio->io_parent_count--;
518
519	mutex_exit(&pio->io_lock);
520	mutex_exit(&cio->io_lock);
521
522	kmem_cache_free(zio_link_cache, zl);
523}
524
525static boolean_t
526zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
527{
528	uint64_t *countp = &zio->io_children[child][wait];
529	boolean_t waiting = B_FALSE;
530
531	mutex_enter(&zio->io_lock);
532	ASSERT(zio->io_stall == NULL);
533	if (*countp != 0) {
534		zio->io_stage >>= 1;
535		zio->io_stall = countp;
536		waiting = B_TRUE;
537	}
538	mutex_exit(&zio->io_lock);
539
540	return (waiting);
541}
542
543static void
544zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
545{
546	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
547	int *errorp = &pio->io_child_error[zio->io_child_type];
548
549	mutex_enter(&pio->io_lock);
550	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
551		*errorp = zio_worst_error(*errorp, zio->io_error);
552	pio->io_reexecute |= zio->io_reexecute;
553	ASSERT3U(*countp, >, 0);
554	if (--*countp == 0 && pio->io_stall == countp) {
555		pio->io_stall = NULL;
556		mutex_exit(&pio->io_lock);
557		zio_execute(pio);
558	} else {
559		mutex_exit(&pio->io_lock);
560	}
561}
562
563static void
564zio_inherit_child_errors(zio_t *zio, enum zio_child c)
565{
566	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
567		zio->io_error = zio->io_child_error[c];
568}
569
570/*
571 * ==========================================================================
572 * Create the various types of I/O (read, write, free, etc)
573 * ==========================================================================
574 */
575static zio_t *
576zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
577    void *data, uint64_t size, zio_done_func_t *done, void *private,
578    zio_type_t type, int priority, enum zio_flag flags,
579    vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
580    enum zio_stage stage, enum zio_stage pipeline)
581{
582	zio_t *zio;
583
584	ASSERT3U(type == ZIO_TYPE_FREE || size, <=, SPA_MAXBLOCKSIZE);
585	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
586	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
587
588	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
589	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
590	ASSERT(vd || stage == ZIO_STAGE_OPEN);
591
592	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
593	bzero(zio, sizeof (zio_t));
594
595	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
596	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
597
598	list_create(&zio->io_parent_list, sizeof (zio_link_t),
599	    offsetof(zio_link_t, zl_parent_node));
600	list_create(&zio->io_child_list, sizeof (zio_link_t),
601	    offsetof(zio_link_t, zl_child_node));
602
603	if (vd != NULL)
604		zio->io_child_type = ZIO_CHILD_VDEV;
605	else if (flags & ZIO_FLAG_GANG_CHILD)
606		zio->io_child_type = ZIO_CHILD_GANG;
607	else if (flags & ZIO_FLAG_DDT_CHILD)
608		zio->io_child_type = ZIO_CHILD_DDT;
609	else
610		zio->io_child_type = ZIO_CHILD_LOGICAL;
611
612	if (bp != NULL) {
613		zio->io_bp = (blkptr_t *)bp;
614		zio->io_bp_copy = *bp;
615		zio->io_bp_orig = *bp;
616		if (type != ZIO_TYPE_WRITE ||
617		    zio->io_child_type == ZIO_CHILD_DDT)
618			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
619		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
620			zio->io_logical = zio;
621		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
622			pipeline |= ZIO_GANG_STAGES;
623	}
624
625	zio->io_spa = spa;
626	zio->io_txg = txg;
627	zio->io_done = done;
628	zio->io_private = private;
629	zio->io_type = type;
630	zio->io_priority = priority;
631	zio->io_vd = vd;
632	zio->io_offset = offset;
633	zio->io_orig_data = zio->io_data = data;
634	zio->io_orig_size = zio->io_size = size;
635	zio->io_orig_flags = zio->io_flags = flags;
636	zio->io_orig_stage = zio->io_stage = stage;
637	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
638
639	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
640	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
641
642	if (zb != NULL)
643		zio->io_bookmark = *zb;
644
645	if (pio != NULL) {
646		if (zio->io_logical == NULL)
647			zio->io_logical = pio->io_logical;
648		if (zio->io_child_type == ZIO_CHILD_GANG)
649			zio->io_gang_leader = pio->io_gang_leader;
650		zio_add_child(pio, zio);
651	}
652
653	return (zio);
654}
655
656static void
657zio_destroy(zio_t *zio)
658{
659	list_destroy(&zio->io_parent_list);
660	list_destroy(&zio->io_child_list);
661	mutex_destroy(&zio->io_lock);
662	cv_destroy(&zio->io_cv);
663	kmem_cache_free(zio_cache, zio);
664}
665
666zio_t *
667zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
668    void *private, enum zio_flag flags)
669{
670	zio_t *zio;
671
672	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
673	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
674	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
675
676	return (zio);
677}
678
679zio_t *
680zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
681{
682	return (zio_null(NULL, spa, NULL, done, private, flags));
683}
684
685zio_t *
686zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
687    void *data, uint64_t size, zio_done_func_t *done, void *private,
688    int priority, enum zio_flag flags, const zbookmark_t *zb)
689{
690	zio_t *zio;
691
692	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
693	    data, size, done, private,
694	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
695	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
696	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
697
698	return (zio);
699}
700
701zio_t *
702zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
703    void *data, uint64_t size, const zio_prop_t *zp,
704    zio_done_func_t *ready, zio_done_func_t *done, void *private,
705    int priority, enum zio_flag flags, const zbookmark_t *zb)
706{
707	zio_t *zio;
708
709	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
710	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
711	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
712	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
713	    DMU_OT_IS_VALID(zp->zp_type) &&
714	    zp->zp_level < 32 &&
715	    zp->zp_copies > 0 &&
716	    zp->zp_copies <= spa_max_replication(spa));
717
718	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
719	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
720	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
721	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
722
723	zio->io_ready = ready;
724	zio->io_prop = *zp;
725
726	return (zio);
727}
728
729zio_t *
730zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
731    uint64_t size, zio_done_func_t *done, void *private, int priority,
732    enum zio_flag flags, zbookmark_t *zb)
733{
734	zio_t *zio;
735
736	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
737	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
738	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
739
740	return (zio);
741}
742
743void
744zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
745{
746	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
747	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
748	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
749	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
750
751	/*
752	 * We must reset the io_prop to match the values that existed
753	 * when the bp was first written by dmu_sync() keeping in mind
754	 * that nopwrite and dedup are mutually exclusive.
755	 */
756	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
757	zio->io_prop.zp_nopwrite = nopwrite;
758	zio->io_prop.zp_copies = copies;
759	zio->io_bp_override = bp;
760}
761
762void
763zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
764{
765	metaslab_check_free(spa, bp);
766
767	/*
768	 * Frees that are for the currently-syncing txg, are not going to be
769	 * deferred, and which will not need to do a read (i.e. not GANG or
770	 * DEDUP), can be processed immediately.  Otherwise, put them on the
771	 * in-memory list for later processing.
772	 */
773	if (zfs_trim_enabled || BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
774	    txg != spa->spa_syncing_txg ||
775	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
776		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
777	} else {
778		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp,
779		    BP_GET_PSIZE(bp), 0)));
780	}
781}
782
783zio_t *
784zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
785    uint64_t size, enum zio_flag flags)
786{
787	zio_t *zio;
788	enum zio_stage stage = ZIO_FREE_PIPELINE;
789
790	dprintf_bp(bp, "freeing in txg %llu, pass %u",
791	    (longlong_t)txg, spa->spa_sync_pass);
792
793	ASSERT(!BP_IS_HOLE(bp));
794	ASSERT(spa_syncing_txg(spa) == txg);
795	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
796
797	metaslab_check_free(spa, bp);
798	arc_freed(spa, bp);
799
800	if (zfs_trim_enabled)
801		stage |= ZIO_STAGE_ISSUE_ASYNC | ZIO_STAGE_VDEV_IO_START |
802		    ZIO_STAGE_VDEV_IO_ASSESS;
803	/*
804	 * GANG and DEDUP blocks can induce a read (for the gang block header,
805	 * or the DDT), so issue them asynchronously so that this thread is
806	 * not tied up.
807	 */
808	else if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
809		stage |= ZIO_STAGE_ISSUE_ASYNC;
810
811	zio = zio_create(pio, spa, txg, bp, NULL, size,
812	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
813	    NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
814
815	return (zio);
816}
817
818zio_t *
819zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
820    zio_done_func_t *done, void *private, enum zio_flag flags)
821{
822	zio_t *zio;
823
824	/*
825	 * A claim is an allocation of a specific block.  Claims are needed
826	 * to support immediate writes in the intent log.  The issue is that
827	 * immediate writes contain committed data, but in a txg that was
828	 * *not* committed.  Upon opening the pool after an unclean shutdown,
829	 * the intent log claims all blocks that contain immediate write data
830	 * so that the SPA knows they're in use.
831	 *
832	 * All claims *must* be resolved in the first txg -- before the SPA
833	 * starts allocating blocks -- so that nothing is allocated twice.
834	 * If txg == 0 we just verify that the block is claimable.
835	 */
836	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
837	ASSERT(txg == spa_first_txg(spa) || txg == 0);
838	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
839
840	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
841	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
842	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
843
844	return (zio);
845}
846
847zio_t *
848zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, uint64_t offset,
849    uint64_t size, zio_done_func_t *done, void *private, int priority,
850    enum zio_flag flags)
851{
852	zio_t *zio;
853	int c;
854
855	if (vd->vdev_children == 0) {
856		zio = zio_create(pio, spa, 0, NULL, NULL, size, done, private,
857		    ZIO_TYPE_IOCTL, priority, flags, vd, offset, NULL,
858		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
859
860		zio->io_cmd = cmd;
861	} else {
862		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
863
864		for (c = 0; c < vd->vdev_children; c++)
865			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
866			    offset, size, done, private, priority, flags));
867	}
868
869	return (zio);
870}
871
872zio_t *
873zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
874    void *data, int checksum, zio_done_func_t *done, void *private,
875    int priority, enum zio_flag flags, boolean_t labels)
876{
877	zio_t *zio;
878
879	ASSERT(vd->vdev_children == 0);
880	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
881	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
882	ASSERT3U(offset + size, <=, vd->vdev_psize);
883
884	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
885	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
886	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
887
888	zio->io_prop.zp_checksum = checksum;
889
890	return (zio);
891}
892
893zio_t *
894zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
895    void *data, int checksum, zio_done_func_t *done, void *private,
896    int priority, enum zio_flag flags, boolean_t labels)
897{
898	zio_t *zio;
899
900	ASSERT(vd->vdev_children == 0);
901	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
902	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
903	ASSERT3U(offset + size, <=, vd->vdev_psize);
904
905	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
906	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
907	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
908
909	zio->io_prop.zp_checksum = checksum;
910
911	if (zio_checksum_table[checksum].ci_eck) {
912		/*
913		 * zec checksums are necessarily destructive -- they modify
914		 * the end of the write buffer to hold the verifier/checksum.
