1//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ code generation targeting the Itanium C++ ABI.  The class
11// in this file generates structures that follow the Itanium C++ ABI, which is
12// documented at:
13//  http://www.codesourcery.com/public/cxx-abi/abi.html
14//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
15//
16// It also supports the closely-related ARM ABI, documented at:
17// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
18//
19//===----------------------------------------------------------------------===//
20
21#include "CGCXXABI.h"
22#include "CGRecordLayout.h"
23#include "CGVTables.h"
24#include "CodeGenFunction.h"
25#include "CodeGenModule.h"
26#include "clang/AST/Mangle.h"
27#include "clang/AST/Type.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Value.h"
31
32using namespace clang;
33using namespace CodeGen;
34
35namespace {
36class ItaniumCXXABI : public CodeGen::CGCXXABI {
37protected:
38  bool IsARM;
39
40public:
41  ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool IsARM = false) :
42    CGCXXABI(CGM), IsARM(IsARM) { }
43
44  bool isReturnTypeIndirect(const CXXRecordDecl *RD) const {
45    // Structures with either a non-trivial destructor or a non-trivial
46    // copy constructor are always indirect.
47    return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor();
48  }
49
50  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const {
51    // Structures with either a non-trivial destructor or a non-trivial
52    // copy constructor are always indirect.
53    if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
54      return RAA_Indirect;
55    return RAA_Default;
56  }
57
58  bool isZeroInitializable(const MemberPointerType *MPT);
59
60  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
61
62  llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
63                                               llvm::Value *&This,
64                                               llvm::Value *MemFnPtr,
65                                               const MemberPointerType *MPT);
66
67  llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
68                                            llvm::Value *Base,
69                                            llvm::Value *MemPtr,
70                                            const MemberPointerType *MPT);
71
72  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
73                                           const CastExpr *E,
74                                           llvm::Value *Src);
75  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
76                                              llvm::Constant *Src);
77
78  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
79
80  llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
81  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
82                                        CharUnits offset);
83  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
84  llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
85                                     CharUnits ThisAdjustment);
86
87  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
88                                           llvm::Value *L,
89                                           llvm::Value *R,
90                                           const MemberPointerType *MPT,
91                                           bool Inequality);
92
93  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
94                                          llvm::Value *Addr,
95                                          const MemberPointerType *MPT);
96
97  llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
98                                      llvm::Value *ptr,
99                                      QualType type);
100
101  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
102                                 CXXCtorType T,
103                                 CanQualType &ResTy,
104                                 SmallVectorImpl<CanQualType> &ArgTys);
105
106  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
107                                CXXDtorType T,
108                                CanQualType &ResTy,
109                                SmallVectorImpl<CanQualType> &ArgTys);
110
111  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
112                                   QualType &ResTy,
113                                   FunctionArgList &Params);
114
115  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
116
117  llvm::Value *EmitConstructorCall(CodeGenFunction &CGF,
118                           const CXXConstructorDecl *D,
119                           CXXCtorType Type, bool ForVirtualBase,
120                           bool Delegating,
121                           llvm::Value *This,
122                           CallExpr::const_arg_iterator ArgBeg,
123                           CallExpr::const_arg_iterator ArgEnd);
124
125  RValue EmitVirtualDestructorCall(CodeGenFunction &CGF,
126                                   const CXXDestructorDecl *Dtor,
127                                   CXXDtorType DtorType,
128                                   SourceLocation CallLoc,
129                                   ReturnValueSlot ReturnValue,
130                                   llvm::Value *This);
131
132  StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; }
133  StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; }
134
135  CharUnits getArrayCookieSizeImpl(QualType elementType);
136  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
137                                     llvm::Value *NewPtr,
138                                     llvm::Value *NumElements,
139                                     const CXXNewExpr *expr,
140                                     QualType ElementType);
141  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
142                                   llvm::Value *allocPtr,
143                                   CharUnits cookieSize);
144
145  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
146                       llvm::GlobalVariable *DeclPtr, bool PerformInit);
147  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
148                          llvm::Constant *dtor, llvm::Constant *addr);
149
150  llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
151                                                llvm::GlobalVariable *Var);
152  void EmitThreadLocalInitFuncs(
153      llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
154      llvm::Function *InitFunc);
155  LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
156                                    const DeclRefExpr *DRE);
157};
158
159class ARMCXXABI : public ItaniumCXXABI {
160public:
161  ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*ARM*/ true) {}
162
163  void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
164                                 CXXCtorType T,
165                                 CanQualType &ResTy,
166                                 SmallVectorImpl<CanQualType> &ArgTys);
167
168  void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
169                                CXXDtorType T,
170                                CanQualType &ResTy,
171                                SmallVectorImpl<CanQualType> &ArgTys);
172
173  void BuildInstanceFunctionParams(CodeGenFunction &CGF,
174                                   QualType &ResTy,
175                                   FunctionArgList &Params);
176
177  void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
178
179  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
180
181  CharUnits getArrayCookieSizeImpl(QualType elementType);
182  llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
183                                     llvm::Value *NewPtr,
184                                     llvm::Value *NumElements,
185                                     const CXXNewExpr *expr,
186                                     QualType ElementType);
187  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
188                                   CharUnits cookieSize);
189
190  /// \brief Returns true if the given instance method is one of the
191  /// kinds that the ARM ABI says returns 'this'.
