1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_family)
155        << /*overridden method*/ 0
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233                                                     Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                      Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286/// has explicit ownership attribute; false otherwise.
287static bool
288HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289  QualType T = Param->getType();
290
291  if (const PointerType *PT = T->getAs<PointerType>()) {
292    T = PT->getPointeeType();
293  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294    T = RT->getPointeeType();
295  } else {
296    return true;
297  }
298
299  // If we have a lifetime qualifier, but it's local, we must have
300  // inferred it. So, it is implicit.
301  return !T.getLocalQualifiers().hasObjCLifetime();
302}
303
304/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305/// and user declared, in the method definition's AST.
306void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310  // If we don't have a valid method decl, simply return.
311  if (!MDecl)
312    return;
313
314  // Allow all of Sema to see that we are entering a method definition.
315  PushDeclContext(FnBodyScope, MDecl);
316  PushFunctionScope();
317
318  // Create Decl objects for each parameter, entrring them in the scope for
319  // binding to their use.
320
321  // Insert the invisible arguments, self and _cmd!
322  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327  // Introduce all of the other parameters into this scope.
328  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
329       E = MDecl->param_end(); PI != E; ++PI) {
330    ParmVarDecl *Param = (*PI);
331    if (!Param->isInvalidDecl() &&
332        RequireCompleteType(Param->getLocation(), Param->getType(),
333                            diag::err_typecheck_decl_incomplete_type))
334          Param->setInvalidDecl();
335    if (!Param->isInvalidDecl() &&
336        getLangOpts().ObjCAutoRefCount &&
337        !HasExplicitOwnershipAttr(*this, Param))
338      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339            Param->getType();
340
341    if ((*PI)->getIdentifier())
342      PushOnScopeChains(*PI, FnBodyScope);
343  }
344
345  // In ARC, disallow definition of retain/release/autorelease/retainCount
346  if (getLangOpts().ObjCAutoRefCount) {
347    switch (MDecl->getMethodFamily()) {
348    case OMF_retain:
349    case OMF_retainCount:
350    case OMF_release:
351    case OMF_autorelease:
352      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353        << MDecl->getSelector();
354      break;
355
356    case OMF_None:
357    case OMF_dealloc:
358    case OMF_finalize:
359    case OMF_alloc:
360    case OMF_init:
361    case OMF_mutableCopy:
362    case OMF_copy:
363    case OMF_new:
364    case OMF_self:
365    case OMF_performSelector:
366      break;
367    }
368  }
369
370  // Warn on deprecated methods under -Wdeprecated-implementations,
371  // and prepare for warning on missing super calls.
372  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373    ObjCMethodDecl *IMD =
374      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376    if (IMD) {
377      ObjCImplDecl *ImplDeclOfMethodDef =
378        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379      ObjCContainerDecl *ContDeclOfMethodDecl =
380        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381      ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383        ImplDeclOfMethodDecl = OID->getImplementation();
384      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385        ImplDeclOfMethodDecl = CD->getImplementation();
386      // No need to issue deprecated warning if deprecated mehod in class/category
387      // is being implemented in its own implementation (no overriding is involved).
388      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389        DiagnoseObjCImplementedDeprecations(*this,
390                                          dyn_cast<NamedDecl>(IMD),
391                                          MDecl->getLocation(), 0);
392    }
393
394    // If this is "dealloc" or "finalize", set some bit here.
395    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397    // Only do this if the current class actually has a superclass.
398    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399      ObjCMethodFamily Family = MDecl->getMethodFamily();
400      if (Family == OMF_dealloc) {
401        if (!(getLangOpts().ObjCAutoRefCount ||
402              getLangOpts().getGC() == LangOptions::GCOnly))
403          getCurFunction()->ObjCShouldCallSuper = true;
404
405      } else if (Family == OMF_finalize) {
406        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407          getCurFunction()->ObjCShouldCallSuper = true;
408
409      } else {
410        const ObjCMethodDecl *SuperMethod =
411          SuperClass->lookupMethod(MDecl->getSelector(),
412                                   MDecl->isInstanceMethod());
413        getCurFunction()->ObjCShouldCallSuper =
414          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
415      }
416    }
417  }
418}
419
420namespace {
421
422// Callback to only accept typo corrections that are Objective-C classes.
423// If an ObjCInterfaceDecl* is given to the constructor, then the validation
424// function will reject corrections to that class.
425class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
426 public:
427  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
428  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
429      : CurrentIDecl(IDecl) {}
430
431  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
432    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
433    return ID && !declaresSameEntity(ID, CurrentIDecl);
434  }
435
436 private:
437  ObjCInterfaceDecl *CurrentIDecl;
438};
439
440}
441
442Decl *Sema::
443ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
444                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
445                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
446                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
447                         const SourceLocation *ProtoLocs,
448                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
449  assert(ClassName && "Missing class identifier");
450
451  // Check for another declaration kind with the same name.
452  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
453                                         LookupOrdinaryName, ForRedeclaration);
454
455  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
456    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
457    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
458  }
459
460  // Create a declaration to describe this @interface.
461  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
462  ObjCInterfaceDecl *IDecl
463    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
464                                PrevIDecl, ClassLoc);
465
466  if (PrevIDecl) {
467    // Class already seen. Was it a definition?
468    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
469      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
470        << PrevIDecl->getDeclName();
471      Diag(Def->getLocation(), diag::note_previous_definition);
472      IDecl->setInvalidDecl();
473    }
474  }
475
476  if (AttrList)
477    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
478  PushOnScopeChains(IDecl, TUScope);
479
480  // Start the definition of this class. If we're in a redefinition case, there
481  // may already be a definition, so we'll end up adding to it.
482  if (!IDecl->hasDefinition())
483    IDecl->startDefinition();
484
485  if (SuperName) {
486    // Check if a different kind of symbol declared in this scope.
487    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
488                                LookupOrdinaryName);
489
490    if (!PrevDecl) {
491      // Try to correct for a typo in the superclass name without correcting
492      // to the class we're defining.
493      ObjCInterfaceValidatorCCC Validator(IDecl);
494      if (TypoCorrection Corrected = CorrectTypo(
495          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
496          NULL, Validator)) {
497        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
498        Diag(SuperLoc, diag::err_undef_superclass_suggest)
499          << SuperName << ClassName << PrevDecl->getDeclName();
500        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
501          << PrevDecl->getDeclName();
502      }
503    }
504
505    if (declaresSameEntity(PrevDecl, IDecl)) {
506      Diag(SuperLoc, diag::err_recursive_superclass)
507        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
508      IDecl->setEndOfDefinitionLoc(ClassLoc);
509    } else {
510      ObjCInterfaceDecl *SuperClassDecl =
511                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
512
513      // Diagnose classes that inherit from deprecated classes.
514      if (SuperClassDecl)
515        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
516
517      if (PrevDecl && SuperClassDecl == 0) {
518        // The previous declaration was not a class decl. Check if we have a
519        // typedef. If we do, get the underlying class type.
520        if (const TypedefNameDecl *TDecl =
521              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
522          QualType T = TDecl->getUnderlyingType();
523          if (T->isObjCObjectType()) {
524            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
525              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
526              // This handles the following case:
527              // @interface NewI @end
528              // typedef NewI DeprI __attribute__((deprecated("blah")))
529              // @interface SI : DeprI /* warn here */ @end
530              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
531            }
532          }
533        }
534
535        // This handles the following case:
536        //
537        // typedef int SuperClass;
538        // @interface MyClass : SuperClass {} @end
539        //
540        if (!SuperClassDecl) {
541          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
542          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
543        }
544      }
545
546      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
547        if (!SuperClassDecl)
548          Diag(SuperLoc, diag::err_undef_superclass)
549            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
550        else if (RequireCompleteType(SuperLoc,
551                                  Context.getObjCInterfaceType(SuperClassDecl),
552                                     diag::err_forward_superclass,
553                                     SuperClassDecl->getDeclName(),
554                                     ClassName,
555                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
556          SuperClassDecl = 0;
557        }
558      }
559      IDecl->setSuperClass(SuperClassDecl);
560      IDecl->setSuperClassLoc(SuperLoc);
561      IDecl->setEndOfDefinitionLoc(SuperLoc);
562    }
563  } else { // we have a root class.
564    IDecl->setEndOfDefinitionLoc(ClassLoc);
565  }
566
567  // Check then save referenced protocols.
568  if (NumProtoRefs) {
569    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
570                           ProtoLocs, Context);
571    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
572  }
573
574  CheckObjCDeclScope(IDecl);
575  return ActOnObjCContainerStartDefinition(IDecl);
576}
577
578/// ActOnCompatibilityAlias - this action is called after complete parsing of
579/// a \@compatibility_alias declaration. It sets up the alias relationships.
580Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
581                                    IdentifierInfo *AliasName,
582                                    SourceLocation AliasLocation,
583                                    IdentifierInfo *ClassName,
584                                    SourceLocation ClassLocation) {
585  // Look for previous declaration of alias name
586  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
587                                      LookupOrdinaryName, ForRedeclaration);
588  if (ADecl) {
589    if (isa<ObjCCompatibleAliasDecl>(ADecl))
590      Diag(AliasLocation, diag::warn_previous_alias_decl);
591    else
592      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
593    Diag(ADecl->getLocation(), diag::note_previous_declaration);
594    return 0;
595  }
596  // Check for class declaration
597  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
598                                       LookupOrdinaryName, ForRedeclaration);
599  if (const TypedefNameDecl *TDecl =
600        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
601    QualType T = TDecl->getUnderlyingType();
602    if (T->isObjCObjectType()) {
603      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
604        ClassName = IDecl->getIdentifier();
605        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
606                                  LookupOrdinaryName, ForRedeclaration);
607      }
608    }
609  }
610  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
611  if (CDecl == 0) {
612    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
613    if (CDeclU)
614      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
615    return 0;
616  }
617
618  // Everything checked out, instantiate a new alias declaration AST.
619  ObjCCompatibleAliasDecl *AliasDecl =
620    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
621
622  if (!CheckObjCDeclScope(AliasDecl))
623    PushOnScopeChains(AliasDecl, TUScope);
624
625  return AliasDecl;
626}
627
628bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
629  IdentifierInfo *PName,
630  SourceLocation &Ploc, SourceLocation PrevLoc,
631  const ObjCList<ObjCProtocolDecl> &PList) {
632
633  bool res = false;
634  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
635       E = PList.end(); I != E; ++I) {
636    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
637                                                 Ploc)) {
638      if (PDecl->getIdentifier() == PName) {
639        Diag(Ploc, diag::err_protocol_has_circular_dependency);
640        Diag(PrevLoc, diag::note_previous_definition);
641        res = true;
642      }
643
644      if (!PDecl->hasDefinition())
645        continue;
646
647      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
648            PDecl->getLocation(), PDecl->getReferencedProtocols()))
649        res = true;
650    }
651  }
652  return res;
653}
654
655Decl *
656Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
657                                  IdentifierInfo *ProtocolName,
658                                  SourceLocation ProtocolLoc,
659                                  Decl * const *ProtoRefs,
660                                  unsigned NumProtoRefs,
661                                  const SourceLocation *ProtoLocs,
662                                  SourceLocation EndProtoLoc,
663                                  AttributeList *AttrList) {
664  bool err = false;
665  // FIXME: Deal with AttrList.
666  assert(ProtocolName && "Missing protocol identifier");
667  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
668                                              ForRedeclaration);
669  ObjCProtocolDecl *PDecl = 0;
670  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
671    // If we already have a definition, complain.
672    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
673    Diag(Def->getLocation(), diag::note_previous_definition);
674
675    // Create a new protocol that is completely distinct from previous
676    // declarations, and do not make this protocol available for name lookup.
677    // That way, we'll end up completely ignoring the duplicate.
678    // FIXME: Can we turn this into an error?
679    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
680                                     ProtocolLoc, AtProtoInterfaceLoc,
681                                     /*PrevDecl=*/0);
682    PDecl->startDefinition();
683  } else {
684    if (PrevDecl) {
685      // Check for circular dependencies among protocol declarations. This can
686      // only happen if this protocol was forward-declared.
687      ObjCList<ObjCProtocolDecl> PList;
688      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
689      err = CheckForwardProtocolDeclarationForCircularDependency(
690              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
691    }
692
693    // Create the new declaration.