915		 * Therefore, we must make a local copy in case the data is
916		 * being written to multiple places in parallel.
917		 */
918		void *wbuf = zio_buf_alloc(size);
919		bcopy(data, wbuf, size);
920		zio_push_transform(zio, wbuf, size, size, NULL);
921	}
922
923	return (zio);
924}
925
926/*
927 * Create a child I/O to do some work for us.
928 */
929zio_t *
930zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
931	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
932	zio_done_func_t *done, void *private)
933{
934	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
935	zio_t *zio;
936
937	ASSERT(vd->vdev_parent ==
938	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
939
940	if (type == ZIO_TYPE_READ && bp != NULL) {
941		/*
942		 * If we have the bp, then the child should perform the
943		 * checksum and the parent need not.  This pushes error
944		 * detection as close to the leaves as possible and
945		 * eliminates redundant checksums in the interior nodes.
946		 */
947		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
948		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
949	}
950
951	if (vd->vdev_children == 0)
952		offset += VDEV_LABEL_START_SIZE;
953
954	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
955
956	/*
957	 * If we've decided to do a repair, the write is not speculative --
958	 * even if the original read was.
959	 */
960	if (flags & ZIO_FLAG_IO_REPAIR)
961		flags &= ~ZIO_FLAG_SPECULATIVE;
962
963	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
964	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
965	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
966
967	return (zio);
968}
969
970zio_t *
971zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
972	int type, int priority, enum zio_flag flags,
973	zio_done_func_t *done, void *private)
974{
975	zio_t *zio;
976
977	ASSERT(vd->vdev_ops->vdev_op_leaf);
978
979	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
980	    data, size, done, private, type, priority,
981	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
982	    vd, offset, NULL,
983	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
984
985	return (zio);
986}
987
988void
989zio_flush(zio_t *zio, vdev_t *vd)
990{
991	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 0, 0,
992	    NULL, NULL, ZIO_PRIORITY_NOW,
993	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
994}
995
996zio_t *
997zio_trim(zio_t *zio, spa_t *spa, vdev_t *vd, uint64_t offset, uint64_t size)
998{
999
1000	ASSERT(vd->vdev_ops->vdev_op_leaf);
1001
1002	return zio_ioctl(zio, spa, vd, DKIOCTRIM, offset, size,
1003	    NULL, NULL, ZIO_PRIORITY_TRIM,
1004	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
1005}
1006
1007void
1008zio_shrink(zio_t *zio, uint64_t size)
1009{
1010	ASSERT(zio->io_executor == NULL);
1011	ASSERT(zio->io_orig_size == zio->io_size);
1012	ASSERT(size <= zio->io_size);
1013
1014	/*
1015	 * We don't shrink for raidz because of problems with the
1016	 * reconstruction when reading back less than the block size.
1017	 * Note, BP_IS_RAIDZ() assumes no compression.
1018	 */
1019	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1020	if (!BP_IS_RAIDZ(zio->io_bp))
1021		zio->io_orig_size = zio->io_size = size;
1022}
1023
1024/*
1025 * ==========================================================================
1026 * Prepare to read and write logical blocks
1027 * ==========================================================================
1028 */
1029
1030static int
1031zio_read_bp_init(zio_t *zio)
1032{
1033	blkptr_t *bp = zio->io_bp;
1034
1035	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1036	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1037	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1038		uint64_t psize = BP_GET_PSIZE(bp);
1039		void *cbuf = zio_buf_alloc(psize);
1040
1041		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1042	}
1043
1044	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1045		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1046
1047	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1048		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1049
1050	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1051		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1052
1053	return (ZIO_PIPELINE_CONTINUE);
1054}
1055
1056static int
1057zio_write_bp_init(zio_t *zio)
1058{
1059	spa_t *spa = zio->io_spa;
1060	zio_prop_t *zp = &zio->io_prop;
1061	enum zio_compress compress = zp->zp_compress;
1062	blkptr_t *bp = zio->io_bp;
1063	uint64_t lsize = zio->io_size;
1064	uint64_t psize = lsize;
1065	int pass = 1;
1066
1067	/*
1068	 * If our children haven't all reached the ready stage,
1069	 * wait for them and then repeat this pipeline stage.
1070	 */
1071	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1072	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1073		return (ZIO_PIPELINE_STOP);
1074
1075	if (!IO_IS_ALLOCATING(zio))
1076		return (ZIO_PIPELINE_CONTINUE);
1077
1078	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1079
1080	if (zio->io_bp_override) {
1081		ASSERT(bp->blk_birth != zio->io_txg);
1082		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1083
1084		*bp = *zio->io_bp_override;
1085		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1086
1087		/*
1088		 * If we've been overridden and nopwrite is set then
1089		 * set the flag accordingly to indicate that a nopwrite
1090		 * has already occurred.
1091		 */
1092		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1093			ASSERT(!zp->zp_dedup);
1094			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1095			return (ZIO_PIPELINE_CONTINUE);
1096		}
1097
1098		ASSERT(!zp->zp_nopwrite);
1099
1100		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1101			return (ZIO_PIPELINE_CONTINUE);
1102
1103		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1104		    zp->zp_dedup_verify);
1105
1106		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1107			BP_SET_DEDUP(bp, 1);
1108			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1109			return (ZIO_PIPELINE_CONTINUE);
1110		}
1111		zio->io_bp_override = NULL;
1112		BP_ZERO(bp);
1113	}
1114
1115	if (bp->blk_birth == zio->io_txg) {
1116		/*
1117		 * We're rewriting an existing block, which means we're
1118		 * working on behalf of spa_sync().  For spa_sync() to
1119		 * converge, it must eventually be the case that we don't
1120		 * have to allocate new blocks.  But compression changes
1121		 * the blocksize, which forces a reallocate, and makes
1122		 * convergence take longer.  Therefore, after the first
1123		 * few passes, stop compressing to ensure convergence.
1124		 */
1125		pass = spa_sync_pass(spa);
1126
1127		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1128		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1129		ASSERT(!BP_GET_DEDUP(bp));
1130
1131		if (pass >= zfs_sync_pass_dont_compress)
1132			compress = ZIO_COMPRESS_OFF;
1133
1134		/* Make sure someone doesn't change their mind on overwrites */
1135		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1136		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1137	}
1138
1139	if (compress != ZIO_COMPRESS_OFF) {
1140		metaslab_class_t *mc = spa_normal_class(spa);
1141		void *cbuf = zio_buf_alloc(lsize);
1142		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize,
1143		    (size_t)metaslab_class_get_minblocksize(mc));
1144		if (psize == 0 || psize == lsize) {
1145			compress = ZIO_COMPRESS_OFF;
1146			zio_buf_free(cbuf, lsize);
1147		} else {
1148			ASSERT(psize < lsize);
1149			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1150		}
1151	}
1152
1153	/*
1154	 * The final pass of spa_sync() must be all rewrites, but the first
1155	 * few passes offer a trade-off: allocating blocks defers convergence,
1156	 * but newly allocated blocks are sequential, so they can be written
1157	 * to disk faster.  Therefore, we allow the first few passes of
1158	 * spa_sync() to allocate new blocks, but force rewrites after that.
1159	 * There should only be a handful of blocks after pass 1 in any case.
1160	 */
1161	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1162	    pass >= zfs_sync_pass_rewrite) {
1163		ASSERT(psize != 0);
1164		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1165		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1166		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1167	} else {
1168		BP_ZERO(bp);
1169		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1170	}
1171
1172	if (psize == 0) {
1173		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1174	} else {
1175		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1176		BP_SET_LSIZE(bp, lsize);
1177		BP_SET_PSIZE(bp, psize);
1178		BP_SET_COMPRESS(bp, compress);
1179		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1180		BP_SET_TYPE(bp, zp->zp_type);
1181		BP_SET_LEVEL(bp, zp->zp_level);
1182		BP_SET_DEDUP(bp, zp->zp_dedup);
1183		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1184		if (zp->zp_dedup) {
1185			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1186			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1187			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1188		}
1189		if (zp->zp_nopwrite) {
1190			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1191			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1192			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1193		}
1194	}
1195
1196	return (ZIO_PIPELINE_CONTINUE);
1197}
1198
1199static int
1200zio_free_bp_init(zio_t *zio)
1201{
1202	blkptr_t *bp = zio->io_bp;
1203
1204	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1205		if (BP_GET_DEDUP(bp))
1206			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1207	}
1208
1209	return (ZIO_PIPELINE_CONTINUE);
1210}
1211
1212/*
1213 * ==========================================================================
1214 * Execute the I/O pipeline
1215 * ==========================================================================
1216 */
1217
1218static void
1219zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1220{
1221	spa_t *spa = zio->io_spa;
1222	zio_type_t t = zio->io_type;
1223	int flags = TQ_SLEEP | (cutinline ? TQ_FRONT : 0);
1224
1225	ASSERT(q == ZIO_TASKQ_ISSUE || q == ZIO_TASKQ_INTERRUPT);
1226
1227	/*
1228	 * If we're a config writer or a probe, the normal issue and
1229	 * interrupt threads may all be blocked waiting for the config lock.