192  bool HasThisReturn(GlobalDecl GD) const {
193    const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(GD.getDecl());
194    if (!MD) return false;
195    return ((isa<CXXDestructorDecl>(MD) && GD.getDtorType() != Dtor_Deleting) ||
196            (isa<CXXConstructorDecl>(MD)));
197  }
198};
199}
200
201CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
202  switch (CGM.getTarget().getCXXABI().getKind()) {
203  // For IR-generation purposes, there's no significant difference
204  // between the ARM and iOS ABIs.
205  case TargetCXXABI::GenericARM:
206  case TargetCXXABI::iOS:
207    return new ARMCXXABI(CGM);
208
209  // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
210  // include the other 32-bit ARM oddities: constructor/destructor return values
211  // and array cookies.
212  case TargetCXXABI::GenericAArch64:
213    return  new ItaniumCXXABI(CGM, /*IsARM = */ true);
214
215  case TargetCXXABI::GenericItanium:
216    return new ItaniumCXXABI(CGM);
217
218  case TargetCXXABI::Microsoft:
219    llvm_unreachable("Microsoft ABI is not Itanium-based");
220  }
221  llvm_unreachable("bad ABI kind");
222}
223
224llvm::Type *
225ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
226  if (MPT->isMemberDataPointer())
227    return CGM.PtrDiffTy;
228  return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL);
229}
230
231/// In the Itanium and ARM ABIs, method pointers have the form:
232///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
233///
234/// In the Itanium ABI:
235///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
236///  - the this-adjustment is (memptr.adj)
237///  - the virtual offset is (memptr.ptr - 1)
238///
239/// In the ARM ABI:
240///  - method pointers are virtual if (memptr.adj & 1) is nonzero
241///  - the this-adjustment is (memptr.adj >> 1)
242///  - the virtual offset is (memptr.ptr)
243/// ARM uses 'adj' for the virtual flag because Thumb functions
244/// may be only single-byte aligned.
245///
246/// If the member is virtual, the adjusted 'this' pointer points
247/// to a vtable pointer from which the virtual offset is applied.
248///
249/// If the member is non-virtual, memptr.ptr is the address of
250/// the function to call.
251llvm::Value *
252ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
253                                               llvm::Value *&This,
254                                               llvm::Value *MemFnPtr,
255                                               const MemberPointerType *MPT) {
256  CGBuilderTy &Builder = CGF.Builder;
257
258  const FunctionProtoType *FPT =
259    MPT->getPointeeType()->getAs<FunctionProtoType>();
260  const CXXRecordDecl *RD =
261    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
262
263  llvm::FunctionType *FTy =
264    CGM.getTypes().GetFunctionType(
265      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
266
267  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
268
269  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
270  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
271  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
272
273  // Extract memptr.adj, which is in the second field.
274  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
275
276  // Compute the true adjustment.
277  llvm::Value *Adj = RawAdj;
278  if (IsARM)
279    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
280
281  // Apply the adjustment and cast back to the original struct type
282  // for consistency.
283  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
284  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
285  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
286
287  // Load the function pointer.
288  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
289
290  // If the LSB in the function pointer is 1, the function pointer points to
291  // a virtual function.
292  llvm::Value *IsVirtual;
293  if (IsARM)
294    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
295  else
296    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
297  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
298  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
299
300  // In the virtual path, the adjustment left 'This' pointing to the
301  // vtable of the correct base subobject.  The "function pointer" is an
302  // offset within the vtable (+1 for the virtual flag on non-ARM).
303  CGF.EmitBlock(FnVirtual);
304
305  // Cast the adjusted this to a pointer to vtable pointer and load.
306  llvm::Type *VTableTy = Builder.getInt8PtrTy();
307  llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
308  VTable = Builder.CreateLoad(VTable, "memptr.vtable");
309
310  // Apply the offset.
311  llvm::Value *VTableOffset = FnAsInt;
312  if (!IsARM) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
313  VTable = Builder.CreateGEP(VTable, VTableOffset);
314
315  // Load the virtual function to call.
316  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
317  llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
318  CGF.EmitBranch(FnEnd);
319
320  // In the non-virtual path, the function pointer is actually a
321  // function pointer.
322  CGF.EmitBlock(FnNonVirtual);
323  llvm::Value *NonVirtualFn =
324    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
325
326  // We're done.
327  CGF.EmitBlock(FnEnd);
328  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
329  Callee->addIncoming(VirtualFn, FnVirtual);
330  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
331  return Callee;
332}
333
334/// Compute an l-value by applying the given pointer-to-member to a
335/// base object.
336llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
337                                                         llvm::Value *Base,
338                                                         llvm::Value *MemPtr,
339                                           const MemberPointerType *MPT) {
340  assert(MemPtr->getType() == CGM.PtrDiffTy);
341
342  CGBuilderTy &Builder = CGF.Builder;
343
344  unsigned AS = Base->getType()->getPointerAddressSpace();
345
346  // Cast to char*.
347  Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
348
349  // Apply the offset, which we assume is non-null.
350  llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
351
352  // Cast the address to the appropriate pointer type, adopting the
353  // address space of the base pointer.
354  llvm::Type *PType
355    = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
356  return Builder.CreateBitCast(Addr, PType);
357}
358
359/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
360/// conversion.
361///
362/// Bitcast conversions are always a no-op under Itanium.
363///
364/// Obligatory offset/adjustment diagram:
365///         <-- offset -->          <-- adjustment -->
366///   |--------------------------|----------------------|--------------------|
367///   ^Derived address point     ^Base address point    ^Member address point
368///
369/// So when converting a base member pointer to a derived member pointer,
370/// we add the offset to the adjustment because the address point has
371/// decreased;  and conversely, when converting a derived MP to a base MP
372/// we subtract the offset from the adjustment because the address point
373/// has increased.
