1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CharInfo.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Frontend/CodeGenOptions.h"
39#include "llvm/ADT/APSInt.h"
40#include "llvm/ADT/Triple.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ConvertUTF.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Target/Mangler.h"
50
51using namespace clang;
52using namespace CodeGen;
53
54static const char AnnotationSection[] = "llvm.metadata";
55
56static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57  switch (CGM.getTarget().getCXXABI().getKind()) {
58  case TargetCXXABI::GenericAArch64:
59  case TargetCXXABI::GenericARM:
60  case TargetCXXABI::iOS:
61  case TargetCXXABI::GenericItanium:
62    return *CreateItaniumCXXABI(CGM);
63  case TargetCXXABI::Microsoft:
64    return *CreateMicrosoftCXXABI(CGM);
65  }
66
67  llvm_unreachable("invalid C++ ABI kind");
68}
69
70
71CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                             llvm::Module &M, const llvm::DataLayout &TD,
73                             DiagnosticsEngine &diags)
74  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75    Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76    ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77    TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78    ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80    RRData(0), CFConstantStringClassRef(0),
81    ConstantStringClassRef(0), NSConstantStringType(0),
82    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83    BlockObjectAssign(0), BlockObjectDispose(0),
84    BlockDescriptorType(0), GenericBlockLiteralType(0),
85    LifetimeStartFn(0), LifetimeEndFn(0),
86    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87    SanOpts(SanitizerBlacklist.isIn(M) ?
88            SanitizerOptions::Disabled : LangOpts.Sanitize) {
89
90  // Initialize the type cache.
91  llvm::LLVMContext &LLVMContext = M.getContext();
92  VoidTy = llvm::Type::getVoidTy(LLVMContext);
93  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97  FloatTy = llvm::Type::getFloatTy(LLVMContext);
98  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100  PointerAlignInBytes =
101  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104  Int8PtrTy = Int8Ty->getPointerTo(0);
105  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106
107  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108
109  if (LangOpts.ObjC1)
110    createObjCRuntime();
111  if (LangOpts.OpenCL)
112    createOpenCLRuntime();
113  if (LangOpts.CUDA)
114    createCUDARuntime();
115
116  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117  if (SanOpts.Thread ||
118      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                           ABI.getMangleContext());
121
122  // If debug info or coverage generation is enabled, create the CGDebugInfo
123  // object.
124  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125      CodeGenOpts.EmitGcovArcs ||
126      CodeGenOpts.EmitGcovNotes)
127    DebugInfo = new CGDebugInfo(*this);
128
129  Block.GlobalUniqueCount = 0;
130
131  if (C.getLangOpts().ObjCAutoRefCount)
132    ARCData = new ARCEntrypoints();
133  RRData = new RREntrypoints();
134}
135
136CodeGenModule::~CodeGenModule() {
137  delete ObjCRuntime;
138  delete OpenCLRuntime;
139  delete CUDARuntime;
140  delete TheTargetCodeGenInfo;
141  delete &ABI;
142  delete TBAA;
143  delete DebugInfo;
144  delete ARCData;
145  delete RRData;
146}
147
148void CodeGenModule::createObjCRuntime() {
149  // This is just isGNUFamily(), but we want to force implementors of
150  // new ABIs to decide how best to do this.
151  switch (LangOpts.ObjCRuntime.getKind()) {
152  case ObjCRuntime::GNUstep:
153  case ObjCRuntime::GCC:
154  case ObjCRuntime::ObjFW:
155    ObjCRuntime = CreateGNUObjCRuntime(*this);
156    return;
157
158  case ObjCRuntime::FragileMacOSX:
159  case ObjCRuntime::MacOSX:
160  case ObjCRuntime::iOS:
161    ObjCRuntime = CreateMacObjCRuntime(*this);
162    return;
163  }
164  llvm_unreachable("bad runtime kind");
165}
166
167void CodeGenModule::createOpenCLRuntime() {
168  OpenCLRuntime = new CGOpenCLRuntime(*this);
169}
170
171void CodeGenModule::createCUDARuntime() {
172  CUDARuntime = CreateNVCUDARuntime(*this);
173}
174
175void CodeGenModule::Release() {
176  EmitDeferred();
177  EmitCXXGlobalInitFunc();
178  EmitCXXGlobalDtorFunc();
179  EmitCXXThreadLocalInitFunc();
180  if (ObjCRuntime)
181    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182      AddGlobalCtor(ObjCInitFunction);
183  EmitCtorList(GlobalCtors, "llvm.global_ctors");
184  EmitCtorList(GlobalDtors, "llvm.global_dtors");
185  EmitGlobalAnnotations();
186  EmitStaticExternCAliases();
187  EmitLLVMUsed();
188
189  if (CodeGenOpts.Autolink && Context.getLangOpts().Modules) {
190    EmitModuleLinkOptions();
191  }
192
193  SimplifyPersonality();
194
195  if (getCodeGenOpts().EmitDeclMetadata)
196    EmitDeclMetadata();
197
198  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
199    EmitCoverageFile();
200
201  if (DebugInfo)
202    DebugInfo->finalize();
203}
204
205void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
206  // Make sure that this type is translated.