694    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
695                                     ProtocolLoc, AtProtoInterfaceLoc,
696                                     /*PrevDecl=*/PrevDecl);
697
698    PushOnScopeChains(PDecl, TUScope);
699    PDecl->startDefinition();
700  }
701
702  if (AttrList)
703    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
704
705  // Merge attributes from previous declarations.
706  if (PrevDecl)
707    mergeDeclAttributes(PDecl, PrevDecl);
708
709  if (!err && NumProtoRefs ) {
710    /// Check then save referenced protocols.
711    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
712                           ProtoLocs, Context);
713  }
714
715  CheckObjCDeclScope(PDecl);
716  return ActOnObjCContainerStartDefinition(PDecl);
717}
718
719/// FindProtocolDeclaration - This routine looks up protocols and
720/// issues an error if they are not declared. It returns list of
721/// protocol declarations in its 'Protocols' argument.
722void
723Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
724                              const IdentifierLocPair *ProtocolId,
725                              unsigned NumProtocols,
726                              SmallVectorImpl<Decl *> &Protocols) {
727  for (unsigned i = 0; i != NumProtocols; ++i) {
728    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
729                                             ProtocolId[i].second);
730    if (!PDecl) {
731      DeclFilterCCC<ObjCProtocolDecl> Validator;
732      TypoCorrection Corrected = CorrectTypo(
733          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
734          LookupObjCProtocolName, TUScope, NULL, Validator);
735      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
736        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
737          << ProtocolId[i].first << Corrected.getCorrection();
738        Diag(PDecl->getLocation(), diag::note_previous_decl)
739          << PDecl->getDeclName();
740      }
741    }
742
743    if (!PDecl) {
744      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
745        << ProtocolId[i].first;
746      continue;
747    }
748    // If this is a forward protocol declaration, get its definition.
749    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
750      PDecl = PDecl->getDefinition();
751
752    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
753
754    // If this is a forward declaration and we are supposed to warn in this
755    // case, do it.
756    // FIXME: Recover nicely in the hidden case.
757    if (WarnOnDeclarations &&
758        (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
759      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
760        << ProtocolId[i].first;
761    Protocols.push_back(PDecl);
762  }
763}
764
765/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
766/// a class method in its extension.
767///
768void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
769                                            ObjCInterfaceDecl *ID) {
770  if (!ID)
771    return;  // Possibly due to previous error
772
773  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
774  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
775       e =  ID->meth_end(); i != e; ++i) {
776    ObjCMethodDecl *MD = *i;
777    MethodMap[MD->getSelector()] = MD;
778  }
779
780  if (MethodMap.empty())
781    return;
782  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
783       e =  CAT->meth_end(); i != e; ++i) {
784    ObjCMethodDecl *Method = *i;
785    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
786    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
787      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
788            << Method->getDeclName();
789      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
790    }
791  }
792}
793
794/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
795Sema::DeclGroupPtrTy
796Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
797                                      const IdentifierLocPair *IdentList,
798                                      unsigned NumElts,
799                                      AttributeList *attrList) {
800  SmallVector<Decl *, 8> DeclsInGroup;
801  for (unsigned i = 0; i != NumElts; ++i) {
802    IdentifierInfo *Ident = IdentList[i].first;
803    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
804                                                ForRedeclaration);
805    ObjCProtocolDecl *PDecl
806      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
807                                 IdentList[i].second, AtProtocolLoc,
808                                 PrevDecl);
809
810    PushOnScopeChains(PDecl, TUScope);
811    CheckObjCDeclScope(PDecl);
812
813    if (attrList)
814      ProcessDeclAttributeList(TUScope, PDecl, attrList);
815
816    if (PrevDecl)
817      mergeDeclAttributes(PDecl, PrevDecl);
818
819    DeclsInGroup.push_back(PDecl);
820  }
821
822  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
823}
824
825Decl *Sema::
826ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
827                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
828                            IdentifierInfo *CategoryName,
829                            SourceLocation CategoryLoc,
830                            Decl * const *ProtoRefs,
831                            unsigned NumProtoRefs,
832                            const SourceLocation *ProtoLocs,
833                            SourceLocation EndProtoLoc) {
834  ObjCCategoryDecl *CDecl;
835  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
836
837  /// Check that class of this category is already completely declared.
838
839  if (!IDecl
840      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
841                             diag::err_category_forward_interface,
842                             CategoryName == 0)) {
843    // Create an invalid ObjCCategoryDecl to serve as context for
844    // the enclosing method declarations.  We mark the decl invalid
845    // to make it clear that this isn't a valid AST.
846    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
847                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
848    CDecl->setInvalidDecl();
849    CurContext->addDecl(CDecl);
850
851    if (!IDecl)
852      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
853    return ActOnObjCContainerStartDefinition(CDecl);
854  }
855
856  if (!CategoryName && IDecl->getImplementation()) {
857    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
858    Diag(IDecl->getImplementation()->getLocation(),
859          diag::note_implementation_declared);
860  }
861
862  if (CategoryName) {
863    /// Check for duplicate interface declaration for this category
864    if (ObjCCategoryDecl *Previous
865          = IDecl->FindCategoryDeclaration(CategoryName)) {
866      // Class extensions can be declared multiple times, categories cannot.
867      Diag(CategoryLoc, diag::warn_dup_category_def)
868        << ClassName << CategoryName;
869      Diag(Previous->getLocation(), diag::note_previous_definition);
870    }
871  }
872
873  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
874                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
875  // FIXME: PushOnScopeChains?
876  CurContext->addDecl(CDecl);
877
878  if (NumProtoRefs) {
879    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
880                           ProtoLocs, Context);
881    // Protocols in the class extension belong to the class.
882    if (CDecl->IsClassExtension())
883     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
884                                            NumProtoRefs, Context);
885  }
886
887  CheckObjCDeclScope(CDecl);
888  return ActOnObjCContainerStartDefinition(CDecl);
889}
890
891/// ActOnStartCategoryImplementation - Perform semantic checks on the
892/// category implementation declaration and build an ObjCCategoryImplDecl
893/// object.
894Decl *Sema::ActOnStartCategoryImplementation(
895                      SourceLocation AtCatImplLoc,
896                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
897                      IdentifierInfo *CatName, SourceLocation CatLoc) {
898  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
899  ObjCCategoryDecl *CatIDecl = 0;
900  if (IDecl && IDecl->hasDefinition()) {
901    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
902    if (!CatIDecl) {
903      // Category @implementation with no corresponding @interface.
904      // Create and install one.
905      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
906                                          ClassLoc, CatLoc,
907                                          CatName, IDecl);
908      CatIDecl->setImplicit();
909    }
910  }
911
912  ObjCCategoryImplDecl *CDecl =
913    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
914                                 ClassLoc, AtCatImplLoc, CatLoc);
915  /// Check that class of this category is already completely declared.
916  if (!IDecl) {
917    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
918    CDecl->setInvalidDecl();
919  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
920                                 diag::err_undef_interface)) {
921    CDecl->setInvalidDecl();
922  }
923
924  // FIXME: PushOnScopeChains?
925  CurContext->addDecl(CDecl);
926
927  // If the interface is deprecated/unavailable, warn/error about it.
928  if (IDecl)
929    DiagnoseUseOfDecl(IDecl, ClassLoc);
930
931  /// Check that CatName, category name, is not used in another implementation.
932  if (CatIDecl) {
933    if (CatIDecl->getImplementation()) {
934      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
935        << CatName;
936      Diag(CatIDecl->getImplementation()->getLocation(),
937           diag::note_previous_definition);
938    } else {
939      CatIDecl->setImplementation(CDecl);
940      // Warn on implementating category of deprecated class under
941      // -Wdeprecated-implementations flag.
942      DiagnoseObjCImplementedDeprecations(*this,
943                                          dyn_cast<NamedDecl>(IDecl),
944                                          CDecl->getLocation(), 2);
945    }
946  }
947
948  CheckObjCDeclScope(CDecl);
949  return ActOnObjCContainerStartDefinition(CDecl);
950}
951
952Decl *Sema::ActOnStartClassImplementation(
953                      SourceLocation AtClassImplLoc,
954                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
955                      IdentifierInfo *SuperClassname,
956                      SourceLocation SuperClassLoc) {
957  ObjCInterfaceDecl* IDecl = 0;
958  // Check for another declaration kind with the same name.
959  NamedDecl *PrevDecl
960    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
961                       ForRedeclaration);
962  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
963    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
964    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
965  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
966    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
967                        diag::warn_undef_interface);
968  } else {
969    // We did not find anything with the name ClassName; try to correct for
970    // typos in the class name.
971    ObjCInterfaceValidatorCCC Validator;
972    if (TypoCorrection Corrected = CorrectTypo(
973        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
974        NULL, Validator)) {
975      // Suggest the (potentially) correct interface name. However, put the
976      // fix-it hint itself in a separate note, since changing the name in
977      // the warning would make the fix-it change semantics.However, don't
978      // provide a code-modification hint or use the typo name for recovery,
979      // because this is just a warning. The program may actually be correct.
980      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
981      DeclarationName CorrectedName = Corrected.getCorrection();
982      Diag(ClassLoc, diag::warn_undef_interface_suggest)
983        << ClassName << CorrectedName;
984      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
985        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
986      IDecl = 0;
987    } else {
988      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
989    }
990  }
991
992  // Check that super class name is valid class name
993  ObjCInterfaceDecl* SDecl = 0;
994  if (SuperClassname) {
995    // Check if a different kind of symbol declared in this scope.
996    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
997                                LookupOrdinaryName);
998    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
999      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1000        << SuperClassname;
1001      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1002    } else {
1003      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1004      if (SDecl && !SDecl->hasDefinition())
1005        SDecl = 0;
1006      if (!SDecl)
1007        Diag(SuperClassLoc, diag::err_undef_superclass)
1008          << SuperClassname << ClassName;
1009      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1010        // This implementation and its interface do not have the same
1011        // super class.
1012        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1013          << SDecl->getDeclName();
1014        Diag(SDecl->getLocation(), diag::note_previous_definition);
1015      }
1016    }
1017  }
1018
1019  if (!IDecl) {
1020    // Legacy case of @implementation with no corresponding @interface.
1021    // Build, chain & install the interface decl into the identifier.
1022
1023    // FIXME: Do we support attributes on the @implementation? If so we should
1024    // copy them over.
1025    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1026                                      ClassName, /*PrevDecl=*/0, ClassLoc,
1027                                      true);
1028    IDecl->startDefinition();
1029    if (SDecl) {
1030      IDecl->setSuperClass(SDecl);
1031      IDecl->setSuperClassLoc(SuperClassLoc);
1032      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1033    } else {
1034      IDecl->setEndOfDefinitionLoc(ClassLoc);
1035    }
1036
1037    PushOnScopeChains(IDecl, TUScope);
1038  } else {
1039    // Mark the interface as being completed, even if it was just as
1040    //   @class ....;
1041    // declaration; the user cannot reopen it.
1042    if (!IDecl->hasDefinition())
1043      IDecl->startDefinition();
1044  }
1045
1046  ObjCImplementationDecl* IMPDecl =
1047    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1048                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1049
1050  if (CheckObjCDeclScope(IMPDecl))
1051    return ActOnObjCContainerStartDefinition(IMPDecl);
1052
1053  // Check that there is no duplicate implementation of this class.
1054  if (IDecl->getImplementation()) {
1055    // FIXME: Don't leak everything!
1056    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1057    Diag(IDecl->getImplementation()->getLocation(),
1058         diag::note_previous_definition);
1059  } else { // add it to the list.
1060    IDecl->setImplementation(IMPDecl);
1061    PushOnScopeChains(IMPDecl, TUScope);
1062    // Warn on implementating deprecated class under
1063    // -Wdeprecated-implementations flag.