374///
375/// The standard forbids (at compile time) conversion to and from
376/// virtual bases, which is why we don't have to consider them here.
377///
378/// The standard forbids (at run time) casting a derived MP to a base
379/// MP when the derived MP does not point to a member of the base.
380/// This is why -1 is a reasonable choice for null data member
381/// pointers.
382llvm::Value *
383ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
384                                           const CastExpr *E,
385                                           llvm::Value *src) {
386  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
387         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
388         E->getCastKind() == CK_ReinterpretMemberPointer);
389
390  // Under Itanium, reinterprets don't require any additional processing.
391  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
392
393  // Use constant emission if we can.
394  if (isa<llvm::Constant>(src))
395    return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
396
397  llvm::Constant *adj = getMemberPointerAdjustment(E);
398  if (!adj) return src;
399
400  CGBuilderTy &Builder = CGF.Builder;
401  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
402
403  const MemberPointerType *destTy =
404    E->getType()->castAs<MemberPointerType>();
405
406  // For member data pointers, this is just a matter of adding the
407  // offset if the source is non-null.
408  if (destTy->isMemberDataPointer()) {
409    llvm::Value *dst;
410    if (isDerivedToBase)
411      dst = Builder.CreateNSWSub(src, adj, "adj");
412    else
413      dst = Builder.CreateNSWAdd(src, adj, "adj");
414
415    // Null check.
416    llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
417    llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
418    return Builder.CreateSelect(isNull, src, dst);
419  }
420
421  // The this-adjustment is left-shifted by 1 on ARM.
422  if (IsARM) {
423    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
424    offset <<= 1;
425    adj = llvm::ConstantInt::get(adj->getType(), offset);
426  }
427
428  llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
429  llvm::Value *dstAdj;
430  if (isDerivedToBase)
431    dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
432  else
433    dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
434
435  return Builder.CreateInsertValue(src, dstAdj, 1);
436}
437
438llvm::Constant *
439ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
440                                           llvm::Constant *src) {
441  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
442         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
443         E->getCastKind() == CK_ReinterpretMemberPointer);
444
445  // Under Itanium, reinterprets don't require any additional processing.
446  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
447
448  // If the adjustment is trivial, we don't need to do anything.
449  llvm::Constant *adj = getMemberPointerAdjustment(E);
450  if (!adj) return src;
451
452  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
453
454  const MemberPointerType *destTy =
455    E->getType()->castAs<MemberPointerType>();
456
457  // For member data pointers, this is just a matter of adding the
458  // offset if the source is non-null.
459  if (destTy->isMemberDataPointer()) {
460    // null maps to null.
461    if (src->isAllOnesValue()) return src;
462
463    if (isDerivedToBase)
464      return llvm::ConstantExpr::getNSWSub(src, adj);
465    else
466      return llvm::ConstantExpr::getNSWAdd(src, adj);
467  }
468
469  // The this-adjustment is left-shifted by 1 on ARM.
470  if (IsARM) {
471    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
472    offset <<= 1;
473    adj = llvm::ConstantInt::get(adj->getType(), offset);
474  }
475
476  llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
477  llvm::Constant *dstAdj;
478  if (isDerivedToBase)
479    dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
480  else
481    dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
482
483  return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
484}
485
486llvm::Constant *
487ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
488  // Itanium C++ ABI 2.3:
489  //   A NULL pointer is represented as -1.
490  if (MPT->isMemberDataPointer())
491    return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
492
493  llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
494  llvm::Constant *Values[2] = { Zero, Zero };
495  return llvm::ConstantStruct::getAnon(Values);
496}
497
498llvm::Constant *
499ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
500                                     CharUnits offset) {
501  // Itanium C++ ABI 2.3:
502  //   A pointer to data member is an offset from the base address of
503  //   the class object containing it, represented as a ptrdiff_t
504  return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
505}
506
507llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
508  return BuildMemberPointer(MD, CharUnits::Zero());
509}
510
511llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
512                                                  CharUnits ThisAdjustment) {
513  assert(MD->isInstance() && "Member function must not be static!");
514  MD = MD->getCanonicalDecl();
515
516  CodeGenTypes &Types = CGM.getTypes();
517
518  // Get the function pointer (or index if this is a virtual function).
519  llvm::Constant *MemPtr[2];
520  if (MD->isVirtual()) {
521    uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
522
523    const ASTContext &Context = getContext();
524    CharUnits PointerWidth =
525      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
526    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
527
528    if (IsARM) {
529      // ARM C++ ABI 3.2.1:
530      //   This ABI specifies that adj contains twice the this
531      //   adjustment, plus 1 if the member function is virtual. The
532      //   least significant bit of adj then makes exactly the same
533      //   discrimination as the least significant bit of ptr does for
534      //   Itanium.
535      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
536      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
537                                         2 * ThisAdjustment.getQuantity() + 1);
538    } else {
539      // Itanium C++ ABI 2.3:
540      //   For a virtual function, [the pointer field] is 1 plus the
541      //   virtual table offset (in bytes) of the function,
542      //   represented as a ptrdiff_t.
543      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
544      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
545                                         ThisAdjustment.getQuantity());
546    }
547  } else {
548    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
549    llvm::Type *Ty;
550    // Check whether the function has a computable LLVM signature.
551    if (Types.isFuncTypeConvertible(FPT)) {
552      // The function has a computable LLVM signature; use the correct type.
553      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
554    } else {
555      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
556      // function type is incomplete.
