1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * Copyright 2012 John Marino <draco@marino.st>.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * $FreeBSD$
29 */
30
31/*
32 * Dynamic linker for ELF.
33 *
34 * John Polstra <jdp@polstra.com>.
35 */
36
37#ifndef __GNUC__
38#error "GCC is needed to compile this file"
39#endif
40
41#include <sys/param.h>
42#include <sys/mount.h>
43#include <sys/mman.h>
44#include <sys/stat.h>
45#include <sys/sysctl.h>
46#include <sys/uio.h>
47#include <sys/utsname.h>
48#include <sys/ktrace.h>
49
50#include <dlfcn.h>
51#include <err.h>
52#include <errno.h>
53#include <fcntl.h>
54#include <stdarg.h>
55#include <stdio.h>
56#include <stdlib.h>
57#include <string.h>
58#include <unistd.h>
59
60#include "debug.h"
61#include "rtld.h"
62#include "libmap.h"
63#include "rtld_tls.h"
64#include "rtld_printf.h"
65#include "notes.h"
66
67#ifndef COMPAT_32BIT
68#define PATH_RTLD	"/libexec/ld-elf.so.1"
69#else
70#define PATH_RTLD	"/libexec/ld-elf32.so.1"
71#endif
72
73/* Types. */
74typedef void (*func_ptr_type)();
75typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76
77/*
78 * Function declarations.
79 */
80static const char *basename(const char *);
81static void die(void) __dead2;
82static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83    const Elf_Dyn **, const Elf_Dyn **);
84static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85    const Elf_Dyn *);
86static void digest_dynamic(Obj_Entry *, int);
87static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88static Obj_Entry *dlcheck(void *);
89static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90    int lo_flags, int mode, RtldLockState *lockstate);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(bool);
99static void init_dag(Obj_Entry *);
100static void init_rtld(caddr_t, Elf_Auxinfo **);
101static void initlist_add_neededs(Needed_Entry *, Objlist *);
102static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103static void linkmap_add(Obj_Entry *);
104static void linkmap_delete(Obj_Entry *);
105static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106static void unload_filtees(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110static void map_stacks_exec(RtldLockState *);
111static Obj_Entry *obj_from_addr(const void *);
112static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113static void objlist_call_init(Objlist *, RtldLockState *);
114static void objlist_clear(Objlist *);
115static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116static void objlist_init(Objlist *);
117static void objlist_push_head(Objlist *, Obj_Entry *);
118static void objlist_push_tail(Objlist *, Obj_Entry *);
119static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120static void objlist_remove(Objlist *, Obj_Entry *);
121static void *path_enumerate(const char *, path_enum_proc, void *);
122static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123    Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125    int flags, RtldLockState *lockstate);
126static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127    RtldLockState *);
128static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129    int flags, RtldLockState *lockstate);
130static int rtld_dirname(const char *, char *);
131static int rtld_dirname_abs(const char *, char *);
132static void *rtld_dlopen(const char *name, int fd, int mode);
133static void rtld_exit(void);
134static char *search_library_path(const char *, const char *);
135static const void **get_program_var_addr(const char *, RtldLockState *);
136static void set_program_var(const char *, const void *);
137static int symlook_default(SymLook *, const Obj_Entry *refobj);
138static int symlook_global(SymLook *, DoneList *);
139static void symlook_init_from_req(SymLook *, const SymLook *);
140static int symlook_list(SymLook *, const Objlist *, DoneList *);
141static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144static void trace_loaded_objects(Obj_Entry *);
145static void unlink_object(Obj_Entry *);
146static void unload_object(Obj_Entry *);
147static void unref_dag(Obj_Entry *);
148static void ref_dag(Obj_Entry *);
149static char *origin_subst_one(char *, const char *, const char *, bool);
150static char *origin_subst(char *, const char *);
151static void preinit_main(void);
152static int  rtld_verify_versions(const Objlist *);
153static int  rtld_verify_object_versions(Obj_Entry *);
154static void object_add_name(Obj_Entry *, const char *);
155static int  object_match_name(const Obj_Entry *, const char *);
156static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158    struct dl_phdr_info *phdr_info);
159static uint32_t gnu_hash(const char *);
160static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161    const unsigned long);
162
163void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164
165/*
166 * Data declarations.
167 */
168static char *error_message;	/* Message for dlerror(), or NULL */
169struct r_debug r_debug;		/* for GDB; */
170static bool libmap_disable;	/* Disable libmap */
171static bool ld_loadfltr;	/* Immediate filters processing */
172static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173static bool trust;		/* False for setuid and setgid programs */
174static bool dangerous_ld_env;	/* True if environment variables have been
175				   used to affect the libraries loaded */
176static char *ld_bind_now;	/* Environment variable for immediate binding */
177static char *ld_debug;		/* Environment variable for debugging */
178static char *ld_library_path;	/* Environment variable for search path */
179static char *ld_preload;	/* Environment variable for libraries to
180				   load first */
181static char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
182static char *ld_tracing;	/* Called from ldd to print libs */
183static char *ld_utrace;		/* Use utrace() to log events. */
184static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
185static Obj_Entry **obj_tail;	/* Link field of last object in list */
186static Obj_Entry *obj_main;	/* The main program shared object */
187static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
188static unsigned int obj_count;	/* Number of objects in obj_list */
189static unsigned int obj_loads;	/* Number of objects in obj_list */
190
191static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
192  STAILQ_HEAD_INITIALIZER(list_global);
193static Objlist list_main =	/* Objects loaded at program startup */
194  STAILQ_HEAD_INITIALIZER(list_main);
195static Objlist list_fini =	/* Objects needing fini() calls */
196  STAILQ_HEAD_INITIALIZER(list_fini);
197
198Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
199
200#define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
201
202extern Elf_Dyn _DYNAMIC;
203#pragma weak _DYNAMIC
204#ifndef RTLD_IS_DYNAMIC
205#define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
206#endif
207
208int osreldate, pagesize;
209
210long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};
211
212static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
213static int max_stack_flags;
214
215/*
216 * Global declarations normally provided by crt1.  The dynamic linker is
217 * not built with crt1, so we have to provide them ourselves.
218 */
219char *__progname;
220char **environ;
221
222/*
223 * Used to pass argc, argv to init functions.
224 */
225int main_argc;
226char **main_argv;
227
228/*
229 * Globals to control TLS allocation.
230 */
231size_t tls_last_offset;		/* Static TLS offset of last module */
232size_t tls_last_size;		/* Static TLS size of last module */
233size_t tls_static_space;	/* Static TLS space allocated */
234int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
235int tls_max_index = 1;		/* Largest module index allocated */
236
237bool ld_library_path_rpath = false;
238
239/*
240 * Fill in a DoneList with an allocation large enough to hold all of
241 * the currently-loaded objects.  Keep this as a macro since it calls
242 * alloca and we want that to occur within the scope of the caller.
243 */
244#define donelist_init(dlp)					\
245    ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
246    assert((dlp)->objs != NULL),				\
247    (dlp)->num_alloc = obj_count,				\
248    (dlp)->num_used = 0)
249
250#define	UTRACE_DLOPEN_START		1
251#define	UTRACE_DLOPEN_STOP		2
252#define	UTRACE_DLCLOSE_START		3
253#define	UTRACE_DLCLOSE_STOP		4
254#define	UTRACE_LOAD_OBJECT		5
255#define	UTRACE_UNLOAD_OBJECT		6
256#define	UTRACE_ADD_RUNDEP		7
257#define	UTRACE_PRELOAD_FINISHED		8
258#define	UTRACE_INIT_CALL		9
259#define	UTRACE_FINI_CALL		10
260
261struct utrace_rtld {
262	char sig[4];			/* 'RTLD' */
263	int event;
264	void *handle;
265	void *mapbase;			/* Used for 'parent' and 'init/fini' */
266	size_t mapsize;
267	int refcnt;			/* Used for 'mode' */
268	char name[MAXPATHLEN];
269};
270
271#define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
272	if (ld_utrace != NULL)					\
273		ld_utrace_log(e, h, mb, ms, r, n);		\
274} while (0)
275
276static void
277ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
278    int refcnt, const char *name)
279{
280	struct utrace_rtld ut;
281
282	ut.sig[0] = 'R';
283	ut.sig[1] = 'T';
284	ut.sig[2] = 'L';
285	ut.sig[3] = 'D';
286	ut.event = event;
287	ut.handle = handle;
288	ut.mapbase = mapbase;
289	ut.mapsize = mapsize;
290	ut.refcnt = refcnt;
291	bzero(ut.name, sizeof(ut.name));
292	if (name)
293		strlcpy(ut.name, name, sizeof(ut.name));
294	utrace(&ut, sizeof(ut));
295}
296
297/*
298 * Main entry point for dynamic linking.  The first argument is the
299 * stack pointer.  The stack is expected to be laid out as described
300 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
301 * Specifically, the stack pointer points to a word containing
302 * ARGC.  Following that in the stack is a null-terminated sequence
303 * of pointers to argument strings.  Then comes a null-terminated
304 * sequence of pointers to environment strings.  Finally, there is a
305 * sequence of "auxiliary vector" entries.
306 *
307 * The second argument points to a place to store the dynamic linker's
308 * exit procedure pointer and the third to a place to store the main
309 * program's object.
310 *
311 * The return value is the main program's entry point.
312 */
313func_ptr_type
314_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
315{
316    Elf_Auxinfo *aux_info[AT_COUNT];
317    int i;
318    int argc;
319    char **argv;
320    char **env;
321    Elf_Auxinfo *aux;
322    Elf_Auxinfo *auxp;
323    const char *argv0;
324    Objlist_Entry *entry;
325    Obj_Entry *obj;
326    Obj_Entry **preload_tail;
327    Obj_Entry *last_interposer;
328    Objlist initlist;
329    RtldLockState lockstate;
330    char *library_path_rpath;
331    int mib[2];
332    size_t len;
333
334    /*
335     * On entry, the dynamic linker itself has not been relocated yet.
336     * Be very careful not to reference any global data until after
337     * init_rtld has returned.  It is OK to reference file-scope statics
338     * and string constants, and to call static and global functions.
339     */
340
341    /* Find the auxiliary vector on the stack. */
342    argc = *sp++;
343    argv = (char **) sp;
344    sp += argc + 1;	/* Skip over arguments and NULL terminator */
345    env = (char **) sp;
346    while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
347	;
348    aux = (Elf_Auxinfo *) sp;
349
350    /* Digest the auxiliary vector. */
351    for (i = 0;  i < AT_COUNT;  i++)
352	aux_info[i] = NULL;
353    for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
354	if (auxp->a_type < AT_COUNT)
355	    aux_info[auxp->a_type] = auxp;
356    }
357
358    /* Initialize and relocate ourselves. */
359    assert(aux_info[AT_BASE] != NULL);
360    init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
361
362    __progname = obj_rtld.path;
363    argv0 = argv[0] != NULL ? argv[0] : "(null)";
364    environ = env;
365    main_argc = argc;
366    main_argv = argv;
367
368    if (aux_info[AT_CANARY] != NULL &&
369	aux_info[AT_CANARY]->a_un.a_ptr != NULL) {
370	    i = aux_info[AT_CANARYLEN]->a_un.a_val;
371	    if (i > sizeof(__stack_chk_guard))
372		    i = sizeof(__stack_chk_guard);
373	    memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i);
374    } else {
375	mib[0] = CTL_KERN;
376	mib[1] = KERN_ARND;
377
378	len = sizeof(__stack_chk_guard);
379	if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 ||
380	    len != sizeof(__stack_chk_guard)) {
381		/* If sysctl was unsuccessful, use the "terminator canary". */
382		((unsigned char *)(void *)__stack_chk_guard)[0] = 0;
383		((unsigned char *)(void *)__stack_chk_guard)[1] = 0;
384		((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';
385		((unsigned char *)(void *)__stack_chk_guard)[3] = 255;
386	}
387    }
388
389    trust = !issetugid();
390
391    ld_bind_now = getenv(LD_ "BIND_NOW");
392    /*
393     * If the process is tainted, then we un-set the dangerous environment
394     * variables.  The process will be marked as tainted until setuid(2)
395     * is called.  If any child process calls setuid(2) we do not want any
396     * future processes to honor the potentially un-safe variables.
397     */
398    if (!trust) {
399        if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") ||
400	    unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") ||
401	    unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") ||
402	    unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) {
403		_rtld_error("environment corrupt; aborting");
404		die();
405	}
406    }
407    ld_debug = getenv(LD_ "DEBUG");
408    libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL;
409    libmap_override = getenv(LD_ "LIBMAP");
410    ld_library_path = getenv(LD_ "LIBRARY_PATH");
411    ld_preload = getenv(LD_ "PRELOAD");
412    ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH");
413    ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL;
414    library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH");
415    if (library_path_rpath != NULL) {
416	    if (library_path_rpath[0] == 'y' ||
417		library_path_rpath[0] == 'Y' ||
418		library_path_rpath[0] == '1')
419		    ld_library_path_rpath = true;
420	    else
421		    ld_library_path_rpath = false;
422    }
423    dangerous_ld_env = libmap_disable || (libmap_override != NULL) ||
424	(ld_library_path != NULL) || (ld_preload != NULL) ||
425	(ld_elf_hints_path != NULL) || ld_loadfltr;
426    ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS");
427    ld_utrace = getenv(LD_ "UTRACE");
428
429    if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
430	ld_elf_hints_path = _PATH_ELF_HINTS;
431
432    if (ld_debug != NULL && *ld_debug != '\0')
433	debug = 1;
434    dbg("%s is initialized, base address = %p", __progname,
435	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
436    dbg("RTLD dynamic = %p", obj_rtld.dynamic);
437    dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
438
439    dbg("initializing thread locks");
440    lockdflt_init();
441
442    /*
443     * Load the main program, or process its program header if it is
444     * already loaded.
445     */
446    if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
447	int fd = aux_info[AT_EXECFD]->a_un.a_val;
448	dbg("loading main program");
449	obj_main = map_object(fd, argv0, NULL);
450	close(fd);
451	if (obj_main == NULL)
452	    die();
453	max_stack_flags = obj->stack_flags;
454    } else {				/* Main program already loaded. */
455	const Elf_Phdr *phdr;
456	int phnum;
457	caddr_t entry;
458
459	dbg("processing main program's program header");
460	assert(aux_info[AT_PHDR] != NULL);
461	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
462	assert(aux_info[AT_PHNUM] != NULL);
463	phnum = aux_info[AT_PHNUM]->a_un.a_val;
464	assert(aux_info[AT_PHENT] != NULL);
465	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
466	assert(aux_info[AT_ENTRY] != NULL);
467	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
468	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
469	    die();
470    }
471
472    if (aux_info[AT_EXECPATH] != 0) {
473	    char *kexecpath;
474	    char buf[MAXPATHLEN];
475
476	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
477	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
478	    if (kexecpath[0] == '/')
479		    obj_main->path = kexecpath;
480	    else if (getcwd(buf, sizeof(buf)) == NULL ||
481		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
482		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
483		    obj_main->path = xstrdup(argv0);
484	    else
485		    obj_main->path = xstrdup(buf);
486    } else {
487	    dbg("No AT_EXECPATH");
488	    obj_main->path = xstrdup(argv0);
489    }
490    dbg("obj_main path %s", obj_main->path);
491    obj_main->mainprog = true;
492
493    if (aux_info[AT_STACKPROT] != NULL &&
494      aux_info[AT_STACKPROT]->a_un.a_val != 0)
495	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
496
497    /*
498     * Get the actual dynamic linker pathname from the executable if
499     * possible.  (It should always be possible.)  That ensures that
500     * gdb will find the right dynamic linker even if a non-standard
501     * one is being used.
502     */
503    if (obj_main->interp != NULL &&
504      strcmp(obj_main->interp, obj_rtld.path) != 0) {
505	free(obj_rtld.path);
506	obj_rtld.path = xstrdup(obj_main->interp);
507        __progname = obj_rtld.path;
508    }
509
510    digest_dynamic(obj_main, 0);
511    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
512	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
513	obj_main->dynsymcount);
514
515    linkmap_add(obj_main);
516    linkmap_add(&obj_rtld);
517
518    /* Link the main program into the list of objects. */
519    *obj_tail = obj_main;
520    obj_tail = &obj_main->next;
521    obj_count++;
522    obj_loads++;
523
524    /* Initialize a fake symbol for resolving undefined weak references. */
525    sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
526    sym_zero.st_shndx = SHN_UNDEF;
527    sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
528
529    if (!libmap_disable)
530        libmap_disable = (bool)lm_init(libmap_override);
531
532    dbg("loading LD_PRELOAD libraries");
533    if (load_preload_objects() == -1)
534	die();
535    preload_tail = obj_tail;
536
537    dbg("loading needed objects");
538    if (load_needed_objects(obj_main, 0) == -1)
539	die();
540
541    /* Make a list of all objects loaded at startup. */
542    last_interposer = obj_main;
543    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
544	if (obj->z_interpose && obj != obj_main) {
545	    objlist_put_after(&list_main, last_interposer, obj);
546	    last_interposer = obj;
547	} else {
548	    objlist_push_tail(&list_main, obj);
549	}
550    	obj->refcount++;
551    }
552
553    dbg("checking for required versions");
554    if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
555	die();
556
557    if (ld_tracing) {		/* We're done */
558	trace_loaded_objects(obj_main);
559	exit(0);
560    }
561
562    if (getenv(LD_ "DUMP_REL_PRE") != NULL) {
563       dump_relocations(obj_main);
564       exit (0);
565    }
566
567    /*
568     * Processing tls relocations requires having the tls offsets
569     * initialized.  Prepare offsets before starting initial
570     * relocation processing.