1230	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1231	 */
1232	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1233		t = ZIO_TYPE_NULL;
1234
1235	/*
1236	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1237	 */
1238	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1239		t = ZIO_TYPE_NULL;
1240
1241	/*
1242	 * If this is a high priority I/O, then use the high priority taskq.
1243	 */
1244	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1245	    spa->spa_zio_taskq[t][q + 1] != NULL)
1246		q++;
1247
1248	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1249#ifdef _KERNEL
1250	(void) taskq_dispatch_safe(spa->spa_zio_taskq[t][q],
1251	    (task_func_t *)zio_execute, zio, flags, &zio->io_task);
1252#else
1253	(void) taskq_dispatch(spa->spa_zio_taskq[t][q],
1254	    (task_func_t *)zio_execute, zio, flags);
1255#endif
1256}
1257
1258static boolean_t
1259zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1260{
1261	kthread_t *executor = zio->io_executor;
1262	spa_t *spa = zio->io_spa;
1263
1264	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1265		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1266			return (B_TRUE);
1267
1268	return (B_FALSE);
1269}
1270
1271static int
1272zio_issue_async(zio_t *zio)
1273{
1274	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1275
1276	return (ZIO_PIPELINE_STOP);
1277}
1278
1279void
1280zio_interrupt(zio_t *zio)
1281{
1282	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1283}
1284
1285/*
1286 * Execute the I/O pipeline until one of the following occurs:
1287 *
1288 *	(1) the I/O completes
1289 *	(2) the pipeline stalls waiting for dependent child I/Os
1290 *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1291 *	(4) the I/O is delegated by vdev-level caching or aggregation
1292 *	(5) the I/O is deferred due to vdev-level queueing
1293 *	(6) the I/O is handed off to another thread.
1294 *
1295 * In all cases, the pipeline stops whenever there's no CPU work; it never
1296 * burns a thread in cv_wait().
1297 *
1298 * There's no locking on io_stage because there's no legitimate way
1299 * for multiple threads to be attempting to process the same I/O.
1300 */
1301static zio_pipe_stage_t *zio_pipeline[];
1302
1303void
1304zio_execute(zio_t *zio)
1305{
1306	zio->io_executor = curthread;
1307
1308	while (zio->io_stage < ZIO_STAGE_DONE) {
1309		enum zio_stage pipeline = zio->io_pipeline;
1310		enum zio_stage stage = zio->io_stage;
1311		int rv;
1312
1313		ASSERT(!MUTEX_HELD(&zio->io_lock));
1314		ASSERT(ISP2(stage));
1315		ASSERT(zio->io_stall == NULL);
1316
1317		do {
1318			stage <<= 1;
1319		} while ((stage & pipeline) == 0);
1320
1321		ASSERT(stage <= ZIO_STAGE_DONE);
1322
1323		/*
1324		 * If we are in interrupt context and this pipeline stage
1325		 * will grab a config lock that is held across I/O,
1326		 * or may wait for an I/O that needs an interrupt thread
1327		 * to complete, issue async to avoid deadlock.
1328		 *
1329		 * For VDEV_IO_START, we cut in line so that the io will
1330		 * be sent to disk promptly.
1331		 */
1332		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1333		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1334			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1335			    zio_requeue_io_start_cut_in_line : B_FALSE;
1336			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1337			return;
1338		}
1339
1340		zio->io_stage = stage;
1341		rv = zio_pipeline[highbit(stage) - 1](zio);
1342
1343		if (rv == ZIO_PIPELINE_STOP)
1344			return;
1345
1346		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1347	}
1348}
1349
1350/*
1351 * ==========================================================================
1352 * Initiate I/O, either sync or async
1353 * ==========================================================================
1354 */
1355int
1356zio_wait(zio_t *zio)
1357{
1358	int error;
1359
1360	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1361	ASSERT(zio->io_executor == NULL);
1362
1363	zio->io_waiter = curthread;
1364
1365	zio_execute(zio);
1366
1367	mutex_enter(&zio->io_lock);
1368	while (zio->io_executor != NULL)
1369		cv_wait(&zio->io_cv, &zio->io_lock);
1370	mutex_exit(&zio->io_lock);
1371
1372	error = zio->io_error;
1373	zio_destroy(zio);
1374
1375	return (error);
1376}
1377
1378void
1379zio_nowait(zio_t *zio)
1380{
1381	ASSERT(zio->io_executor == NULL);
1382
1383	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1384	    zio_unique_parent(zio) == NULL) {
1385		/*
1386		 * This is a logical async I/O with no parent to wait for it.
1387		 * We add it to the spa_async_root_zio "Godfather" I/O which
1388		 * will ensure they complete prior to unloading the pool.
1389		 */
1390		spa_t *spa = zio->io_spa;
1391
1392		zio_add_child(spa->spa_async_zio_root, zio);
1393	}
1394
1395	zio_execute(zio);
1396}
1397
1398/*
1399 * ==========================================================================
1400 * Reexecute or suspend/resume failed I/O
1401 * ==========================================================================
1402 */
1403
1404static void
1405zio_reexecute(zio_t *pio)
1406{
1407	zio_t *cio, *cio_next;
1408
1409	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1410	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1411	ASSERT(pio->io_gang_leader == NULL);
1412	ASSERT(pio->io_gang_tree == NULL);
1413
1414	pio->io_flags = pio->io_orig_flags;
1415	pio->io_stage = pio->io_orig_stage;
1416	pio->io_pipeline = pio->io_orig_pipeline;
1417	pio->io_reexecute = 0;
1418	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1419	pio->io_error = 0;
1420	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1421		pio->io_state[w] = 0;
1422	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1423		pio->io_child_error[c] = 0;
1424
1425	if (IO_IS_ALLOCATING(pio))
1426		BP_ZERO(pio->io_bp);
1427
1428	/*
1429	 * As we reexecute pio's children, new children could be created.
1430	 * New children go to the head of pio's io_child_list, however,
1431	 * so we will (correctly) not reexecute them.  The key is that
1432	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1433	 * cannot be affected by any side effects of reexecuting 'cio'.
1434	 */
1435	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1436		cio_next = zio_walk_children(pio);
1437		mutex_enter(&pio->io_lock);
1438		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1439			pio->io_children[cio->io_child_type][w]++;
1440		mutex_exit(&pio->io_lock);
1441		zio_reexecute(cio);
1442	}
1443
1444	/*
1445	 * Now that all children have been reexecuted, execute the parent.
1446	 * We don't reexecute "The Godfather" I/O here as it's the
1447	 * responsibility of the caller to wait on him.
1448	 */
1449	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1450		zio_execute(pio);
1451}
1452
1453void
1454zio_suspend(spa_t *spa, zio_t *zio)
1455{
1456	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1457		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1458		    "failure and the failure mode property for this pool "
1459		    "is set to panic.", spa_name(spa));
1460
1461	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1462
1463	mutex_enter(&spa->spa_suspend_lock);
1464
1465	if (spa->spa_suspend_zio_root == NULL)
1466		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1467		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1468		    ZIO_FLAG_GODFATHER);
1469
1470	spa->spa_suspended = B_TRUE;
1471
1472	if (zio != NULL) {
1473		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1474		ASSERT(zio != spa->spa_suspend_zio_root);
1475		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1476		ASSERT(zio_unique_parent(zio) == NULL);
1477		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1478		zio_add_child(spa->spa_suspend_zio_root, zio);
1479	}
1480
1481	mutex_exit(&spa->spa_suspend_lock);
1482}
1483
1484int
1485zio_resume(spa_t *spa)
1486{
1487	zio_t *pio;
1488
1489	/*
1490	 * Reexecute all previously suspended i/o.
1491	 */
1492	mutex_enter(&spa->spa_suspend_lock);
1493	spa->spa_suspended = B_FALSE;
1494	cv_broadcast(&spa->spa_suspend_cv);
1495	pio = spa->spa_suspend_zio_root;
1496	spa->spa_suspend_zio_root = NULL;
1497	mutex_exit(&spa->spa_suspend_lock);
1498
1499	if (pio == NULL)
1500		return (0);
1501
1502	zio_reexecute(pio);
1503	return (zio_wait(pio));
1504}
1505
1506void
1507zio_resume_wait(spa_t *spa)
1508{
1509	mutex_enter(&spa->spa_suspend_lock);
1510	while (spa_suspended(spa))
1511		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1512	mutex_exit(&spa->spa_suspend_lock);
1513}
1514
1515/*
1516 * ==========================================================================
1517 * Gang blocks.
1518 *
1519 * A gang block is a collection of small blocks that looks to the DMU
1520 * like one large block.  When zio_dva_allocate() cannot find a block
1521 * of the requested size, due to either severe fragmentation or the pool
1522 * being nearly full, it calls zio_write_gang_block() to construct the
1523 * block from smaller fragments.
1524 *
1525 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1526 * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1527 * an indirect block: it's an array of block pointers.  It consumes
1528 * only one sector and hence is allocatable regardless of fragmentation.
1529 * The gang header's bps point to its gang members, which hold the data.
1530 *
1531 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1532 * as the verifier to ensure uniqueness of the SHA256 checksum.
1533 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1534 * not the gang header.  This ensures that data block signatures (needed for
1535 * deduplication) are independent of how the block is physically stored.
1536 *
1537 * Gang blocks can be nested: a gang member may itself be a gang block.
1538 * Thus every gang block is a tree in which root and all interior nodes are
1539 * gang headers, and the leaves are normal blocks that contain user data.
1540 * The root of the gang tree is called the gang leader.
1541 *
1542 * To perform any operation (read, rewrite, free, claim) on a gang block,
1543 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1544 * in the io_gang_tree field of the original logical i/o by recursively
1545 * reading the gang leader and all gang headers below it.  This yields
1546 * an in-core tree containing the contents of every gang header and the
1547 * bps for every constituent of the gang block.
1548 *
1549 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1550 * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1551 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1552 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1553 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1554 * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1555 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1556 * of the gang header plus zio_checksum_compute() of the data to update the
1557 * gang header's blk_cksum as described above.
1558 *
1559 * The two-phase assemble/issue model solves the problem of partial failure --
1560 * what if you'd freed part of a gang block but then couldn't read the
1561 * gang header for another part?  Assembling the entire gang tree first
1562 * ensures that all the necessary gang header I/O has succeeded before
1563 * starting the actual work of free, claim, or write.  Once the gang tree
1564 * is assembled, free and claim are in-memory operations that cannot fail.