557      Ty = CGM.PtrDiffTy;
558    }
559    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
560
561    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
562    MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, (IsARM ? 2 : 1) *
563                                       ThisAdjustment.getQuantity());
564  }
565
566  return llvm::ConstantStruct::getAnon(MemPtr);
567}
568
569llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
570                                                 QualType MPType) {
571  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
572  const ValueDecl *MPD = MP.getMemberPointerDecl();
573  if (!MPD)
574    return EmitNullMemberPointer(MPT);
575
576  // Compute the this-adjustment.
577  CharUnits ThisAdjustment = CharUnits::Zero();
578  ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
579  bool DerivedMember = MP.isMemberPointerToDerivedMember();
580  const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
581  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
582    const CXXRecordDecl *Base = RD;
583    const CXXRecordDecl *Derived = Path[I];
584    if (DerivedMember)
585      std::swap(Base, Derived);
586    ThisAdjustment +=
587      getContext().getASTRecordLayout(Derived).getBaseClassOffset(Base);
588    RD = Path[I];
589  }
590  if (DerivedMember)
591    ThisAdjustment = -ThisAdjustment;
592
593  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
594    return BuildMemberPointer(MD, ThisAdjustment);
595
596  CharUnits FieldOffset =
597    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
598  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
599}
600
601/// The comparison algorithm is pretty easy: the member pointers are
602/// the same if they're either bitwise identical *or* both null.
603///
604/// ARM is different here only because null-ness is more complicated.
605llvm::Value *
606ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
607                                           llvm::Value *L,
608                                           llvm::Value *R,
609                                           const MemberPointerType *MPT,
610                                           bool Inequality) {
611  CGBuilderTy &Builder = CGF.Builder;
612
613  llvm::ICmpInst::Predicate Eq;
614  llvm::Instruction::BinaryOps And, Or;
615  if (Inequality) {
616    Eq = llvm::ICmpInst::ICMP_NE;
617    And = llvm::Instruction::Or;
618    Or = llvm::Instruction::And;
619  } else {
620    Eq = llvm::ICmpInst::ICMP_EQ;
621    And = llvm::Instruction::And;
622    Or = llvm::Instruction::Or;
623  }
624
625  // Member data pointers are easy because there's a unique null
626  // value, so it just comes down to bitwise equality.
627  if (MPT->isMemberDataPointer())
628    return Builder.CreateICmp(Eq, L, R);
629
630  // For member function pointers, the tautologies are more complex.
631  // The Itanium tautology is:
632  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
633  // The ARM tautology is:
634  //   (L == R) <==> (L.ptr == R.ptr &&
635  //                  (L.adj == R.adj ||
636  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
637  // The inequality tautologies have exactly the same structure, except
638  // applying De Morgan's laws.
639
640  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
641  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
642
643  // This condition tests whether L.ptr == R.ptr.  This must always be
644  // true for equality to hold.
645  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
646
647  // This condition, together with the assumption that L.ptr == R.ptr,
648  // tests whether the pointers are both null.  ARM imposes an extra
649  // condition.
650  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
651  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
652
653  // This condition tests whether L.adj == R.adj.  If this isn't
654  // true, the pointers are unequal unless they're both null.
655  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
656  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
657  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
658
659  // Null member function pointers on ARM clear the low bit of Adj,
660  // so the zero condition has to check that neither low bit is set.
661  if (IsARM) {
662    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
663
664    // Compute (l.adj | r.adj) & 1 and test it against zero.
665    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
666    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
667    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
668                                                      "cmp.or.adj");
669    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
670  }
671
672  // Tie together all our conditions.
673  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
674  Result = Builder.CreateBinOp(And, PtrEq, Result,
675                               Inequality ? "memptr.ne" : "memptr.eq");
676  return Result;
677}
678
679llvm::Value *
680ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
681                                          llvm::Value *MemPtr,
682                                          const MemberPointerType *MPT) {
683  CGBuilderTy &Builder = CGF.Builder;
684
685  /// For member data pointers, this is just a check against -1.
686  if (MPT->isMemberDataPointer()) {
687    assert(MemPtr->getType() == CGM.PtrDiffTy);
688    llvm::Value *NegativeOne =
689      llvm::Constant::getAllOnesValue(MemPtr->getType());
690    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
691  }
692
693  // In Itanium, a member function pointer is not null if 'ptr' is not null.
694  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
695
696  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
697  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
698
699  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
700  // (the virtual bit) is set.
701  if (IsARM) {
702    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
703    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
704    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
705    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
706                                                  "memptr.isvirtual");
707    Result = Builder.CreateOr(Result, IsVirtual);
708  }
709
710  return Result;
711}
712
713/// The Itanium ABI requires non-zero initialization only for data
714/// member pointers, for which '0' is a valid offset.
715bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
716  return MPT->getPointeeType()->isFunctionType();
717}
718
719/// The Itanium ABI always places an offset to the complete object
720/// at entry -2 in the vtable.
721llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
722                                                   llvm::Value *ptr,
723                                                   QualType type) {
724  // Grab the vtable pointer as an intptr_t*.
725  llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
726
727  // Track back to entry -2 and pull out the offset there.
728  llvm::Value *offsetPtr =
729    CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
730  llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
731  offset->setAlignment(CGF.PointerAlignInBytes);
732
733  // Apply the offset.
734  ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
735  return CGF.Builder.CreateInBoundsGEP(ptr, offset);
736}
737
738/// The generic ABI passes 'this', plus a VTT if it's initializing a
739/// base subobject.