207  Types.UpdateCompletedType(TD);
208}
209
210llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
211  if (!TBAA)
212    return 0;
213  return TBAA->getTBAAInfo(QTy);
214}
215
216llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
217  if (!TBAA)
218    return 0;
219  return TBAA->getTBAAInfoForVTablePtr();
220}
221
222llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
223  if (!TBAA)
224    return 0;
225  return TBAA->getTBAAStructInfo(QTy);
226}
227
228llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
229  if (!TBAA)
230    return 0;
231  return TBAA->getTBAAStructTypeInfo(QTy);
232}
233
234llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
235                                                  llvm::MDNode *AccessN,
236                                                  uint64_t O) {
237  if (!TBAA)
238    return 0;
239  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
240}
241
242/// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
243/// is the same as the type. For struct-path aware TBAA, the tag
244/// is different from the type: base type, access type and offset.
245/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
246void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
247                                        llvm::MDNode *TBAAInfo,
248                                        bool ConvertTypeToTag) {
249  if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
250    Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
251                      TBAA->getTBAAScalarTagInfo(TBAAInfo));
252  else
253    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
254}
255
256void CodeGenModule::Error(SourceLocation loc, StringRef error) {
257  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
258  getDiags().Report(Context.getFullLoc(loc), diagID);
259}
260
261/// ErrorUnsupported - Print out an error that codegen doesn't support the
262/// specified stmt yet.
263void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
264                                     bool OmitOnError) {
265  if (OmitOnError && getDiags().hasErrorOccurred())
266    return;
267  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
268                                               "cannot compile this %0 yet");
269  std::string Msg = Type;
270  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
271    << Msg << S->getSourceRange();
272}
273
274/// ErrorUnsupported - Print out an error that codegen doesn't support the
275/// specified decl yet.
276void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
277                                     bool OmitOnError) {
278  if (OmitOnError && getDiags().hasErrorOccurred())
279    return;
280  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
281                                               "cannot compile this %0 yet");
282  std::string Msg = Type;
283  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
284}
285
286llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
287  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
288}
289
290void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
291                                        const NamedDecl *D) const {
292  // Internal definitions always have default visibility.
293  if (GV->hasLocalLinkage()) {
294    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
295    return;
296  }
297
298  // Set visibility for definitions.
299  LinkageInfo LV = D->getLinkageAndVisibility();
300  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
301    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
302}
303
304static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
305  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
306      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
307      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
308      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
309      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
310}
311
312static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
313    CodeGenOptions::TLSModel M) {
314  switch (M) {
315  case CodeGenOptions::GeneralDynamicTLSModel:
316    return llvm::GlobalVariable::GeneralDynamicTLSModel;
317  case CodeGenOptions::LocalDynamicTLSModel:
318    return llvm::GlobalVariable::LocalDynamicTLSModel;
319  case CodeGenOptions::InitialExecTLSModel:
320    return llvm::GlobalVariable::InitialExecTLSModel;
321  case CodeGenOptions::LocalExecTLSModel:
322    return llvm::GlobalVariable::LocalExecTLSModel;
323  }
324  llvm_unreachable("Invalid TLS model!");
325}
326
327void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
328                               const VarDecl &D) const {
329  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
330
331  llvm::GlobalVariable::ThreadLocalMode TLM;
332  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
333
334  // Override the TLS model if it is explicitly specified.
335  if (D.hasAttr<TLSModelAttr>()) {
336    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
337    TLM = GetLLVMTLSModel(Attr->getModel());
338  }
339
340  GV->setThreadLocalMode(TLM);
341}
342
343/// Set the symbol visibility of type information (vtable and RTTI)
344/// associated with the given type.