1064    DiagnoseObjCImplementedDeprecations(*this,
1065                                        dyn_cast<NamedDecl>(IDecl),
1066                                        IMPDecl->getLocation(), 1);
1067  }
1068  return ActOnObjCContainerStartDefinition(IMPDecl);
1069}
1070
1071Sema::DeclGroupPtrTy
1072Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1073  SmallVector<Decl *, 64> DeclsInGroup;
1074  DeclsInGroup.reserve(Decls.size() + 1);
1075
1076  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1077    Decl *Dcl = Decls[i];
1078    if (!Dcl)
1079      continue;
1080    if (Dcl->getDeclContext()->isFileContext())
1081      Dcl->setTopLevelDeclInObjCContainer();
1082    DeclsInGroup.push_back(Dcl);
1083  }
1084
1085  DeclsInGroup.push_back(ObjCImpDecl);
1086
1087  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1088}
1089
1090void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1091                                    ObjCIvarDecl **ivars, unsigned numIvars,
1092                                    SourceLocation RBrace) {
1093  assert(ImpDecl && "missing implementation decl");
1094  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1095  if (!IDecl)
1096    return;
1097  /// Check case of non-existing \@interface decl.
1098  /// (legacy objective-c \@implementation decl without an \@interface decl).
1099  /// Add implementations's ivar to the synthesize class's ivar list.
1100  if (IDecl->isImplicitInterfaceDecl()) {
1101    IDecl->setEndOfDefinitionLoc(RBrace);
1102    // Add ivar's to class's DeclContext.
1103    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1104      ivars[i]->setLexicalDeclContext(ImpDecl);
1105      IDecl->makeDeclVisibleInContext(ivars[i]);
1106      ImpDecl->addDecl(ivars[i]);
1107    }
1108
1109    return;
1110  }
1111  // If implementation has empty ivar list, just return.
1112  if (numIvars == 0)
1113    return;
1114
1115  assert(ivars && "missing @implementation ivars");
1116  if (LangOpts.ObjCRuntime.isNonFragile()) {
1117    if (ImpDecl->getSuperClass())
1118      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1119    for (unsigned i = 0; i < numIvars; i++) {
1120      ObjCIvarDecl* ImplIvar = ivars[i];
1121      if (const ObjCIvarDecl *ClsIvar =
1122            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1123        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1124        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1125        continue;
1126      }
1127      // Instance ivar to Implementation's DeclContext.
1128      ImplIvar->setLexicalDeclContext(ImpDecl);
1129      IDecl->makeDeclVisibleInContext(ImplIvar);
1130      ImpDecl->addDecl(ImplIvar);
1131    }
1132    return;
1133  }
1134  // Check interface's Ivar list against those in the implementation.
1135  // names and types must match.
1136  //
1137  unsigned j = 0;
1138  ObjCInterfaceDecl::ivar_iterator
1139    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1140  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1141    ObjCIvarDecl* ImplIvar = ivars[j++];
1142    ObjCIvarDecl* ClsIvar = *IVI;
1143    assert (ImplIvar && "missing implementation ivar");
1144    assert (ClsIvar && "missing class ivar");
1145
1146    // First, make sure the types match.
1147    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1148      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1149        << ImplIvar->getIdentifier()
1150        << ImplIvar->getType() << ClsIvar->getType();
1151      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1152    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1153               ImplIvar->getBitWidthValue(Context) !=
1154               ClsIvar->getBitWidthValue(Context)) {
1155      Diag(ImplIvar->getBitWidth()->getLocStart(),
1156           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1157      Diag(ClsIvar->getBitWidth()->getLocStart(),
1158           diag::note_previous_definition);
1159    }
1160    // Make sure the names are identical.
1161    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1162      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1163        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1164      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1165    }
1166    --numIvars;
1167  }
1168
1169  if (numIvars > 0)
1170    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1171  else if (IVI != IVE)
1172    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1173}
1174
1175void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1176                               bool &IncompleteImpl, unsigned DiagID) {
1177  // No point warning no definition of method which is 'unavailable'.
1178  switch (method->getAvailability()) {
1179  case AR_Available:
1180  case AR_Deprecated:
1181    break;
1182
1183      // Don't warn about unavailable or not-yet-introduced methods.
1184  case AR_NotYetIntroduced:
1185  case AR_Unavailable:
1186    return;
1187  }
1188
1189  // FIXME: For now ignore 'IncompleteImpl'.
1190  // Previously we grouped all unimplemented methods under a single
1191  // warning, but some users strongly voiced that they would prefer
1192  // separate warnings.  We will give that approach a try, as that
1193  // matches what we do with protocols.
1194
1195  Diag(ImpLoc, DiagID) << method->getDeclName();
1196
1197  // Issue a note to the original declaration.
1198  SourceLocation MethodLoc = method->getLocStart();
1199  if (MethodLoc.isValid())
1200    Diag(MethodLoc, diag::note_method_declared_at) << method;
1201}
1202
1203/// Determines if type B can be substituted for type A.  Returns true if we can
1204/// guarantee that anything that the user will do to an object of type A can
1205/// also be done to an object of type B.  This is trivially true if the two
1206/// types are the same, or if B is a subclass of A.  It becomes more complex
1207/// in cases where protocols are involved.
1208///
1209/// Object types in Objective-C describe the minimum requirements for an
1210/// object, rather than providing a complete description of a type.  For
1211/// example, if A is a subclass of B, then B* may refer to an instance of A.
1212/// The principle of substitutability means that we may use an instance of A
1213/// anywhere that we may use an instance of B - it will implement all of the
1214/// ivars of B and all of the methods of B.
1215///
1216/// This substitutability is important when type checking methods, because
1217/// the implementation may have stricter type definitions than the interface.
1218/// The interface specifies minimum requirements, but the implementation may
1219/// have more accurate ones.  For example, a method may privately accept
1220/// instances of B, but only publish that it accepts instances of A.  Any
1221/// object passed to it will be type checked against B, and so will implicitly
1222/// by a valid A*.  Similarly, a method may return a subclass of the class that
1223/// it is declared as returning.
1224///
1225/// This is most important when considering subclassing.  A method in a
1226/// subclass must accept any object as an argument that its superclass's
1227/// implementation accepts.  It may, however, accept a more general type
1228/// without breaking substitutability (i.e. you can still use the subclass
1229/// anywhere that you can use the superclass, but not vice versa).  The
1230/// converse requirement applies to return types: the return type for a
1231/// subclass method must be a valid object of the kind that the superclass
1232/// advertises, but it may be specified more accurately.  This avoids the need
1233/// for explicit down-casting by callers.
1234///
1235/// Note: This is a stricter requirement than for assignment.
1236static bool isObjCTypeSubstitutable(ASTContext &Context,
1237                                    const ObjCObjectPointerType *A,
1238                                    const ObjCObjectPointerType *B,
1239                                    bool rejectId) {
1240  // Reject a protocol-unqualified id.
1241  if (rejectId && B->isObjCIdType()) return false;
1242
1243  // If B is a qualified id, then A must also be a qualified id and it must
1244  // implement all of the protocols in B.  It may not be a qualified class.
1245  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1246  // stricter definition so it is not substitutable for id<A>.
1247  if (B->isObjCQualifiedIdType()) {
1248    return A->isObjCQualifiedIdType() &&
1249           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1250                                                     QualType(B,0),
1251                                                     false);
1252  }
1253
1254  /*
1255  // id is a special type that bypasses type checking completely.  We want a
1256  // warning when it is used in one place but not another.
1257  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1258
1259
1260  // If B is a qualified id, then A must also be a qualified id (which it isn't
1261  // if we've got this far)
1262  if (B->isObjCQualifiedIdType()) return false;
1263  */
1264
1265  // Now we know that A and B are (potentially-qualified) class types.  The
1266  // normal rules for assignment apply.
1267  return Context.canAssignObjCInterfaces(A, B);
1268}
1269
1270static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1271  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1272}
1273
1274static bool CheckMethodOverrideReturn(Sema &S,
1275                                      ObjCMethodDecl *MethodImpl,
1276                                      ObjCMethodDecl *MethodDecl,
1277                                      bool IsProtocolMethodDecl,
1278                                      bool IsOverridingMode,
1279                                      bool Warn) {
1280  if (IsProtocolMethodDecl &&
1281      (MethodDecl->getObjCDeclQualifier() !=
1282       MethodImpl->getObjCDeclQualifier())) {
1283    if (Warn) {
1284        S.Diag(MethodImpl->getLocation(),
1285               (IsOverridingMode ?
1286                 diag::warn_conflicting_overriding_ret_type_modifiers
1287                 : diag::warn_conflicting_ret_type_modifiers))
1288          << MethodImpl->getDeclName()
1289          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1290        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1291          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1292    }
1293    else
1294      return false;
1295  }
1296
1297  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1298                                       MethodDecl->getResultType()))
1299    return true;
1300  if (!Warn)
1301    return false;
1302
1303  unsigned DiagID =
1304    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1305                     : diag::warn_conflicting_ret_types;
1306
1307  // Mismatches between ObjC pointers go into a different warning
1308  // category, and sometimes they're even completely whitelisted.
1309  if (const ObjCObjectPointerType *ImplPtrTy =
1310        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1311    if (const ObjCObjectPointerType *IfacePtrTy =
1312          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1313      // Allow non-matching return types as long as they don't violate
1314      // the principle of substitutability.  Specifically, we permit
1315      // return types that are subclasses of the declared return type,
1316      // or that are more-qualified versions of the declared type.
1317      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1318        return false;
1319
1320      DiagID =
1321        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1322                          : diag::warn_non_covariant_ret_types;
1323    }
1324  }
1325
1326  S.Diag(MethodImpl->getLocation(), DiagID)
1327    << MethodImpl->getDeclName()
1328    << MethodDecl->getResultType()
1329    << MethodImpl->getResultType()
1330    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1331  S.Diag(MethodDecl->getLocation(),
1332         IsOverridingMode ? diag::note_previous_declaration
1333                          : diag::note_previous_definition)
1334    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1335  return false;
1336}
1337
1338static bool CheckMethodOverrideParam(Sema &S,
1339                                     ObjCMethodDecl *MethodImpl,
1340                                     ObjCMethodDecl *MethodDecl,
1341                                     ParmVarDecl *ImplVar,
1342                                     ParmVarDecl *IfaceVar,
1343                                     bool IsProtocolMethodDecl,
1344                                     bool IsOverridingMode,
1345                                     bool Warn) {
1346  if (IsProtocolMethodDecl &&
1347      (ImplVar->getObjCDeclQualifier() !=
1348       IfaceVar->getObjCDeclQualifier())) {
1349    if (Warn) {
1350      if (IsOverridingMode)
1351        S.Diag(ImplVar->getLocation(),
1352               diag::warn_conflicting_overriding_param_modifiers)
1353            << getTypeRange(ImplVar->getTypeSourceInfo())
1354            << MethodImpl->getDeclName();
1355      else S.Diag(ImplVar->getLocation(),
1356             diag::warn_conflicting_param_modifiers)
1357          << getTypeRange(ImplVar->getTypeSourceInfo())
1358          << MethodImpl->getDeclName();
1359      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1360          << getTypeRange(IfaceVar->getTypeSourceInfo());
1361    }
1362    else
1363      return false;
1364  }
1365
1366  QualType ImplTy = ImplVar->getType();
1367  QualType IfaceTy = IfaceVar->getType();
1368
1369  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1370    return true;
1371
1372  if (!Warn)
1373    return false;
1374  unsigned DiagID =
1375    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1376                     : diag::warn_conflicting_param_types;
1377
1378  // Mismatches between ObjC pointers go into a different warning
1379  // category, and sometimes they're even completely whitelisted.
1380  if (const ObjCObjectPointerType *ImplPtrTy =
1381        ImplTy->getAs<ObjCObjectPointerType>()) {
1382    if (const ObjCObjectPointerType *IfacePtrTy =
1383          IfaceTy->getAs<ObjCObjectPointerType>()) {
1384      // Allow non-matching argument types as long as they don't
1385      // violate the principle of substitutability.  Specifically, the
1386      // implementation must accept any objects that the superclass
1387      // accepts, however it may also accept others.
1388      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1389        return false;
1390
1391      DiagID =
1392      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1393                       :  diag::warn_non_contravariant_param_types;
1394    }
1395  }
1396
1397  S.Diag(ImplVar->getLocation(), DiagID)
1398    << getTypeRange(ImplVar->getTypeSourceInfo())
1399    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1400  S.Diag(IfaceVar->getLocation(),
1401         (IsOverridingMode ? diag::note_previous_declaration
1402                        : diag::note_previous_definition))
1403    << getTypeRange(IfaceVar->getTypeSourceInfo());
1404  return false;
1405}
1406
1407/// In ARC, check whether the conventional meanings of the two methods
1408/// match.  If they don't, it's a hard error.