740void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
741                                              CXXCtorType Type,
742                                              CanQualType &ResTy,
743                                SmallVectorImpl<CanQualType> &ArgTys) {
744  ASTContext &Context = getContext();
745
746  // 'this' is already there.
747
748  // Check if we need to add a VTT parameter (which has type void **).
749  if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
750    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
751}
752
753/// The ARM ABI does the same as the Itanium ABI, but returns 'this'.
754void ARMCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
755                                          CXXCtorType Type,
756                                          CanQualType &ResTy,
757                                SmallVectorImpl<CanQualType> &ArgTys) {
758  ItaniumCXXABI::BuildConstructorSignature(Ctor, Type, ResTy, ArgTys);
759  ResTy = ArgTys[0];
760}
761
762/// The generic ABI passes 'this', plus a VTT if it's destroying a
763/// base subobject.
764void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
765                                             CXXDtorType Type,
766                                             CanQualType &ResTy,
767                                SmallVectorImpl<CanQualType> &ArgTys) {
768  ASTContext &Context = getContext();
769
770  // 'this' is already there.
771
772  // Check if we need to add a VTT parameter (which has type void **).
773  if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
774    ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
775}
776
777/// The ARM ABI does the same as the Itanium ABI, but returns 'this'
778/// for non-deleting destructors.
779void ARMCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
780                                         CXXDtorType Type,
781                                         CanQualType &ResTy,
782                                SmallVectorImpl<CanQualType> &ArgTys) {
783  ItaniumCXXABI::BuildDestructorSignature(Dtor, Type, ResTy, ArgTys);
784
785  if (Type != Dtor_Deleting)
786    ResTy = ArgTys[0];
787}
788
789void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
790                                                QualType &ResTy,
791                                                FunctionArgList &Params) {
792  /// Create the 'this' variable.
793  BuildThisParam(CGF, Params);
794
795  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
796  assert(MD->isInstance());
797
798  // Check if we need a VTT parameter as well.
799  if (CodeGenVTables::needsVTTParameter(CGF.CurGD)) {
800    ASTContext &Context = getContext();
801
802    // FIXME: avoid the fake decl
803    QualType T = Context.getPointerType(Context.VoidPtrTy);
804    ImplicitParamDecl *VTTDecl
805      = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
806                                  &Context.Idents.get("vtt"), T);
807    Params.push_back(VTTDecl);
808    getVTTDecl(CGF) = VTTDecl;
809  }
810}
811
812void ARMCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
813                                            QualType &ResTy,
814                                            FunctionArgList &Params) {
815  ItaniumCXXABI::BuildInstanceFunctionParams(CGF, ResTy, Params);
816
817  // Return 'this' from certain constructors and destructors.
818  if (HasThisReturn(CGF.CurGD))
819    ResTy = Params[0]->getType();
820}
821
822void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
823  /// Initialize the 'this' slot.
824  EmitThisParam(CGF);
825
826  /// Initialize the 'vtt' slot if needed.
827  if (getVTTDecl(CGF)) {
828    getVTTValue(CGF)
829      = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
830                               "vtt");
831  }
832}
833
834void ARMCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
835  ItaniumCXXABI::EmitInstanceFunctionProlog(CGF);
836
837  /// Initialize the return slot to 'this' at the start of the
838  /// function.
839  if (HasThisReturn(CGF.CurGD))
840    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
841}
842
843llvm::Value *ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF,
844                                        const CXXConstructorDecl *D,
845                                        CXXCtorType Type, bool ForVirtualBase,
846                                        bool Delegating,
847                                        llvm::Value *This,
848                                        CallExpr::const_arg_iterator ArgBeg,
849                                        CallExpr::const_arg_iterator ArgEnd) {
850  llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase,
851                                         Delegating);
852  QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
853  llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
854
855  // FIXME: Provide a source location here.
856  CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(), This,
857                        VTT, VTTTy, ArgBeg, ArgEnd);
858  return Callee;
859}
860
861RValue ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
862                                                const CXXDestructorDecl *Dtor,
863                                                CXXDtorType DtorType,
864                                                SourceLocation CallLoc,
865                                                ReturnValueSlot ReturnValue,
866                                                llvm::Value *This) {
867  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
868
869  const CGFunctionInfo *FInfo
870    = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
871  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
872  llvm::Value *Callee = CGF.BuildVirtualCall(Dtor, DtorType, This, Ty);
873
874  return CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValue, This,
875                               /*ImplicitParam=*/0, QualType(), 0, 0);
876}
877
878void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
879                                    RValue RV, QualType ResultType) {
880  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
881    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
882
883  // Destructor thunks in the ARM ABI have indeterminate results.
884  llvm::Type *T =
885    cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
886  RValue Undef = RValue::get(llvm::UndefValue::get(T));
887  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
888}
889
890/************************** Array allocation cookies **************************/
891
892CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
893  // The array cookie is a size_t; pad that up to the element alignment.
894  // The cookie is actually right-justified in that space.
895  return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
896                  CGM.getContext().getTypeAlignInChars(elementType));
897}
898
899llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
900                                                  llvm::Value *NewPtr,
901                                                  llvm::Value *NumElements,
902                                                  const CXXNewExpr *expr,
903                                                  QualType ElementType) {
904  assert(requiresArrayCookie(expr));
905
906  unsigned AS = NewPtr->getType()->getPointerAddressSpace();
907
908  ASTContext &Ctx = getContext();
909  QualType SizeTy = Ctx.getSizeType();
910  CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
911
912  // The size of the cookie.
913  CharUnits CookieSize =
914    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
915  assert(CookieSize == getArrayCookieSizeImpl(ElementType));
916
917  // Compute an offset to the cookie.