345void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
346                                      const CXXRecordDecl *RD,
347                                      TypeVisibilityKind TVK) const {
348  setGlobalVisibility(GV, RD);
349
350  if (!CodeGenOpts.HiddenWeakVTables)
351    return;
352
353  // We never want to drop the visibility for RTTI names.
354  if (TVK == TVK_ForRTTIName)
355    return;
356
357  // We want to drop the visibility to hidden for weak type symbols.
358  // This isn't possible if there might be unresolved references
359  // elsewhere that rely on this symbol being visible.
360
361  // This should be kept roughly in sync with setThunkVisibility
362  // in CGVTables.cpp.
363
364  // Preconditions.
365  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
366      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
367    return;
368
369  // Don't override an explicit visibility attribute.
370  if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
371    return;
372
373  switch (RD->getTemplateSpecializationKind()) {
374  // We have to disable the optimization if this is an EI definition
375  // because there might be EI declarations in other shared objects.
376  case TSK_ExplicitInstantiationDefinition:
377  case TSK_ExplicitInstantiationDeclaration:
378    return;
379
380  // Every use of a non-template class's type information has to emit it.
381  case TSK_Undeclared:
382    break;
383
384  // In theory, implicit instantiations can ignore the possibility of
385  // an explicit instantiation declaration because there necessarily
386  // must be an EI definition somewhere with default visibility.  In
387  // practice, it's possible to have an explicit instantiation for
388  // an arbitrary template class, and linkers aren't necessarily able
389  // to deal with mixed-visibility symbols.
390  case TSK_ExplicitSpecialization:
391  case TSK_ImplicitInstantiation:
392    return;
393  }
394
395  // If there's a key function, there may be translation units
396  // that don't have the key function's definition.  But ignore
397  // this if we're emitting RTTI under -fno-rtti.
398  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
399    // FIXME: what should we do if we "lose" the key function during
400    // the emission of the file?
401    if (Context.getCurrentKeyFunction(RD))
402      return;
403  }
404
405  // Otherwise, drop the visibility to hidden.
406  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
407  GV->setUnnamedAddr(true);
408}
409
410StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
411  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
412
413  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
414  if (!Str.empty())
415    return Str;
416
417  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
418    IdentifierInfo *II = ND->getIdentifier();
419    assert(II && "Attempt to mangle unnamed decl.");
420
421    Str = II->getName();
422    return Str;
423  }
424
425  SmallString<256> Buffer;
426  llvm::raw_svector_ostream Out(Buffer);
427  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
428    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
429  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
430    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
431  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
432    getCXXABI().getMangleContext().mangleBlock(BD, Out,
433      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
434  else
435    getCXXABI().getMangleContext().mangleName(ND, Out);
436
437  // Allocate space for the mangled name.
438  Out.flush();
439  size_t Length = Buffer.size();
440  char *Name = MangledNamesAllocator.Allocate<char>(Length);
441  std::copy(Buffer.begin(), Buffer.end(), Name);
442
443  Str = StringRef(Name, Length);
444
445  return Str;
446}
447
448void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
449                                        const BlockDecl *BD) {
450  MangleContext &MangleCtx = getCXXABI().getMangleContext();
451  const Decl *D = GD.getDecl();
452  llvm::raw_svector_ostream Out(Buffer.getBuffer());
453  if (D == 0)
454    MangleCtx.mangleGlobalBlock(BD,
455      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
456  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
457    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
458  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
459    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
460  else
461    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
462}
463
464llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
465  return getModule().getNamedValue(Name);
466}
467
468/// AddGlobalCtor - Add a function to the list that will be called before
469/// main() runs.
470void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
471  // FIXME: Type coercion of void()* types.
472  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
473}
474
475/// AddGlobalDtor - Add a function to the list that will be called
476/// when the module is unloaded.
477void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
478  // FIXME: Type coercion of void()* types.
479  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
480}
481
482void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
483  // Ctor function type is void()*.
484  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
485  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
486
487  // Get the type of a ctor entry, { i32, void ()* }.
488  llvm::StructType *CtorStructTy =
489    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
490
491  // Construct the constructor and destructor arrays.