1409static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1410                                      ObjCMethodDecl *decl) {
1411  ObjCMethodFamily implFamily = impl->getMethodFamily();
1412  ObjCMethodFamily declFamily = decl->getMethodFamily();
1413  if (implFamily == declFamily) return false;
1414
1415  // Since conventions are sorted by selector, the only possibility is
1416  // that the types differ enough to cause one selector or the other
1417  // to fall out of the family.
1418  assert(implFamily == OMF_None || declFamily == OMF_None);
1419
1420  // No further diagnostics required on invalid declarations.
1421  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1422
1423  const ObjCMethodDecl *unmatched = impl;
1424  ObjCMethodFamily family = declFamily;
1425  unsigned errorID = diag::err_arc_lost_method_convention;
1426  unsigned noteID = diag::note_arc_lost_method_convention;
1427  if (declFamily == OMF_None) {
1428    unmatched = decl;
1429    family = implFamily;
1430    errorID = diag::err_arc_gained_method_convention;
1431    noteID = diag::note_arc_gained_method_convention;
1432  }
1433
1434  // Indexes into a %select clause in the diagnostic.
1435  enum FamilySelector {
1436    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1437  };
1438  FamilySelector familySelector = FamilySelector();
1439
1440  switch (family) {
1441  case OMF_None: llvm_unreachable("logic error, no method convention");
1442  case OMF_retain:
1443  case OMF_release:
1444  case OMF_autorelease:
1445  case OMF_dealloc:
1446  case OMF_finalize:
1447  case OMF_retainCount:
1448  case OMF_self:
1449  case OMF_performSelector:
1450    // Mismatches for these methods don't change ownership
1451    // conventions, so we don't care.
1452    return false;
1453
1454  case OMF_init: familySelector = F_init; break;
1455  case OMF_alloc: familySelector = F_alloc; break;
1456  case OMF_copy: familySelector = F_copy; break;
1457  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1458  case OMF_new: familySelector = F_new; break;
1459  }
1460
1461  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1462  ReasonSelector reasonSelector;
1463
1464  // The only reason these methods don't fall within their families is
1465  // due to unusual result types.
1466  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1467    reasonSelector = R_UnrelatedReturn;
1468  } else {
1469    reasonSelector = R_NonObjectReturn;
1470  }
1471
1472  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1473  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1474
1475  return true;
1476}
1477
1478void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1479                                       ObjCMethodDecl *MethodDecl,
1480                                       bool IsProtocolMethodDecl) {
1481  if (getLangOpts().ObjCAutoRefCount &&
1482      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1483    return;
1484
1485  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1486                            IsProtocolMethodDecl, false,
1487                            true);
1488
1489  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1490       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1491       EF = MethodDecl->param_end();
1492       IM != EM && IF != EF; ++IM, ++IF) {
1493    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1494                             IsProtocolMethodDecl, false, true);
1495  }
1496
1497  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1498    Diag(ImpMethodDecl->getLocation(),
1499         diag::warn_conflicting_variadic);
1500    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1501  }
1502}
1503
1504void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1505                                       ObjCMethodDecl *Overridden,
1506                                       bool IsProtocolMethodDecl) {
1507
1508  CheckMethodOverrideReturn(*this, Method, Overridden,
1509                            IsProtocolMethodDecl, true,
1510                            true);
1511
1512  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1513       IF = Overridden->param_begin(), EM = Method->param_end(),
1514       EF = Overridden->param_end();
1515       IM != EM && IF != EF; ++IM, ++IF) {
1516    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1517                             IsProtocolMethodDecl, true, true);
1518  }
1519
1520  if (Method->isVariadic() != Overridden->isVariadic()) {
1521    Diag(Method->getLocation(),
1522         diag::warn_conflicting_overriding_variadic);
1523    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1524  }
1525}
1526
1527/// WarnExactTypedMethods - This routine issues a warning if method
1528/// implementation declaration matches exactly that of its declaration.
1529void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1530                                 ObjCMethodDecl *MethodDecl,
1531                                 bool IsProtocolMethodDecl) {
1532  // don't issue warning when protocol method is optional because primary
1533  // class is not required to implement it and it is safe for protocol
1534  // to implement it.
1535  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1536    return;
1537  // don't issue warning when primary class's method is
1538  // depecated/unavailable.
1539  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1540      MethodDecl->hasAttr<DeprecatedAttr>())
1541    return;
1542
1543  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1544                                      IsProtocolMethodDecl, false, false);
1545  if (match)
1546    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1547         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1548         EF = MethodDecl->param_end();
1549         IM != EM && IF != EF; ++IM, ++IF) {
1550      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1551                                       *IM, *IF,
1552                                       IsProtocolMethodDecl, false, false);
1553      if (!match)
1554        break;
1555    }
1556  if (match)
1557    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1558  if (match)
1559    match = !(MethodDecl->isClassMethod() &&
1560              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1561
1562  if (match) {
1563    Diag(ImpMethodDecl->getLocation(),
1564         diag::warn_category_method_impl_match);
1565    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1566      << MethodDecl->getDeclName();
1567  }
1568}
1569
1570/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1571/// improve the efficiency of selector lookups and type checking by associating
1572/// with each protocol / interface / category the flattened instance tables. If
1573/// we used an immutable set to keep the table then it wouldn't add significant
1574/// memory cost and it would be handy for lookups.
1575
1576/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1577/// Declared in protocol, and those referenced by it.
1578void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1579                                   ObjCProtocolDecl *PDecl,
1580                                   bool& IncompleteImpl,
1581                                   const SelectorSet &InsMap,
1582                                   const SelectorSet &ClsMap,
1583                                   ObjCContainerDecl *CDecl) {
1584  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1585  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1586                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1587  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1588
1589  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1590  ObjCInterfaceDecl *NSIDecl = 0;
1591  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1592    // check to see if class implements forwardInvocation method and objects
1593    // of this class are derived from 'NSProxy' so that to forward requests
1594    // from one object to another.
1595    // Under such conditions, which means that every method possible is
1596    // implemented in the class, we should not issue "Method definition not
1597    // found" warnings.
1598    // FIXME: Use a general GetUnarySelector method for this.
1599    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1600    Selector fISelector = Context.Selectors.getSelector(1, &II);
1601    if (InsMap.count(fISelector))
1602      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1603      // need be implemented in the implementation.
1604      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1605  }
1606
1607  // If this is a forward protocol declaration, get its definition.
1608  if (!PDecl->isThisDeclarationADefinition() &&
1609      PDecl->getDefinition())
1610    PDecl = PDecl->getDefinition();
1611
1612  // If a method lookup fails locally we still need to look and see if
1613  // the method was implemented by a base class or an inherited
1614  // protocol. This lookup is slow, but occurs rarely in correct code
1615  // and otherwise would terminate in a warning.
1616
1617  // check unimplemented instance methods.
1618  if (!NSIDecl)
1619    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1620         E = PDecl->instmeth_end(); I != E; ++I) {
1621      ObjCMethodDecl *method = *I;
1622      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1623          !method->isPropertyAccessor() &&
1624          !InsMap.count(method->getSelector()) &&
1625          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1626            // If a method is not implemented in the category implementation but
1627            // has been declared in its primary class, superclass,
1628            // or in one of their protocols, no need to issue the warning.
1629            // This is because method will be implemented in the primary class
1630            // or one of its super class implementation.
1631
1632            // Ugly, but necessary. Method declared in protcol might have
1633            // have been synthesized due to a property declared in the class which
1634            // uses the protocol.
1635            if (ObjCMethodDecl *MethodInClass =
1636                  IDecl->lookupInstanceMethod(method->getSelector(),
1637                                              true /*shallowCategoryLookup*/))
1638              if (C || MethodInClass->isPropertyAccessor())
1639                continue;
1640            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1641            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1642                != DiagnosticsEngine::Ignored) {
1643              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1644              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1645                << PDecl->getDeclName();
1646            }
1647          }
1648    }
1649  // check unimplemented class methods
1650  for (ObjCProtocolDecl::classmeth_iterator
1651         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1652       I != E; ++I) {
1653    ObjCMethodDecl *method = *I;
1654    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1655        !ClsMap.count(method->getSelector()) &&
1656        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1657      // See above comment for instance method lookups.
1658      if (C && IDecl->lookupClassMethod(method->getSelector(),
1659                                        true /*shallowCategoryLookup*/))
1660        continue;
1661      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1662      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1663            DiagnosticsEngine::Ignored) {
1664        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1665        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1666          PDecl->getDeclName();
1667      }
1668    }
1669  }
1670  // Check on this protocols's referenced protocols, recursively.
1671  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1672       E = PDecl->protocol_end(); PI != E; ++PI)
1673    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1674}
1675
1676/// MatchAllMethodDeclarations - Check methods declared in interface
1677/// or protocol against those declared in their implementations.
1678///
1679void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1680                                      const SelectorSet &ClsMap,
1681                                      SelectorSet &InsMapSeen,
1682                                      SelectorSet &ClsMapSeen,
1683                                      ObjCImplDecl* IMPDecl,
1684                                      ObjCContainerDecl* CDecl,
1685                                      bool &IncompleteImpl,
1686                                      bool ImmediateClass,
1687                                      bool WarnCategoryMethodImpl) {
1688  // Check and see if instance methods in class interface have been
1689  // implemented in the implementation class. If so, their types match.
1690  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1691       E = CDecl->instmeth_end(); I != E; ++I) {
1692    if (InsMapSeen.count((*I)->getSelector()))
1693        continue;
1694    InsMapSeen.insert((*I)->getSelector());
1695    if (!(*I)->isPropertyAccessor() &&
1696        !InsMap.count((*I)->getSelector())) {
1697      if (ImmediateClass)
1698        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1699                            diag::warn_undef_method_impl);
1700      continue;
1701    } else {
1702      ObjCMethodDecl *ImpMethodDecl =
1703        IMPDecl->getInstanceMethod((*I)->getSelector());
1704      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1705             "Expected to find the method through lookup as well");
1706      ObjCMethodDecl *MethodDecl = *I;
1707      // ImpMethodDecl may be null as in a @dynamic property.
1708      if (ImpMethodDecl) {
1709        if (!WarnCategoryMethodImpl)
1710          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1711                                      isa<ObjCProtocolDecl>(CDecl));
1712        else if (!MethodDecl->isPropertyAccessor())
1713          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1714                                isa<ObjCProtocolDecl>(CDecl));
1715      }
1716    }
1717  }
1718
1719  // Check and see if class methods in class interface have been
1720  // implemented in the implementation class. If so, their types match.
1721   for (ObjCInterfaceDecl::classmeth_iterator
1722       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1723     if (ClsMapSeen.count((*I)->getSelector()))
1724       continue;
1725     ClsMapSeen.insert((*I)->getSelector());
1726    if (!ClsMap.count((*I)->getSelector())) {
1727      if (ImmediateClass)
1728        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1729                            diag::warn_undef_method_impl);
1730    } else {
1731      ObjCMethodDecl *ImpMethodDecl =
1732        IMPDecl->getClassMethod((*I)->getSelector());
1733      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1734             "Expected to find the method through lookup as well");
1735      ObjCMethodDecl *MethodDecl = *I;
1736      if (!WarnCategoryMethodImpl)
1737        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1738                                    isa<ObjCProtocolDecl>(CDecl));
1739      else
1740        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1741                              isa<ObjCProtocolDecl>(CDecl));
1742    }
1743  }
1744
1745  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1746    // when checking that methods in implementation match their declaration,
1747    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1748    // extension; as well as those in categories.
1749    if (!WarnCategoryMethodImpl) {
1750      for (ObjCInterfaceDecl::visible_categories_iterator
1751             Cat = I->visible_categories_begin(),
1752           CatEnd = I->visible_categories_end();
1753           Cat != CatEnd; ++Cat) {
1754        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1755                                   IMPDecl, *Cat, IncompleteImpl, false,
1756                                   WarnCategoryMethodImpl);
1757      }
1758    } else {
1759      // Also methods in class extensions need be looked at next.