571     */
572    dbg("initializing initial thread local storage offsets");
573    STAILQ_FOREACH(entry, &list_main, link) {
574	/*
575	 * Allocate all the initial objects out of the static TLS
576	 * block even if they didn't ask for it.
577	 */
578	allocate_tls_offset(entry->obj);
579    }
580
581    if (relocate_objects(obj_main,
582      ld_bind_now != NULL && *ld_bind_now != '\0',
583      &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
584	die();
585
586    dbg("doing copy relocations");
587    if (do_copy_relocations(obj_main) == -1)
588	die();
589
590    if (getenv(LD_ "DUMP_REL_POST") != NULL) {
591       dump_relocations(obj_main);
592       exit (0);
593    }
594
595    /*
596     * Setup TLS for main thread.  This must be done after the
597     * relocations are processed, since tls initialization section
598     * might be the subject for relocations.
599     */
600    dbg("initializing initial thread local storage");
601    allocate_initial_tls(obj_list);
602
603    dbg("initializing key program variables");
604    set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
605    set_program_var("environ", env);
606    set_program_var("__elf_aux_vector", aux);
607
608    /* Make a list of init functions to call. */
609    objlist_init(&initlist);
610    initlist_add_objects(obj_list, preload_tail, &initlist);
611
612    r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
613
614    map_stacks_exec(NULL);
615
616    dbg("resolving ifuncs");
617    if (resolve_objects_ifunc(obj_main,
618      ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
619      NULL) == -1)
620	die();
621
622    if (!obj_main->crt_no_init) {
623	/*
624	 * Make sure we don't call the main program's init and fini
625	 * functions for binaries linked with old crt1 which calls
626	 * _init itself.
627	 */
628	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
629	obj_main->preinit_array = obj_main->init_array =
630	    obj_main->fini_array = (Elf_Addr)NULL;
631    }
632
633    wlock_acquire(rtld_bind_lock, &lockstate);
634    if (obj_main->crt_no_init)
635	preinit_main();
636    objlist_call_init(&initlist, &lockstate);
637    objlist_clear(&initlist);
638    dbg("loading filtees");
639    for (obj = obj_list->next; obj != NULL; obj = obj->next) {
640	if (ld_loadfltr || obj->z_loadfltr)
641	    load_filtees(obj, 0, &lockstate);
642    }
643    lock_release(rtld_bind_lock, &lockstate);
644
645    dbg("transferring control to program entry point = %p", obj_main->entry);
646
647    /* Return the exit procedure and the program entry point. */
648    *exit_proc = rtld_exit;
649    *objp = obj_main;
650    return (func_ptr_type) obj_main->entry;
651}
652
653void *
654rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
655{
656	void *ptr;
657	Elf_Addr target;
658
659	ptr = (void *)make_function_pointer(def, obj);
660	target = ((Elf_Addr (*)(void))ptr)();
661	return ((void *)target);
662}
663
664Elf_Addr
665_rtld_bind(Obj_Entry *obj, Elf_Size reloff)
666{
667    const Elf_Rel *rel;
668    const Elf_Sym *def;
669    const Obj_Entry *defobj;
670    Elf_Addr *where;
671    Elf_Addr target;
672    RtldLockState lockstate;
673
674    rlock_acquire(rtld_bind_lock, &lockstate);
675    if (sigsetjmp(lockstate.env, 0) != 0)
676	    lock_upgrade(rtld_bind_lock, &lockstate);
677    if (obj->pltrel)
678	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
679    else
680	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
681
682    where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
683    def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
684	&lockstate);
685    if (def == NULL)
686	die();
687    if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
688	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
689    else
690	target = (Elf_Addr)(defobj->relocbase + def->st_value);
691
692    dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
693      defobj->strtab + def->st_name, basename(obj->path),
694      (void *)target, basename(defobj->path));
695
696    /*
697     * Write the new contents for the jmpslot. Note that depending on
698     * architecture, the value which we need to return back to the
699     * lazy binding trampoline may or may not be the target
700     * address. The value returned from reloc_jmpslot() is the value
701     * that the trampoline needs.
702     */
703    target = reloc_jmpslot(where, target, defobj, obj, rel);
704    lock_release(rtld_bind_lock, &lockstate);
705    return target;
706}
707
708/*
709 * Error reporting function.  Use it like printf.  If formats the message
710 * into a buffer, and sets things up so that the next call to dlerror()
711 * will return the message.
712 */
713void
714_rtld_error(const char *fmt, ...)
715{
716    static char buf[512];
717    va_list ap;
718
719    va_start(ap, fmt);
720    rtld_vsnprintf(buf, sizeof buf, fmt, ap);
721    error_message = buf;
722    va_end(ap);
723}
724
725/*
726 * Return a dynamically-allocated copy of the current error message, if any.
727 */
728static char *
729errmsg_save(void)
730{
731    return error_message == NULL ? NULL : xstrdup(error_message);
732}
733
734/*
735 * Restore the current error message from a copy which was previously saved
736 * by errmsg_save().  The copy is freed.
737 */
738static void
739errmsg_restore(char *saved_msg)
740{
741    if (saved_msg == NULL)
742	error_message = NULL;
743    else {
744	_rtld_error("%s", saved_msg);
745	free(saved_msg);
746    }
747}
748
749static const char *
750basename(const char *name)
751{
752    const char *p = strrchr(name, '/');
753    return p != NULL ? p + 1 : name;
754}
755
756static struct utsname uts;
757
758static char *
759origin_subst_one(char *real, const char *kw, const char *subst,
760    bool may_free)
761{
762	char *p, *p1, *res, *resp;
763	int subst_len, kw_len, subst_count, old_len, new_len;
764
765	kw_len = strlen(kw);
766
767	/*
768	 * First, count the number of the keyword occurences, to
769	 * preallocate the final string.
770	 */
771	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
772		p1 = strstr(p, kw);
773		if (p1 == NULL)
774			break;
775	}
776
777	/*
778	 * If the keyword is not found, just return.
779	 */
780	if (subst_count == 0)
781		return (may_free ? real : xstrdup(real));
782
783	/*
784	 * There is indeed something to substitute.  Calculate the
785	 * length of the resulting string, and allocate it.
786	 */
787	subst_len = strlen(subst);
788	old_len = strlen(real);
789	new_len = old_len + (subst_len - kw_len) * subst_count;
790	res = xmalloc(new_len + 1);
791
792	/*
793	 * Now, execute the substitution loop.
794	 */
795	for (p = real, resp = res, *resp = '\0';;) {
796		p1 = strstr(p, kw);
797		if (p1 != NULL) {
798			/* Copy the prefix before keyword. */
799			memcpy(resp, p, p1 - p);
800			resp += p1 - p;
801			/* Keyword replacement. */
802			memcpy(resp, subst, subst_len);
803			resp += subst_len;
804			*resp = '\0';
805			p = p1 + kw_len;
806		} else
807			break;
808	}
809
810	/* Copy to the end of string and finish. */
811	strcat(resp, p);
812	if (may_free)
813		free(real);
814	return (res);
815}
816
817static char *
818origin_subst(char *real, const char *origin_path)
819{
820	char *res1, *res2, *res3, *res4;
821
822	if (uts.sysname[0] == '\0') {
823		if (uname(&uts) != 0) {
824			_rtld_error("utsname failed: %d", errno);
825			return (NULL);
826		}
827	}
828	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
829	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
830	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
831	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
832	return (res4);
833}
834
835static void
836die(void)
837{
838    const char *msg = dlerror();
839
840    if (msg == NULL)
841	msg = "Fatal error";
842    rtld_fdputstr(STDERR_FILENO, msg);
843    rtld_fdputchar(STDERR_FILENO, '\n');
844    _exit(1);
845}
846
847/*
848 * Process a shared object's DYNAMIC section, and save the important
849 * information in its Obj_Entry structure.
850 */
851static void
852digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
853    const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
854{
855    const Elf_Dyn *dynp;
856    Needed_Entry **needed_tail = &obj->needed;
857    Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
858    Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
859    const Elf_Hashelt *hashtab;
860    const Elf32_Word *hashval;
861    Elf32_Word bkt, nmaskwords;
862    int bloom_size32;
863    bool nmw_power2;
864    int plttype = DT_REL;
865
866    *dyn_rpath = NULL;
867    *dyn_soname = NULL;
868    *dyn_runpath = NULL;
869
870    obj->bind_now = false;
871    for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
872	switch (dynp->d_tag) {
873
874	case DT_REL:
875	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
876	    break;
877
878	case DT_RELSZ:
879	    obj->relsize = dynp->d_un.d_val;
880	    break;
881
882	case DT_RELENT:
883	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
884	    break;
885
886	case DT_JMPREL:
887	    obj->pltrel = (const Elf_Rel *)
888	      (obj->relocbase + dynp->d_un.d_ptr);
889	    break;
890
891	case DT_PLTRELSZ:
892	    obj->pltrelsize = dynp->d_un.d_val;
893	    break;
894
895	case DT_RELA:
896	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
897	    break;
898
899	case DT_RELASZ:
900	    obj->relasize = dynp->d_un.d_val;
901	    break;
902
903	case DT_RELAENT:
904	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
905	    break;
906
907	case DT_PLTREL:
908	    plttype = dynp->d_un.d_val;
909	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
910	    break;
911
912	case DT_SYMTAB:
913	    obj->symtab = (const Elf_Sym *)
914	      (obj->relocbase + dynp->d_un.d_ptr);
915	    break;
916
917	case DT_SYMENT:
918	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
919	    break;
920
921	case DT_STRTAB:
922	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
923	    break;
924
925	case DT_STRSZ:
926	    obj->strsize = dynp->d_un.d_val;
927	    break;
928
929	case DT_VERNEED:
930	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
931		dynp->d_un.d_val);
932	    break;
933
934	case DT_VERNEEDNUM:
935	    obj->verneednum = dynp->d_un.d_val;
936	    break;
937
938	case DT_VERDEF:
939	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
940		dynp->d_un.d_val);
941	    break;
942
943	case DT_VERDEFNUM:
944	    obj->verdefnum = dynp->d_un.d_val;
945	    break;
946
947	case DT_VERSYM:
948	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
949		dynp->d_un.d_val);
950	    break;
951
952	case DT_HASH:
953	    {
954		hashtab = (const Elf_Hashelt *)(obj->relocbase +
955		    dynp->d_un.d_ptr);
956		obj->nbuckets = hashtab[0];
957		obj->nchains = hashtab[1];
958		obj->buckets = hashtab + 2;
959		obj->chains = obj->buckets + obj->nbuckets;
960		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
961		  obj->buckets != NULL;
962	    }
963	    break;
964
965	case DT_GNU_HASH:
966	    {
967		hashtab = (const Elf_Hashelt *)(obj->relocbase +
968		    dynp->d_un.d_ptr);
969		obj->nbuckets_gnu = hashtab[0];
970		obj->symndx_gnu = hashtab[1];
971		nmaskwords = hashtab[2];
972		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
973		/* Number of bitmask words is required to be power of 2 */
974		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
975		obj->maskwords_bm_gnu = nmaskwords - 1;
976		obj->shift2_gnu = hashtab[3];
977		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
978		obj->buckets_gnu = hashtab + 4 + bloom_size32;
979		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
980		  obj->symndx_gnu;
981		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
982		  obj->buckets_gnu != NULL;
983	    }
984	    break;
985
986	case DT_NEEDED:
987	    if (!obj->rtld) {
988		Needed_Entry *nep = NEW(Needed_Entry);
989		nep->name = dynp->d_un.d_val;
990		nep->obj = NULL;
991		nep->next = NULL;
992
993		*needed_tail = nep;
994		needed_tail = &nep->next;
995	    }
996	    break;
997
998	case DT_FILTER:
999	    if (!obj->rtld) {
1000		Needed_Entry *nep = NEW(Needed_Entry);
1001		nep->name = dynp->d_un.d_val;
1002		nep->obj = NULL;
1003		nep->next = NULL;
1004
1005		*needed_filtees_tail = nep;
1006		needed_filtees_tail = &nep->next;
1007	    }
1008	    break;
1009
1010	case DT_AUXILIARY:
1011	    if (!obj->rtld) {
1012		Needed_Entry *nep = NEW(Needed_Entry);
1013		nep->name = dynp->d_un.d_val;
1014		nep->obj = NULL;
1015		nep->next = NULL;
1016
1017		*needed_aux_filtees_tail = nep;
1018		needed_aux_filtees_tail = &nep->next;
1019	    }
1020	    break;
1021
1022	case DT_PLTGOT:
1023	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1024	    break;
1025
1026	case DT_TEXTREL:
1027	    obj->textrel = true;
1028	    break;
1029
1030	case DT_SYMBOLIC:
1031	    obj->symbolic = true;
1032	    break;
1033
1034	case DT_RPATH:
1035	    /*
1036	     * We have to wait until later to process this, because we
1037	     * might not have gotten the address of the string table yet.
1038	     */
1039	    *dyn_rpath = dynp;
1040	    break;
1041
1042	case DT_SONAME:
1043	    *dyn_soname = dynp;
1044	    break;
1045
1046	case DT_RUNPATH:
1047	    *dyn_runpath = dynp;
1048	    break;
1049
1050	case DT_INIT:
1051	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1052	    break;
1053
1054	case DT_PREINIT_ARRAY:
1055	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1056	    break;
1057
1058	case DT_PREINIT_ARRAYSZ:
1059	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1060	    break;
1061
1062	case DT_INIT_ARRAY:
1063	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1064	    break;
1065
1066	case DT_INIT_ARRAYSZ:
1067	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1068	    break;
1069
1070	case DT_FINI:
1071	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1072	    break;
1073
1074	case DT_FINI_ARRAY:
1075	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1076	    break;
1077
1078	case DT_FINI_ARRAYSZ:
1079	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1080	    break;
1081
1082	/*
1083	 * Don't process DT_DEBUG on MIPS as the dynamic section
1084	 * is mapped read-only. DT_MIPS_RLD_MAP is used instead.
1085	 */
1086
1087#ifndef __mips__
1088	case DT_DEBUG:
1089	    /* XXX - not implemented yet */
1090	    if (!early)
1091		dbg("Filling in DT_DEBUG entry");
1092	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1093	    break;
1094#endif
1095
1096	case DT_FLAGS:
1097		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1098		    obj->z_origin = true;
1099		if (dynp->d_un.d_val & DF_SYMBOLIC)
1100		    obj->symbolic = true;
1101		if (dynp->d_un.d_val & DF_TEXTREL)
1102		    obj->textrel = true;
1103		if (dynp->d_un.d_val & DF_BIND_NOW)
1104		    obj->bind_now = true;
1105		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1106		    ;*/
1107	    break;
1108#ifdef __mips__
1109	case DT_MIPS_LOCAL_GOTNO:
1110		obj->local_gotno = dynp->d_un.d_val;
1111	    break;
1112
1113	case DT_MIPS_SYMTABNO:
1114		obj->symtabno = dynp->d_un.d_val;
1115		break;
1116
1117	case DT_MIPS_GOTSYM:
1118		obj->gotsym = dynp->d_un.d_val;
1119		break;
1120
1121	case DT_MIPS_RLD_MAP:
1122		*((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug;
1123		break;
1124#endif
1125
1126	case DT_FLAGS_1:
1127		if (dynp->d_un.d_val & DF_1_NOOPEN)
1128		    obj->z_noopen = true;
1129		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1130		    obj->z_origin = true;
1131		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1132		    XXX ;*/
1133		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1134		    obj->bind_now = true;
1135		if (dynp->d_un.d_val & DF_1_NODELETE)
1136		    obj->z_nodelete = true;
1137		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1138		    obj->z_loadfltr = true;
1139		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1140		    obj->z_interpose = true;
1141		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1142		    obj->z_nodeflib = true;
1143	    break;
1144
1145	default:
1146	    if (!early) {
1147		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1148		    (long)dynp->d_tag);
1149	    }
1150	    break;
1151	}
1152    }
1153
1154    obj->traced = false;
1155
1156    if (plttype == DT_RELA) {
1157	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1158	obj->pltrel = NULL;
1159	obj->pltrelasize = obj->pltrelsize;
1160	obj->pltrelsize = 0;
1161    }
1162
1163    /* Determine size of dynsym table (equal to nchains of sysv hash) */
1164    if (obj->valid_hash_sysv)
1165	obj->dynsymcount = obj->nchains;
1166    else if (obj->valid_hash_gnu) {
1167	obj->dynsymcount = 0;
1168	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1169	    if (obj->buckets_gnu[bkt] == 0)
1170		continue;
1171	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1172	    do
1173		obj->dynsymcount++;
1174	    while ((*hashval++ & 1u) == 0);
1175	}
1176	obj->dynsymcount += obj->symndx_gnu;
1177    }
1178}
1179
1180static void
1181digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1182    const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1183{
1184
1185    if (obj->z_origin && obj->origin_path == NULL) {
1186	obj->origin_path = xmalloc(PATH_MAX);
1187	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1188	    die();
1189    }
1190
1191    if (dyn_runpath != NULL) {
1192	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1193	if (obj->z_origin)
1194	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1195    }
1196    else if (dyn_rpath != NULL) {
1197	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1198	if (obj->z_origin)
1199	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1200    }
1201
1202    if (dyn_soname != NULL)
1203	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1204}
1205
1206static void
1207digest_dynamic(Obj_Entry *obj, int early)
1208{
1209	const Elf_Dyn *dyn_rpath;
1210	const Elf_Dyn *dyn_soname;
1211	const Elf_Dyn *dyn_runpath;
1212
1213	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1214	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1215}
1216
1217/*
1218 * Process a shared object's program header.  This is used only for the
1219 * main program, when the kernel has already loaded the main program
1220 * into memory before calling the dynamic linker.  It creates and
1221 * returns an Obj_Entry structure.