1565 *
1566 * In the event that a gang write fails, zio_dva_unallocate() walks the
1567 * gang tree to immediately free (i.e. insert back into the space map)
1568 * everything we've allocated.  This ensures that we don't get ENOSPC
1569 * errors during repeated suspend/resume cycles due to a flaky device.
1570 *
1571 * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1572 * the gang tree, we won't modify the block, so we can safely defer the free
1573 * (knowing that the block is still intact).  If we *can* assemble the gang
1574 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1575 * each constituent bp and we can allocate a new block on the next sync pass.
1576 *
1577 * In all cases, the gang tree allows complete recovery from partial failure.
1578 * ==========================================================================
1579 */
1580
1581static zio_t *
1582zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1583{
1584	if (gn != NULL)
1585		return (pio);
1586
1587	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1588	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1589	    &pio->io_bookmark));
1590}
1591
1592zio_t *
1593zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1594{
1595	zio_t *zio;
1596
1597	if (gn != NULL) {
1598		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1599		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1600		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1601		/*
1602		 * As we rewrite each gang header, the pipeline will compute
1603		 * a new gang block header checksum for it; but no one will
1604		 * compute a new data checksum, so we do that here.  The one
1605		 * exception is the gang leader: the pipeline already computed
1606		 * its data checksum because that stage precedes gang assembly.
1607		 * (Presently, nothing actually uses interior data checksums;
1608		 * this is just good hygiene.)
1609		 */
1610		if (gn != pio->io_gang_leader->io_gang_tree) {
1611			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1612			    data, BP_GET_PSIZE(bp));
1613		}
1614		/*
1615		 * If we are here to damage data for testing purposes,
1616		 * leave the GBH alone so that we can detect the damage.
1617		 */
1618		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1619			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1620	} else {
1621		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1622		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1623		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1624	}
1625
1626	return (zio);
1627}
1628
1629/* ARGSUSED */
1630zio_t *
1631zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1632{
1633	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1634	    BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp),
1635	    ZIO_GANG_CHILD_FLAGS(pio)));
1636}
1637
1638/* ARGSUSED */
1639zio_t *
1640zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1641{
1642	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1643	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1644}
1645
1646static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1647	NULL,
1648	zio_read_gang,
1649	zio_rewrite_gang,
1650	zio_free_gang,
1651	zio_claim_gang,
1652	NULL
1653};
1654
1655static void zio_gang_tree_assemble_done(zio_t *zio);
1656
1657static zio_gang_node_t *
1658zio_gang_node_alloc(zio_gang_node_t **gnpp)
1659{
1660	zio_gang_node_t *gn;
1661
1662	ASSERT(*gnpp == NULL);
1663
1664	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1665	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1666	*gnpp = gn;
1667
1668	return (gn);
1669}
1670
1671static void
1672zio_gang_node_free(zio_gang_node_t **gnpp)
1673{
1674	zio_gang_node_t *gn = *gnpp;
1675
1676	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1677		ASSERT(gn->gn_child[g] == NULL);
1678
1679	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1680	kmem_free(gn, sizeof (*gn));
1681	*gnpp = NULL;
1682}
1683
1684static void
1685zio_gang_tree_free(zio_gang_node_t **gnpp)
1686{
1687	zio_gang_node_t *gn = *gnpp;
1688
1689	if (gn == NULL)
1690		return;
1691
1692	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1693		zio_gang_tree_free(&gn->gn_child[g]);
1694
1695	zio_gang_node_free(gnpp);
1696}
1697
1698static void
1699zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1700{
1701	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1702
1703	ASSERT(gio->io_gang_leader == gio);
1704	ASSERT(BP_IS_GANG(bp));
1705
1706	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1707	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1708	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1709}
1710
1711static void
1712zio_gang_tree_assemble_done(zio_t *zio)
1713{
1714	zio_t *gio = zio->io_gang_leader;
1715	zio_gang_node_t *gn = zio->io_private;
1716	blkptr_t *bp = zio->io_bp;
1717
1718	ASSERT(gio == zio_unique_parent(zio));
1719	ASSERT(zio->io_child_count == 0);
1720
1721	if (zio->io_error)
1722		return;
1723
1724	if (BP_SHOULD_BYTESWAP(bp))
1725		byteswap_uint64_array(zio->io_data, zio->io_size);
1726
1727	ASSERT(zio->io_data == gn->gn_gbh);
1728	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1729	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1730
1731	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1732		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1733		if (!BP_IS_GANG(gbp))
1734			continue;
1735		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1736	}
1737}
1738
1739static void
1740zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1741{
1742	zio_t *gio = pio->io_gang_leader;
1743	zio_t *zio;
1744
1745	ASSERT(BP_IS_GANG(bp) == !!gn);
1746	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1747	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1748
1749	/*
1750	 * If you're a gang header, your data is in gn->gn_gbh.
1751	 * If you're a gang member, your data is in 'data' and gn == NULL.
1752	 */
1753	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1754
1755	if (gn != NULL) {
1756		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1757
1758		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1759			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1760			if (BP_IS_HOLE(gbp))
1761				continue;
1762			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1763			data = (char *)data + BP_GET_PSIZE(gbp);
1764		}
1765	}
1766
1767	if (gn == gio->io_gang_tree && gio->io_data != NULL)
1768		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1769
1770	if (zio != pio)
1771		zio_nowait(zio);
1772}
1773
1774static int
1775zio_gang_assemble(zio_t *zio)
1776{
1777	blkptr_t *bp = zio->io_bp;
1778
1779	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1780	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1781
1782	zio->io_gang_leader = zio;
1783
1784	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1785
1786	return (ZIO_PIPELINE_CONTINUE);
1787}
1788
1789static int
1790zio_gang_issue(zio_t *zio)
1791{
1792	blkptr_t *bp = zio->io_bp;
1793
1794	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1795		return (ZIO_PIPELINE_STOP);
1796
1797	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1798	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1799
1800	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1801		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1802	else
1803		zio_gang_tree_free(&zio->io_gang_tree);
1804
1805	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1806
1807	return (ZIO_PIPELINE_CONTINUE);
1808}
1809
1810static void
1811zio_write_gang_member_ready(zio_t *zio)
1812{
1813	zio_t *pio = zio_unique_parent(zio);
1814	zio_t *gio = zio->io_gang_leader;
1815	dva_t *cdva = zio->io_bp->blk_dva;
1816	dva_t *pdva = pio->io_bp->blk_dva;
1817	uint64_t asize;
1818
1819	if (BP_IS_HOLE(zio->io_bp))
1820		return;
1821
1822	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1823
1824	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1825	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1826	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1827	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1828	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1829
1830	mutex_enter(&pio->io_lock);
1831	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1832		ASSERT(DVA_GET_GANG(&pdva[d]));
1833		asize = DVA_GET_ASIZE(&pdva[d]);
1834		asize += DVA_GET_ASIZE(&cdva[d]);
1835		DVA_SET_ASIZE(&pdva[d], asize);
1836	}
1837	mutex_exit(&pio->io_lock);
1838}
1839
1840static int
1841zio_write_gang_block(zio_t *pio)
1842{
1843	spa_t *spa = pio->io_spa;
1844	blkptr_t *bp = pio->io_bp;
1845	zio_t *gio = pio->io_gang_leader;
1846	zio_t *zio;
1847	zio_gang_node_t *gn, **gnpp;
1848	zio_gbh_phys_t *gbh;
1849	uint64_t txg = pio->io_txg;
1850	uint64_t resid = pio->io_size;
1851	uint64_t lsize;
1852	int copies = gio->io_prop.zp_copies;
1853	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1854	zio_prop_t zp;
1855	int error;
1856
1857	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1858	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1859	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1860	if (error) {
1861		pio->io_error = error;
1862		return (ZIO_PIPELINE_CONTINUE);
1863	}
1864
1865	if (pio == gio) {
1866		gnpp = &gio->io_gang_tree;
1867	} else {
1868		gnpp = pio->io_private;
1869		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1870	}
1871
1872	gn = zio_gang_node_alloc(gnpp);
1873	gbh = gn->gn_gbh;
1874	bzero(gbh, SPA_GANGBLOCKSIZE);
1875
1876	/*
1877	 * Create the gang header.
1878	 */
1879	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1880	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1881
1882	/*
1883	 * Create and nowait the gang children.
1884	 */
1885	for (int g = 0; resid != 0; resid -= lsize, g++) {
1886		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1887		    SPA_MINBLOCKSIZE);
1888		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1889
1890		zp.zp_checksum = gio->io_prop.zp_checksum;
1891		zp.zp_compress = ZIO_COMPRESS_OFF;
1892		zp.zp_type = DMU_OT_NONE;
1893		zp.zp_level = 0;
1894		zp.zp_copies = gio->io_prop.zp_copies;
1895		zp.zp_dedup = B_FALSE;
1896		zp.zp_dedup_verify = B_FALSE;
1897		zp.zp_nopwrite = B_FALSE;
1898
1899		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1900		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1901		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1902		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1903		    &pio->io_bookmark));
1904	}
1905
1906	/*
1907	 * Set pio's pipeline to just wait for zio to finish.
1908	 */
1909	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1910
1911	zio_nowait(zio);
1912
1913	return (ZIO_PIPELINE_CONTINUE);
1914}
1915
1916/*
1917 * The zio_nop_write stage in the pipeline determines if allocating
1918 * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1919 * such as SHA256, we can compare the checksums of the new data and the old
1920 * to determine if allocating a new block is required.  The nopwrite
1921 * feature can handle writes in either syncing or open context (i.e. zil
1922 * writes) and as a result is mutually exclusive with dedup.