918  llvm::Value *CookiePtr = NewPtr;
919  CharUnits CookieOffset = CookieSize - SizeSize;
920  if (!CookieOffset.isZero())
921    CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
922                                                 CookieOffset.getQuantity());
923
924  // Write the number of elements into the appropriate slot.
925  llvm::Value *NumElementsPtr
926    = CGF.Builder.CreateBitCast(CookiePtr,
927                                CGF.ConvertType(SizeTy)->getPointerTo(AS));
928  CGF.Builder.CreateStore(NumElements, NumElementsPtr);
929
930  // Finally, compute a pointer to the actual data buffer by skipping
931  // over the cookie completely.
932  return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
933                                                CookieSize.getQuantity());
934}
935
936llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
937                                                llvm::Value *allocPtr,
938                                                CharUnits cookieSize) {
939  // The element size is right-justified in the cookie.
940  llvm::Value *numElementsPtr = allocPtr;
941  CharUnits numElementsOffset =
942    cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
943  if (!numElementsOffset.isZero())
944    numElementsPtr =
945      CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
946                                             numElementsOffset.getQuantity());
947
948  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
949  numElementsPtr =
950    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
951  return CGF.Builder.CreateLoad(numElementsPtr);
952}
953
954CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
955  // ARM says that the cookie is always:
956  //   struct array_cookie {
957  //     std::size_t element_size; // element_size != 0
958  //     std::size_t element_count;
959  //   };
960  // But the base ABI doesn't give anything an alignment greater than
961  // 8, so we can dismiss this as typical ABI-author blindness to
962  // actual language complexity and round up to the element alignment.
963  return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
964                  CGM.getContext().getTypeAlignInChars(elementType));
965}
966
967llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
968                                              llvm::Value *newPtr,
969                                              llvm::Value *numElements,
970                                              const CXXNewExpr *expr,
971                                              QualType elementType) {
972  assert(requiresArrayCookie(expr));
973
974  // NewPtr is a char*, but we generalize to arbitrary addrspaces.
975  unsigned AS = newPtr->getType()->getPointerAddressSpace();
976
977  // The cookie is always at the start of the buffer.
978  llvm::Value *cookie = newPtr;
979
980  // The first element is the element size.
981  cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
982  llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
983                 getContext().getTypeSizeInChars(elementType).getQuantity());
984  CGF.Builder.CreateStore(elementSize, cookie);
985
986  // The second element is the element count.
987  cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
988  CGF.Builder.CreateStore(numElements, cookie);
989
990  // Finally, compute a pointer to the actual data buffer by skipping
991  // over the cookie completely.
992  CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
993  return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
994                                                cookieSize.getQuantity());
995}
996
997llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
998                                            llvm::Value *allocPtr,
999                                            CharUnits cookieSize) {
1000  // The number of elements is at offset sizeof(size_t) relative to
1001  // the allocated pointer.
1002  llvm::Value *numElementsPtr
1003    = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
1004
1005  unsigned AS = allocPtr->getType()->getPointerAddressSpace();
1006  numElementsPtr =
1007    CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
1008  return CGF.Builder.CreateLoad(numElementsPtr);
1009}
1010
1011/*********************** Static local initialization **************************/
1012
1013static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
1014                                         llvm::PointerType *GuardPtrTy) {
1015  // int __cxa_guard_acquire(__guard *guard_object);
1016  llvm::FunctionType *FTy =
1017    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
1018                            GuardPtrTy, /*isVarArg=*/false);
1019  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
1020                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1021                                              llvm::AttributeSet::FunctionIndex,
1022                                                 llvm::Attribute::NoUnwind));
1023}
1024
1025static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
1026                                         llvm::PointerType *GuardPtrTy) {
1027  // void __cxa_guard_release(__guard *guard_object);
1028  llvm::FunctionType *FTy =
1029    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1030  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
1031                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1032                                              llvm::AttributeSet::FunctionIndex,
1033                                                 llvm::Attribute::NoUnwind));
1034}
1035
1036static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
1037                                       llvm::PointerType *GuardPtrTy) {
1038  // void __cxa_guard_abort(__guard *guard_object);
1039  llvm::FunctionType *FTy =
1040    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
1041  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
1042                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
1043                                              llvm::AttributeSet::FunctionIndex,
1044                                                 llvm::Attribute::NoUnwind));
1045}
1046
1047namespace {
1048  struct CallGuardAbort : EHScopeStack::Cleanup {
1049    llvm::GlobalVariable *Guard;
1050    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
1051
1052    void Emit(CodeGenFunction &CGF, Flags flags) {
1053      CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
1054                                  Guard);
1055    }
1056  };
1057}
1058
1059/// The ARM code here follows the Itanium code closely enough that we
1060/// just special-case it at particular places.
1061void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
1062                                    const VarDecl &D,
1063                                    llvm::GlobalVariable *var,
1064                                    bool shouldPerformInit) {
1065  CGBuilderTy &Builder = CGF.Builder;
1066
1067  // We only need to use thread-safe statics for local non-TLS variables;
1068  // global initialization is always single-threaded.
1069  bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
1070                    D.isLocalVarDecl() && !D.getTLSKind();
1071
1072  // If we have a global variable with internal linkage and thread-safe statics
1073  // are disabled, we can just let the guard variable be of type i8.
1074  bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
1075
1076  llvm::IntegerType *guardTy;
1077  if (useInt8GuardVariable) {
1078    guardTy = CGF.Int8Ty;
1079  } else {
1080    // Guard variables are 64 bits in the generic ABI and size width on ARM
1081    // (i.e. 32-bit on AArch32, 64-bit on AArch64).