1760      for (ObjCInterfaceDecl::visible_extensions_iterator
1761             Ext = I->visible_extensions_begin(),
1762             ExtEnd = I->visible_extensions_end();
1763           Ext != ExtEnd; ++Ext) {
1764        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1765                                   IMPDecl, *Ext, IncompleteImpl, false,
1766                                   WarnCategoryMethodImpl);
1767      }
1768    }
1769
1770    // Check for any implementation of a methods declared in protocol.
1771    for (ObjCInterfaceDecl::all_protocol_iterator
1772          PI = I->all_referenced_protocol_begin(),
1773          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1774      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1775                                 IMPDecl,
1776                                 (*PI), IncompleteImpl, false,
1777                                 WarnCategoryMethodImpl);
1778
1779    // FIXME. For now, we are not checking for extact match of methods
1780    // in category implementation and its primary class's super class.
1781    if (!WarnCategoryMethodImpl && I->getSuperClass())
1782      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1783                                 IMPDecl,
1784                                 I->getSuperClass(), IncompleteImpl, false);
1785  }
1786}
1787
1788/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1789/// category matches with those implemented in its primary class and
1790/// warns each time an exact match is found.
1791void Sema::CheckCategoryVsClassMethodMatches(
1792                                  ObjCCategoryImplDecl *CatIMPDecl) {
1793  SelectorSet InsMap, ClsMap;
1794
1795  for (ObjCImplementationDecl::instmeth_iterator
1796       I = CatIMPDecl->instmeth_begin(),
1797       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1798    InsMap.insert((*I)->getSelector());
1799
1800  for (ObjCImplementationDecl::classmeth_iterator
1801       I = CatIMPDecl->classmeth_begin(),
1802       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1803    ClsMap.insert((*I)->getSelector());
1804  if (InsMap.empty() && ClsMap.empty())
1805    return;
1806
1807  // Get category's primary class.
1808  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1809  if (!CatDecl)
1810    return;
1811  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1812  if (!IDecl)
1813    return;
1814  SelectorSet InsMapSeen, ClsMapSeen;
1815  bool IncompleteImpl = false;
1816  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1817                             CatIMPDecl, IDecl,
1818                             IncompleteImpl, false,
1819                             true /*WarnCategoryMethodImpl*/);
1820}
1821
1822void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1823                                     ObjCContainerDecl* CDecl,
1824                                     bool IncompleteImpl) {
1825  SelectorSet InsMap;
1826  // Check and see if instance methods in class interface have been
1827  // implemented in the implementation class.
1828  for (ObjCImplementationDecl::instmeth_iterator
1829         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1830    InsMap.insert((*I)->getSelector());
1831
1832  // Check and see if properties declared in the interface have either 1)
1833  // an implementation or 2) there is a @synthesize/@dynamic implementation
1834  // of the property in the @implementation.
1835  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1836    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1837           LangOpts.ObjCRuntime.isNonFragile()) ||
1838         IDecl->isObjCRequiresPropertyDefs())
1839      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1840
1841  SelectorSet ClsMap;
1842  for (ObjCImplementationDecl::classmeth_iterator
1843       I = IMPDecl->classmeth_begin(),
1844       E = IMPDecl->classmeth_end(); I != E; ++I)
1845    ClsMap.insert((*I)->getSelector());
1846
1847  // Check for type conflict of methods declared in a class/protocol and
1848  // its implementation; if any.
1849  SelectorSet InsMapSeen, ClsMapSeen;
1850  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1851                             IMPDecl, CDecl,
1852                             IncompleteImpl, true);
1853
1854  // check all methods implemented in category against those declared
1855  // in its primary class.
1856  if (ObjCCategoryImplDecl *CatDecl =
1857        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1858    CheckCategoryVsClassMethodMatches(CatDecl);
1859
1860  // Check the protocol list for unimplemented methods in the @implementation
1861  // class.
1862  // Check and see if class methods in class interface have been
1863  // implemented in the implementation class.
1864
1865  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1866    for (ObjCInterfaceDecl::all_protocol_iterator
1867          PI = I->all_referenced_protocol_begin(),
1868          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1869      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1870                              InsMap, ClsMap, I);
1871    // Check class extensions (unnamed categories)
1872    for (ObjCInterfaceDecl::visible_extensions_iterator
1873           Ext = I->visible_extensions_begin(),
1874           ExtEnd = I->visible_extensions_end();
1875         Ext != ExtEnd; ++Ext) {
1876      ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1877    }
1878  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1879    // For extended class, unimplemented methods in its protocols will
1880    // be reported in the primary class.
1881    if (!C->IsClassExtension()) {
1882      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1883           E = C->protocol_end(); PI != E; ++PI)
1884        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1885                                InsMap, ClsMap, CDecl);
1886      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
1887    }
1888  } else
1889    llvm_unreachable("invalid ObjCContainerDecl type.");
1890}
1891
1892/// ActOnForwardClassDeclaration -
1893Sema::DeclGroupPtrTy
1894Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1895                                   IdentifierInfo **IdentList,
1896                                   SourceLocation *IdentLocs,
1897                                   unsigned NumElts) {
1898  SmallVector<Decl *, 8> DeclsInGroup;
1899  for (unsigned i = 0; i != NumElts; ++i) {
1900    // Check for another declaration kind with the same name.
1901    NamedDecl *PrevDecl
1902      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1903                         LookupOrdinaryName, ForRedeclaration);
1904    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1905      // Maybe we will complain about the shadowed template parameter.
1906      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1907      // Just pretend that we didn't see the previous declaration.
1908      PrevDecl = 0;
1909    }
1910
1911    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1912      // GCC apparently allows the following idiom:
1913      //
1914      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1915      // @class XCElementToggler;
1916      //
1917      // Here we have chosen to ignore the forward class declaration
1918      // with a warning. Since this is the implied behavior.
1919      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1920      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1921        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1922        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1923      } else {
1924        // a forward class declaration matching a typedef name of a class refers
1925        // to the underlying class. Just ignore the forward class with a warning
1926        // as this will force the intended behavior which is to lookup the typedef
1927        // name.
1928        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1929          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1930          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1931          continue;
1932        }
1933      }
1934    }
1935
1936    // Create a declaration to describe this forward declaration.
1937    ObjCInterfaceDecl *PrevIDecl
1938      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1939    ObjCInterfaceDecl *IDecl
1940      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1941                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1942    IDecl->setAtEndRange(IdentLocs[i]);
1943
1944    PushOnScopeChains(IDecl, TUScope);
1945    CheckObjCDeclScope(IDecl);
1946    DeclsInGroup.push_back(IDecl);
1947  }
1948
1949  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1950}
1951
1952static bool tryMatchRecordTypes(ASTContext &Context,
1953                                Sema::MethodMatchStrategy strategy,
1954                                const Type *left, const Type *right);
1955
1956static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1957                       QualType leftQT, QualType rightQT) {
1958  const Type *left =
1959    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1960  const Type *right =
1961    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1962
1963  if (left == right) return true;
1964
1965  // If we're doing a strict match, the types have to match exactly.
1966  if (strategy == Sema::MMS_strict) return false;
1967
1968  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1969
1970  // Otherwise, use this absurdly complicated algorithm to try to
1971  // validate the basic, low-level compatibility of the two types.
1972
1973  // As a minimum, require the sizes and alignments to match.
1974  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1975    return false;
1976
1977  // Consider all the kinds of non-dependent canonical types:
1978  // - functions and arrays aren't possible as return and parameter types
1979
1980  // - vector types of equal size can be arbitrarily mixed
1981  if (isa<VectorType>(left)) return isa<VectorType>(right);
1982  if (isa<VectorType>(right)) return false;
1983
1984  // - references should only match references of identical type
1985  // - structs, unions, and Objective-C objects must match more-or-less
1986  //   exactly
1987  // - everything else should be a scalar
1988  if (!left->isScalarType() || !right->isScalarType())
1989    return tryMatchRecordTypes(Context, strategy, left, right);
1990
1991  // Make scalars agree in kind, except count bools as chars, and group
1992  // all non-member pointers together.
1993  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1994  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1995  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1996  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1997  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1998    leftSK = Type::STK_ObjCObjectPointer;
1999  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2000    rightSK = Type::STK_ObjCObjectPointer;
2001
2002  // Note that data member pointers and function member pointers don't
2003  // intermix because of the size differences.
2004
2005  return (leftSK == rightSK);
2006}
2007
2008static bool tryMatchRecordTypes(ASTContext &Context,
2009                                Sema::MethodMatchStrategy strategy,
2010                                const Type *lt, const Type *rt) {
2011  assert(lt && rt && lt != rt);
2012
2013  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2014  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2015  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2016
2017  // Require union-hood to match.
2018  if (left->isUnion() != right->isUnion()) return false;
2019
2020  // Require an exact match if either is non-POD.
2021  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2022      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2023    return false;
2024
2025  // Require size and alignment to match.
2026  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2027
2028  // Require fields to match.
2029  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2030  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2031  for (; li != le && ri != re; ++li, ++ri) {
2032    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2033      return false;
2034  }
2035  return (li == le && ri == re);
2036}
2037
2038/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2039/// returns true, or false, accordingly.
2040/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2041bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2042                                      const ObjCMethodDecl *right,
2043                                      MethodMatchStrategy strategy) {
2044  if (!matchTypes(Context, strategy,
2045                  left->getResultType(), right->getResultType()))
2046    return false;
2047
2048  // If either is hidden, it is not considered to match.
2049  if (left->isHidden() || right->isHidden())
2050    return false;
2051
2052  if (getLangOpts().ObjCAutoRefCount &&
2053      (left->hasAttr<NSReturnsRetainedAttr>()
2054         != right->hasAttr<NSReturnsRetainedAttr>() ||
2055       left->hasAttr<NSConsumesSelfAttr>()
2056         != right->hasAttr<NSConsumesSelfAttr>()))
2057    return false;
2058
2059  ObjCMethodDecl::param_const_iterator
2060    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2061    re = right->param_end();
2062
2063  for (; li != le && ri != re; ++li, ++ri) {
2064    assert(ri != right->param_end() && "Param mismatch");
2065    const ParmVarDecl *lparm = *li, *rparm = *ri;
2066
2067    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2068      return false;
2069
2070    if (getLangOpts().ObjCAutoRefCount &&
2071        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2072      return false;
2073  }
2074  return true;
2075}
2076
2077void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2078  // Record at the head of the list whether there were 0, 1, or >= 2 methods
2079  // inside categories.
2080  if (ObjCCategoryDecl *
2081        CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2082    if (!CD->IsClassExtension() && List->getBits() < 2)
2083        List->setBits(List->getBits()+1);
2084
2085  // If the list is empty, make it a singleton list.
2086  if (List->Method == 0) {
2087    List->Method = Method;
2088    List->setNext(0);
2089    return;
2090  }
2091
2092  // We've seen a method with this name, see if we have already seen this type
2093  // signature.
2094  ObjCMethodList *Previous = List;
2095  for (; List; Previous = List, List = List->getNext()) {
2096    if (!MatchTwoMethodDeclarations(Method, List->Method))
2097      continue;
2098
2099    ObjCMethodDecl *PrevObjCMethod = List->Method;
2100
2101    // Propagate the 'defined' bit.
2102    if (Method->isDefined())
2103      PrevObjCMethod->setDefined(true);
2104
2105    // If a method is deprecated, push it in the global pool.
2106    // This is used for better diagnostics.
2107    if (Method->isDeprecated()) {
2108      if (!PrevObjCMethod->isDeprecated())
2109        List->Method = Method;
2110    }
2111    // If new method is unavailable, push it into global pool
2112    // unless previous one is deprecated.
2113    if (Method->isUnavailable()) {
2114      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2115        List->Method = Method;
2116    }
2117
2118    return;
2119  }
2120
2121  // We have a new signature for an existing method - add it.
2122  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2123  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2124  Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
2125}
2126
2127/// \brief Read the contents of the method pool for a given selector from
2128/// external storage.