1923 */
1924static int
1925zio_nop_write(zio_t *zio)
1926{
1927	blkptr_t *bp = zio->io_bp;
1928	blkptr_t *bp_orig = &zio->io_bp_orig;
1929	zio_prop_t *zp = &zio->io_prop;
1930
1931	ASSERT(BP_GET_LEVEL(bp) == 0);
1932	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1933	ASSERT(zp->zp_nopwrite);
1934	ASSERT(!zp->zp_dedup);
1935	ASSERT(zio->io_bp_override == NULL);
1936	ASSERT(IO_IS_ALLOCATING(zio));
1937
1938	/*
1939	 * Check to see if the original bp and the new bp have matching
1940	 * characteristics (i.e. same checksum, compression algorithms, etc).
1941	 * If they don't then just continue with the pipeline which will
1942	 * allocate a new bp.
1943	 */
1944	if (BP_IS_HOLE(bp_orig) ||
1945	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1946	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1947	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1948	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1949	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1950		return (ZIO_PIPELINE_CONTINUE);
1951
1952	/*
1953	 * If the checksums match then reset the pipeline so that we
1954	 * avoid allocating a new bp and issuing any I/O.
1955	 */
1956	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1957		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1958		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1959		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1960		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1961		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1962		    sizeof (uint64_t)) == 0);
1963
1964		*bp = *bp_orig;
1965		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1966		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1967	}
1968
1969	return (ZIO_PIPELINE_CONTINUE);
1970}
1971
1972/*
1973 * ==========================================================================
1974 * Dedup
1975 * ==========================================================================
1976 */
1977static void
1978zio_ddt_child_read_done(zio_t *zio)
1979{
1980	blkptr_t *bp = zio->io_bp;
1981	ddt_entry_t *dde = zio->io_private;
1982	ddt_phys_t *ddp;
1983	zio_t *pio = zio_unique_parent(zio);
1984
1985	mutex_enter(&pio->io_lock);
1986	ddp = ddt_phys_select(dde, bp);
1987	if (zio->io_error == 0)
1988		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1989	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1990		dde->dde_repair_data = zio->io_data;
1991	else
1992		zio_buf_free(zio->io_data, zio->io_size);
1993	mutex_exit(&pio->io_lock);
1994}
1995
1996static int
1997zio_ddt_read_start(zio_t *zio)
1998{
1999	blkptr_t *bp = zio->io_bp;
2000
2001	ASSERT(BP_GET_DEDUP(bp));
2002	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2003	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2004
2005	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2006		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2007		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2008		ddt_phys_t *ddp = dde->dde_phys;
2009		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2010		blkptr_t blk;
2011
2012		ASSERT(zio->io_vsd == NULL);
2013		zio->io_vsd = dde;
2014
2015		if (ddp_self == NULL)
2016			return (ZIO_PIPELINE_CONTINUE);
2017
2018		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2019			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2020				continue;
2021			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2022			    &blk);
2023			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2024			    zio_buf_alloc(zio->io_size), zio->io_size,
2025			    zio_ddt_child_read_done, dde, zio->io_priority,
2026			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2027			    &zio->io_bookmark));
2028		}
2029		return (ZIO_PIPELINE_CONTINUE);
2030	}
2031
2032	zio_nowait(zio_read(zio, zio->io_spa, bp,
2033	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2034	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2035
2036	return (ZIO_PIPELINE_CONTINUE);
2037}
2038
2039static int
2040zio_ddt_read_done(zio_t *zio)
2041{
2042	blkptr_t *bp = zio->io_bp;
2043
2044	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2045		return (ZIO_PIPELINE_STOP);
2046
2047	ASSERT(BP_GET_DEDUP(bp));
2048	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2049	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2050
2051	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2052		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2053		ddt_entry_t *dde = zio->io_vsd;
2054		if (ddt == NULL) {
2055			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2056			return (ZIO_PIPELINE_CONTINUE);
2057		}
2058		if (dde == NULL) {
2059			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2060			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2061			return (ZIO_PIPELINE_STOP);
2062		}
2063		if (dde->dde_repair_data != NULL) {
2064			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2065			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2066		}
2067		ddt_repair_done(ddt, dde);
2068		zio->io_vsd = NULL;
2069	}
2070
2071	ASSERT(zio->io_vsd == NULL);
2072
2073	return (ZIO_PIPELINE_CONTINUE);
2074}
2075
2076static boolean_t
2077zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2078{
2079	spa_t *spa = zio->io_spa;
2080
2081	/*
2082	 * Note: we compare the original data, not the transformed data,
2083	 * because when zio->io_bp is an override bp, we will not have
2084	 * pushed the I/O transforms.  That's an important optimization
2085	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2086	 */
2087	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2088		zio_t *lio = dde->dde_lead_zio[p];
2089
2090		if (lio != NULL) {
2091			return (lio->io_orig_size != zio->io_orig_size ||
2092			    bcmp(zio->io_orig_data, lio->io_orig_data,
2093			    zio->io_orig_size) != 0);
2094		}
2095	}
2096
2097	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2098		ddt_phys_t *ddp = &dde->dde_phys[p];
2099
2100		if (ddp->ddp_phys_birth != 0) {
2101			arc_buf_t *abuf = NULL;
2102			uint32_t aflags = ARC_WAIT;
2103			blkptr_t blk = *zio->io_bp;
2104			int error;
2105
2106			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2107
2108			ddt_exit(ddt);
2109
2110			error = arc_read(NULL, spa, &blk,
2111			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2112			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2113			    &aflags, &zio->io_bookmark);
2114
2115			if (error == 0) {
2116				if (arc_buf_size(abuf) != zio->io_orig_size ||
2117				    bcmp(abuf->b_data, zio->io_orig_data,
2118				    zio->io_orig_size) != 0)
2119					error = SET_ERROR(EEXIST);
2120				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2121			}
2122
2123			ddt_enter(ddt);
2124			return (error != 0);
2125		}
2126	}
2127
2128	return (B_FALSE);
2129}
2130
2131static void
2132zio_ddt_child_write_ready(zio_t *zio)
2133{
2134	int p = zio->io_prop.zp_copies;
2135	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2136	ddt_entry_t *dde = zio->io_private;
2137	ddt_phys_t *ddp = &dde->dde_phys[p];
2138	zio_t *pio;
2139
2140	if (zio->io_error)
2141		return;
2142
2143	ddt_enter(ddt);
2144
2145	ASSERT(dde->dde_lead_zio[p] == zio);
2146
2147	ddt_phys_fill(ddp, zio->io_bp);
2148
2149	while ((pio = zio_walk_parents(zio)) != NULL)
2150		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2151
2152	ddt_exit(ddt);
2153}
2154
2155static void
2156zio_ddt_child_write_done(zio_t *zio)
2157{
2158	int p = zio->io_prop.zp_copies;
2159	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2160	ddt_entry_t *dde = zio->io_private;
2161	ddt_phys_t *ddp = &dde->dde_phys[p];
2162
2163	ddt_enter(ddt);
2164
2165	ASSERT(ddp->ddp_refcnt == 0);
2166	ASSERT(dde->dde_lead_zio[p] == zio);
2167	dde->dde_lead_zio[p] = NULL;
2168
2169	if (zio->io_error == 0) {
2170		while (zio_walk_parents(zio) != NULL)
2171			ddt_phys_addref(ddp);
2172	} else {
2173		ddt_phys_clear(ddp);
2174	}
2175
2176	ddt_exit(ddt);
2177}
2178
2179static void
2180zio_ddt_ditto_write_done(zio_t *zio)
2181{
2182	int p = DDT_PHYS_DITTO;
2183	zio_prop_t *zp = &zio->io_prop;
2184	blkptr_t *bp = zio->io_bp;
2185	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2186	ddt_entry_t *dde = zio->io_private;
2187	ddt_phys_t *ddp = &dde->dde_phys[p];
2188	ddt_key_t *ddk = &dde->dde_key;
2189
2190	ddt_enter(ddt);
2191
2192	ASSERT(ddp->ddp_refcnt == 0);
2193	ASSERT(dde->dde_lead_zio[p] == zio);
2194	dde->dde_lead_zio[p] = NULL;
2195
2196	if (zio->io_error == 0) {
2197		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2198		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2199		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2200		if (ddp->ddp_phys_birth != 0)
2201			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2202		ddt_phys_fill(ddp, bp);
2203	}
2204
2205	ddt_exit(ddt);
2206}
2207
2208static int
2209zio_ddt_write(zio_t *zio)
2210{
2211	spa_t *spa = zio->io_spa;
2212	blkptr_t *bp = zio->io_bp;
2213	uint64_t txg = zio->io_txg;
2214	zio_prop_t *zp = &zio->io_prop;
2215	int p = zp->zp_copies;
2216	int ditto_copies;
2217	zio_t *cio = NULL;
2218	zio_t *dio = NULL;
2219	ddt_t *ddt = ddt_select(spa, bp);
2220	ddt_entry_t *dde;
2221	ddt_phys_t *ddp;
2222
2223	ASSERT(BP_GET_DEDUP(bp));
2224	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2225	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2226
2227	ddt_enter(ddt);
2228	dde = ddt_lookup(ddt, bp, B_TRUE);
2229	ddp = &dde->dde_phys[p];
2230
2231	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2232		/*
2233		 * If we're using a weak checksum, upgrade to a strong checksum
2234		 * and try again.  If we're already using a strong checksum,
2235		 * we can't resolve it, so just convert to an ordinary write.
2236		 * (And automatically e-mail a paper to Nature?)
2237		 */
2238		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2239			zp->zp_checksum = spa_dedup_checksum(spa);
2240			zio_pop_transforms(zio);
2241			zio->io_stage = ZIO_STAGE_OPEN;
2242			BP_ZERO(bp);
2243		} else {
2244			zp->zp_dedup = B_FALSE;
2245		}
2246		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2247		ddt_exit(ddt);
2248		return (ZIO_PIPELINE_CONTINUE);
2249	}
2250
2251	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2252	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2253
2254	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2255	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2256		zio_prop_t czp = *zp;
2257
2258		czp.zp_copies = ditto_copies;
2259
2260		/*
2261		 * If we arrived here with an override bp, we won't have run
2262		 * the transform stack, so we won't have the data we need to
2263		 * generate a child i/o.  So, toss the override bp and restart.
2264		 * This is safe, because using the override bp is just an
2265		 * optimization; and it's rare, so the cost doesn't matter.