1082    guardTy = (IsARM ? CGF.SizeTy : CGF.Int64Ty);
1083  }
1084  llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
1085
1086  // Create the guard variable if we don't already have it (as we
1087  // might if we're double-emitting this function body).
1088  llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
1089  if (!guard) {
1090    // Mangle the name for the guard.
1091    SmallString<256> guardName;
1092    {
1093      llvm::raw_svector_ostream out(guardName);
1094      getMangleContext().mangleItaniumGuardVariable(&D, out);
1095      out.flush();
1096    }
1097
1098    // Create the guard variable with a zero-initializer.
1099    // Just absorb linkage and visibility from the guarded variable.
1100    guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
1101                                     false, var->getLinkage(),
1102                                     llvm::ConstantInt::get(guardTy, 0),
1103                                     guardName.str());
1104    guard->setVisibility(var->getVisibility());
1105    // If the variable is thread-local, so is its guard variable.
1106    guard->setThreadLocalMode(var->getThreadLocalMode());
1107
1108    CGM.setStaticLocalDeclGuardAddress(&D, guard);
1109  }
1110
1111  // Test whether the variable has completed initialization.
1112  llvm::Value *isInitialized;
1113
1114  // ARM C++ ABI 3.2.3.1:
1115  //   To support the potential use of initialization guard variables
1116  //   as semaphores that are the target of ARM SWP and LDREX/STREX
1117  //   synchronizing instructions we define a static initialization
1118  //   guard variable to be a 4-byte aligned, 4- byte word with the
1119  //   following inline access protocol.
1120  //     #define INITIALIZED 1
1121  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
1122  //       if (__cxa_guard_acquire(&obj_guard))
1123  //         ...
1124  //     }
1125  if (IsARM && !useInt8GuardVariable) {
1126    llvm::Value *V = Builder.CreateLoad(guard);
1127    llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1);
1128    V = Builder.CreateAnd(V, Test1);
1129    isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
1130
1131  // Itanium C++ ABI 3.3.2:
1132  //   The following is pseudo-code showing how these functions can be used:
1133  //     if (obj_guard.first_byte == 0) {
1134  //       if ( __cxa_guard_acquire (&obj_guard) ) {
1135  //         try {
1136  //           ... initialize the object ...;
1137  //         } catch (...) {
1138  //            __cxa_guard_abort (&obj_guard);
1139  //            throw;
1140  //         }
1141  //         ... queue object destructor with __cxa_atexit() ...;
1142  //         __cxa_guard_release (&obj_guard);
1143  //       }
1144  //     }
1145  } else {
1146    // Load the first byte of the guard variable.
1147    llvm::LoadInst *LI =
1148      Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
1149    LI->setAlignment(1);
1150
1151    // Itanium ABI:
1152    //   An implementation supporting thread-safety on multiprocessor
1153    //   systems must also guarantee that references to the initialized
1154    //   object do not occur before the load of the initialization flag.
1155    //
1156    // In LLVM, we do this by marking the load Acquire.
1157    if (threadsafe)
1158      LI->setAtomic(llvm::Acquire);
1159
1160    isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
1161  }
1162
1163  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
1164  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
1165
1166  // Check if the first byte of the guard variable is zero.
1167  Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
1168
1169  CGF.EmitBlock(InitCheckBlock);
1170
1171  // Variables used when coping with thread-safe statics and exceptions.
1172  if (threadsafe) {
1173    // Call __cxa_guard_acquire.
1174    llvm::Value *V
1175      = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
1176
1177    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
1178
1179    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
1180                         InitBlock, EndBlock);
1181
1182    // Call __cxa_guard_abort along the exceptional edge.
1183    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
1184
1185    CGF.EmitBlock(InitBlock);
1186  }
1187
1188  // Emit the initializer and add a global destructor if appropriate.
1189  CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
1190
1191  if (threadsafe) {
1192    // Pop the guard-abort cleanup if we pushed one.
1193    CGF.PopCleanupBlock();
1194
1195    // Call __cxa_guard_release.  This cannot throw.
1196    CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
1197  } else {
1198    Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
1199  }
1200
1201  CGF.EmitBlock(EndBlock);
1202}
1203
1204/// Register a global destructor using __cxa_atexit.
1205static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
1206                                        llvm::Constant *dtor,
1207                                        llvm::Constant *addr,
1208                                        bool TLS) {
1209  const char *Name = "__cxa_atexit";
1210  if (TLS) {
1211    const llvm::Triple &T = CGF.getTarget().getTriple();
1212    Name = T.isMacOSX() ?  "_tlv_atexit" : "__cxa_thread_atexit";
1213  }
1214
1215  // We're assuming that the destructor function is something we can
1216  // reasonably call with the default CC.  Go ahead and cast it to the
1217  // right prototype.
1218  llvm::Type *dtorTy =
1219    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
1220
1221  // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
1222  llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
1223  llvm::FunctionType *atexitTy =
1224    llvm::FunctionType::get(CGF.IntTy, paramTys, false);
1225
1226  // Fetch the actual function.
1227  llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
1228  if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
1229    fn->setDoesNotThrow();
1230
1231  // Create a variable that binds the atexit to this shared object.
1232  llvm::Constant *handle =
1233    CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
1234
1235  llvm::Value *args[] = {
1236    llvm::ConstantExpr::getBitCast(dtor, dtorTy),
1237    llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
1238    handle
1239  };
1240  CGF.EmitNounwindRuntimeCall(atexit, args);
1241}
1242
1243/// Register a global destructor as best as we know how.