1222 */
1223static Obj_Entry *
1224digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1225{
1226    Obj_Entry *obj;
1227    const Elf_Phdr *phlimit = phdr + phnum;
1228    const Elf_Phdr *ph;
1229    Elf_Addr note_start, note_end;
1230    int nsegs = 0;
1231
1232    obj = obj_new();
1233    for (ph = phdr;  ph < phlimit;  ph++) {
1234	if (ph->p_type != PT_PHDR)
1235	    continue;
1236
1237	obj->phdr = phdr;
1238	obj->phsize = ph->p_memsz;
1239	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1240	break;
1241    }
1242
1243    obj->stack_flags = PF_X | PF_R | PF_W;
1244
1245    for (ph = phdr;  ph < phlimit;  ph++) {
1246	switch (ph->p_type) {
1247
1248	case PT_INTERP:
1249	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1250	    break;
1251
1252	case PT_LOAD:
1253	    if (nsegs == 0) {	/* First load segment */
1254		obj->vaddrbase = trunc_page(ph->p_vaddr);
1255		obj->mapbase = obj->vaddrbase + obj->relocbase;
1256		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1257		  obj->vaddrbase;
1258	    } else {		/* Last load segment */
1259		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1260		  obj->vaddrbase;
1261	    }
1262	    nsegs++;
1263	    break;
1264
1265	case PT_DYNAMIC:
1266	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1267	    break;
1268
1269	case PT_TLS:
1270	    obj->tlsindex = 1;
1271	    obj->tlssize = ph->p_memsz;
1272	    obj->tlsalign = ph->p_align;
1273	    obj->tlsinitsize = ph->p_filesz;
1274	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1275	    break;
1276
1277	case PT_GNU_STACK:
1278	    obj->stack_flags = ph->p_flags;
1279	    break;
1280
1281	case PT_GNU_RELRO:
1282	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1283	    obj->relro_size = round_page(ph->p_memsz);
1284	    break;
1285
1286	case PT_NOTE:
1287	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1288	    note_end = note_start + ph->p_filesz;
1289	    digest_notes(obj, note_start, note_end);
1290	    break;
1291	}
1292    }
1293    if (nsegs < 1) {
1294	_rtld_error("%s: too few PT_LOAD segments", path);
1295	return NULL;
1296    }
1297
1298    obj->entry = entry;
1299    return obj;
1300}
1301
1302void
1303digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1304{
1305	const Elf_Note *note;
1306	const char *note_name;
1307	uintptr_t p;
1308
1309	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1310	    note = (const Elf_Note *)((const char *)(note + 1) +
1311	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1312	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1313		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1314		    note->n_descsz != sizeof(int32_t))
1315			continue;
1316		if (note->n_type != ABI_NOTETYPE &&
1317		    note->n_type != CRT_NOINIT_NOTETYPE)
1318			continue;
1319		note_name = (const char *)(note + 1);
1320		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1321		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1322			continue;
1323		switch (note->n_type) {
1324		case ABI_NOTETYPE:
1325			/* FreeBSD osrel note */
1326			p = (uintptr_t)(note + 1);
1327			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1328			obj->osrel = *(const int32_t *)(p);
1329			dbg("note osrel %d", obj->osrel);
1330			break;
1331		case CRT_NOINIT_NOTETYPE:
1332			/* FreeBSD 'crt does not call init' note */
1333			obj->crt_no_init = true;
1334			dbg("note crt_no_init");
1335			break;
1336		}
1337	}
1338}
1339
1340static Obj_Entry *
1341dlcheck(void *handle)
1342{
1343    Obj_Entry *obj;
1344
1345    for (obj = obj_list;  obj != NULL;  obj = obj->next)
1346	if (obj == (Obj_Entry *) handle)
1347	    break;
1348
1349    if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1350	_rtld_error("Invalid shared object handle %p", handle);
1351	return NULL;
1352    }
1353    return obj;
1354}
1355
1356/*
1357 * If the given object is already in the donelist, return true.  Otherwise
1358 * add the object to the list and return false.
1359 */
1360static bool
1361donelist_check(DoneList *dlp, const Obj_Entry *obj)
1362{
1363    unsigned int i;
1364
1365    for (i = 0;  i < dlp->num_used;  i++)
1366	if (dlp->objs[i] == obj)
1367	    return true;
1368    /*
1369     * Our donelist allocation should always be sufficient.  But if
1370     * our threads locking isn't working properly, more shared objects
1371     * could have been loaded since we allocated the list.  That should
1372     * never happen, but we'll handle it properly just in case it does.
1373     */
1374    if (dlp->num_used < dlp->num_alloc)
1375	dlp->objs[dlp->num_used++] = obj;
1376    return false;
1377}
1378
1379/*
1380 * Hash function for symbol table lookup.  Don't even think about changing
1381 * this.  It is specified by the System V ABI.
1382 */
1383unsigned long
1384elf_hash(const char *name)
1385{
1386    const unsigned char *p = (const unsigned char *) name;
1387    unsigned long h = 0;
1388    unsigned long g;
1389
1390    while (*p != '\0') {
1391	h = (h << 4) + *p++;
1392	if ((g = h & 0xf0000000) != 0)
1393	    h ^= g >> 24;
1394	h &= ~g;
1395    }
1396    return h;
1397}
1398
1399/*
1400 * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1401 * unsigned in case it's implemented with a wider type.
1402 */
1403static uint32_t
1404gnu_hash(const char *s)
1405{
1406	uint32_t h;
1407	unsigned char c;
1408
1409	h = 5381;
1410	for (c = *s; c != '\0'; c = *++s)
1411		h = h * 33 + c;
1412	return (h & 0xffffffff);
1413}
1414
1415/*
1416 * Find the library with the given name, and return its full pathname.
1417 * The returned string is dynamically allocated.  Generates an error
1418 * message and returns NULL if the library cannot be found.
1419 *
1420 * If the second argument is non-NULL, then it refers to an already-
1421 * loaded shared object, whose library search path will be searched.
1422 *
1423 * The search order is:
1424 *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1425 *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1426 *   LD_LIBRARY_PATH
1427 *   DT_RUNPATH in the referencing file
1428 *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1429 *	 from list)
1430 *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1431 *
1432 * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1433 */
1434static char *
1435find_library(const char *xname, const Obj_Entry *refobj)
1436{
1437    char *pathname;
1438    char *name;
1439    bool nodeflib, objgiven;
1440
1441    objgiven = refobj != NULL;
1442    if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1443	if (xname[0] != '/' && !trust) {
1444	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1445	      xname);
1446	    return NULL;
1447	}
1448	if (objgiven && refobj->z_origin) {
1449		return (origin_subst(__DECONST(char *, xname),
1450		    refobj->origin_path));
1451	} else {
1452		return (xstrdup(xname));
1453	}
1454    }
1455
1456    if (libmap_disable || !objgiven ||
1457	(name = lm_find(refobj->path, xname)) == NULL)
1458	name = (char *)xname;
1459
1460    dbg(" Searching for \"%s\"", name);
1461
1462    /*
1463     * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1464     * back to pre-conforming behaviour if user requested so with
1465     * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1466     * nodeflib.
1467     */
1468    if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1469	if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1470	  (refobj != NULL &&
1471	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1472          (pathname = search_library_path(name, gethints(false))) != NULL ||
1473	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1474	    return (pathname);
1475    } else {
1476	nodeflib = objgiven ? refobj->z_nodeflib : false;
1477	if ((objgiven &&
1478	  (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1479	  (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1480	  (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1481	  (pathname = search_library_path(name, ld_library_path)) != NULL ||
1482	  (objgiven &&
1483	  (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1484	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1485	  (objgiven && !nodeflib &&
1486	  (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1487	    return (pathname);
1488    }
1489
1490    if (objgiven && refobj->path != NULL) {
1491	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1492	  name, basename(refobj->path));
1493    } else {
1494	_rtld_error("Shared object \"%s\" not found", name);
1495    }
1496    return NULL;
1497}
1498
1499/*
1500 * Given a symbol number in a referencing object, find the corresponding
1501 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1502 * no definition was found.  Returns a pointer to the Obj_Entry of the
1503 * defining object via the reference parameter DEFOBJ_OUT.
1504 */
1505const Elf_Sym *
1506find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1507    const Obj_Entry **defobj_out, int flags, SymCache *cache,
1508    RtldLockState *lockstate)
1509{
1510    const Elf_Sym *ref;
1511    const Elf_Sym *def;
1512    const Obj_Entry *defobj;
1513    SymLook req;
1514    const char *name;
1515    int res;
1516
1517    /*
1518     * If we have already found this symbol, get the information from
1519     * the cache.
1520     */
1521    if (symnum >= refobj->dynsymcount)
1522	return NULL;	/* Bad object */
1523    if (cache != NULL && cache[symnum].sym != NULL) {
1524	*defobj_out = cache[symnum].obj;
1525	return cache[symnum].sym;
1526    }
1527
1528    ref = refobj->symtab + symnum;
1529    name = refobj->strtab + ref->st_name;
1530    def = NULL;
1531    defobj = NULL;
1532
1533    /*
1534     * We don't have to do a full scale lookup if the symbol is local.
1535     * We know it will bind to the instance in this load module; to
1536     * which we already have a pointer (ie ref). By not doing a lookup,
1537     * we not only improve performance, but it also avoids unresolvable
1538     * symbols when local symbols are not in the hash table. This has
1539     * been seen with the ia64 toolchain.
1540     */
1541    if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1542	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1543	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1544		symnum);
1545	}
1546	symlook_init(&req, name);
1547	req.flags = flags;
1548	req.ventry = fetch_ventry(refobj, symnum);
1549	req.lockstate = lockstate;
1550	res = symlook_default(&req, refobj);
1551	if (res == 0) {
1552	    def = req.sym_out;
1553	    defobj = req.defobj_out;
1554	}
1555    } else {
1556	def = ref;
1557	defobj = refobj;
1558    }
1559
1560    /*
1561     * If we found no definition and the reference is weak, treat the
1562     * symbol as having the value zero.
1563     */
1564    if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1565	def = &sym_zero;
1566	defobj = obj_main;
1567    }
1568
1569    if (def != NULL) {
1570	*defobj_out = defobj;
1571	/* Record the information in the cache to avoid subsequent lookups. */
1572	if (cache != NULL) {
1573	    cache[symnum].sym = def;
1574	    cache[symnum].obj = defobj;
1575	}
1576    } else {
1577	if (refobj != &obj_rtld)
1578	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1579    }
1580    return def;
1581}
1582
1583/*
1584 * Return the search path from the ldconfig hints file, reading it if
1585 * necessary.  If nostdlib is true, then the default search paths are
1586 * not added to result.
1587 *
1588 * Returns NULL if there are problems with the hints file,
1589 * or if the search path there is empty.
1590 */
1591static const char *
1592gethints(bool nostdlib)
1593{
1594	static char *hints, *filtered_path;
1595	struct elfhints_hdr hdr;
1596	struct fill_search_info_args sargs, hargs;
1597	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1598	struct dl_serpath *SLPpath, *hintpath;
1599	char *p;
1600	unsigned int SLPndx, hintndx, fndx, fcount;
1601	int fd;
1602	size_t flen;
1603	bool skip;
1604
1605	/* First call, read the hints file */
1606	if (hints == NULL) {
1607		/* Keep from trying again in case the hints file is bad. */
1608		hints = "";
1609
1610		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1611			return (NULL);
1612		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1613		    hdr.magic != ELFHINTS_MAGIC ||
1614		    hdr.version != 1) {
1615			close(fd);
1616			return (NULL);
1617		}
1618		p = xmalloc(hdr.dirlistlen + 1);
1619		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1620		    read(fd, p, hdr.dirlistlen + 1) !=
1621		    (ssize_t)hdr.dirlistlen + 1) {
1622			free(p);
1623			close(fd);
1624			return (NULL);
1625		}
1626		hints = p;
1627		close(fd);
1628	}
1629
1630	/*
1631	 * If caller agreed to receive list which includes the default
1632	 * paths, we are done. Otherwise, if we still did not
1633	 * calculated filtered result, do it now.
1634	 */
1635	if (!nostdlib)
1636		return (hints[0] != '\0' ? hints : NULL);
1637	if (filtered_path != NULL)
1638		goto filt_ret;
1639
1640	/*
1641	 * Obtain the list of all configured search paths, and the
1642	 * list of the default paths.
1643	 *
1644	 * First estimate the size of the results.
1645	 */
1646	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1647	smeta.dls_cnt = 0;
1648	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1649	hmeta.dls_cnt = 0;
1650
1651	sargs.request = RTLD_DI_SERINFOSIZE;
1652	sargs.serinfo = &smeta;
1653	hargs.request = RTLD_DI_SERINFOSIZE;
1654	hargs.serinfo = &hmeta;
1655
1656	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1657	path_enumerate(p, fill_search_info, &hargs);
1658
1659	SLPinfo = xmalloc(smeta.dls_size);
1660	hintinfo = xmalloc(hmeta.dls_size);
1661
1662	/*
1663	 * Next fetch both sets of paths.
1664	 */
1665	sargs.request = RTLD_DI_SERINFO;
1666	sargs.serinfo = SLPinfo;
1667	sargs.serpath = &SLPinfo->dls_serpath[0];
1668	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1669
1670	hargs.request = RTLD_DI_SERINFO;
1671	hargs.serinfo = hintinfo;
1672	hargs.serpath = &hintinfo->dls_serpath[0];
1673	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1674
1675	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1676	path_enumerate(p, fill_search_info, &hargs);
1677
1678	/*
1679	 * Now calculate the difference between two sets, by excluding
1680	 * standard paths from the full set.
1681	 */
1682	fndx = 0;
1683	fcount = 0;
1684	filtered_path = xmalloc(hdr.dirlistlen + 1);
1685	hintpath = &hintinfo->dls_serpath[0];
1686	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1687		skip = false;
1688		SLPpath = &SLPinfo->dls_serpath[0];
1689		/*
1690		 * Check each standard path against current.
1691		 */
1692		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1693			/* matched, skip the path */
1694			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1695				skip = true;
1696				break;
1697			}
1698		}
1699		if (skip)
1700			continue;
1701		/*
1702		 * Not matched against any standard path, add the path
1703		 * to result. Separate consequtive paths with ':'.
1704		 */
1705		if (fcount > 0) {
1706			filtered_path[fndx] = ':';
1707			fndx++;
1708		}
1709		fcount++;
1710		flen = strlen(hintpath->dls_name);
1711		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1712		fndx += flen;
1713	}
1714	filtered_path[fndx] = '\0';
1715
1716	free(SLPinfo);
1717	free(hintinfo);
1718
1719filt_ret:
1720	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1721}
1722
1723static void
1724init_dag(Obj_Entry *root)
1725{
1726    const Needed_Entry *needed;
1727    const Objlist_Entry *elm;
1728    DoneList donelist;
1729
1730    if (root->dag_inited)
1731	return;
1732    donelist_init(&donelist);
1733
1734    /* Root object belongs to own DAG. */
1735    objlist_push_tail(&root->dldags, root);
1736    objlist_push_tail(&root->dagmembers, root);
1737    donelist_check(&donelist, root);
1738
1739    /*
1740     * Add dependencies of root object to DAG in breadth order
1741     * by exploiting the fact that each new object get added
1742     * to the tail of the dagmembers list.
1743     */
1744    STAILQ_FOREACH(elm, &root->dagmembers, link) {
1745	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1746	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1747		continue;
1748	    objlist_push_tail(&needed->obj->dldags, root);
1749	    objlist_push_tail(&root->dagmembers, needed->obj);
1750	}
1751    }
1752    root->dag_inited = true;
1753}
1754
1755static void
1756process_nodelete(Obj_Entry *root)
1757{
1758	const Objlist_Entry *elm;
1759
1760	/*
1761	 * Walk over object DAG and process every dependent object that
1762	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1763	 * which then should have its reference upped separately.
1764	 */
1765	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1766		if (elm->obj != NULL && elm->obj->z_nodelete &&
1767		    !elm->obj->ref_nodel) {
1768			dbg("obj %s nodelete", elm->obj->path);
1769			init_dag(elm->obj);
1770			ref_dag(elm->obj);
1771			elm->obj->ref_nodel = true;
1772		}
1773	}
1774}
1775/*
1776 * Initialize the dynamic linker.  The argument is the address at which
1777 * the dynamic linker has been mapped into memory.  The primary task of
1778 * this function is to relocate the dynamic linker.
1779 */
1780static void
1781init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1782{
1783    Obj_Entry objtmp;	/* Temporary rtld object */
1784    const Elf_Dyn *dyn_rpath;
1785    const Elf_Dyn *dyn_soname;
1786    const Elf_Dyn *dyn_runpath;
1787
1788    /*
1789     * Conjure up an Obj_Entry structure for the dynamic linker.
1790     *
1791     * The "path" member can't be initialized yet because string constants
1792     * cannot yet be accessed. Below we will set it correctly.
1793     */
1794    memset(&objtmp, 0, sizeof(objtmp));
1795    objtmp.path = NULL;
1796    objtmp.rtld = true;
1797    objtmp.mapbase = mapbase;
1798#ifdef PIC
1799    objtmp.relocbase = mapbase;
1800#endif
1801    if (RTLD_IS_DYNAMIC()) {
1802	objtmp.dynamic = rtld_dynamic(&objtmp);
1803	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1804	assert(objtmp.needed == NULL);
1805#if !defined(__mips__)
1806	/* MIPS has a bogus DT_TEXTREL. */
1807	assert(!objtmp.textrel);
1808#endif
1809
1810	/*
1811	 * Temporarily put the dynamic linker entry into the object list, so
1812	 * that symbols can be found.