2266		 */
2267		if (zio->io_bp_override) {
2268			zio_pop_transforms(zio);
2269			zio->io_stage = ZIO_STAGE_OPEN;
2270			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2271			zio->io_bp_override = NULL;
2272			BP_ZERO(bp);
2273			ddt_exit(ddt);
2274			return (ZIO_PIPELINE_CONTINUE);
2275		}
2276
2277		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2278		    zio->io_orig_size, &czp, NULL,
2279		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2280		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2281
2282		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2283		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2284	}
2285
2286	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2287		if (ddp->ddp_phys_birth != 0)
2288			ddt_bp_fill(ddp, bp, txg);
2289		if (dde->dde_lead_zio[p] != NULL)
2290			zio_add_child(zio, dde->dde_lead_zio[p]);
2291		else
2292			ddt_phys_addref(ddp);
2293	} else if (zio->io_bp_override) {
2294		ASSERT(bp->blk_birth == txg);
2295		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2296		ddt_phys_fill(ddp, bp);
2297		ddt_phys_addref(ddp);
2298	} else {
2299		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2300		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2301		    zio_ddt_child_write_done, dde, zio->io_priority,
2302		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2303
2304		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2305		dde->dde_lead_zio[p] = cio;
2306	}
2307
2308	ddt_exit(ddt);
2309
2310	if (cio)
2311		zio_nowait(cio);
2312	if (dio)
2313		zio_nowait(dio);
2314
2315	return (ZIO_PIPELINE_CONTINUE);
2316}
2317
2318ddt_entry_t *freedde; /* for debugging */
2319
2320static int
2321zio_ddt_free(zio_t *zio)
2322{
2323	spa_t *spa = zio->io_spa;
2324	blkptr_t *bp = zio->io_bp;
2325	ddt_t *ddt = ddt_select(spa, bp);
2326	ddt_entry_t *dde;
2327	ddt_phys_t *ddp;
2328
2329	ASSERT(BP_GET_DEDUP(bp));
2330	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2331
2332	ddt_enter(ddt);
2333	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2334	ddp = ddt_phys_select(dde, bp);
2335	ddt_phys_decref(ddp);
2336	ddt_exit(ddt);
2337
2338	return (ZIO_PIPELINE_CONTINUE);
2339}
2340
2341/*
2342 * ==========================================================================
2343 * Allocate and free blocks
2344 * ==========================================================================
2345 */
2346static int
2347zio_dva_allocate(zio_t *zio)
2348{
2349	spa_t *spa = zio->io_spa;
2350	metaslab_class_t *mc = spa_normal_class(spa);
2351	blkptr_t *bp = zio->io_bp;
2352	int error;
2353	int flags = 0;
2354
2355	if (zio->io_gang_leader == NULL) {
2356		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2357		zio->io_gang_leader = zio;
2358	}
2359
2360	ASSERT(BP_IS_HOLE(bp));
2361	ASSERT0(BP_GET_NDVAS(bp));
2362	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2363	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2364	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2365
2366	/*
2367	 * The dump device does not support gang blocks so allocation on
2368	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2369	 * the "fast" gang feature.
2370	 */
2371	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2372	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2373	    METASLAB_GANG_CHILD : 0;
2374	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2375	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2376
2377	if (error) {
2378		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2379		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2380		    error);
2381		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2382			return (zio_write_gang_block(zio));
2383		zio->io_error = error;
2384	}
2385
2386	return (ZIO_PIPELINE_CONTINUE);
2387}
2388
2389static int
2390zio_dva_free(zio_t *zio)
2391{
2392	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2393
2394	return (ZIO_PIPELINE_CONTINUE);
2395}
2396
2397static int
2398zio_dva_claim(zio_t *zio)
2399{
2400	int error;
2401
2402	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2403	if (error)
2404		zio->io_error = error;
2405
2406	return (ZIO_PIPELINE_CONTINUE);
2407}
2408
2409/*
2410 * Undo an allocation.  This is used by zio_done() when an I/O fails
2411 * and we want to give back the block we just allocated.
2412 * This handles both normal blocks and gang blocks.
2413 */
2414static void
2415zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2416{
2417	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2418	ASSERT(zio->io_bp_override == NULL);
2419
2420	if (!BP_IS_HOLE(bp))
2421		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2422
2423	if (gn != NULL) {
2424		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2425			zio_dva_unallocate(zio, gn->gn_child[g],
2426			    &gn->gn_gbh->zg_blkptr[g]);
2427		}
2428	}
2429}
2430
2431/*
2432 * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2433 */
2434int
2435zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2436    uint64_t size, boolean_t use_slog)
2437{
2438	int error = 1;
2439
2440	ASSERT(txg > spa_syncing_txg(spa));
2441
2442	/*
2443	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2444	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2445	 * when allocating them.
2446	 */
2447	if (use_slog) {
2448		error = metaslab_alloc(spa, spa_log_class(spa), size,
2449		    new_bp, 1, txg, old_bp,
2450		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2451	}
2452
2453	if (error) {
2454		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2455		    new_bp, 1, txg, old_bp,
2456		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2457	}
2458
2459	if (error == 0) {
2460		BP_SET_LSIZE(new_bp, size);
2461		BP_SET_PSIZE(new_bp, size);
2462		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2463		BP_SET_CHECKSUM(new_bp,
2464		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2465		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2466		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2467		BP_SET_LEVEL(new_bp, 0);
2468		BP_SET_DEDUP(new_bp, 0);
2469		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2470	}
2471
2472	return (error);
2473}
2474
2475/*
2476 * Free an intent log block.
2477 */
2478void
2479zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2480{
2481	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2482	ASSERT(!BP_IS_GANG(bp));
2483
2484	zio_free(spa, txg, bp);
2485}
2486
2487/*
2488 * ==========================================================================
2489 * Read, write and delete to physical devices
2490 * ==========================================================================
2491 */
2492static int
2493zio_vdev_io_start(zio_t *zio)
2494{
2495	vdev_t *vd = zio->io_vd;
2496	uint64_t align;
2497	spa_t *spa = zio->io_spa;
2498
2499	ASSERT(zio->io_error == 0);
2500	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2501
2502	if (vd == NULL) {
2503		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2504			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2505
2506		/*
2507		 * The mirror_ops handle multiple DVAs in a single BP.
2508		 */
2509		return (vdev_mirror_ops.vdev_op_io_start(zio));
2510	}
2511
2512	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_FREE) {
2513		trim_map_free(vd, zio->io_offset, zio->io_size, zio->io_txg);
2514		return (ZIO_PIPELINE_CONTINUE);
2515	}
2516
2517	/*
2518	 * We keep track of time-sensitive I/Os so that the scan thread
2519	 * can quickly react to certain workloads.  In particular, we care
2520	 * about non-scrubbing, top-level reads and writes with the following
2521	 * characteristics:
2522	 * 	- synchronous writes of user data to non-slog devices
2523	 *	- any reads of user data
2524	 * When these conditions are met, adjust the timestamp of spa_last_io
2525	 * which allows the scan thread to adjust its workload accordingly.
2526	 */
2527	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2528	    vd == vd->vdev_top && !vd->vdev_islog &&
2529	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2530	    zio->io_txg != spa_syncing_txg(spa)) {
2531		uint64_t old = spa->spa_last_io;
2532		uint64_t new = ddi_get_lbolt64();
2533		if (old != new)
2534			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2535	}
2536
2537	align = 1ULL << vd->vdev_top->vdev_ashift;
2538
2539	if (P2PHASE(zio->io_size, align) != 0) {
2540		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2541		char *abuf = NULL;
2542		if (zio->io_type == ZIO_TYPE_READ ||
2543		    zio->io_type == ZIO_TYPE_WRITE)
2544			abuf = zio_buf_alloc(asize);
2545		ASSERT(vd == vd->vdev_top);
2546		if (zio->io_type == ZIO_TYPE_WRITE) {
2547			bcopy(zio->io_data, abuf, zio->io_size);
2548			bzero(abuf + zio->io_size, asize - zio->io_size);
2549		}
2550		zio_push_transform(zio, abuf, asize, abuf ? asize : 0,
2551		    zio_subblock);
2552	}
2553
2554	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2555	ASSERT(P2PHASE(zio->io_size, align) == 0);
2556	VERIFY(zio->io_type == ZIO_TYPE_READ || spa_writeable(spa));
2557
2558	/*
2559	 * If this is a repair I/O, and there's no self-healing involved --
2560	 * that is, we're just resilvering what we expect to resilver --
2561	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2562	 * This prevents spurious resilvering with nested replication.
2563	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2564	 * A is out of date, we'll read from C+D, then use the data to
2565	 * resilver A+B -- but we don't actually want to resilver B, just A.
2566	 * The top-level mirror has no way to know this, so instead we just
2567	 * discard unnecessary repairs as we work our way down the vdev tree.
2568	 * The same logic applies to any form of nested replication:
2569	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2570	 */
2571	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2572	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2573	    zio->io_txg != 0 &&	/* not a delegated i/o */
2574	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2575		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2576		zio_vdev_io_bypass(zio);
2577		return (ZIO_PIPELINE_CONTINUE);
2578	}
2579
2580	if (vd->vdev_ops->vdev_op_leaf &&
2581	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2582
2583		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2584			return (ZIO_PIPELINE_CONTINUE);
2585
2586		if ((zio = vdev_queue_io(zio)) == NULL)
2587			return (ZIO_PIPELINE_STOP);
2588
2589		if (!vdev_accessible(vd, zio)) {
2590			zio->io_error = SET_ERROR(ENXIO);
2591			zio_interrupt(zio);
2592			return (ZIO_PIPELINE_STOP);
2593		}
2594	}
2595
2596	/*
2597	 * Note that we ignore repair writes for TRIM because they can conflict
2598	 * with normal writes. This isn't an issue because, by definition, we
2599	 * only repair blocks that aren't freed.