1244void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
1245                                       const VarDecl &D,
1246                                       llvm::Constant *dtor,
1247                                       llvm::Constant *addr) {
1248  // Use __cxa_atexit if available.
1249  if (CGM.getCodeGenOpts().CXAAtExit)
1250    return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
1251
1252  if (D.getTLSKind())
1253    CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
1254
1255  // In Apple kexts, we want to add a global destructor entry.
1256  // FIXME: shouldn't this be guarded by some variable?
1257  if (CGM.getLangOpts().AppleKext) {
1258    // Generate a global destructor entry.
1259    return CGM.AddCXXDtorEntry(dtor, addr);
1260  }
1261
1262  CGF.registerGlobalDtorWithAtExit(dtor, addr);
1263}
1264
1265/// Get the appropriate linkage for the wrapper function. This is essentially
1266/// the weak form of the variable's linkage; every translation unit which wneeds
1267/// the wrapper emits a copy, and we want the linker to merge them.
1268static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage(
1269    llvm::GlobalValue::LinkageTypes VarLinkage) {
1270  if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage))
1271    return llvm::GlobalValue::LinkerPrivateWeakLinkage;
1272  // For internal linkage variables, we don't need an external or weak wrapper.
1273  if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
1274    return VarLinkage;
1275  return llvm::GlobalValue::WeakODRLinkage;
1276}
1277
1278llvm::Function *
1279ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
1280                                             llvm::GlobalVariable *Var) {
1281  // Mangle the name for the thread_local wrapper function.
1282  SmallString<256> WrapperName;
1283  {
1284    llvm::raw_svector_ostream Out(WrapperName);
1285    getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
1286    Out.flush();
1287  }
1288
1289  if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName))
1290    return cast<llvm::Function>(V);
1291
1292  llvm::Type *RetTy = Var->getType();
1293  if (VD->getType()->isReferenceType())
1294    RetTy = RetTy->getPointerElementType();
1295
1296  llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
1297  llvm::Function *Wrapper = llvm::Function::Create(
1298      FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(),
1299      &CGM.getModule());
1300  // Always resolve references to the wrapper at link time.
1301  Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
1302  return Wrapper;
1303}
1304
1305void ItaniumCXXABI::EmitThreadLocalInitFuncs(
1306    llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
1307    llvm::Function *InitFunc) {
1308  for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
1309    const VarDecl *VD = Decls[I].first;
1310    llvm::GlobalVariable *Var = Decls[I].second;
1311
1312    // Mangle the name for the thread_local initialization function.
1313    SmallString<256> InitFnName;
1314    {
1315      llvm::raw_svector_ostream Out(InitFnName);
1316      getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
1317      Out.flush();
1318    }
1319
1320    // If we have a definition for the variable, emit the initialization
1321    // function as an alias to the global Init function (if any). Otherwise,
1322    // produce a declaration of the initialization function.
1323    llvm::GlobalValue *Init = 0;
1324    bool InitIsInitFunc = false;
1325    if (VD->hasDefinition()) {
1326      InitIsInitFunc = true;
1327      if (InitFunc)
1328        Init =
1329            new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(),
1330                                  InitFnName.str(), InitFunc, &CGM.getModule());
1331    } else {
1332      // Emit a weak global function referring to the initialization function.
1333      // This function will not exist if the TU defining the thread_local
1334      // variable in question does not need any dynamic initialization for
1335      // its thread_local variables.
1336      llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
1337      Init = llvm::Function::Create(
1338          FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
1339          &CGM.getModule());
1340    }
1341
1342    if (Init)
1343      Init->setVisibility(Var->getVisibility());
1344
1345    llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
1346    llvm::LLVMContext &Context = CGM.getModule().getContext();
1347    llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
1348    CGBuilderTy Builder(Entry);
1349    if (InitIsInitFunc) {
1350      if (Init)
1351        Builder.CreateCall(Init);
1352    } else {
1353      // Don't know whether we have an init function. Call it if it exists.
1354      llvm::Value *Have = Builder.CreateIsNotNull(Init);
1355      llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
1356      llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
1357      Builder.CreateCondBr(Have, InitBB, ExitBB);
1358
1359      Builder.SetInsertPoint(InitBB);
1360      Builder.CreateCall(Init);
1361      Builder.CreateBr(ExitBB);
1362
1363      Builder.SetInsertPoint(ExitBB);
1364    }
1365
1366    // For a reference, the result of the wrapper function is a pointer to
1367    // the referenced object.
1368    llvm::Value *Val = Var;
1369    if (VD->getType()->isReferenceType()) {
1370      llvm::LoadInst *LI = Builder.CreateLoad(Val);
1371      LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
1372      Val = LI;
1373    }
1374
1375    Builder.CreateRet(Val);
1376  }
1377}
1378
1379LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
1380                                                 const DeclRefExpr *DRE) {
1381  const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
1382  QualType T = VD->getType();
1383  llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
1384  llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
1385  llvm::Function *Wrapper =
1386      getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val));
1387
1388  Val = CGF.Builder.CreateCall(Wrapper);
1389
1390  LValue LV;
1391  if (VD->getType()->isReferenceType())
1392    LV = CGF.MakeNaturalAlignAddrLValue(Val, T);
1393  else
1394    LV = CGF.MakeAddrLValue(Val, DRE->getType(),
1395                            CGF.getContext().getDeclAlign(VD));
1396  // FIXME: need setObjCGCLValueClass?
1397  return LV;
1398}
1399