2129void Sema::ReadMethodPool(Selector Sel) {
2130  assert(ExternalSource && "We need an external AST source");
2131  ExternalSource->ReadMethodPool(Sel);
2132}
2133
2134void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2135                                 bool instance) {
2136  // Ignore methods of invalid containers.
2137  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2138    return;
2139
2140  if (ExternalSource)
2141    ReadMethodPool(Method->getSelector());
2142
2143  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2144  if (Pos == MethodPool.end())
2145    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2146                                           GlobalMethods())).first;
2147
2148  Method->setDefined(impl);
2149
2150  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2151  addMethodToGlobalList(&Entry, Method);
2152}
2153
2154/// Determines if this is an "acceptable" loose mismatch in the global
2155/// method pool.  This exists mostly as a hack to get around certain
2156/// global mismatches which we can't afford to make warnings / errors.
2157/// Really, what we want is a way to take a method out of the global
2158/// method pool.
2159static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2160                                       ObjCMethodDecl *other) {
2161  if (!chosen->isInstanceMethod())
2162    return false;
2163
2164  Selector sel = chosen->getSelector();
2165  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2166    return false;
2167
2168  // Don't complain about mismatches for -length if the method we
2169  // chose has an integral result type.
2170  return (chosen->getResultType()->isIntegerType());
2171}
2172
2173ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2174                                               bool receiverIdOrClass,
2175                                               bool warn, bool instance) {
2176  if (ExternalSource)
2177    ReadMethodPool(Sel);
2178
2179  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2180  if (Pos == MethodPool.end())
2181    return 0;
2182
2183  // Gather the non-hidden methods.
2184  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2185  llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
2186  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2187    if (M->Method && !M->Method->isHidden()) {
2188      // If we're not supposed to warn about mismatches, we're done.
2189      if (!warn)
2190        return M->Method;
2191
2192      Methods.push_back(M->Method);
2193    }
2194  }
2195
2196  // If there aren't any visible methods, we're done.
2197  // FIXME: Recover if there are any known-but-hidden methods?
2198  if (Methods.empty())
2199    return 0;
2200
2201  if (Methods.size() == 1)
2202    return Methods[0];
2203
2204  // We found multiple methods, so we may have to complain.
2205  bool issueDiagnostic = false, issueError = false;
2206
2207  // We support a warning which complains about *any* difference in
2208  // method signature.
2209  bool strictSelectorMatch =
2210    (receiverIdOrClass && warn &&
2211     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2212                               R.getBegin())
2213        != DiagnosticsEngine::Ignored));
2214  if (strictSelectorMatch) {
2215    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2216      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2217        issueDiagnostic = true;
2218        break;
2219      }
2220    }
2221  }
2222
2223  // If we didn't see any strict differences, we won't see any loose
2224  // differences.  In ARC, however, we also need to check for loose
2225  // mismatches, because most of them are errors.
2226  if (!strictSelectorMatch ||
2227      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2228    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2229      // This checks if the methods differ in type mismatch.
2230      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2231          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2232        issueDiagnostic = true;
2233        if (getLangOpts().ObjCAutoRefCount)
2234          issueError = true;
2235        break;
2236      }
2237    }
2238
2239  if (issueDiagnostic) {
2240    if (issueError)
2241      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2242    else if (strictSelectorMatch)
2243      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2244    else
2245      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2246
2247    Diag(Methods[0]->getLocStart(),
2248         issueError ? diag::note_possibility : diag::note_using)
2249      << Methods[0]->getSourceRange();
2250    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2251      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2252        << Methods[I]->getSourceRange();
2253  }
2254  }
2255  return Methods[0];
2256}
2257
2258ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2259  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2260  if (Pos == MethodPool.end())
2261    return 0;
2262
2263  GlobalMethods &Methods = Pos->second;
2264
2265  if (Methods.first.Method && Methods.first.Method->isDefined())
2266    return Methods.first.Method;
2267  if (Methods.second.Method && Methods.second.Method->isDefined())
2268    return Methods.second.Method;
2269  return 0;
2270}
2271
2272/// DiagnoseDuplicateIvars -
2273/// Check for duplicate ivars in the entire class at the start of
2274/// \@implementation. This becomes necesssary because class extension can
2275/// add ivars to a class in random order which will not be known until
2276/// class's \@implementation is seen.
2277void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2278                                  ObjCInterfaceDecl *SID) {
2279  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2280       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2281    ObjCIvarDecl* Ivar = *IVI;
2282    if (Ivar->isInvalidDecl())
2283      continue;
2284    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2285      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2286      if (prevIvar) {
2287        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2288        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2289        Ivar->setInvalidDecl();
2290      }
2291    }
2292  }
2293}
2294
2295Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2296  switch (CurContext->getDeclKind()) {
2297    case Decl::ObjCInterface:
2298      return Sema::OCK_Interface;
2299    case Decl::ObjCProtocol:
2300      return Sema::OCK_Protocol;
2301    case Decl::ObjCCategory:
2302      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2303        return Sema::OCK_ClassExtension;
2304      else
2305        return Sema::OCK_Category;
2306    case Decl::ObjCImplementation:
2307      return Sema::OCK_Implementation;
2308    case Decl::ObjCCategoryImpl:
2309      return Sema::OCK_CategoryImplementation;
2310
2311    default:
2312      return Sema::OCK_None;
2313  }
2314}
2315
2316// Note: For class/category implemenations, allMethods/allProperties is
2317// always null.
2318Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2319                       Decl **allMethods, unsigned allNum,
2320                       Decl **allProperties, unsigned pNum,
2321                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2322
2323  if (getObjCContainerKind() == Sema::OCK_None)
2324    return 0;
2325
2326  assert(AtEnd.isValid() && "Invalid location for '@end'");
2327
2328  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2329  Decl *ClassDecl = cast<Decl>(OCD);
2330
2331  bool isInterfaceDeclKind =
2332        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2333         || isa<ObjCProtocolDecl>(ClassDecl);
2334  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2335
2336  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2337  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2338  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2339
2340  for (unsigned i = 0; i < allNum; i++ ) {
2341    ObjCMethodDecl *Method =
2342      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2343
2344    if (!Method) continue;  // Already issued a diagnostic.
2345    if (Method->isInstanceMethod()) {
2346      /// Check for instance method of the same name with incompatible types
2347      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2348      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2349                              : false;
2350      if ((isInterfaceDeclKind && PrevMethod && !match)
2351          || (checkIdenticalMethods && match)) {
2352          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2353            << Method->getDeclName();
2354          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2355        Method->setInvalidDecl();
2356      } else {
2357        if (PrevMethod) {
2358          Method->setAsRedeclaration(PrevMethod);
2359          if (!Context.getSourceManager().isInSystemHeader(
2360                 Method->getLocation()))
2361            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2362              << Method->getDeclName();
2363          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2364        }
2365        InsMap[Method->getSelector()] = Method;
2366        /// The following allows us to typecheck messages to "id".
2367        AddInstanceMethodToGlobalPool(Method);
2368      }
2369    } else {
2370      /// Check for class method of the same name with incompatible types
2371      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2372      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2373                              : false;
2374      if ((isInterfaceDeclKind && PrevMethod && !match)
2375          || (checkIdenticalMethods && match)) {
2376        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2377          << Method->getDeclName();
2378        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2379        Method->setInvalidDecl();
2380      } else {
2381        if (PrevMethod) {
2382          Method->setAsRedeclaration(PrevMethod);
2383          if (!Context.getSourceManager().isInSystemHeader(
2384                 Method->getLocation()))
2385            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2386              << Method->getDeclName();
2387          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2388        }
2389        ClsMap[Method->getSelector()] = Method;
2390        AddFactoryMethodToGlobalPool(Method);
2391      }
2392    }
2393  }
2394  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2395    // Nothing to do here.
2396  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2397    // Categories are used to extend the class by declaring new methods.
2398    // By the same token, they are also used to add new properties. No
2399    // need to compare the added property to those in the class.
2400
2401    if (C->IsClassExtension()) {
2402      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2403      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2404    }
2405  }
2406  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2407    if (CDecl->getIdentifier())
2408      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2409      // user-defined setter/getter. It also synthesizes setter/getter methods
2410      // and adds them to the DeclContext and global method pools.
2411      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2412                                            E = CDecl->prop_end();
2413           I != E; ++I)
2414        ProcessPropertyDecl(*I, CDecl);
2415    CDecl->setAtEndRange(AtEnd);
2416  }
2417  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2418    IC->setAtEndRange(AtEnd);
2419    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2420      // Any property declared in a class extension might have user
2421      // declared setter or getter in current class extension or one
2422      // of the other class extensions. Mark them as synthesized as
2423      // property will be synthesized when property with same name is
2424      // seen in the @implementation.
2425      for (ObjCInterfaceDecl::visible_extensions_iterator
2426             Ext = IDecl->visible_extensions_begin(),
2427             ExtEnd = IDecl->visible_extensions_end();
2428           Ext != ExtEnd; ++Ext) {
2429        for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2430             E = Ext->prop_end(); I != E; ++I) {
2431          ObjCPropertyDecl *Property = *I;
2432          // Skip over properties declared @dynamic
2433          if (const ObjCPropertyImplDecl *PIDecl
2434              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2435            if (PIDecl->getPropertyImplementation()
2436                  == ObjCPropertyImplDecl::Dynamic)
2437              continue;
2438
2439          for (ObjCInterfaceDecl::visible_extensions_iterator
2440                 Ext = IDecl->visible_extensions_begin(),
2441                 ExtEnd = IDecl->visible_extensions_end();
2442               Ext != ExtEnd; ++Ext) {
2443            if (ObjCMethodDecl *GetterMethod
2444                  = Ext->getInstanceMethod(Property->getGetterName()))
2445              GetterMethod->setPropertyAccessor(true);
2446            if (!Property->isReadOnly())
2447              if (ObjCMethodDecl *SetterMethod
2448                    = Ext->getInstanceMethod(Property->getSetterName()))
2449                SetterMethod->setPropertyAccessor(true);
2450          }
2451        }
2452      }
2453      ImplMethodsVsClassMethods(S, IC, IDecl);
2454      AtomicPropertySetterGetterRules(IC, IDecl);
2455      DiagnoseOwningPropertyGetterSynthesis(IC);
2456
2457      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2458      if (IDecl->getSuperClass() == NULL) {
2459        // This class has no superclass, so check that it has been marked with
2460        // __attribute((objc_root_class)).
2461        if (!HasRootClassAttr) {
2462          SourceLocation DeclLoc(IDecl->getLocation());
2463          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2464          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2465            << IDecl->getIdentifier();
2466          // See if NSObject is in the current scope, and if it is, suggest
2467          // adding " : NSObject " to the class declaration.
2468          NamedDecl *IF = LookupSingleName(TUScope,
2469                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2470                                           DeclLoc, LookupOrdinaryName);
2471          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2472          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2473            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2474              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2475          } else {
2476            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2477          }
2478        }
2479      } else if (HasRootClassAttr) {
2480        // Complain that only root classes may have this attribute.
2481        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2482      }
2483
2484      if (LangOpts.ObjCRuntime.isNonFragile()) {
2485        while (IDecl->getSuperClass()) {
2486          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2487          IDecl = IDecl->getSuperClass();
2488        }
2489      }
2490    }
2491    SetIvarInitializers(IC);
2492  } else if (ObjCCategoryImplDecl* CatImplClass =
2493                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2494    CatImplClass->setAtEndRange(AtEnd);
2495
2496    // Find category interface decl and then check that all methods declared
2497    // in this interface are implemented in the category @implementation.
2498    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2499      if (ObjCCategoryDecl *Cat
2500            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2501        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2502      }
2503    }
2504  }
2505  if (isInterfaceDeclKind) {
2506    // Reject invalid vardecls.
2507    for (unsigned i = 0; i != tuvNum; i++) {
2508      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2509      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2510        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2511          if (!VDecl->hasExternalStorage())
2512            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2513        }
2514    }
2515  }
2516  ActOnObjCContainerFinishDefinition();
2517
2518  for (unsigned i = 0; i != tuvNum; i++) {
2519    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2520    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2521      (*I)->setTopLevelDeclInObjCContainer();
2522    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2523  }
2524
2525  ActOnDocumentableDecl(ClassDecl);
2526  return ClassDecl;
2527}
2528
2529
2530/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2531/// objective-c's type qualifier from the parser version of the same info.