2600	 */
2601	if (vd->vdev_ops->vdev_op_leaf && zio->io_type == ZIO_TYPE_WRITE &&
2602	    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2603		if (!trim_map_write_start(zio))
2604			return (ZIO_PIPELINE_STOP);
2605	}
2606
2607	return (vd->vdev_ops->vdev_op_io_start(zio));
2608}
2609
2610static int
2611zio_vdev_io_done(zio_t *zio)
2612{
2613	vdev_t *vd = zio->io_vd;
2614	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2615	boolean_t unexpected_error = B_FALSE;
2616
2617	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2618		return (ZIO_PIPELINE_STOP);
2619
2620	ASSERT(zio->io_type == ZIO_TYPE_READ ||
2621	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_FREE);
2622
2623	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2624	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2625
2626		if (zio->io_type == ZIO_TYPE_WRITE &&
2627		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR))
2628			trim_map_write_done(zio);
2629
2630		vdev_queue_io_done(zio);
2631
2632		if (zio->io_type == ZIO_TYPE_WRITE)
2633			vdev_cache_write(zio);
2634
2635		if (zio_injection_enabled && zio->io_error == 0)
2636			zio->io_error = zio_handle_device_injection(vd,
2637			    zio, EIO);
2638
2639		if (zio_injection_enabled && zio->io_error == 0)
2640			zio->io_error = zio_handle_label_injection(zio, EIO);
2641
2642		if (zio->io_error) {
2643			if (!vdev_accessible(vd, zio)) {
2644				zio->io_error = SET_ERROR(ENXIO);
2645			} else {
2646				unexpected_error = B_TRUE;
2647			}
2648		}
2649	}
2650
2651	ops->vdev_op_io_done(zio);
2652
2653	if (unexpected_error)
2654		VERIFY(vdev_probe(vd, zio) == NULL);
2655
2656	return (ZIO_PIPELINE_CONTINUE);
2657}
2658
2659/*
2660 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2661 * disk, and use that to finish the checksum ereport later.
2662 */
2663static void
2664zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2665    const void *good_buf)
2666{
2667	/* no processing needed */
2668	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2669}
2670
2671/*ARGSUSED*/
2672void
2673zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2674{
2675	void *buf = zio_buf_alloc(zio->io_size);
2676
2677	bcopy(zio->io_data, buf, zio->io_size);
2678
2679	zcr->zcr_cbinfo = zio->io_size;
2680	zcr->zcr_cbdata = buf;
2681	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2682	zcr->zcr_free = zio_buf_free;
2683}
2684
2685static int
2686zio_vdev_io_assess(zio_t *zio)
2687{
2688	vdev_t *vd = zio->io_vd;
2689
2690	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2691		return (ZIO_PIPELINE_STOP);
2692
2693	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2694		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2695
2696	if (zio->io_vsd != NULL) {
2697		zio->io_vsd_ops->vsd_free(zio);
2698		zio->io_vsd = NULL;
2699	}
2700
2701	if (zio_injection_enabled && zio->io_error == 0)
2702		zio->io_error = zio_handle_fault_injection(zio, EIO);
2703
2704	if (zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCTRIM)
2705		switch (zio->io_error) {
2706		case 0:
2707			ZIO_TRIM_STAT_INCR(bytes, zio->io_size);
2708			ZIO_TRIM_STAT_BUMP(success);
2709			break;
2710		case EOPNOTSUPP:
2711			ZIO_TRIM_STAT_BUMP(unsupported);
2712			break;
2713		default:
2714			ZIO_TRIM_STAT_BUMP(failed);
2715			break;
2716		}
2717
2718	/*
2719	 * If the I/O failed, determine whether we should attempt to retry it.
2720	 *
2721	 * On retry, we cut in line in the issue queue, since we don't want
2722	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2723	 */
2724	if (zio->io_error && vd == NULL &&
2725	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2726		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2727		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2728		zio->io_error = 0;
2729		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2730		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2731		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2732		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2733		    zio_requeue_io_start_cut_in_line);
2734		return (ZIO_PIPELINE_STOP);
2735	}
2736
2737	/*
2738	 * If we got an error on a leaf device, convert it to ENXIO
2739	 * if the device is not accessible at all.
2740	 */
2741	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2742	    !vdev_accessible(vd, zio))
2743		zio->io_error = SET_ERROR(ENXIO);
2744
2745	/*
2746	 * If we can't write to an interior vdev (mirror or RAID-Z),
2747	 * set vdev_cant_write so that we stop trying to allocate from it.
2748	 */
2749	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2750	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2751		vd->vdev_cant_write = B_TRUE;
2752	}
2753
2754	if (zio->io_error)
2755		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2756
2757	return (ZIO_PIPELINE_CONTINUE);
2758}
2759
2760void
2761zio_vdev_io_reissue(zio_t *zio)
2762{
2763	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2764	ASSERT(zio->io_error == 0);
2765
2766	zio->io_stage >>= 1;
2767}
2768
2769void
2770zio_vdev_io_redone(zio_t *zio)
2771{
2772	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2773
2774	zio->io_stage >>= 1;
2775}
2776
2777void
2778zio_vdev_io_bypass(zio_t *zio)
2779{
2780	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2781	ASSERT(zio->io_error == 0);
2782
2783	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2784	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2785}
2786
2787/*
2788 * ==========================================================================
2789 * Generate and verify checksums
2790 * ==========================================================================
2791 */
2792static int
2793zio_checksum_generate(zio_t *zio)
2794{
2795	blkptr_t *bp = zio->io_bp;
2796	enum zio_checksum checksum;
2797
2798	if (bp == NULL) {
2799		/*
2800		 * This is zio_write_phys().
2801		 * We're either generating a label checksum, or none at all.
2802		 */
2803		checksum = zio->io_prop.zp_checksum;
2804
2805		if (checksum == ZIO_CHECKSUM_OFF)
2806			return (ZIO_PIPELINE_CONTINUE);
2807
2808		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2809	} else {
2810		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2811			ASSERT(!IO_IS_ALLOCATING(zio));
2812			checksum = ZIO_CHECKSUM_GANG_HEADER;
2813		} else {
2814			checksum = BP_GET_CHECKSUM(bp);
2815		}
2816	}
2817
2818	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2819
2820	return (ZIO_PIPELINE_CONTINUE);
2821}
2822
2823static int
2824zio_checksum_verify(zio_t *zio)
2825{
2826	zio_bad_cksum_t info;
2827	blkptr_t *bp = zio->io_bp;
2828	int error;
2829
2830	ASSERT(zio->io_vd != NULL);
2831
2832	if (bp == NULL) {
2833		/*
2834		 * This is zio_read_phys().
2835		 * We're either verifying a label checksum, or nothing at all.
2836		 */
2837		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2838			return (ZIO_PIPELINE_CONTINUE);
2839
2840		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2841	}
2842
2843	if ((error = zio_checksum_error(zio, &info)) != 0) {
2844		zio->io_error = error;
2845		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2846			zfs_ereport_start_checksum(zio->io_spa,
2847			    zio->io_vd, zio, zio->io_offset,
2848			    zio->io_size, NULL, &info);
2849		}
2850	}
2851
2852	return (ZIO_PIPELINE_CONTINUE);
2853}
2854
2855/*
2856 * Called by RAID-Z to ensure we don't compute the checksum twice.
2857 */
2858void
2859zio_checksum_verified(zio_t *zio)
2860{
2861	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2862}
2863
2864/*
2865 * ==========================================================================
2866 * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2867 * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2868 * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2869 * indicate errors that are specific to one I/O, and most likely permanent.
2870 * Any other error is presumed to be worse because we weren't expecting it.
2871 * ==========================================================================
2872 */
2873int
2874zio_worst_error(int e1, int e2)
2875{
2876	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2877	int r1, r2;
2878
2879	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2880		if (e1 == zio_error_rank[r1])
2881			break;
2882
2883	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2884		if (e2 == zio_error_rank[r2])
2885			break;
2886
2887	return (r1 > r2 ? e1 : e2);
2888}
2889
2890/*
2891 * ==========================================================================
2892 * I/O completion
2893 * ==========================================================================
2894 */
2895static int
2896zio_ready(zio_t *zio)
2897{
2898	blkptr_t *bp = zio->io_bp;
2899	zio_t *pio, *pio_next;
2900
2901	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2902	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2903		return (ZIO_PIPELINE_STOP);
2904
2905	if (zio->io_ready) {
2906		ASSERT(IO_IS_ALLOCATING(zio));
2907		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2908		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2909		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2910
2911		zio->io_ready(zio);
2912	}
2913
2914	if (bp != NULL && bp != &zio->io_bp_copy)
2915		zio->io_bp_copy = *bp;
2916
2917	if (zio->io_error)
2918		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2919
2920	mutex_enter(&zio->io_lock);
2921	zio->io_state[ZIO_WAIT_READY] = 1;
2922	pio = zio_walk_parents(zio);
2923	mutex_exit(&zio->io_lock);
2924
2925	/*
2926	 * As we notify zio's parents, new parents could be added.
2927	 * New parents go to the head of zio's io_parent_list, however,
2928	 * so we will (correctly) not notify them.  The remainder of zio's
2929	 * io_parent_list, from 'pio_next' onward, cannot change because
2930	 * all parents must wait for us to be done before they can be done.
2931	 */
2932	for (; pio != NULL; pio = pio_next) {
2933		pio_next = zio_walk_parents(zio);
2934		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2935	}
2936
2937	if (zio->io_flags & ZIO_FLAG_NODATA) {
2938		if (BP_IS_GANG(bp)) {
2939			zio->io_flags &= ~ZIO_FLAG_NODATA;
2940		} else {
2941			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2942			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2943		}
2944	}
2945
2946	if (zio_injection_enabled &&
2947	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2948		zio_handle_ignored_writes(zio);
2949
2950	return (ZIO_PIPELINE_CONTINUE);
2951}
2952
2953static int
2954zio_done(zio_t *zio)
2955{
2956	spa_t *spa = zio->io_spa;
2957	zio_t *lio = zio->io_logical;
2958	blkptr_t *bp = zio->io_bp;
2959	vdev_t *vd = zio->io_vd;
2960	uint64_t psize = zio->io_size;
2961	zio_t *pio, *pio_next;
2962
2963	/*
2964	 * If our children haven't all completed,
2965	 * wait for them and then repeat this pipeline stage.