1813	 */
1814
1815	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1816    }
1817
1818    /* Initialize the object list. */
1819    obj_tail = &obj_list;
1820
1821    /* Now that non-local variables can be accesses, copy out obj_rtld. */
1822    memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1823
1824    if (aux_info[AT_PAGESZ] != NULL)
1825	    pagesize = aux_info[AT_PAGESZ]->a_un.a_val;
1826    if (aux_info[AT_OSRELDATE] != NULL)
1827	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1828
1829    digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1830
1831    /* Replace the path with a dynamically allocated copy. */
1832    obj_rtld.path = xstrdup(PATH_RTLD);
1833
1834    r_debug.r_brk = r_debug_state;
1835    r_debug.r_state = RT_CONSISTENT;
1836}
1837
1838/*
1839 * Add the init functions from a needed object list (and its recursive
1840 * needed objects) to "list".  This is not used directly; it is a helper
1841 * function for initlist_add_objects().  The write lock must be held
1842 * when this function is called.
1843 */
1844static void
1845initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1846{
1847    /* Recursively process the successor needed objects. */
1848    if (needed->next != NULL)
1849	initlist_add_neededs(needed->next, list);
1850
1851    /* Process the current needed object. */
1852    if (needed->obj != NULL)
1853	initlist_add_objects(needed->obj, &needed->obj->next, list);
1854}
1855
1856/*
1857 * Scan all of the DAGs rooted in the range of objects from "obj" to
1858 * "tail" and add their init functions to "list".  This recurses over
1859 * the DAGs and ensure the proper init ordering such that each object's
1860 * needed libraries are initialized before the object itself.  At the
1861 * same time, this function adds the objects to the global finalization
1862 * list "list_fini" in the opposite order.  The write lock must be
1863 * held when this function is called.
1864 */
1865static void
1866initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1867{
1868
1869    if (obj->init_scanned || obj->init_done)
1870	return;
1871    obj->init_scanned = true;
1872
1873    /* Recursively process the successor objects. */
1874    if (&obj->next != tail)
1875	initlist_add_objects(obj->next, tail, list);
1876
1877    /* Recursively process the needed objects. */
1878    if (obj->needed != NULL)
1879	initlist_add_neededs(obj->needed, list);
1880    if (obj->needed_filtees != NULL)
1881	initlist_add_neededs(obj->needed_filtees, list);
1882    if (obj->needed_aux_filtees != NULL)
1883	initlist_add_neededs(obj->needed_aux_filtees, list);
1884
1885    /* Add the object to the init list. */
1886    if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1887      obj->init_array != (Elf_Addr)NULL)
1888	objlist_push_tail(list, obj);
1889
1890    /* Add the object to the global fini list in the reverse order. */
1891    if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1892      && !obj->on_fini_list) {
1893	objlist_push_head(&list_fini, obj);
1894	obj->on_fini_list = true;
1895    }
1896}
1897
1898#ifndef FPTR_TARGET
1899#define FPTR_TARGET(f)	((Elf_Addr) (f))
1900#endif
1901
1902static void
1903free_needed_filtees(Needed_Entry *n)
1904{
1905    Needed_Entry *needed, *needed1;
1906
1907    for (needed = n; needed != NULL; needed = needed->next) {
1908	if (needed->obj != NULL) {
1909	    dlclose(needed->obj);
1910	    needed->obj = NULL;
1911	}
1912    }
1913    for (needed = n; needed != NULL; needed = needed1) {
1914	needed1 = needed->next;
1915	free(needed);
1916    }
1917}
1918
1919static void
1920unload_filtees(Obj_Entry *obj)
1921{
1922
1923    free_needed_filtees(obj->needed_filtees);
1924    obj->needed_filtees = NULL;
1925    free_needed_filtees(obj->needed_aux_filtees);
1926    obj->needed_aux_filtees = NULL;
1927    obj->filtees_loaded = false;
1928}
1929
1930static void
1931load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1932    RtldLockState *lockstate)
1933{
1934
1935    for (; needed != NULL; needed = needed->next) {
1936	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1937	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1938	  RTLD_LOCAL, lockstate);
1939    }
1940}
1941
1942static void
1943load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1944{
1945
1946    lock_restart_for_upgrade(lockstate);
1947    if (!obj->filtees_loaded) {
1948	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1949	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1950	obj->filtees_loaded = true;
1951    }
1952}
1953
1954static int
1955process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1956{
1957    Obj_Entry *obj1;
1958
1959    for (; needed != NULL; needed = needed->next) {
1960	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1961	  flags & ~RTLD_LO_NOLOAD);
1962	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1963	    return (-1);
1964    }
1965    return (0);
1966}
1967
1968/*
1969 * Given a shared object, traverse its list of needed objects, and load
1970 * each of them.  Returns 0 on success.  Generates an error message and
1971 * returns -1 on failure.
1972 */
1973static int
1974load_needed_objects(Obj_Entry *first, int flags)
1975{
1976    Obj_Entry *obj;
1977
1978    for (obj = first;  obj != NULL;  obj = obj->next) {
1979	if (process_needed(obj, obj->needed, flags) == -1)
1980	    return (-1);
1981    }
1982    return (0);
1983}
1984
1985static int
1986load_preload_objects(void)
1987{
1988    char *p = ld_preload;
1989    Obj_Entry *obj;
1990    static const char delim[] = " \t:;";
1991
1992    if (p == NULL)
1993	return 0;
1994
1995    p += strspn(p, delim);
1996    while (*p != '\0') {
1997	size_t len = strcspn(p, delim);
1998	char savech;
1999
2000	savech = p[len];
2001	p[len] = '\0';
2002	obj = load_object(p, -1, NULL, 0);
2003	if (obj == NULL)
2004	    return -1;	/* XXX - cleanup */
2005	obj->z_interpose = true;
2006	p[len] = savech;
2007	p += len;
2008	p += strspn(p, delim);
2009    }
2010    LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2011    return 0;
2012}
2013
2014static const char *
2015printable_path(const char *path)
2016{
2017
2018	return (path == NULL ? "<unknown>" : path);
2019}
2020
2021/*
2022 * Load a shared object into memory, if it is not already loaded.  The
2023 * object may be specified by name or by user-supplied file descriptor
2024 * fd_u. In the later case, the fd_u descriptor is not closed, but its
2025 * duplicate is.
2026 *
2027 * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2028 * on failure.
2029 */
2030static Obj_Entry *
2031load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2032{
2033    Obj_Entry *obj;
2034    int fd;
2035    struct stat sb;
2036    char *path;
2037
2038    if (name != NULL) {
2039	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2040	    if (object_match_name(obj, name))
2041		return (obj);
2042	}
2043
2044	path = find_library(name, refobj);
2045	if (path == NULL)
2046	    return (NULL);
2047    } else
2048	path = NULL;
2049
2050    /*
2051     * If we didn't find a match by pathname, or the name is not
2052     * supplied, open the file and check again by device and inode.
2053     * This avoids false mismatches caused by multiple links or ".."
2054     * in pathnames.
2055     *
2056     * To avoid a race, we open the file and use fstat() rather than
2057     * using stat().
2058     */
2059    fd = -1;
2060    if (fd_u == -1) {
2061	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2062	    _rtld_error("Cannot open \"%s\"", path);
2063	    free(path);
2064	    return (NULL);
2065	}
2066    } else {
2067	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2068	if (fd == -1) {
2069	    _rtld_error("Cannot dup fd");
2070	    free(path);
2071	    return (NULL);
2072	}
2073    }
2074    if (fstat(fd, &sb) == -1) {
2075	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2076	close(fd);
2077	free(path);
2078	return NULL;
2079    }
2080    for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2081	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2082	    break;
2083    if (obj != NULL && name != NULL) {
2084	object_add_name(obj, name);
2085	free(path);
2086	close(fd);
2087	return obj;
2088    }
2089    if (flags & RTLD_LO_NOLOAD) {
2090	free(path);
2091	close(fd);
2092	return (NULL);
2093    }
2094
2095    /* First use of this object, so we must map it in */
2096    obj = do_load_object(fd, name, path, &sb, flags);
2097    if (obj == NULL)
2098	free(path);
2099    close(fd);
2100
2101    return obj;
2102}
2103
2104static Obj_Entry *
2105do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2106  int flags)
2107{
2108    Obj_Entry *obj;
2109    struct statfs fs;
2110
2111    /*
2112     * but first, make sure that environment variables haven't been
2113     * used to circumvent the noexec flag on a filesystem.
2114     */
2115    if (dangerous_ld_env) {
2116	if (fstatfs(fd, &fs) != 0) {
2117	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2118	    return NULL;
2119	}
2120	if (fs.f_flags & MNT_NOEXEC) {
2121	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2122	    return NULL;
2123	}
2124    }
2125    dbg("loading \"%s\"", printable_path(path));
2126    obj = map_object(fd, printable_path(path), sbp);
2127    if (obj == NULL)
2128        return NULL;
2129
2130    /*
2131     * If DT_SONAME is present in the object, digest_dynamic2 already
2132     * added it to the object names.
2133     */
2134    if (name != NULL)
2135	object_add_name(obj, name);
2136    obj->path = path;
2137    digest_dynamic(obj, 0);
2138    dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2139	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2140    if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2141      RTLD_LO_DLOPEN) {
2142	dbg("refusing to load non-loadable \"%s\"", obj->path);
2143	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2144	munmap(obj->mapbase, obj->mapsize);
2145	obj_free(obj);
2146	return (NULL);
2147    }
2148
2149    *obj_tail = obj;
2150    obj_tail = &obj->next;
2151    obj_count++;
2152    obj_loads++;
2153    linkmap_add(obj);	/* for GDB & dlinfo() */
2154    max_stack_flags |= obj->stack_flags;
2155
2156    dbg("  %p .. %p: %s", obj->mapbase,
2157         obj->mapbase + obj->mapsize - 1, obj->path);
2158    if (obj->textrel)
2159	dbg("  WARNING: %s has impure text", obj->path);
2160    LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2161	obj->path);
2162
2163    return obj;
2164}
2165
2166static Obj_Entry *
2167obj_from_addr(const void *addr)
2168{
2169    Obj_Entry *obj;
2170
2171    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2172	if (addr < (void *) obj->mapbase)
2173	    continue;
2174	if (addr < (void *) (obj->mapbase + obj->mapsize))
2175	    return obj;
2176    }
2177    return NULL;
2178}
2179
2180static void
2181preinit_main(void)
2182{
2183    Elf_Addr *preinit_addr;
2184    int index;
2185
2186    preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2187    if (preinit_addr == NULL)
2188	return;
2189
2190    for (index = 0; index < obj_main->preinit_array_num; index++) {
2191	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2192	    dbg("calling preinit function for %s at %p", obj_main->path,
2193	      (void *)preinit_addr[index]);
2194	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2195	      0, 0, obj_main->path);
2196	    call_init_pointer(obj_main, preinit_addr[index]);
2197	}
2198    }
2199}
2200
2201/*
2202 * Call the finalization functions for each of the objects in "list"
2203 * belonging to the DAG of "root" and referenced once. If NULL "root"
2204 * is specified, every finalization function will be called regardless
2205 * of the reference count and the list elements won't be freed. All of
2206 * the objects are expected to have non-NULL fini functions.
2207 */
2208static void
2209objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2210{
2211    Objlist_Entry *elm;
2212    char *saved_msg;
2213    Elf_Addr *fini_addr;
2214    int index;
2215
2216    assert(root == NULL || root->refcount == 1);
2217
2218    /*
2219     * Preserve the current error message since a fini function might
2220     * call into the dynamic linker and overwrite it.
2221     */
2222    saved_msg = errmsg_save();
2223    do {
2224	STAILQ_FOREACH(elm, list, link) {
2225	    if (root != NULL && (elm->obj->refcount != 1 ||
2226	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2227		continue;
2228	    /* Remove object from fini list to prevent recursive invocation. */
2229	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2230	    /*
2231	     * XXX: If a dlopen() call references an object while the
2232	     * fini function is in progress, we might end up trying to
2233	     * unload the referenced object in dlclose() or the object
2234	     * won't be unloaded although its fini function has been
2235	     * called.
2236	     */
2237	    lock_release(rtld_bind_lock, lockstate);
2238
2239	    /*
2240	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2241	     * When this happens, DT_FINI_ARRAY is processed first.
2242	     */
2243	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2244	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2245		for (index = elm->obj->fini_array_num - 1; index >= 0;
2246		  index--) {
2247		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2248			dbg("calling fini function for %s at %p",
2249			    elm->obj->path, (void *)fini_addr[index]);
2250			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2251			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2252			call_initfini_pointer(elm->obj, fini_addr[index]);
2253		    }
2254		}
2255	    }
2256	    if (elm->obj->fini != (Elf_Addr)NULL) {
2257		dbg("calling fini function for %s at %p", elm->obj->path,
2258		    (void *)elm->obj->fini);
2259		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2260		    0, 0, elm->obj->path);
2261		call_initfini_pointer(elm->obj, elm->obj->fini);
2262	    }
2263	    wlock_acquire(rtld_bind_lock, lockstate);
2264	    /* No need to free anything if process is going down. */
2265	    if (root != NULL)
2266	    	free(elm);
2267	    /*
2268	     * We must restart the list traversal after every fini call
2269	     * because a dlclose() call from the fini function or from
2270	     * another thread might have modified the reference counts.
2271	     */
2272	    break;
2273	}
2274    } while (elm != NULL);
2275    errmsg_restore(saved_msg);
2276}
2277
2278/*
2279 * Call the initialization functions for each of the objects in
2280 * "list".  All of the objects are expected to have non-NULL init
2281 * functions.
2282 */
2283static void
2284objlist_call_init(Objlist *list, RtldLockState *lockstate)
2285{
2286    Objlist_Entry *elm;
2287    Obj_Entry *obj;
2288    char *saved_msg;
2289    Elf_Addr *init_addr;
2290    int index;
2291
2292    /*
2293     * Clean init_scanned flag so that objects can be rechecked and
2294     * possibly initialized earlier if any of vectors called below
2295     * cause the change by using dlopen.
2296     */
2297    for (obj = obj_list;  obj != NULL;  obj = obj->next)
2298	obj->init_scanned = false;
2299
2300    /*
2301     * Preserve the current error message since an init function might
2302     * call into the dynamic linker and overwrite it.
2303     */
2304    saved_msg = errmsg_save();
2305    STAILQ_FOREACH(elm, list, link) {
2306	if (elm->obj->init_done) /* Initialized early. */
2307	    continue;
2308	/*
2309	 * Race: other thread might try to use this object before current
2310	 * one completes the initilization. Not much can be done here
2311	 * without better locking.
2312	 */
2313	elm->obj->init_done = true;
2314	lock_release(rtld_bind_lock, lockstate);
2315
2316        /*
2317         * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2318         * When this happens, DT_INIT is processed first.
2319         */
2320	if (elm->obj->init != (Elf_Addr)NULL) {
2321	    dbg("calling init function for %s at %p", elm->obj->path,
2322	        (void *)elm->obj->init);
2323	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2324	        0, 0, elm->obj->path);
2325	    call_initfini_pointer(elm->obj, elm->obj->init);
2326	}
2327	init_addr = (Elf_Addr *)elm->obj->init_array;
2328	if (init_addr != NULL) {
2329	    for (index = 0; index < elm->obj->init_array_num; index++) {
2330		if (init_addr[index] != 0 && init_addr[index] != 1) {
2331		    dbg("calling init function for %s at %p", elm->obj->path,
2332			(void *)init_addr[index]);
2333		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2334			(void *)init_addr[index], 0, 0, elm->obj->path);
2335		    call_init_pointer(elm->obj, init_addr[index]);
2336		}
2337	    }
2338	}
2339	wlock_acquire(rtld_bind_lock, lockstate);
2340    }
2341    errmsg_restore(saved_msg);
2342}
2343
2344static void
2345objlist_clear(Objlist *list)
2346{
2347    Objlist_Entry *elm;
2348
2349    while (!STAILQ_EMPTY(list)) {
2350	elm = STAILQ_FIRST(list);
2351	STAILQ_REMOVE_HEAD(list, link);
2352	free(elm);
2353    }
2354}
2355
2356static Objlist_Entry *
2357objlist_find(Objlist *list, const Obj_Entry *obj)
2358{
2359    Objlist_Entry *elm;
2360
2361    STAILQ_FOREACH(elm, list, link)
2362	if (elm->obj == obj)
2363	    return elm;
2364    return NULL;
2365}
2366
2367static void
2368objlist_init(Objlist *list)
2369{
2370    STAILQ_INIT(list);
2371}
2372
2373static void
2374objlist_push_head(Objlist *list, Obj_Entry *obj)
2375{
2376    Objlist_Entry *elm;
2377
2378    elm = NEW(Objlist_Entry);
2379    elm->obj = obj;
2380    STAILQ_INSERT_HEAD(list, elm, link);
2381}
2382
2383static void
2384objlist_push_tail(Objlist *list, Obj_Entry *obj)
2385{
2386    Objlist_Entry *elm;
2387
2388    elm = NEW(Objlist_Entry);
2389    elm->obj = obj;
2390    STAILQ_INSERT_TAIL(list, elm, link);
2391}
2392
2393static void
2394objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2395{
2396	Objlist_Entry *elm, *listelm;
2397
2398	STAILQ_FOREACH(listelm, list, link) {
2399		if (listelm->obj == listobj)
2400			break;
2401	}
2402	elm = NEW(Objlist_Entry);
2403	elm->obj = obj;
2404	if (listelm != NULL)
2405		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2406	else
2407		STAILQ_INSERT_TAIL(list, elm, link);
2408}
2409
2410static void
2411objlist_remove(Objlist *list, Obj_Entry *obj)
2412{
2413    Objlist_Entry *elm;
2414
2415    if ((elm = objlist_find(list, obj)) != NULL) {
2416	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2417	free(elm);
2418    }
2419}
2420
2421/*
2422 * Relocate dag rooted in the specified object.