2532static Decl::ObjCDeclQualifier
2533CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2534  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2535}
2536
2537static inline
2538unsigned countAlignAttr(const AttrVec &A) {
2539  unsigned count=0;
2540  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2541    if ((*i)->getKind() == attr::Aligned)
2542      ++count;
2543  return count;
2544}
2545
2546static inline
2547bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2548                                        const AttrVec &A) {
2549  // If method is only declared in implementation (private method),
2550  // No need to issue any diagnostics on method definition with attributes.
2551  if (!IMD)
2552    return false;
2553
2554  // method declared in interface has no attribute.
2555  // But implementation has attributes. This is invalid.
2556  // Except when implementation has 'Align' attribute which is
2557  // immaterial to method declared in interface.
2558  if (!IMD->hasAttrs())
2559    return (A.size() > countAlignAttr(A));
2560
2561  const AttrVec &D = IMD->getAttrs();
2562
2563  unsigned countAlignOnImpl = countAlignAttr(A);
2564  if (!countAlignOnImpl && (A.size() != D.size()))
2565    return true;
2566  else if (countAlignOnImpl) {
2567    unsigned countAlignOnDecl = countAlignAttr(D);
2568    if (countAlignOnDecl && (A.size() != D.size()))
2569      return true;
2570    else if (!countAlignOnDecl &&
2571             ((A.size()-countAlignOnImpl) != D.size()))
2572      return true;
2573  }
2574
2575  // attributes on method declaration and definition must match exactly.
2576  // Note that we have at most a couple of attributes on methods, so this
2577  // n*n search is good enough.
2578  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2579    if ((*i)->getKind() == attr::Aligned)
2580      continue;
2581    bool match = false;
2582    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2583      if ((*i)->getKind() == (*i1)->getKind()) {
2584        match = true;
2585        break;
2586      }
2587    }
2588    if (!match)
2589      return true;
2590  }
2591
2592  return false;
2593}
2594
2595/// \brief Check whether the declared result type of the given Objective-C
2596/// method declaration is compatible with the method's class.
2597///
2598static Sema::ResultTypeCompatibilityKind
2599CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2600                                    ObjCInterfaceDecl *CurrentClass) {
2601  QualType ResultType = Method->getResultType();
2602
2603  // If an Objective-C method inherits its related result type, then its
2604  // declared result type must be compatible with its own class type. The
2605  // declared result type is compatible if:
2606  if (const ObjCObjectPointerType *ResultObjectType
2607                                = ResultType->getAs<ObjCObjectPointerType>()) {
2608    //   - it is id or qualified id, or
2609    if (ResultObjectType->isObjCIdType() ||
2610        ResultObjectType->isObjCQualifiedIdType())
2611      return Sema::RTC_Compatible;
2612
2613    if (CurrentClass) {
2614      if (ObjCInterfaceDecl *ResultClass
2615                                      = ResultObjectType->getInterfaceDecl()) {
2616        //   - it is the same as the method's class type, or
2617        if (declaresSameEntity(CurrentClass, ResultClass))
2618          return Sema::RTC_Compatible;
2619
2620        //   - it is a superclass of the method's class type
2621        if (ResultClass->isSuperClassOf(CurrentClass))
2622          return Sema::RTC_Compatible;
2623      }
2624    } else {
2625      // Any Objective-C pointer type might be acceptable for a protocol
2626      // method; we just don't know.
2627      return Sema::RTC_Unknown;
2628    }
2629  }
2630
2631  return Sema::RTC_Incompatible;
2632}
2633
2634namespace {
2635/// A helper class for searching for methods which a particular method
2636/// overrides.
2637class OverrideSearch {
2638public:
2639  Sema &S;
2640  ObjCMethodDecl *Method;
2641  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2642  bool Recursive;
2643
2644public:
2645  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2646    Selector selector = method->getSelector();
2647
2648    // Bypass this search if we've never seen an instance/class method
2649    // with this selector before.
2650    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2651    if (it == S.MethodPool.end()) {
2652      if (!S.getExternalSource()) return;
2653      S.ReadMethodPool(selector);
2654
2655      it = S.MethodPool.find(selector);
2656      if (it == S.MethodPool.end())
2657        return;
2658    }
2659    ObjCMethodList &list =
2660      method->isInstanceMethod() ? it->second.first : it->second.second;
2661    if (!list.Method) return;
2662
2663    ObjCContainerDecl *container
2664      = cast<ObjCContainerDecl>(method->getDeclContext());
2665
2666    // Prevent the search from reaching this container again.  This is
2667    // important with categories, which override methods from the
2668    // interface and each other.
2669    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2670      searchFromContainer(container);
2671      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2672        searchFromContainer(Interface);
2673    } else {
2674      searchFromContainer(container);
2675    }
2676  }
2677
2678  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2679  iterator begin() const { return Overridden.begin(); }
2680  iterator end() const { return Overridden.end(); }
2681
2682private:
2683  void searchFromContainer(ObjCContainerDecl *container) {
2684    if (container->isInvalidDecl()) return;
2685
2686    switch (container->getDeclKind()) {
2687#define OBJCCONTAINER(type, base) \
2688    case Decl::type: \
2689      searchFrom(cast<type##Decl>(container)); \
2690      break;
2691#define ABSTRACT_DECL(expansion)
2692#define DECL(type, base) \
2693    case Decl::type:
2694#include "clang/AST/DeclNodes.inc"
2695      llvm_unreachable("not an ObjC container!");
2696    }
2697  }
2698
2699  void searchFrom(ObjCProtocolDecl *protocol) {
2700    if (!protocol->hasDefinition())
2701      return;
2702
2703    // A method in a protocol declaration overrides declarations from
2704    // referenced ("parent") protocols.
2705    search(protocol->getReferencedProtocols());
2706  }
2707
2708  void searchFrom(ObjCCategoryDecl *category) {
2709    // A method in a category declaration overrides declarations from
2710    // the main class and from protocols the category references.
2711    // The main class is handled in the constructor.
2712    search(category->getReferencedProtocols());
2713  }
2714
2715  void searchFrom(ObjCCategoryImplDecl *impl) {
2716    // A method in a category definition that has a category
2717    // declaration overrides declarations from the category
2718    // declaration.
2719    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2720      search(category);
2721      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2722        search(Interface);
2723
2724    // Otherwise it overrides declarations from the class.
2725    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2726      search(Interface);
2727    }
2728  }
2729
2730  void searchFrom(ObjCInterfaceDecl *iface) {
2731    // A method in a class declaration overrides declarations from
2732    if (!iface->hasDefinition())
2733      return;
2734
2735    //   - categories,
2736    for (ObjCInterfaceDecl::known_categories_iterator
2737           cat = iface->known_categories_begin(),
2738           catEnd = iface->known_categories_end();
2739         cat != catEnd; ++cat) {
2740      search(*cat);
2741    }
2742
2743    //   - the super class, and
2744    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2745      search(super);
2746
2747    //   - any referenced protocols.
2748    search(iface->getReferencedProtocols());
2749  }
2750
2751  void searchFrom(ObjCImplementationDecl *impl) {
2752    // A method in a class implementation overrides declarations from
2753    // the class interface.
2754    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2755      search(Interface);
2756  }
2757
2758
2759  void search(const ObjCProtocolList &protocols) {
2760    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2761         i != e; ++i)
2762      search(*i);
2763  }
2764
2765  void search(ObjCContainerDecl *container) {
2766    // Check for a method in this container which matches this selector.
2767    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2768                                                Method->isInstanceMethod(),
2769                                                /*AllowHidden=*/true);
2770
2771    // If we find one, record it and bail out.
2772    if (meth) {
2773      Overridden.insert(meth);
2774      return;
2775    }
2776
2777    // Otherwise, search for methods that a hypothetical method here
2778    // would have overridden.
2779
2780    // Note that we're now in a recursive case.
2781    Recursive = true;
2782
2783    searchFromContainer(container);
2784  }
2785};
2786}
2787
2788void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2789                                    ObjCInterfaceDecl *CurrentClass,
2790                                    ResultTypeCompatibilityKind RTC) {
2791  // Search for overridden methods and merge information down from them.
2792  OverrideSearch overrides(*this, ObjCMethod);
2793  // Keep track if the method overrides any method in the class's base classes,
2794  // its protocols, or its categories' protocols; we will keep that info
2795  // in the ObjCMethodDecl.
2796  // For this info, a method in an implementation is not considered as
2797  // overriding the same method in the interface or its categories.
2798  bool hasOverriddenMethodsInBaseOrProtocol = false;
2799  for (OverrideSearch::iterator
2800         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2801    ObjCMethodDecl *overridden = *i;
2802
2803    if (!hasOverriddenMethodsInBaseOrProtocol) {
2804      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2805          CurrentClass != overridden->getClassInterface() ||
2806          overridden->isOverriding()) {
2807        hasOverriddenMethodsInBaseOrProtocol = true;
2808
2809      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2810        // OverrideSearch will return as "overridden" the same method in the
2811        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2812        // check whether a category of a base class introduced a method with the
2813        // same selector, after the interface method declaration.
2814        // To avoid unnecessary lookups in the majority of cases, we use the
2815        // extra info bits in GlobalMethodPool to check whether there were any
2816        // category methods with this selector.
2817        GlobalMethodPool::iterator It =
2818            MethodPool.find(ObjCMethod->getSelector());
2819        if (It != MethodPool.end()) {
2820          ObjCMethodList &List =
2821            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2822          unsigned CategCount = List.getBits();
2823          if (CategCount > 0) {
2824            // If the method is in a category we'll do lookup if there were at
2825            // least 2 category methods recorded, otherwise only one will do.
2826            if (CategCount > 1 ||
2827                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
2828              OverrideSearch overrides(*this, overridden);
2829              for (OverrideSearch::iterator
2830                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
2831                ObjCMethodDecl *SuperOverridden = *OI;
2832                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
2833                    CurrentClass != SuperOverridden->getClassInterface()) {
2834                  hasOverriddenMethodsInBaseOrProtocol = true;
2835                  overridden->setOverriding(true);
2836                  break;
2837                }
2838              }
2839            }
2840          }
2841        }
2842      }
2843    }
2844
2845    // Propagate down the 'related result type' bit from overridden methods.
2846    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
2847      ObjCMethod->SetRelatedResultType();
2848
2849    // Then merge the declarations.
2850    mergeObjCMethodDecls(ObjCMethod, overridden);
2851
2852    if (ObjCMethod->isImplicit() && overridden->isImplicit())
2853      continue; // Conflicting properties are detected elsewhere.
2854
2855    // Check for overriding methods
2856    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2857        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2858      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2859              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2860
2861    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
2862        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
2863        !overridden->isImplicit() /* not meant for properties */) {
2864      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
2865                                          E = ObjCMethod->param_end();
2866      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
2867                                     PrevE = overridden->param_end();
2868      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
2869        assert(PrevI != overridden->param_end() && "Param mismatch");
2870        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2871        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2872        // If type of argument of method in this class does not match its
2873        // respective argument type in the super class method, issue warning;
2874        if (!Context.typesAreCompatible(T1, T2)) {
2875          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2876            << T1 << T2;
2877          Diag(overridden->getLocation(), diag::note_previous_declaration);
2878          break;
2879        }
2880      }
2881    }
2882  }
2883
2884  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
2885}
2886
2887Decl *Sema::ActOnMethodDeclaration(
2888    Scope *S,
2889    SourceLocation MethodLoc, SourceLocation EndLoc,
2890    tok::TokenKind MethodType,
2891    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2892    ArrayRef<SourceLocation> SelectorLocs,
2893    Selector Sel,
2894    // optional arguments. The number of types/arguments is obtained
2895    // from the Sel.getNumArgs().
2896    ObjCArgInfo *ArgInfo,
2897    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2898    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2899    bool isVariadic, bool MethodDefinition) {
2900  // Make sure we can establish a context for the method.