2966	 */
2967	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2968	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2969	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2970	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2971		return (ZIO_PIPELINE_STOP);
2972
2973	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2974		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2975			ASSERT(zio->io_children[c][w] == 0);
2976
2977	if (bp != NULL) {
2978		ASSERT(bp->blk_pad[0] == 0);
2979		ASSERT(bp->blk_pad[1] == 0);
2980		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2981		    (bp == zio_unique_parent(zio)->io_bp));
2982		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2983		    zio->io_bp_override == NULL &&
2984		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2985			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2986			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2987			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2988			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2989		}
2990		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2991			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2992	}
2993
2994	/*
2995	 * If there were child vdev/gang/ddt errors, they apply to us now.
2996	 */
2997	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2998	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2999	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3000
3001	/*
3002	 * If the I/O on the transformed data was successful, generate any
3003	 * checksum reports now while we still have the transformed data.
3004	 */
3005	if (zio->io_error == 0) {
3006		while (zio->io_cksum_report != NULL) {
3007			zio_cksum_report_t *zcr = zio->io_cksum_report;
3008			uint64_t align = zcr->zcr_align;
3009			uint64_t asize = P2ROUNDUP(psize, align);
3010			char *abuf = zio->io_data;
3011
3012			if (asize != psize) {
3013				abuf = zio_buf_alloc(asize);
3014				bcopy(zio->io_data, abuf, psize);
3015				bzero(abuf + psize, asize - psize);
3016			}
3017
3018			zio->io_cksum_report = zcr->zcr_next;
3019			zcr->zcr_next = NULL;
3020			zcr->zcr_finish(zcr, abuf);
3021			zfs_ereport_free_checksum(zcr);
3022
3023			if (asize != psize)
3024				zio_buf_free(abuf, asize);
3025		}
3026	}
3027
3028	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3029
3030	vdev_stat_update(zio, psize);
3031
3032	if (zio->io_error) {
3033		/*
3034		 * If this I/O is attached to a particular vdev,
3035		 * generate an error message describing the I/O failure
3036		 * at the block level.  We ignore these errors if the
3037		 * device is currently unavailable.
3038		 */
3039		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3040			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3041
3042		if ((zio->io_error == EIO || !(zio->io_flags &
3043		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3044		    zio == lio) {
3045			/*
3046			 * For logical I/O requests, tell the SPA to log the
3047			 * error and generate a logical data ereport.
3048			 */
3049			spa_log_error(spa, zio);
3050			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3051			    0, 0);
3052		}
3053	}
3054
3055	if (zio->io_error && zio == lio) {
3056		/*
3057		 * Determine whether zio should be reexecuted.  This will
3058		 * propagate all the way to the root via zio_notify_parent().
3059		 */
3060		ASSERT(vd == NULL && bp != NULL);
3061		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3062
3063		if (IO_IS_ALLOCATING(zio) &&
3064		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3065			if (zio->io_error != ENOSPC)
3066				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3067			else
3068				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3069		}
3070
3071		if ((zio->io_type == ZIO_TYPE_READ ||
3072		    zio->io_type == ZIO_TYPE_FREE) &&
3073		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3074		    zio->io_error == ENXIO &&
3075		    spa_load_state(spa) == SPA_LOAD_NONE &&
3076		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3077			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3078
3079		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3080			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3081
3082		/*
3083		 * Here is a possibly good place to attempt to do
3084		 * either combinatorial reconstruction or error correction
3085		 * based on checksums.  It also might be a good place
3086		 * to send out preliminary ereports before we suspend
3087		 * processing.
3088		 */
3089	}
3090
3091	/*
3092	 * If there were logical child errors, they apply to us now.
3093	 * We defer this until now to avoid conflating logical child
3094	 * errors with errors that happened to the zio itself when
3095	 * updating vdev stats and reporting FMA events above.
3096	 */
3097	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3098
3099	if ((zio->io_error || zio->io_reexecute) &&
3100	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3101	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3102		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3103
3104	zio_gang_tree_free(&zio->io_gang_tree);
3105
3106	/*
3107	 * Godfather I/Os should never suspend.
3108	 */
3109	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3110	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3111		zio->io_reexecute = 0;
3112
3113	if (zio->io_reexecute) {
3114		/*
3115		 * This is a logical I/O that wants to reexecute.
3116		 *
3117		 * Reexecute is top-down.  When an i/o fails, if it's not
3118		 * the root, it simply notifies its parent and sticks around.
3119		 * The parent, seeing that it still has children in zio_done(),
3120		 * does the same.  This percolates all the way up to the root.
3121		 * The root i/o will reexecute or suspend the entire tree.
3122		 *
3123		 * This approach ensures that zio_reexecute() honors
3124		 * all the original i/o dependency relationships, e.g.
3125		 * parents not executing until children are ready.
3126		 */
3127		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3128
3129		zio->io_gang_leader = NULL;
3130
3131		mutex_enter(&zio->io_lock);
3132		zio->io_state[ZIO_WAIT_DONE] = 1;
3133		mutex_exit(&zio->io_lock);
3134
3135		/*
3136		 * "The Godfather" I/O monitors its children but is
3137		 * not a true parent to them. It will track them through
3138		 * the pipeline but severs its ties whenever they get into
3139		 * trouble (e.g. suspended). This allows "The Godfather"
3140		 * I/O to return status without blocking.
3141		 */
3142		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3143			zio_link_t *zl = zio->io_walk_link;
3144			pio_next = zio_walk_parents(zio);
3145
3146			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3147			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3148				zio_remove_child(pio, zio, zl);
3149				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3150			}
3151		}
3152
3153		if ((pio = zio_unique_parent(zio)) != NULL) {
3154			/*
3155			 * We're not a root i/o, so there's nothing to do
3156			 * but notify our parent.  Don't propagate errors
3157			 * upward since we haven't permanently failed yet.
3158			 */
3159			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3160			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3161			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3162		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3163			/*
3164			 * We'd fail again if we reexecuted now, so suspend
3165			 * until conditions improve (e.g. device comes online).
3166			 */
3167			zio_suspend(spa, zio);
3168		} else {
3169			/*
3170			 * Reexecution is potentially a huge amount of work.
3171			 * Hand it off to the otherwise-unused claim taskq.
3172			 */
3173#ifdef _KERNEL
3174			(void) taskq_dispatch_safe(
3175			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3176			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP,
3177			    &zio->io_task);
3178#else
3179			(void) taskq_dispatch(
3180			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3181			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
3182#endif
3183		}
3184		return (ZIO_PIPELINE_STOP);
3185	}
3186
3187	ASSERT(zio->io_child_count == 0);
3188	ASSERT(zio->io_reexecute == 0);
3189	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3190
3191	/*
3192	 * Report any checksum errors, since the I/O is complete.
3193	 */
3194	while (zio->io_cksum_report != NULL) {
3195		zio_cksum_report_t *zcr = zio->io_cksum_report;
3196		zio->io_cksum_report = zcr->zcr_next;
3197		zcr->zcr_next = NULL;
3198		zcr->zcr_finish(zcr, NULL);
3199		zfs_ereport_free_checksum(zcr);
3200	}
3201
3202	/*
3203	 * It is the responsibility of the done callback to ensure that this
3204	 * particular zio is no longer discoverable for adoption, and as
3205	 * such, cannot acquire any new parents.
3206	 */
3207	if (zio->io_done)
3208		zio->io_done(zio);
3209
3210	mutex_enter(&zio->io_lock);
3211	zio->io_state[ZIO_WAIT_DONE] = 1;
3212	mutex_exit(&zio->io_lock);
3213
3214	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3215		zio_link_t *zl = zio->io_walk_link;
3216		pio_next = zio_walk_parents(zio);
3217		zio_remove_child(pio, zio, zl);
3218		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3219	}
3220
3221	if (zio->io_waiter != NULL) {
3222		mutex_enter(&zio->io_lock);
3223		zio->io_executor = NULL;
3224		cv_broadcast(&zio->io_cv);
3225		mutex_exit(&zio->io_lock);
3226	} else {
3227		zio_destroy(zio);
3228	}
3229
3230	return (ZIO_PIPELINE_STOP);
3231}
3232
3233/*
3234 * ==========================================================================
3235 * I/O pipeline definition
3236 * ==========================================================================
3237 */
3238static zio_pipe_stage_t *zio_pipeline[] = {
3239	NULL,
3240	zio_read_bp_init,
3241	zio_free_bp_init,
3242	zio_issue_async,
3243	zio_write_bp_init,
3244	zio_checksum_generate,
3245	zio_nop_write,
3246	zio_ddt_read_start,
3247	zio_ddt_read_done,
3248	zio_ddt_write,
3249	zio_ddt_free,
3250	zio_gang_assemble,
3251	zio_gang_issue,
3252	zio_dva_allocate,
3253	zio_dva_free,
3254	zio_dva_claim,
3255	zio_ready,
3256	zio_vdev_io_start,
3257	zio_vdev_io_done,
3258	zio_vdev_io_assess,
3259	zio_checksum_verify,
3260	zio_done
3261};
3262
3263/* dnp is the dnode for zb1->zb_object */
3264boolean_t
3265zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3266    const zbookmark_t *zb2)
3267{
3268	uint64_t zb1nextL0, zb2thisobj;
3269
3270	ASSERT(zb1->zb_objset == zb2->zb_objset);
3271	ASSERT(zb2->zb_level == 0);
3272
3273	/*
3274	 * A bookmark in the deadlist is considered to be after
3275	 * everything else.
3276	 */
3277	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3278		return (B_TRUE);
3279
3280	/* The objset_phys_t isn't before anything. */
3281	if (dnp == NULL)
3282		return (B_FALSE);
3283
3284	zb1nextL0 = (zb1->zb_blkid + 1) <<
3285	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3286
3287	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3288	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3289
3290	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3291		uint64_t nextobj = zb1nextL0 *
3292		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3293		return (nextobj <= zb2thisobj);
3294	}
3295
3296	if (zb1->zb_object < zb2thisobj)
3297		return (B_TRUE);
3298	if (zb1->zb_object > zb2thisobj)
3299		return (B_FALSE);
3300	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3301		return (B_FALSE);
3302	return (zb1nextL0 <= zb2->zb_blkid);
3303}
3304