2423 * Returns 0 on success, or -1 on failure.
2424 */
2425
2426static int
2427relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2428    int flags, RtldLockState *lockstate)
2429{
2430	Objlist_Entry *elm;
2431	int error;
2432
2433	error = 0;
2434	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2435		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2436		    lockstate);
2437		if (error == -1)
2438			break;
2439	}
2440	return (error);
2441}
2442
2443/*
2444 * Relocate single object.
2445 * Returns 0 on success, or -1 on failure.
2446 */
2447static int
2448relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2449    int flags, RtldLockState *lockstate)
2450{
2451
2452	if (obj->relocated)
2453		return (0);
2454	obj->relocated = true;
2455	if (obj != rtldobj)
2456		dbg("relocating \"%s\"", obj->path);
2457
2458	if (obj->symtab == NULL || obj->strtab == NULL ||
2459	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2460		_rtld_error("%s: Shared object has no run-time symbol table",
2461			    obj->path);
2462		return (-1);
2463	}
2464
2465	if (obj->textrel) {
2466		/* There are relocations to the write-protected text segment. */
2467		if (mprotect(obj->mapbase, obj->textsize,
2468		    PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2469			_rtld_error("%s: Cannot write-enable text segment: %s",
2470			    obj->path, rtld_strerror(errno));
2471			return (-1);
2472		}
2473	}
2474
2475	/* Process the non-PLT relocations. */
2476	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2477		return (-1);
2478
2479	if (obj->textrel) {	/* Re-protected the text segment. */
2480		if (mprotect(obj->mapbase, obj->textsize,
2481		    PROT_READ|PROT_EXEC) == -1) {
2482			_rtld_error("%s: Cannot write-protect text segment: %s",
2483			    obj->path, rtld_strerror(errno));
2484			return (-1);
2485		}
2486	}
2487
2488
2489	/* Set the special PLT or GOT entries. */
2490	init_pltgot(obj);
2491
2492	/* Process the PLT relocations. */
2493	if (reloc_plt(obj) == -1)
2494		return (-1);
2495	/* Relocate the jump slots if we are doing immediate binding. */
2496	if (obj->bind_now || bind_now)
2497		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2498			return (-1);
2499
2500	if (obj->relro_size > 0) {
2501		if (mprotect(obj->relro_page, obj->relro_size,
2502		    PROT_READ) == -1) {
2503			_rtld_error("%s: Cannot enforce relro protection: %s",
2504			    obj->path, rtld_strerror(errno));
2505			return (-1);
2506		}
2507	}
2508
2509	/*
2510	 * Set up the magic number and version in the Obj_Entry.  These
2511	 * were checked in the crt1.o from the original ElfKit, so we
2512	 * set them for backward compatibility.
2513	 */
2514	obj->magic = RTLD_MAGIC;
2515	obj->version = RTLD_VERSION;
2516
2517	return (0);
2518}
2519
2520/*
2521 * Relocate newly-loaded shared objects.  The argument is a pointer to
2522 * the Obj_Entry for the first such object.  All objects from the first
2523 * to the end of the list of objects are relocated.  Returns 0 on success,
2524 * or -1 on failure.
2525 */
2526static int
2527relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2528    int flags, RtldLockState *lockstate)
2529{
2530	Obj_Entry *obj;
2531	int error;
2532
2533	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2534		error = relocate_object(obj, bind_now, rtldobj, flags,
2535		    lockstate);
2536		if (error == -1)
2537			break;
2538	}
2539	return (error);
2540}
2541
2542/*
2543 * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2544 * referencing STT_GNU_IFUNC symbols is postponed till the other
2545 * relocations are done.  The indirect functions specified as
2546 * ifunc are allowed to call other symbols, so we need to have
2547 * objects relocated before asking for resolution from indirects.
2548 *
2549 * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2550 * instead of the usual lazy handling of PLT slots.  It is
2551 * consistent with how GNU does it.
2552 */
2553static int
2554resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2555    RtldLockState *lockstate)
2556{
2557	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2558		return (-1);
2559	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2560	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2561		return (-1);
2562	return (0);
2563}
2564
2565static int
2566resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2567    RtldLockState *lockstate)
2568{
2569	Obj_Entry *obj;
2570
2571	for (obj = first;  obj != NULL;  obj = obj->next) {
2572		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2573			return (-1);
2574	}
2575	return (0);
2576}
2577
2578static int
2579initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2580    RtldLockState *lockstate)
2581{
2582	Objlist_Entry *elm;
2583
2584	STAILQ_FOREACH(elm, list, link) {
2585		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2586		    lockstate) == -1)
2587			return (-1);
2588	}
2589	return (0);
2590}
2591
2592/*
2593 * Cleanup procedure.  It will be called (by the atexit mechanism) just
2594 * before the process exits.
2595 */
2596static void
2597rtld_exit(void)
2598{
2599    RtldLockState lockstate;
2600
2601    wlock_acquire(rtld_bind_lock, &lockstate);
2602    dbg("rtld_exit()");
2603    objlist_call_fini(&list_fini, NULL, &lockstate);
2604    /* No need to remove the items from the list, since we are exiting. */
2605    if (!libmap_disable)
2606        lm_fini();
2607    lock_release(rtld_bind_lock, &lockstate);
2608}
2609
2610/*
2611 * Iterate over a search path, translate each element, and invoke the
2612 * callback on the result.
2613 */
2614static void *
2615path_enumerate(const char *path, path_enum_proc callback, void *arg)
2616{
2617    const char *trans;
2618    if (path == NULL)
2619	return (NULL);
2620
2621    path += strspn(path, ":;");
2622    while (*path != '\0') {
2623	size_t len;
2624	char  *res;
2625
2626	len = strcspn(path, ":;");
2627	trans = lm_findn(NULL, path, len);
2628	if (trans)
2629	    res = callback(trans, strlen(trans), arg);
2630	else
2631	    res = callback(path, len, arg);
2632
2633	if (res != NULL)
2634	    return (res);
2635
2636	path += len;
2637	path += strspn(path, ":;");
2638    }
2639
2640    return (NULL);
2641}
2642
2643struct try_library_args {
2644    const char	*name;
2645    size_t	 namelen;
2646    char	*buffer;
2647    size_t	 buflen;
2648};
2649
2650static void *
2651try_library_path(const char *dir, size_t dirlen, void *param)
2652{
2653    struct try_library_args *arg;
2654
2655    arg = param;
2656    if (*dir == '/' || trust) {
2657	char *pathname;
2658
2659	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2660		return (NULL);
2661
2662	pathname = arg->buffer;
2663	strncpy(pathname, dir, dirlen);
2664	pathname[dirlen] = '/';
2665	strcpy(pathname + dirlen + 1, arg->name);
2666
2667	dbg("  Trying \"%s\"", pathname);
2668	if (access(pathname, F_OK) == 0) {		/* We found it */
2669	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2670	    strcpy(pathname, arg->buffer);
2671	    return (pathname);
2672	}
2673    }
2674    return (NULL);
2675}
2676
2677static char *
2678search_library_path(const char *name, const char *path)
2679{
2680    char *p;
2681    struct try_library_args arg;
2682
2683    if (path == NULL)
2684	return NULL;
2685
2686    arg.name = name;
2687    arg.namelen = strlen(name);
2688    arg.buffer = xmalloc(PATH_MAX);
2689    arg.buflen = PATH_MAX;
2690
2691    p = path_enumerate(path, try_library_path, &arg);
2692
2693    free(arg.buffer);
2694
2695    return (p);
2696}
2697
2698int
2699dlclose(void *handle)
2700{
2701    Obj_Entry *root;
2702    RtldLockState lockstate;
2703
2704    wlock_acquire(rtld_bind_lock, &lockstate);
2705    root = dlcheck(handle);
2706    if (root == NULL) {
2707	lock_release(rtld_bind_lock, &lockstate);
2708	return -1;
2709    }
2710    LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2711	root->path);
2712
2713    /* Unreference the object and its dependencies. */
2714    root->dl_refcount--;
2715
2716    if (root->refcount == 1) {
2717	/*
2718	 * The object will be no longer referenced, so we must unload it.
2719	 * First, call the fini functions.
2720	 */
2721	objlist_call_fini(&list_fini, root, &lockstate);
2722
2723	unref_dag(root);
2724
2725	/* Finish cleaning up the newly-unreferenced objects. */
2726	GDB_STATE(RT_DELETE,&root->linkmap);
2727	unload_object(root);
2728	GDB_STATE(RT_CONSISTENT,NULL);
2729    } else
2730	unref_dag(root);
2731
2732    LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2733    lock_release(rtld_bind_lock, &lockstate);
2734    return 0;
2735}
2736
2737char *
2738dlerror(void)
2739{
2740    char *msg = error_message;
2741    error_message = NULL;
2742    return msg;
2743}
2744
2745/*
2746 * This function is deprecated and has no effect.
2747 */
2748void
2749dllockinit(void *context,
2750	   void *(*lock_create)(void *context),
2751           void (*rlock_acquire)(void *lock),
2752           void (*wlock_acquire)(void *lock),
2753           void (*lock_release)(void *lock),
2754           void (*lock_destroy)(void *lock),
2755	   void (*context_destroy)(void *context))
2756{
2757    static void *cur_context;
2758    static void (*cur_context_destroy)(void *);
2759
2760    /* Just destroy the context from the previous call, if necessary. */
2761    if (cur_context_destroy != NULL)
2762	cur_context_destroy(cur_context);
2763    cur_context = context;
2764    cur_context_destroy = context_destroy;
2765}
2766
2767void *
2768dlopen(const char *name, int mode)
2769{
2770
2771	return (rtld_dlopen(name, -1, mode));
2772}
2773
2774void *
2775fdlopen(int fd, int mode)
2776{
2777
2778	return (rtld_dlopen(NULL, fd, mode));
2779}
2780
2781static void *
2782rtld_dlopen(const char *name, int fd, int mode)
2783{
2784    RtldLockState lockstate;
2785    int lo_flags;
2786
2787    LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2788    ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2789    if (ld_tracing != NULL) {
2790	rlock_acquire(rtld_bind_lock, &lockstate);
2791	if (sigsetjmp(lockstate.env, 0) != 0)
2792	    lock_upgrade(rtld_bind_lock, &lockstate);
2793	environ = (char **)*get_program_var_addr("environ", &lockstate);
2794	lock_release(rtld_bind_lock, &lockstate);
2795    }
2796    lo_flags = RTLD_LO_DLOPEN;
2797    if (mode & RTLD_NODELETE)
2798	    lo_flags |= RTLD_LO_NODELETE;
2799    if (mode & RTLD_NOLOAD)
2800	    lo_flags |= RTLD_LO_NOLOAD;
2801    if (ld_tracing != NULL)
2802	    lo_flags |= RTLD_LO_TRACE;
2803
2804    return (dlopen_object(name, fd, obj_main, lo_flags,
2805      mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2806}
2807
2808static void
2809dlopen_cleanup(Obj_Entry *obj)
2810{
2811
2812	obj->dl_refcount--;
2813	unref_dag(obj);
2814	if (obj->refcount == 0)
2815		unload_object(obj);
2816}
2817
2818static Obj_Entry *
2819dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2820    int mode, RtldLockState *lockstate)
2821{
2822    Obj_Entry **old_obj_tail;
2823    Obj_Entry *obj;
2824    Objlist initlist;
2825    RtldLockState mlockstate;
2826    int result;
2827
2828    objlist_init(&initlist);
2829
2830    if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2831	wlock_acquire(rtld_bind_lock, &mlockstate);
2832	lockstate = &mlockstate;
2833    }
2834    GDB_STATE(RT_ADD,NULL);
2835
2836    old_obj_tail = obj_tail;
2837    obj = NULL;
2838    if (name == NULL && fd == -1) {
2839	obj = obj_main;
2840	obj->refcount++;
2841    } else {
2842	obj = load_object(name, fd, refobj, lo_flags);
2843    }
2844
2845    if (obj) {
2846	obj->dl_refcount++;
2847	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2848	    objlist_push_tail(&list_global, obj);
2849	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2850	    assert(*old_obj_tail == obj);
2851	    result = load_needed_objects(obj,
2852		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2853	    init_dag(obj);
2854	    ref_dag(obj);
2855	    if (result != -1)
2856		result = rtld_verify_versions(&obj->dagmembers);
2857	    if (result != -1 && ld_tracing)
2858		goto trace;
2859	    if (result == -1 || relocate_object_dag(obj,
2860	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2861	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2862	      lockstate) == -1) {
2863		dlopen_cleanup(obj);
2864		obj = NULL;
2865	    } else if (lo_flags & RTLD_LO_EARLY) {
2866		/*
2867		 * Do not call the init functions for early loaded
2868		 * filtees.  The image is still not initialized enough
2869		 * for them to work.
2870		 *
2871		 * Our object is found by the global object list and
2872		 * will be ordered among all init calls done right
2873		 * before transferring control to main.
2874		 */
2875	    } else {
2876		/* Make list of init functions to call. */
2877		initlist_add_objects(obj, &obj->next, &initlist);
2878	    }
2879	    /*
2880	     * Process all no_delete objects here, given them own
2881	     * DAGs to prevent their dependencies from being unloaded.
2882	     * This has to be done after we have loaded all of the
2883	     * dependencies, so that we do not miss any.
2884	     */
2885	    if (obj != NULL)
2886		process_nodelete(obj);
2887	} else {
2888	    /*
2889	     * Bump the reference counts for objects on this DAG.  If
2890	     * this is the first dlopen() call for the object that was
2891	     * already loaded as a dependency, initialize the dag
2892	     * starting at it.
2893	     */
2894	    init_dag(obj);
2895	    ref_dag(obj);
2896
2897	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2898		goto trace;
2899	}
2900	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2901	  obj->z_nodelete) && !obj->ref_nodel) {
2902	    dbg("obj %s nodelete", obj->path);
2903	    ref_dag(obj);
2904	    obj->z_nodelete = obj->ref_nodel = true;
2905	}
2906    }
2907
2908    LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2909	name);
2910    GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2911
2912    if (!(lo_flags & RTLD_LO_EARLY)) {
2913	map_stacks_exec(lockstate);
2914    }
2915
2916    if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2917      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2918      lockstate) == -1) {
2919	objlist_clear(&initlist);
2920	dlopen_cleanup(obj);
2921	if (lockstate == &mlockstate)
2922	    lock_release(rtld_bind_lock, lockstate);
2923	return (NULL);
2924    }
2925
2926    if (!(lo_flags & RTLD_LO_EARLY)) {
2927	/* Call the init functions. */
2928	objlist_call_init(&initlist, lockstate);
2929    }
2930    objlist_clear(&initlist);
2931    if (lockstate == &mlockstate)
2932	lock_release(rtld_bind_lock, lockstate);
2933    return obj;
2934trace:
2935    trace_loaded_objects(obj);
2936    if (lockstate == &mlockstate)
2937	lock_release(rtld_bind_lock, lockstate);
2938    exit(0);
2939}
2940
2941static void *
2942do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2943    int flags)
2944{
2945    DoneList donelist;
2946    const Obj_Entry *obj, *defobj;
2947    const Elf_Sym *def;
2948    SymLook req;
2949    RtldLockState lockstate;
2950#ifndef __ia64__
2951    tls_index ti;
2952#endif
2953    int res;
2954
2955    def = NULL;
2956    defobj = NULL;
2957    symlook_init(&req, name);
2958    req.ventry = ve;
2959    req.flags = flags | SYMLOOK_IN_PLT;
2960    req.lockstate = &lockstate;
2961
2962    rlock_acquire(rtld_bind_lock, &lockstate);
2963    if (sigsetjmp(lockstate.env, 0) != 0)
2964	    lock_upgrade(rtld_bind_lock, &lockstate);
2965    if (handle == NULL || handle == RTLD_NEXT ||
2966	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2967
2968	if ((obj = obj_from_addr(retaddr)) == NULL) {
2969	    _rtld_error("Cannot determine caller's shared object");
2970	    lock_release(rtld_bind_lock, &lockstate);
2971	    return NULL;
2972	}
2973	if (handle == NULL) {	/* Just the caller's shared object. */
2974	    res = symlook_obj(&req, obj);
2975	    if (res == 0) {
2976		def = req.sym_out;
2977		defobj = req.defobj_out;
2978	    }
2979	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2980		   handle == RTLD_SELF) { /* ... caller included */
2981	    if (handle == RTLD_NEXT)
2982		obj = obj->next;
2983	    for (; obj != NULL; obj = obj->next) {
2984		res = symlook_obj(&req, obj);
2985		if (res == 0) {
2986		    if (def == NULL ||
2987		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2988			def = req.sym_out;
2989			defobj = req.defobj_out;
2990			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2991			    break;
2992		    }
2993		}
2994	    }
2995	    /*
2996	     * Search the dynamic linker itself, and possibly resolve the
2997	     * symbol from there.  This is how the application links to
2998	     * dynamic linker services such as dlopen.