2901  if (!CurContext->isObjCContainer()) {
2902    Diag(MethodLoc, diag::error_missing_method_context);
2903    return 0;
2904  }
2905  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2906  Decl *ClassDecl = cast<Decl>(OCD);
2907  QualType resultDeclType;
2908
2909  bool HasRelatedResultType = false;
2910  TypeSourceInfo *ResultTInfo = 0;
2911  if (ReturnType) {
2912    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2913
2914    // Methods cannot return interface types. All ObjC objects are
2915    // passed by reference.
2916    if (resultDeclType->isObjCObjectType()) {
2917      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2918        << 0 << resultDeclType;
2919      return 0;
2920    }
2921
2922    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2923  } else { // get the type for "id".
2924    resultDeclType = Context.getObjCIdType();
2925    Diag(MethodLoc, diag::warn_missing_method_return_type)
2926      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2927  }
2928
2929  ObjCMethodDecl* ObjCMethod =
2930    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2931                           resultDeclType,
2932                           ResultTInfo,
2933                           CurContext,
2934                           MethodType == tok::minus, isVariadic,
2935                           /*isPropertyAccessor=*/false,
2936                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2937                           MethodDeclKind == tok::objc_optional
2938                             ? ObjCMethodDecl::Optional
2939                             : ObjCMethodDecl::Required,
2940                           HasRelatedResultType);
2941
2942  SmallVector<ParmVarDecl*, 16> Params;
2943
2944  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2945    QualType ArgType;
2946    TypeSourceInfo *DI;
2947
2948    if (ArgInfo[i].Type == 0) {
2949      ArgType = Context.getObjCIdType();
2950      DI = 0;
2951    } else {
2952      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2953    }
2954
2955    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2956                   LookupOrdinaryName, ForRedeclaration);
2957    LookupName(R, S);
2958    if (R.isSingleResult()) {
2959      NamedDecl *PrevDecl = R.getFoundDecl();
2960      if (S->isDeclScope(PrevDecl)) {
2961        Diag(ArgInfo[i].NameLoc,
2962             (MethodDefinition ? diag::warn_method_param_redefinition
2963                               : diag::warn_method_param_declaration))
2964          << ArgInfo[i].Name;
2965        Diag(PrevDecl->getLocation(),
2966             diag::note_previous_declaration);
2967      }
2968    }
2969
2970    SourceLocation StartLoc = DI
2971      ? DI->getTypeLoc().getBeginLoc()
2972      : ArgInfo[i].NameLoc;
2973
2974    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2975                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2976                                        ArgType, DI, SC_None);
2977
2978    Param->setObjCMethodScopeInfo(i);
2979
2980    Param->setObjCDeclQualifier(
2981      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2982
2983    // Apply the attributes to the parameter.
2984    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2985
2986    if (Param->hasAttr<BlocksAttr>()) {
2987      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2988      Param->setInvalidDecl();
2989    }
2990    S->AddDecl(Param);
2991    IdResolver.AddDecl(Param);
2992
2993    Params.push_back(Param);
2994  }
2995
2996  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2997    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2998    QualType ArgType = Param->getType();
2999    if (ArgType.isNull())
3000      ArgType = Context.getObjCIdType();
3001    else
3002      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3003      ArgType = Context.getAdjustedParameterType(ArgType);
3004    if (ArgType->isObjCObjectType()) {
3005      Diag(Param->getLocation(),
3006           diag::err_object_cannot_be_passed_returned_by_value)
3007      << 1 << ArgType;
3008      Param->setInvalidDecl();
3009    }
3010    Param->setDeclContext(ObjCMethod);
3011
3012    Params.push_back(Param);
3013  }
3014
3015  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3016  ObjCMethod->setObjCDeclQualifier(
3017    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3018
3019  if (AttrList)
3020    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3021
3022  // Add the method now.
3023  const ObjCMethodDecl *PrevMethod = 0;
3024  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3025    if (MethodType == tok::minus) {
3026      PrevMethod = ImpDecl->getInstanceMethod(Sel);
3027      ImpDecl->addInstanceMethod(ObjCMethod);
3028    } else {
3029      PrevMethod = ImpDecl->getClassMethod(Sel);
3030      ImpDecl->addClassMethod(ObjCMethod);
3031    }
3032
3033    ObjCMethodDecl *IMD = 0;
3034    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3035      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3036                                ObjCMethod->isInstanceMethod());
3037    if (ObjCMethod->hasAttrs() &&
3038        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3039      SourceLocation MethodLoc = IMD->getLocation();
3040      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3041        Diag(EndLoc, diag::warn_attribute_method_def);
3042        Diag(MethodLoc, diag::note_method_declared_at)
3043          << ObjCMethod->getDeclName();
3044      }
3045    }
3046  } else {
3047    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3048  }
3049
3050  if (PrevMethod) {
3051    // You can never have two method definitions with the same name.
3052    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3053      << ObjCMethod->getDeclName();
3054    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3055  }
3056
3057  // If this Objective-C method does not have a related result type, but we
3058  // are allowed to infer related result types, try to do so based on the
3059  // method family.
3060  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3061  if (!CurrentClass) {
3062    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3063      CurrentClass = Cat->getClassInterface();
3064    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3065      CurrentClass = Impl->getClassInterface();
3066    else if (ObjCCategoryImplDecl *CatImpl
3067                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3068      CurrentClass = CatImpl->getClassInterface();
3069  }
3070
3071  ResultTypeCompatibilityKind RTC
3072    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3073
3074  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3075
3076  bool ARCError = false;
3077  if (getLangOpts().ObjCAutoRefCount)
3078    ARCError = CheckARCMethodDecl(ObjCMethod);
3079
3080  // Infer the related result type when possible.
3081  if (!ARCError && RTC == Sema::RTC_Compatible &&
3082      !ObjCMethod->hasRelatedResultType() &&
3083      LangOpts.ObjCInferRelatedResultType) {
3084    bool InferRelatedResultType = false;
3085    switch (ObjCMethod->getMethodFamily()) {
3086    case OMF_None:
3087    case OMF_copy:
3088    case OMF_dealloc:
3089    case OMF_finalize:
3090    case OMF_mutableCopy:
3091    case OMF_release:
3092    case OMF_retainCount:
3093    case OMF_performSelector:
3094      break;
3095
3096    case OMF_alloc:
3097    case OMF_new:
3098      InferRelatedResultType = ObjCMethod->isClassMethod();
3099      break;
3100
3101    case OMF_init:
3102    case OMF_autorelease:
3103    case OMF_retain:
3104    case OMF_self:
3105      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3106      break;
3107    }
3108
3109    if (InferRelatedResultType)
3110      ObjCMethod->SetRelatedResultType();
3111  }
3112
3113  ActOnDocumentableDecl(ObjCMethod);
3114
3115  return ObjCMethod;
3116}
3117
3118bool Sema::CheckObjCDeclScope(Decl *D) {
3119  // Following is also an error. But it is caused by a missing @end
3120  // and diagnostic is issued elsewhere.
3121  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3122    return false;
3123
3124  // If we switched context to translation unit while we are still lexically in
3125  // an objc container, it means the parser missed emitting an error.
3126  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3127    return false;
3128
3129  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3130  D->setInvalidDecl();
3131
3132  return true;
3133}
3134
3135/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3136/// instance variables of ClassName into Decls.
3137void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3138                     IdentifierInfo *ClassName,
3139                     SmallVectorImpl<Decl*> &Decls) {
3140  // Check that ClassName is a valid class
3141  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3142  if (!Class) {
3143    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3144    return;
3145  }
3146  if (LangOpts.ObjCRuntime.isNonFragile()) {
3147    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3148    return;
3149  }
3150
3151  // Collect the instance variables
3152  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3153  Context.DeepCollectObjCIvars(Class, true, Ivars);
3154  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3155  for (unsigned i = 0; i < Ivars.size(); i++) {
3156    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3157    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3158    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3159                                           /*FIXME: StartL=*/ID->getLocation(),
3160                                           ID->getLocation(),
3161                                           ID->getIdentifier(), ID->getType(),
3162                                           ID->getBitWidth());
3163    Decls.push_back(FD);
3164  }
3165
3166  // Introduce all of these fields into the appropriate scope.
3167  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3168       D != Decls.end(); ++D) {
3169    FieldDecl *FD = cast<FieldDecl>(*D);
3170    if (getLangOpts().CPlusPlus)
3171      PushOnScopeChains(cast<FieldDecl>(FD), S);
3172    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3173      Record->addDecl(FD);
3174  }
3175}
3176
3177/// \brief Build a type-check a new Objective-C exception variable declaration.
3178VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3179                                      SourceLocation StartLoc,
3180                                      SourceLocation IdLoc,
3181                                      IdentifierInfo *Id,
3182                                      bool Invalid) {
3183  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3184  // duration shall not be qualified by an address-space qualifier."
3185  // Since all parameters have automatic store duration, they can not have
3186  // an address space.
3187  if (T.getAddressSpace() != 0) {
3188    Diag(IdLoc, diag::err_arg_with_address_space);
3189    Invalid = true;
3190  }
3191
3192  // An @catch parameter must be an unqualified object pointer type;
3193  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3194  if (Invalid) {
3195    // Don't do any further checking.
3196  } else if (T->isDependentType()) {
3197    // Okay: we don't know what this type will instantiate to.
3198  } else if (!T->isObjCObjectPointerType()) {
3199    Invalid = true;
3200    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3201  } else if (T->isObjCQualifiedIdType()) {
3202    Invalid = true;
3203    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3204  }
3205
3206  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3207                                 T, TInfo, SC_None);
3208  New->setExceptionVariable(true);
3209
3210  // In ARC, infer 'retaining' for variables of retainable type.
3211  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3212    Invalid = true;
3213
3214  if (Invalid)
3215    New->setInvalidDecl();
3216  return New;
3217}
3218
3219Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3220  const DeclSpec &DS = D.getDeclSpec();
3221
3222  // We allow the "register" storage class on exception variables because
3223  // GCC did, but we drop it completely. Any other storage class is an error.
3224  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3225    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3226      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3227  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3228    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3229      << DeclSpec::getSpecifierName(SCS);
3230  }
3231  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3232    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3233         diag::err_invalid_thread)
3234     << DeclSpec::getSpecifierName(TSCS);
3235  D.getMutableDeclSpec().ClearStorageClassSpecs();
3236
3237  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3238
3239  // Check that there are no default arguments inside the type of this
3240  // exception object (C++ only).
3241  if (getLangOpts().CPlusPlus)
3242    CheckExtraCXXDefaultArguments(D);
3243
3244  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3245  QualType ExceptionType = TInfo->getType();
3246
3247  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3248                                        D.getSourceRange().getBegin(),
3249                                        D.getIdentifierLoc(),
3250                                        D.getIdentifier(),
3251                                        D.isInvalidType());
3252
3253  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3254  if (D.getCXXScopeSpec().isSet()) {
3255    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3256      << D.getCXXScopeSpec().getRange();
3257    New->setInvalidDecl();
3258  }
3259
3260  // Add the parameter declaration into this scope.
3261  S->AddDecl(New);
3262  if (D.getIdentifier())
3263    IdResolver.AddDecl(New);
3264
3265  ProcessDeclAttributes(S, New, D);
3266
3267  if (New->hasAttr<BlocksAttr>())
3268    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3269  return New;
3270}
3271
3272/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3273/// initialization.
3274void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3275                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3276  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3277       Iv= Iv->getNextIvar()) {
3278    QualType QT = Context.getBaseElementType(Iv->getType());
3279    if (QT->isRecordType())
3280      Ivars.push_back(Iv);
3281  }
3282}
3283
3284void Sema::DiagnoseUseOfUnimplementedSelectors() {
3285  // Load referenced selectors from the external source.
3286  if (ExternalSource) {
3287    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3288    ExternalSource->ReadReferencedSelectors(Sels);
3289    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3290      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3291  }
3292
3293  // Warning will be issued only when selector table is
3294  // generated (which means there is at lease one implementation
3295  // in the TU). This is to match gcc's behavior.
3296  if (ReferencedSelectors.empty() ||
3297      !Context.AnyObjCImplementation())
3298    return;
3299  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3300        ReferencedSelectors.begin(),
3301       E = ReferencedSelectors.end(); S != E; ++S) {
3302    Selector Sel = (*S).first;
3303    if (!LookupImplementedMethodInGlobalPool(Sel))
3304      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3305  }
3306  return;
3307}
3308