2999	     */
3000	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3001		res = symlook_obj(&req, &obj_rtld);
3002		if (res == 0) {
3003		    def = req.sym_out;
3004		    defobj = req.defobj_out;
3005		}
3006	    }
3007	} else {
3008	    assert(handle == RTLD_DEFAULT);
3009	    res = symlook_default(&req, obj);
3010	    if (res == 0) {
3011		defobj = req.defobj_out;
3012		def = req.sym_out;
3013	    }
3014	}
3015    } else {
3016	if ((obj = dlcheck(handle)) == NULL) {
3017	    lock_release(rtld_bind_lock, &lockstate);
3018	    return NULL;
3019	}
3020
3021	donelist_init(&donelist);
3022	if (obj->mainprog) {
3023            /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3024	    res = symlook_global(&req, &donelist);
3025	    if (res == 0) {
3026		def = req.sym_out;
3027		defobj = req.defobj_out;
3028	    }
3029	    /*
3030	     * Search the dynamic linker itself, and possibly resolve the
3031	     * symbol from there.  This is how the application links to
3032	     * dynamic linker services such as dlopen.
3033	     */
3034	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3035		res = symlook_obj(&req, &obj_rtld);
3036		if (res == 0) {
3037		    def = req.sym_out;
3038		    defobj = req.defobj_out;
3039		}
3040	    }
3041	}
3042	else {
3043	    /* Search the whole DAG rooted at the given object. */
3044	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3045	    if (res == 0) {
3046		def = req.sym_out;
3047		defobj = req.defobj_out;
3048	    }
3049	}
3050    }
3051
3052    if (def != NULL) {
3053	lock_release(rtld_bind_lock, &lockstate);
3054
3055	/*
3056	 * The value required by the caller is derived from the value
3057	 * of the symbol. For the ia64 architecture, we need to
3058	 * construct a function descriptor which the caller can use to
3059	 * call the function with the right 'gp' value. For other
3060	 * architectures and for non-functions, the value is simply
3061	 * the relocated value of the symbol.
3062	 */
3063	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3064	    return (make_function_pointer(def, defobj));
3065	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3066	    return (rtld_resolve_ifunc(defobj, def));
3067	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3068#ifdef __ia64__
3069	    return (__tls_get_addr(defobj->tlsindex, def->st_value));
3070#else
3071	    ti.ti_module = defobj->tlsindex;
3072	    ti.ti_offset = def->st_value;
3073	    return (__tls_get_addr(&ti));
3074#endif
3075	} else
3076	    return (defobj->relocbase + def->st_value);
3077    }
3078
3079    _rtld_error("Undefined symbol \"%s\"", name);
3080    lock_release(rtld_bind_lock, &lockstate);
3081    return NULL;
3082}
3083
3084void *
3085dlsym(void *handle, const char *name)
3086{
3087	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3088	    SYMLOOK_DLSYM);
3089}
3090
3091dlfunc_t
3092dlfunc(void *handle, const char *name)
3093{
3094	union {
3095		void *d;
3096		dlfunc_t f;
3097	} rv;
3098
3099	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3100	    SYMLOOK_DLSYM);
3101	return (rv.f);
3102}
3103
3104void *
3105dlvsym(void *handle, const char *name, const char *version)
3106{
3107	Ver_Entry ventry;
3108
3109	ventry.name = version;
3110	ventry.file = NULL;
3111	ventry.hash = elf_hash(version);
3112	ventry.flags= 0;
3113	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3114	    SYMLOOK_DLSYM);
3115}
3116
3117int
3118_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3119{
3120    const Obj_Entry *obj;
3121    RtldLockState lockstate;
3122
3123    rlock_acquire(rtld_bind_lock, &lockstate);
3124    obj = obj_from_addr(addr);
3125    if (obj == NULL) {
3126        _rtld_error("No shared object contains address");
3127	lock_release(rtld_bind_lock, &lockstate);
3128        return (0);
3129    }
3130    rtld_fill_dl_phdr_info(obj, phdr_info);
3131    lock_release(rtld_bind_lock, &lockstate);
3132    return (1);
3133}
3134
3135int
3136dladdr(const void *addr, Dl_info *info)
3137{
3138    const Obj_Entry *obj;
3139    const Elf_Sym *def;
3140    void *symbol_addr;
3141    unsigned long symoffset;
3142    RtldLockState lockstate;
3143
3144    rlock_acquire(rtld_bind_lock, &lockstate);
3145    obj = obj_from_addr(addr);
3146    if (obj == NULL) {
3147        _rtld_error("No shared object contains address");
3148	lock_release(rtld_bind_lock, &lockstate);
3149        return 0;
3150    }
3151    info->dli_fname = obj->path;
3152    info->dli_fbase = obj->mapbase;
3153    info->dli_saddr = (void *)0;
3154    info->dli_sname = NULL;
3155
3156    /*
3157     * Walk the symbol list looking for the symbol whose address is
3158     * closest to the address sent in.
3159     */
3160    for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3161        def = obj->symtab + symoffset;
3162
3163        /*
3164         * For skip the symbol if st_shndx is either SHN_UNDEF or
3165         * SHN_COMMON.
3166         */
3167        if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3168            continue;
3169
3170        /*
3171         * If the symbol is greater than the specified address, or if it
3172         * is further away from addr than the current nearest symbol,
3173         * then reject it.
3174         */
3175        symbol_addr = obj->relocbase + def->st_value;
3176        if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3177            continue;
3178
3179        /* Update our idea of the nearest symbol. */
3180        info->dli_sname = obj->strtab + def->st_name;
3181        info->dli_saddr = symbol_addr;
3182
3183        /* Exact match? */
3184        if (info->dli_saddr == addr)
3185            break;
3186    }
3187    lock_release(rtld_bind_lock, &lockstate);
3188    return 1;
3189}
3190
3191int
3192dlinfo(void *handle, int request, void *p)
3193{
3194    const Obj_Entry *obj;
3195    RtldLockState lockstate;
3196    int error;
3197
3198    rlock_acquire(rtld_bind_lock, &lockstate);
3199
3200    if (handle == NULL || handle == RTLD_SELF) {
3201	void *retaddr;
3202
3203	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3204	if ((obj = obj_from_addr(retaddr)) == NULL)
3205	    _rtld_error("Cannot determine caller's shared object");
3206    } else
3207	obj = dlcheck(handle);
3208
3209    if (obj == NULL) {
3210	lock_release(rtld_bind_lock, &lockstate);
3211	return (-1);
3212    }
3213
3214    error = 0;
3215    switch (request) {
3216    case RTLD_DI_LINKMAP:
3217	*((struct link_map const **)p) = &obj->linkmap;
3218	break;
3219    case RTLD_DI_ORIGIN:
3220	error = rtld_dirname(obj->path, p);
3221	break;
3222
3223    case RTLD_DI_SERINFOSIZE:
3224    case RTLD_DI_SERINFO:
3225	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3226	break;
3227
3228    default:
3229	_rtld_error("Invalid request %d passed to dlinfo()", request);
3230	error = -1;
3231    }
3232
3233    lock_release(rtld_bind_lock, &lockstate);
3234
3235    return (error);
3236}
3237
3238static void
3239rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3240{
3241
3242	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3243	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3244	    STAILQ_FIRST(&obj->names)->name : obj->path;
3245	phdr_info->dlpi_phdr = obj->phdr;
3246	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3247	phdr_info->dlpi_tls_modid = obj->tlsindex;
3248	phdr_info->dlpi_tls_data = obj->tlsinit;
3249	phdr_info->dlpi_adds = obj_loads;
3250	phdr_info->dlpi_subs = obj_loads - obj_count;
3251}
3252
3253int
3254dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3255{
3256    struct dl_phdr_info phdr_info;
3257    const Obj_Entry *obj;
3258    RtldLockState bind_lockstate, phdr_lockstate;
3259    int error;
3260
3261    wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3262    rlock_acquire(rtld_bind_lock, &bind_lockstate);
3263
3264    error = 0;
3265
3266    for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3267	rtld_fill_dl_phdr_info(obj, &phdr_info);
3268	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3269		break;
3270
3271    }
3272    lock_release(rtld_bind_lock, &bind_lockstate);
3273    lock_release(rtld_phdr_lock, &phdr_lockstate);
3274
3275    return (error);
3276}
3277
3278static void *
3279fill_search_info(const char *dir, size_t dirlen, void *param)
3280{
3281    struct fill_search_info_args *arg;
3282
3283    arg = param;
3284
3285    if (arg->request == RTLD_DI_SERINFOSIZE) {
3286	arg->serinfo->dls_cnt ++;
3287	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3288    } else {
3289	struct dl_serpath *s_entry;
3290
3291	s_entry = arg->serpath;
3292	s_entry->dls_name  = arg->strspace;
3293	s_entry->dls_flags = arg->flags;
3294
3295	strncpy(arg->strspace, dir, dirlen);
3296	arg->strspace[dirlen] = '\0';
3297
3298	arg->strspace += dirlen + 1;
3299	arg->serpath++;
3300    }
3301
3302    return (NULL);
3303}
3304
3305static int
3306do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3307{
3308    struct dl_serinfo _info;
3309    struct fill_search_info_args args;
3310
3311    args.request = RTLD_DI_SERINFOSIZE;
3312    args.serinfo = &_info;
3313
3314    _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3315    _info.dls_cnt  = 0;
3316
3317    path_enumerate(obj->rpath, fill_search_info, &args);
3318    path_enumerate(ld_library_path, fill_search_info, &args);
3319    path_enumerate(obj->runpath, fill_search_info, &args);
3320    path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3321    if (!obj->z_nodeflib)
3322      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3323
3324
3325    if (request == RTLD_DI_SERINFOSIZE) {
3326	info->dls_size = _info.dls_size;
3327	info->dls_cnt = _info.dls_cnt;
3328	return (0);
3329    }
3330
3331    if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3332	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3333	return (-1);
3334    }
3335
3336    args.request  = RTLD_DI_SERINFO;
3337    args.serinfo  = info;
3338    args.serpath  = &info->dls_serpath[0];
3339    args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3340
3341    args.flags = LA_SER_RUNPATH;
3342    if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3343	return (-1);
3344
3345    args.flags = LA_SER_LIBPATH;
3346    if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3347	return (-1);
3348
3349    args.flags = LA_SER_RUNPATH;
3350    if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3351	return (-1);
3352
3353    args.flags = LA_SER_CONFIG;
3354    if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3355      != NULL)
3356	return (-1);
3357
3358    args.flags = LA_SER_DEFAULT;
3359    if (!obj->z_nodeflib &&
3360      path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3361	return (-1);
3362    return (0);
3363}
3364
3365static int
3366rtld_dirname(const char *path, char *bname)
3367{
3368    const char *endp;
3369
3370    /* Empty or NULL string gets treated as "." */
3371    if (path == NULL || *path == '\0') {
3372	bname[0] = '.';
3373	bname[1] = '\0';
3374	return (0);
3375    }
3376
3377    /* Strip trailing slashes */
3378    endp = path + strlen(path) - 1;
3379    while (endp > path && *endp == '/')
3380	endp--;
3381
3382    /* Find the start of the dir */
3383    while (endp > path && *endp != '/')
3384	endp--;
3385
3386    /* Either the dir is "/" or there are no slashes */
3387    if (endp == path) {
3388	bname[0] = *endp == '/' ? '/' : '.';
3389	bname[1] = '\0';
3390	return (0);
3391    } else {
3392	do {
3393	    endp--;
3394	} while (endp > path && *endp == '/');
3395    }
3396
3397    if (endp - path + 2 > PATH_MAX)
3398    {
3399	_rtld_error("Filename is too long: %s", path);
3400	return(-1);
3401    }
3402
3403    strncpy(bname, path, endp - path + 1);
3404    bname[endp - path + 1] = '\0';
3405    return (0);
3406}
3407
3408static int
3409rtld_dirname_abs(const char *path, char *base)
3410{
3411	char base_rel[PATH_MAX];
3412
3413	if (rtld_dirname(path, base) == -1)
3414		return (-1);
3415	if (base[0] == '/')
3416		return (0);
3417	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3418	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3419	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3420		return (-1);
3421	strcpy(base, base_rel);
3422	return (0);
3423}
3424
3425static void
3426linkmap_add(Obj_Entry *obj)
3427{
3428    struct link_map *l = &obj->linkmap;
3429    struct link_map *prev;
3430
3431    obj->linkmap.l_name = obj->path;
3432    obj->linkmap.l_addr = obj->mapbase;
3433    obj->linkmap.l_ld = obj->dynamic;
3434#ifdef __mips__
3435    /* GDB needs load offset on MIPS to use the symbols */
3436    obj->linkmap.l_offs = obj->relocbase;
3437#endif
3438
3439    if (r_debug.r_map == NULL) {
3440	r_debug.r_map = l;
3441	return;
3442    }
3443
3444    /*
3445     * Scan to the end of the list, but not past the entry for the
3446     * dynamic linker, which we want to keep at the very end.
3447     */
3448    for (prev = r_debug.r_map;
3449      prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3450      prev = prev->l_next)
3451	;
3452
3453    /* Link in the new entry. */
3454    l->l_prev = prev;
3455    l->l_next = prev->l_next;
3456    if (l->l_next != NULL)
3457	l->l_next->l_prev = l;
3458    prev->l_next = l;
3459}
3460
3461static void
3462linkmap_delete(Obj_Entry *obj)
3463{
3464    struct link_map *l = &obj->linkmap;
3465
3466    if (l->l_prev == NULL) {
3467	if ((r_debug.r_map = l->l_next) != NULL)
3468	    l->l_next->l_prev = NULL;
3469	return;
3470    }
3471
3472    if ((l->l_prev->l_next = l->l_next) != NULL)
3473	l->l_next->l_prev = l->l_prev;
3474}
3475
3476/*
3477 * Function for the debugger to set a breakpoint on to gain control.
3478 *
3479 * The two parameters allow the debugger to easily find and determine
3480 * what the runtime loader is doing and to whom it is doing it.
3481 *
3482 * When the loadhook trap is hit (r_debug_state, set at program
3483 * initialization), the arguments can be found on the stack:
3484 *
3485 *  +8   struct link_map *m
3486 *  +4   struct r_debug  *rd
3487 *  +0   RetAddr
3488 */
3489void
3490r_debug_state(struct r_debug* rd, struct link_map *m)
3491{
3492    /*
3493     * The following is a hack to force the compiler to emit calls to
3494     * this function, even when optimizing.  If the function is empty,
3495     * the compiler is not obliged to emit any code for calls to it,
3496     * even when marked __noinline.  However, gdb depends on those
3497     * calls being made.
3498     */
3499    __asm __volatile("" : : : "memory");
3500}
3501
3502/*
3503 * Get address of the pointer variable in the main program.
3504 * Prefer non-weak symbol over the weak one.
3505 */
3506static const void **
3507get_program_var_addr(const char *name, RtldLockState *lockstate)
3508{
3509    SymLook req;
3510    DoneList donelist;
3511
3512    symlook_init(&req, name);
3513    req.lockstate = lockstate;
3514    donelist_init(&donelist);
3515    if (symlook_global(&req, &donelist) != 0)
3516	return (NULL);
3517    if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3518	return ((const void **)make_function_pointer(req.sym_out,
3519	  req.defobj_out));
3520    else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3521	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3522    else
3523	return ((const void **)(req.defobj_out->relocbase +
3524	  req.sym_out->st_value));
3525}
3526
3527/*
3528 * Set a pointer variable in the main program to the given value.  This
3529 * is used to set key variables such as "environ" before any of the
3530 * init functions are called.
3531 */
3532static void
3533set_program_var(const char *name, const void *value)
3534{
3535    const void **addr;
3536
3537    if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3538	dbg("\"%s\": *%p <-- %p", name, addr, value);
3539	*addr = value;
3540    }
3541}
3542
3543/*
3544 * Search the global objects, including dependencies and main object,
3545 * for the given symbol.
3546 */
3547static int
3548symlook_global(SymLook *req, DoneList *donelist)
3549{
3550    SymLook req1;
3551    const Objlist_Entry *elm;
3552    int res;
3553
3554    symlook_init_from_req(&req1, req);
3555
3556    /* Search all objects loaded at program start up. */
3557    if (req->defobj_out == NULL ||
3558      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3559	res = symlook_list(&req1, &list_main, donelist);
3560	if (res == 0 && (req->defobj_out == NULL ||
3561	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3562	    req->sym_out = req1.sym_out;
3563	    req->defobj_out = req1.defobj_out;
3564	    assert(req->defobj_out != NULL);
3565	}
3566    }
3567
3568    /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3569    STAILQ_FOREACH(elm, &list_global, link) {
3570	if (req->defobj_out != NULL &&
3571	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3572	    break;
3573	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3574	if (res == 0 && (req->defobj_out == NULL ||
3575	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3576	    req->sym_out = req1.sym_out;
3577	    req->defobj_out = req1.defobj_out;
3578	    assert(req->defobj_out != NULL);
3579	}
3580    }
3581
3582    return (req->sym_out != NULL ? 0 : ESRCH);
3583}
3584
3585/*
3586 * Given a symbol name in a referencing object, find the corresponding
3587 * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3588 * no definition was found.  Returns a pointer to the Obj_Entry of the
3589 * defining object via the reference parameter DEFOBJ_OUT.
3590 */
3591static int
3592symlook_default(SymLook *req, const Obj_Entry *refobj)
3593{
3594    DoneList donelist;
3595    const Objlist_Entry *elm;
3596    SymLook req1;
3597    int res;
3598
3599    donelist_init(&donelist);
3600    symlook_init_from_req(&req1, req);
3601
3602    /* Look first in the referencing object if linked symbolically. */
3603    if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3604	res = symlook_obj(&req1, refobj);
3605	if (res == 0) {
3606	    req->sym_out = req1.sym_out;
3607	    req->defobj_out = req1.defobj_out;
3608	    assert(req->defobj_out != NULL);
3609	}
3610    }
3611
3612    symlook_global(req, &donelist);
3613
3614    /* Search all dlopened DAGs containing the referencing object. */
3615    STAILQ_FOREACH(elm, &refobj->dldags, link) {
3616	if (req->sym_out != NULL &&
3617	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3618	    break;
3619	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3620	if (res == 0 && (req->sym_out == NULL ||
3621	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3622	    req->sym_out = req1.sym_out;
3623	    req->defobj_out = req1.defobj_out;
3624	    assert(req->defobj_out != NULL);
3625	}
3626    }
3627
3628    /*
3629     * Search the dynamic linker itself, and possibly resolve the
3630     * symbol from there.  This is how the application links to
3631     * dynamic linker services such as dlopen.
3632     */
3633    if (req->sym_out == NULL ||
3634      ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3635	res = symlook_obj(&req1, &obj_rtld);
3636	if (res == 0) {
3637	    req->sym_out = req1.sym_out;
3638	    req->defobj_out = req1.defobj_out;
3639	    assert(req->defobj_out != NULL);
3640	}
3641    }
3642
3643    return (req->sym_out != NULL ? 0 : ESRCH);
3644}
3645
3646static int
3647symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3648{
3649    const Elf_Sym *def;
3650    const Obj_Entry *defobj;
3651    const Objlist_Entry *elm;
3652    SymLook req1;
3653    int res;
3654
3655    def = NULL;
3656    defobj = NULL;
3657    STAILQ_FOREACH(elm, objlist, link) {
3658	if (donelist_check(dlp, elm->obj))
3659	    continue;
3660	symlook_init_from_req(&req1, req);
3661	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3662	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3663		def = req1.sym_out;
3664		defobj = req1.defobj_out;
3665		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3666		    break;
3667	    }
3668	}
3669    }
3670    if (def != NULL) {
3671	req->sym_out = def;
3672	req->defobj_out = defobj;
3673	return (0);
3674    }
3675    return (ESRCH);
3676}
3677
3678/*
3679 * Search the chain of DAGS cointed to by the given Needed_Entry
3680 * for a symbol of the given name.  Each DAG is scanned completely
3681 * before advancing to the next one.  Returns a pointer to the symbol,
3682 * or NULL if no definition was found.
3683 */
3684static int
3685symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3686{
3687    const Elf_Sym *def;
3688    const Needed_Entry *n;
3689    const Obj_Entry *defobj;
3690    SymLook req1;
3691    int res;
3692
3693    def = NULL;
3694    defobj = NULL;
3695    symlook_init_from_req(&req1, req);
3696    for (n = needed; n != NULL; n = n->next) {
3697	if (n->obj == NULL ||
3698	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3699	    continue;
3700	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3701	    def = req1.sym_out;
3702	    defobj = req1.defobj_out;
3703	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3704		break;
3705	}
3706    }
3707    if (def != NULL) {
3708	req->sym_out = def;
3709	req->defobj_out = defobj;
3710	return (0);
3711    }
3712    return (ESRCH);
3713}
3714
3715/*
3716 * Search the symbol table of a single shared object for a symbol of
3717 * the given name and version, if requested.  Returns a pointer to the
3718 * symbol, or NULL if no definition was found.  If the object is
3719 * filter, return filtered symbol from filtee.
3720 *
3721 * The symbol's hash value is passed in for efficiency reasons; that
3722 * eliminates many recomputations of the hash value.
3723 */
3724int
3725symlook_obj(SymLook *req, const Obj_Entry *obj)
3726{
3727    DoneList donelist;
3728    SymLook req1;
3729    int flags, res, mres;
3730
3731    /*
3732     * If there is at least one valid hash at this point, we prefer to
3733     * use the faster GNU version if available.
3734     */
3735    if (obj->valid_hash_gnu)
3736	mres = symlook_obj1_gnu(req, obj);
3737    else if (obj->valid_hash_sysv)
3738	mres = symlook_obj1_sysv(req, obj);
3739    else
3740	return (EINVAL);
3741
3742    if (mres == 0) {
3743	if (obj->needed_filtees != NULL) {
3744	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3745	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3746	    donelist_init(&donelist);
3747	    symlook_init_from_req(&req1, req);
3748	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3749	    if (res == 0) {
3750		req->sym_out = req1.sym_out;
3751		req->defobj_out = req1.defobj_out;
3752	    }
3753	    return (res);
3754	}
3755	if (obj->needed_aux_filtees != NULL) {
3756	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3757	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3758	    donelist_init(&donelist);
3759	    symlook_init_from_req(&req1, req);
3760	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3761	    if (res == 0) {
3762		req->sym_out = req1.sym_out;
3763		req->defobj_out = req1.defobj_out;
3764		return (res);
3765	    }
3766	}
3767    }
3768    return (mres);
3769}
3770
3771/* Symbol match routine common to both hash functions */
3772static bool
3773matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3774    const unsigned long symnum)
3775{
3776	Elf_Versym verndx;
3777	const Elf_Sym *symp;
3778	const char *strp;
3779
3780	symp = obj->symtab + symnum;
3781	strp = obj->strtab + symp->st_name;
3782
3783	switch (ELF_ST_TYPE(symp->st_info)) {
3784	case STT_FUNC:
3785	case STT_NOTYPE:
3786	case STT_OBJECT:
3787	case STT_COMMON:
3788	case STT_GNU_IFUNC:
3789		if (symp->st_value == 0)
3790			return (false);
3791		/* fallthrough */
3792	case STT_TLS:
3793		if (symp->st_shndx != SHN_UNDEF)
3794			break;
3795#ifndef __mips__
3796		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3797		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3798			break;
3799		/* fallthrough */
3800#endif
3801	default:
3802		return (false);
3803	}
3804	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3805		return (false);
3806
3807	if (req->ventry == NULL) {
3808		if (obj->versyms != NULL) {
3809			verndx = VER_NDX(obj->versyms[symnum]);
3810			if (verndx > obj->vernum) {
3811				_rtld_error(
3812				    "%s: symbol %s references wrong version %d",
3813				    obj->path, obj->strtab + symnum, verndx);
3814				return (false);
3815			}
3816			/*
3817			 * If we are not called from dlsym (i.e. this
3818			 * is a normal relocation from unversioned
3819			 * binary), accept the symbol immediately if
3820			 * it happens to have first version after this
3821			 * shared object became versioned.  Otherwise,
3822			 * if symbol is versioned and not hidden,
3823			 * remember it. If it is the only symbol with
3824			 * this name exported by the shared object, it
3825			 * will be returned as a match by the calling
3826			 * function. If symbol is global (verndx < 2)
3827			 * accept it unconditionally.
3828			 */
3829			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3830			    verndx == VER_NDX_GIVEN) {
3831				result->sym_out = symp;
3832				return (true);
3833			}
3834			else if (verndx >= VER_NDX_GIVEN) {
3835				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3836				    == 0) {
3837					if (result->vsymp == NULL)
3838						result->vsymp = symp;
3839					result->vcount++;
3840				}
3841				return (false);
3842			}
3843		}
3844		result->sym_out = symp;
3845		return (true);
3846	}
3847	if (obj->versyms == NULL) {
3848		if (object_match_name(obj, req->ventry->name)) {
3849			_rtld_error("%s: object %s should provide version %s "
3850			    "for symbol %s", obj_rtld.path, obj->path,
3851			    req->ventry->name, obj->strtab + symnum);
3852			return (false);
3853		}
3854	} else {
3855		verndx = VER_NDX(obj->versyms[symnum]);
3856		if (verndx > obj->vernum) {
3857			_rtld_error("%s: symbol %s references wrong version %d",
3858			    obj->path, obj->strtab + symnum, verndx);
3859			return (false);
3860		}
3861		if (obj->vertab[verndx].hash != req->ventry->hash ||
3862		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3863			/*
3864			 * Version does not match. Look if this is a
3865			 * global symbol and if it is not hidden. If
3866			 * global symbol (verndx < 2) is available,
3867			 * use it. Do not return symbol if we are
3868			 * called by dlvsym, because dlvsym looks for
3869			 * a specific version and default one is not
3870			 * what dlvsym wants.
3871			 */
3872			if ((req->flags & SYMLOOK_DLSYM) ||
3873			    (verndx >= VER_NDX_GIVEN) ||
3874			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3875				return (false);
3876		}
3877	}
3878	result->sym_out = symp;
3879	return (true);
3880}
3881
3882/*
3883 * Search for symbol using SysV hash function.
3884 * obj->buckets is known not to be NULL at this point; the test for this was
3885 * performed with the obj->valid_hash_sysv assignment.
3886 */
3887static int
3888symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3889{
3890	unsigned long symnum;
3891	Sym_Match_Result matchres;
3892
3893	matchres.sym_out = NULL;
3894	matchres.vsymp = NULL;
3895	matchres.vcount = 0;
3896
3897	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3898	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3899		if (symnum >= obj->nchains)
3900			return (ESRCH);	/* Bad object */
3901
3902		if (matched_symbol(req, obj, &matchres, symnum)) {
3903			req->sym_out = matchres.sym_out;
3904			req->defobj_out = obj;
3905			return (0);
3906		}
3907	}
3908	if (matchres.vcount == 1) {
3909		req->sym_out = matchres.vsymp;
3910		req->defobj_out = obj;
3911		return (0);
3912	}
3913	return (ESRCH);
3914}
3915
3916/* Search for symbol using GNU hash function */
3917static int
3918symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3919{
3920	Elf_Addr bloom_word;
3921	const Elf32_Word *hashval;
3922	Elf32_Word bucket;
3923	Sym_Match_Result matchres;
3924	unsigned int h1, h2;
3925	unsigned long symnum;
3926
3927	matchres.sym_out = NULL;
3928	matchres.vsymp = NULL;
3929	matchres.vcount = 0;
3930
3931	/* Pick right bitmask word from Bloom filter array */
3932	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3933	    obj->maskwords_bm_gnu];
3934
3935	/* Calculate modulus word size of gnu hash and its derivative */
3936	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3937	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3938
3939	/* Filter out the "definitely not in set" queries */
3940	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3941		return (ESRCH);
3942
3943	/* Locate hash chain and corresponding value element*/
3944	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3945	if (bucket == 0)
3946		return (ESRCH);
3947	hashval = &obj->chain_zero_gnu[bucket];
3948	do {
3949		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3950			symnum = hashval - obj->chain_zero_gnu;
3951			if (matched_symbol(req, obj, &matchres, symnum)) {
3952				req->sym_out = matchres.sym_out;
3953				req->defobj_out = obj;
3954				return (0);
3955			}
3956		}
3957	} while ((*hashval++ & 1) == 0);
3958	if (matchres.vcount == 1) {
3959		req->sym_out = matchres.vsymp;
3960		req->defobj_out = obj;
3961		return (0);
3962	}
3963	return (ESRCH);
3964}
3965
3966static void
3967trace_loaded_objects(Obj_Entry *obj)
3968{
3969    char	*fmt1, *fmt2, *fmt, *main_local, *list_containers;
3970    int		c;
3971
3972    if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3973	main_local = "";
3974
3975    if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3976	fmt1 = "\t%o => %p (%x)\n";
3977
3978    if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3979	fmt2 = "\t%o (%x)\n";
3980
3981    list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL");
3982
3983    for (; obj; obj = obj->next) {
3984	Needed_Entry		*needed;
3985	char			*name, *path;
3986	bool			is_lib;
3987
3988	if (list_containers && obj->needed != NULL)
3989	    rtld_printf("%s:\n", obj->path);
3990	for (needed = obj->needed; needed; needed = needed->next) {
3991	    if (needed->obj != NULL) {
3992		if (needed->obj->traced && !list_containers)
3993		    continue;
3994		needed->obj->traced = true;
3995		path = needed->obj->path;
3996	    } else
3997		path = "not found";
3998
3999	    name = (char *)obj->strtab + needed->name;
4000	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4001
4002	    fmt = is_lib ? fmt1 : fmt2;
4003	    while ((c = *fmt++) != '\0') {
4004		switch (c) {
4005		default:
4006		    rtld_putchar(c);
4007		    continue;
4008		case '\\':
4009		    switch (c = *fmt) {
4010		    case '\0':
4011			continue;
4012		    case 'n':
4013			rtld_putchar('\n');
4014			break;
4015		    case 't':
4016			rtld_putchar('\t');
4017			break;
4018		    }
4019		    break;
4020		case '%':
4021		    switch (c = *fmt) {
4022		    case '\0':
4023			continue;
4024		    case '%':
4025		    default:
4026			rtld_putchar(c);
4027			break;
4028		    case 'A':
4029			rtld_putstr(main_local);
4030			break;
4031		    case 'a':
4032			rtld_putstr(obj_main->path);
4033			break;
4034		    case 'o':
4035			rtld_putstr(name);
4036			break;
4037#if 0
4038		    case 'm':
4039			rtld_printf("%d", sodp->sod_major);
4040			break;
4041		    case 'n':
4042			rtld_printf("%d", sodp->sod_minor);
4043			break;
4044#endif
4045		    case 'p':
4046			rtld_putstr(path);
4047			break;
4048		    case 'x':
4049			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4050			  0);
4051			break;
4052		    }
4053		    break;
4054		}
4055		++fmt;
4056	    }
4057	}
4058    }
4059}
4060
4061/*
4062 * Unload a dlopened object and its dependencies from memory and from
4063 * our data structures.  It is assumed that the DAG rooted in the
4064 * object has already been unreferenced, and that the object has a
4065 * reference count of 0.
4066 */
4067static void
4068unload_object(Obj_Entry *root)
4069{
4070    Obj_Entry *obj;
4071    Obj_Entry **linkp;
4072
4073    assert(root->refcount == 0);
4074
4075    /*
4076     * Pass over the DAG removing unreferenced objects from
4077     * appropriate lists.
4078     */
4079    unlink_object(root);
4080
4081    /* Unmap all objects that are no longer referenced. */
4082    linkp = &obj_list->next;
4083    while ((obj = *linkp) != NULL) {
4084	if (obj->refcount == 0) {
4085	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4086		obj->path);
4087	    dbg("unloading \"%s\"", obj->path);
4088	    unload_filtees(root);
4089	    munmap(obj->mapbase, obj->mapsize);
4090	    linkmap_delete(obj);
4091	    *linkp = obj->next;
4092	    obj_count--;
4093	    obj_free(obj);
4094	} else
4095	    linkp = &obj->next;
4096    }
4097    obj_tail = linkp;
4098}
4099
4100static void
4101unlink_object(Obj_Entry *root)
4102{
4103    Objlist_Entry *elm;
4104
4105    if (root->refcount == 0) {
4106	/* Remove the object from the RTLD_GLOBAL list. */
4107	objlist_remove(&list_global, root);
4108
4109    	/* Remove the object from all objects' DAG lists. */
4110    	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4111	    objlist_remove(&elm->obj->dldags, root);
4112	    if (elm->obj != root)
4113		unlink_object(elm->obj);
4114	}
4115    }
4116}
4117
4118static void
4119ref_dag(Obj_Entry *root)
4120{
4121    Objlist_Entry *elm;
4122
4123    assert(root->dag_inited);
4124    STAILQ_FOREACH(elm, &root->dagmembers, link)
4125	elm->obj->refcount++;
4126}
4127
4128static void
4129unref_dag(Obj_Entry *root)
4130{
4131    Objlist_Entry *elm;
4132
4133    assert(root->dag_inited);
4134    STAILQ_FOREACH(elm, &root->dagmembers, link)
4135	elm->obj->refcount--;
4136}
4137
4138/*
4139 * Common code for MD __tls_get_addr().
4140 */
4141static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline;
4142static void *
4143tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset)
4144{
4145    Elf_Addr *newdtv, *dtv;
4146    RtldLockState lockstate;
4147    int to_copy;
4148
4149    dtv = *dtvp;
4150    /* Check dtv generation in case new modules have arrived */
4151    if (dtv[0] != tls_dtv_generation) {
4152	wlock_acquire(rtld_bind_lock, &lockstate);
4153	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4154	to_copy = dtv[1];
4155	if (to_copy > tls_max_index)
4156	    to_copy = tls_max_index;
4157	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4158	newdtv[0] = tls_dtv_generation;
4159	newdtv[1] = tls_max_index;
4160	free(dtv);
4161	lock_release(rtld_bind_lock, &lockstate);
4162	dtv = *dtvp = newdtv;
4163    }
4164
4165    /* Dynamically allocate module TLS if necessary */
4166    if (dtv[index + 1] == 0) {
4167	/* Signal safe, wlock will block out signals. */
4168	wlock_acquire(rtld_bind_lock, &lockstate);
4169	if (!dtv[index + 1])
4170	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4171	lock_release(rtld_bind_lock, &lockstate);
4172    }
4173    return ((void *)(dtv[index + 1] + offset));
4174}
4175
4176void *
4177tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset)
4178{
4179	Elf_Addr *dtv;
4180
4181	dtv = *dtvp;
4182	/* Check dtv generation in case new modules have arrived */
4183	if (__predict_true(dtv[0] == tls_dtv_generation &&
4184	    dtv[index + 1] != 0))
4185		return ((void *)(dtv[index + 1] + offset));
4186	return (tls_get_addr_slow(dtvp, index, offset));
4187}
4188
4189#if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__)
4190
4191/*
4192 * Allocate Static TLS using the Variant I method.
4193 */
4194void *
4195allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
4196{
4197    Obj_Entry *obj;
4198    char *tcb;
4199    Elf_Addr **tls;
4200    Elf_Addr *dtv;
4201    Elf_Addr addr;
4202    int i;
4203
4204    if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
4205	return (oldtcb);
4206
4207    assert(tcbsize >= TLS_TCB_SIZE);
4208    tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize);
4209    tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE);
4210
4211    if (oldtcb != NULL) {
4212	memcpy(tls, oldtcb, tls_static_space);
4213	free(oldtcb);
4214
4215	/* Adjust the DTV. */
4216	dtv = tls[0];
4217	for (i = 0; i < dtv[1]; i++) {
4218	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
4219		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
4220		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls;
4221	    }
4222	}
4223    } else {
4224	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4225	tls[0] = dtv;
4226	dtv[0] = tls_dtv_generation;
4227	dtv[1] = tls_max_index;
4228
4229	for (obj = objs; obj; obj = obj->next) {
4230	    if (obj->tlsoffset > 0) {
4231		addr = (Elf_Addr)tls + obj->tlsoffset;
4232		if (obj->tlsinitsize > 0)
4233		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4234		if (obj->tlssize > obj->tlsinitsize)
4235		    memset((void*) (addr + obj->tlsinitsize), 0,
4236			   obj->tlssize - obj->tlsinitsize);
4237		dtv[obj->tlsindex + 1] = addr;
4238	    }
4239	}
4240    }
4241
4242    return (tcb);
4243}
4244
4245void
4246free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4247{
4248    Elf_Addr *dtv;
4249    Elf_Addr tlsstart, tlsend;
4250    int dtvsize, i;
4251
4252    assert(tcbsize >= TLS_TCB_SIZE);
4253
4254    tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE;
4255    tlsend = tlsstart + tls_static_space;
4256
4257    dtv = *(Elf_Addr **)tlsstart;
4258    dtvsize = dtv[1];
4259    for (i = 0; i < dtvsize; i++) {
4260	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
4261	    free((void*)dtv[i+2]);
4262	}
4263    }
4264    free(dtv);
4265    free(tcb);
4266}
4267
4268#endif
4269
4270#if defined(__i386__) || defined(__amd64__) || defined(__sparc64__)
4271
4272/*
4273 * Allocate Static TLS using the Variant II method.
4274 */
4275void *
4276allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
4277{
4278    Obj_Entry *obj;
4279    size_t size;
4280    char *tls;
4281    Elf_Addr *dtv, *olddtv;
4282    Elf_Addr segbase, oldsegbase, addr;
4283    int i;
4284
4285    size = round(tls_static_space, tcbalign);
4286
4287    assert(tcbsize >= 2*sizeof(Elf_Addr));
4288    tls = xcalloc(1, size + tcbsize);
4289    dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4290
4291    segbase = (Elf_Addr)(tls + size);
4292    ((Elf_Addr*)segbase)[0] = segbase;
4293    ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv;
4294
4295    dtv[0] = tls_dtv_generation;
4296    dtv[1] = tls_max_index;
4297
4298    if (oldtls) {
4299	/*
4300	 * Copy the static TLS block over whole.
4301	 */
4302	oldsegbase = (Elf_Addr) oldtls;
4303	memcpy((void *)(segbase - tls_static_space),
4304	       (const void *)(oldsegbase - tls_static_space),
4305	       tls_static_space);
4306
4307	/*
4308	 * If any dynamic TLS blocks have been created tls_get_addr(),
4309	 * move them over.
4310	 */
4311	olddtv = ((Elf_Addr**)oldsegbase)[1];
4312	for (i = 0; i < olddtv[1]; i++) {
4313	    if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) {
4314		dtv[i+2] = olddtv[i+2];
4315		olddtv[i+2] = 0;
4316	    }
4317	}
4318
4319	/*
4320	 * We assume that this block was the one we created with
4321	 * allocate_initial_tls().
4322	 */
4323	free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr));
4324    } else {
4325	for (obj = objs; obj; obj = obj->next) {
4326	    if (obj->tlsoffset) {
4327		addr = segbase - obj->tlsoffset;
4328		memset((void*) (addr + obj->tlsinitsize),
4329		       0, obj->tlssize - obj->tlsinitsize);
4330		if (obj->tlsinit)
4331		    memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4332		dtv[obj->tlsindex + 1] = addr;
4333	    }
4334	}
4335    }
4336
4337    return (void*) segbase;
4338}
4339
4340void
4341free_tls(void *tls, size_t tcbsize, size_t tcbalign)
4342{
4343    size_t size;
4344    Elf_Addr* dtv;
4345    int dtvsize, i;
4346    Elf_Addr tlsstart, tlsend;
4347
4348    /*
4349     * Figure out the size of the initial TLS block so that we can
4350     * find stuff which ___tls_get_addr() allocated dynamically.
4351     */
4352    size = round(tls_static_space, tcbalign);
4353
4354    dtv = ((Elf_Addr**)tls)[1];
4355    dtvsize = dtv[1];
4356    tlsend = (Elf_Addr) tls;
4357    tlsstart = tlsend - size;
4358    for (i = 0; i < dtvsize; i++) {
4359	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] > tlsend)) {
4360	    free((void*) dtv[i+2]);
4361	}
4362    }
4363
4364    free((void*) tlsstart);
4365    free((void*) dtv);
4366}
4367
4368#endif
4369
4370/*
4371 * Allocate TLS block for module with given index.
4372 */
4373void *
4374allocate_module_tls(int index)
4375{
4376    Obj_Entry* obj;
4377    char* p;
4378
4379    for (obj = obj_list; obj; obj = obj->next) {
4380	if (obj->tlsindex == index)
4381	    break;
4382    }
4383    if (!obj) {
4384	_rtld_error("Can't find module with TLS index %d", index);
4385	die();
4386    }
4387
4388    p = malloc(obj->tlssize);
4389    if (p == NULL) {
4390	_rtld_error("Cannot allocate TLS block for index %d", index);
4391	die();
4392    }
4393    memcpy(p, obj->tlsinit, obj->tlsinitsize);
4394    memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4395
4396    return p;
4397}
4398
4399bool
4400allocate_tls_offset(Obj_Entry *obj)
4401{
4402    size_t off;
4403
4404    if (obj->tls_done)
4405	return true;
4406
4407    if (obj->tlssize == 0) {
4408	obj->tls_done = true;
4409	return true;
4410    }
4411
4412    if (obj->tlsindex == 1)
4413	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4414    else
4415	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4416				   obj->tlssize, obj->tlsalign);
4417
4418    /*
4419     * If we have already fixed the size of the static TLS block, we
4420     * must stay within that size. When allocating the static TLS, we
4421     * leave a small amount of space spare to be used for dynamically
4422     * loading modules which use static TLS.
4423     */
4424    if (tls_static_space) {
4425	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4426	    return false;
4427    }
4428
4429    tls_last_offset = obj->tlsoffset = off;
4430    tls_last_size = obj->tlssize;
4431    obj->tls_done = true;
4432
4433    return true;
4434}
4435
4436void
4437free_tls_offset(Obj_Entry *obj)
4438{
4439
4440    /*
4441     * If we were the last thing to allocate out of the static TLS
4442     * block, we give our space back to the 'allocator'. This is a
4443     * simplistic workaround to allow libGL.so.1 to be loaded and
4444     * unloaded multiple times.
4445     */
4446    if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4447	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4448	tls_last_offset -= obj->tlssize;
4449	tls_last_size = 0;
4450    }
4451}
4452
4453void *
4454_rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
4455{
4456    void *ret;
4457    RtldLockState lockstate;
4458
4459    wlock_acquire(rtld_bind_lock, &lockstate);
4460    ret = allocate_tls(obj_list, oldtls, tcbsize, tcbalign);
4461    lock_release(rtld_bind_lock, &lockstate);
4462    return (ret);
4463}
4464
4465void
4466_rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
4467{
4468    RtldLockState lockstate;
4469
4470    wlock_acquire(rtld_bind_lock, &lockstate);
4471    free_tls(tcb, tcbsize, tcbalign);
4472    lock_release(rtld_bind_lock, &lockstate);
4473}
4474
4475static void
4476object_add_name(Obj_Entry *obj, const char *name)
4477{
4478    Name_Entry *entry;
4479    size_t len;
4480
4481    len = strlen(name);
4482    entry = malloc(sizeof(Name_Entry) + len);
4483
4484    if (entry != NULL) {
4485	strcpy(entry->name, name);
4486	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4487    }
4488}
4489
4490static int
4491object_match_name(const Obj_Entry *obj, const char *name)
4492{
4493    Name_Entry *entry;
4494
4495    STAILQ_FOREACH(entry, &obj->names, link) {
4496	if (strcmp(name, entry->name) == 0)
4497	    return (1);
4498    }
4499    return (0);
4500}
4501
4502static Obj_Entry *
4503locate_dependency(const Obj_Entry *obj, const char *name)
4504{
4505    const Objlist_Entry *entry;
4506    const Needed_Entry *needed;
4507
4508    STAILQ_FOREACH(entry, &list_main, link) {
4509	if (object_match_name(entry->obj, name))
4510	    return entry->obj;
4511    }
4512
4513    for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4514	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4515	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4516	    /*
4517	     * If there is DT_NEEDED for the name we are looking for,
4518	     * we are all set.  Note that object might not be found if
4519	     * dependency was not loaded yet, so the function can
4520	     * return NULL here.  This is expected and handled
4521	     * properly by the caller.
4522	     */
4523	    return (needed->obj);
4524	}
4525    }
4526    _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4527	obj->path, name);
4528    die();
4529}
4530
4531static int
4532check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4533    const Elf_Vernaux *vna)
4534{
4535    const Elf_Verdef *vd;
4536    const char *vername;
4537
4538    vername = refobj->strtab + vna->vna_name;
4539    vd = depobj->verdef;
4540    if (vd == NULL) {
4541	_rtld_error("%s: version %s required by %s not defined",
4542	    depobj->path, vername, refobj->path);
4543	return (-1);
4544    }
4545    for (;;) {
4546	if (vd->vd_version != VER_DEF_CURRENT) {
4547	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4548		depobj->path, vd->vd_version);
4549	    return (-1);
4550	}
4551	if (vna->vna_hash == vd->vd_hash) {
4552	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4553		((char *)vd + vd->vd_aux);
4554	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4555		return (0);
4556	}
4557	if (vd->vd_next == 0)
4558	    break;
4559	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4560    }
4561    if (vna->vna_flags & VER_FLG_WEAK)
4562	return (0);
4563    _rtld_error("%s: version %s required by %s not found",
4564	depobj->path, vername, refobj->path);
4565    return (-1);
4566}
4567
4568static int
4569rtld_verify_object_versions(Obj_Entry *obj)
4570{
4571    const Elf_Verneed *vn;
4572    const Elf_Verdef  *vd;
4573    const Elf_Verdaux *vda;
4574    const Elf_Vernaux *vna;
4575    const Obj_Entry *depobj;
4576    int maxvernum, vernum;
4577
4578    if (obj->ver_checked)
4579	return (0);
4580    obj->ver_checked = true;
4581
4582    maxvernum = 0;
4583    /*
4584     * Walk over defined and required version records and figure out
4585     * max index used by any of them. Do very basic sanity checking
4586     * while there.
4587     */
4588    vn = obj->verneed;
4589    while (vn != NULL) {
4590	if (vn->vn_version != VER_NEED_CURRENT) {
4591	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4592		obj->path, vn->vn_version);
4593	    return (-1);
4594	}
4595	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4596	for (;;) {
4597	    vernum = VER_NEED_IDX(vna->vna_other);
4598	    if (vernum > maxvernum)
4599		maxvernum = vernum;
4600	    if (vna->vna_next == 0)
4601		 break;
4602	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4603	}
4604	if (vn->vn_next == 0)
4605	    break;
4606	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4607    }
4608
4609    vd = obj->verdef;
4610    while (vd != NULL) {
4611	if (vd->vd_version != VER_DEF_CURRENT) {
4612	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4613		obj->path, vd->vd_version);
4614	    return (-1);
4615	}
4616	vernum = VER_DEF_IDX(vd->vd_ndx);
4617	if (vernum > maxvernum)
4618		maxvernum = vernum;
4619	if (vd->vd_next == 0)
4620	    break;
4621	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4622    }
4623
4624    if (maxvernum == 0)
4625	return (0);
4626
4627    /*
4628     * Store version information in array indexable by version index.
4629     * Verify that object version requirements are satisfied along the
4630     * way.
4631     */
4632    obj->vernum = maxvernum + 1;
4633    obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4634
4635    vd = obj->verdef;
4636    while (vd != NULL) {
4637	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4638	    vernum = VER_DEF_IDX(vd->vd_ndx);
4639	    assert(vernum <= maxvernum);
4640	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4641	    obj->vertab[vernum].hash = vd->vd_hash;
4642	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4643	    obj->vertab[vernum].file = NULL;
4644	    obj->vertab[vernum].flags = 0;
4645	}
4646	if (vd->vd_next == 0)
4647	    break;
4648	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4649    }
4650
4651    vn = obj->verneed;
4652    while (vn != NULL) {
4653	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4654	if (depobj == NULL)
4655	    return (-1);
4656	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4657	for (;;) {
4658	    if (check_object_provided_version(obj, depobj, vna))
4659		return (-1);
4660	    vernum = VER_NEED_IDX(vna->vna_other);
4661	    assert(vernum <= maxvernum);
4662	    obj->vertab[vernum].hash = vna->vna_hash;
4663	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4664	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4665	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4666		VER_INFO_HIDDEN : 0;
4667	    if (vna->vna_next == 0)
4668		 break;
4669	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4670	}
4671	if (vn->vn_next == 0)
4672	    break;
4673	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4674    }
4675    return 0;
4676}
4677
4678static int
4679rtld_verify_versions(const Objlist *objlist)
4680{
4681    Objlist_Entry *entry;
4682    int rc;
4683
4684    rc = 0;
4685    STAILQ_FOREACH(entry, objlist, link) {
4686	/*
4687	 * Skip dummy objects or objects that have their version requirements
4688	 * already checked.
4689	 */
4690	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4691	    continue;
4692	if (rtld_verify_object_versions(entry->obj) == -1) {
4693	    rc = -1;
4694	    if (ld_tracing == NULL)
4695		break;
4696	}
4697    }
4698    if (rc == 0 || ld_tracing != NULL)
4699    	rc = rtld_verify_object_versions(&obj_rtld);
4700    return rc;
4701}
4702
4703const Ver_Entry *
4704fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4705{
4706    Elf_Versym vernum;
4707
4708    if (obj->vertab) {
4709	vernum = VER_NDX(obj->versyms[symnum]);
4710	if (vernum >= obj->vernum) {
4711	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4712		obj->path, obj->strtab + symnum, vernum);
4713	} else if (obj->vertab[vernum].hash != 0) {
4714	    return &obj->vertab[vernum];
4715	}
4716    }
4717    return NULL;
4718}
4719
4720int
4721_rtld_get_stack_prot(void)
4722{
4723
4724	return (stack_prot);
4725}
4726
4727static void
4728map_stacks_exec(RtldLockState *lockstate)
4729{
4730	void (*thr_map_stacks_exec)(void);
4731
4732	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4733		return;
4734	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4735	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4736	if (thr_map_stacks_exec != NULL) {
4737		stack_prot |= PROT_EXEC;
4738		thr_map_stacks_exec();
4739	}
4740}
4741
4742void
4743symlook_init(SymLook *dst, const char *name)
4744{
4745
4746	bzero(dst, sizeof(*dst));
4747	dst->name = name;
4748	dst->hash = elf_hash(name);
4749	dst->hash_gnu = gnu_hash(name);
4750}
4751
4752static void
4753symlook_init_from_req(SymLook *dst, const SymLook *src)
4754{
4755
4756	dst->name = src->name;
4757	dst->hash = src->hash;
4758	dst->hash_gnu = src->hash_gnu;
4759	dst->ventry = src->ventry;
4760	dst->flags = src->flags;
4761	dst->defobj_out = NULL;
4762	dst->sym_out = NULL;
4763	dst->lockstate = src->lockstate;
4764}
4765
4766/*
4767 * Overrides for libc_pic-provided functions.
4768 */
4769
4770int
4771__getosreldate(void)
4772{
4773	size_t len;
4774	int oid[2];
4775	int error, osrel;
4776
4777	if (osreldate != 0)
4778		return (osreldate);
4779
4780	oid[0] = CTL_KERN;
4781	oid[1] = KERN_OSRELDATE;
4782	osrel = 0;
4783	len = sizeof(osrel);
4784	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4785	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4786		osreldate = osrel;
4787	return (osreldate);
4788}
4789
4790void
4791exit(int status)
4792{
4793
4794	_exit(status);
4795}
4796
4797void (*__cleanup)(void);
4798int __isthreaded = 0;
4799int _thread_autoinit_dummy_decl = 1;
4800
4801/*
4802 * No unresolved symbols for rtld.
4803 */
4804void
4805__pthread_cxa_finalize(struct dl_phdr_info *a)
4806{
4807}
4808
4809void
4810__stack_chk_fail(void)
4811{
4812
4813	_rtld_error("stack overflow detected; terminated");
4814	die();
4815}
4816__weak_reference(__stack_chk_fail, __stack_chk_fail_local);
4817
4818void
4819__chk_fail(void)
4820{
4821
4822	_rtld_error("buffer overflow detected; terminated");
4823	die();
4824}
4825
4826const char *
4827rtld_strerror(int errnum)
4828{
4829
4830	if (errnum < 0 || errnum >= sys_nerr)
4831		return ("Unknown error");
4832	return (sys_errlist[errnum]);
4833}
4834