492  SmallVector<llvm::Constant*, 8> Ctors;
493  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
494    llvm::Constant *S[] = {
495      llvm::ConstantInt::get(Int32Ty, I->second, false),
496      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
497    };
498    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
499  }
500
501  if (!Ctors.empty()) {
502    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
503    new llvm::GlobalVariable(TheModule, AT, false,
504                             llvm::GlobalValue::AppendingLinkage,
505                             llvm::ConstantArray::get(AT, Ctors),
506                             GlobalName);
507  }
508}
509
510llvm::GlobalValue::LinkageTypes
511CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
512  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
513
514  if (Linkage == GVA_Internal)
515    return llvm::Function::InternalLinkage;
516
517  if (D->hasAttr<DLLExportAttr>())
518    return llvm::Function::DLLExportLinkage;
519
520  if (D->hasAttr<WeakAttr>())
521    return llvm::Function::WeakAnyLinkage;
522
523  // In C99 mode, 'inline' functions are guaranteed to have a strong
524  // definition somewhere else, so we can use available_externally linkage.
525  if (Linkage == GVA_C99Inline)
526    return llvm::Function::AvailableExternallyLinkage;
527
528  // Note that Apple's kernel linker doesn't support symbol
529  // coalescing, so we need to avoid linkonce and weak linkages there.
530  // Normally, this means we just map to internal, but for explicit
531  // instantiations we'll map to external.
532
533  // In C++, the compiler has to emit a definition in every translation unit
534  // that references the function.  We should use linkonce_odr because
535  // a) if all references in this translation unit are optimized away, we
536  // don't need to codegen it.  b) if the function persists, it needs to be
537  // merged with other definitions. c) C++ has the ODR, so we know the
538  // definition is dependable.
539  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
540    return !Context.getLangOpts().AppleKext
541             ? llvm::Function::LinkOnceODRLinkage
542             : llvm::Function::InternalLinkage;
543
544  // An explicit instantiation of a template has weak linkage, since
545  // explicit instantiations can occur in multiple translation units
546  // and must all be equivalent. However, we are not allowed to
547  // throw away these explicit instantiations.
548  if (Linkage == GVA_ExplicitTemplateInstantiation)
549    return !Context.getLangOpts().AppleKext
550             ? llvm::Function::WeakODRLinkage
551             : llvm::Function::ExternalLinkage;
552
553  // Otherwise, we have strong external linkage.
554  assert(Linkage == GVA_StrongExternal);
555  return llvm::Function::ExternalLinkage;
556}
557
558
559/// SetFunctionDefinitionAttributes - Set attributes for a global.
560///
561/// FIXME: This is currently only done for aliases and functions, but not for
562/// variables (these details are set in EmitGlobalVarDefinition for variables).
563void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
564                                                    llvm::GlobalValue *GV) {
565  SetCommonAttributes(D, GV);
566}
567
568void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
569                                              const CGFunctionInfo &Info,
570                                              llvm::Function *F) {
571  unsigned CallingConv;
572  AttributeListType AttributeList;
573  ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
574  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
575  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
576}
577
578/// Determines whether the language options require us to model
579/// unwind exceptions.  We treat -fexceptions as mandating this
580/// except under the fragile ObjC ABI with only ObjC exceptions
581/// enabled.  This means, for example, that C with -fexceptions
582/// enables this.
583static bool hasUnwindExceptions(const LangOptions &LangOpts) {
584  // If exceptions are completely disabled, obviously this is false.
585  if (!LangOpts.Exceptions) return false;
586
587  // If C++ exceptions are enabled, this is true.
588  if (LangOpts.CXXExceptions) return true;
589
590  // If ObjC exceptions are enabled, this depends on the ABI.
591  if (LangOpts.ObjCExceptions) {
592    return LangOpts.ObjCRuntime.hasUnwindExceptions();
593  }
594
595  return true;
596}
597
598void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
599                                                           llvm::Function *F) {
600  if (CodeGenOpts.UnwindTables)
601    F->setHasUWTable();
602
603  if (!hasUnwindExceptions(LangOpts))
604    F->addFnAttr(llvm::Attribute::NoUnwind);
605
606  if (D->hasAttr<NakedAttr>()) {
607    // Naked implies noinline: we should not be inlining such functions.
608    F->addFnAttr(llvm::Attribute::Naked);
609    F->addFnAttr(llvm::Attribute::NoInline);
610  }
611
612  if (D->hasAttr<NoInlineAttr>())
613    F->addFnAttr(llvm::Attribute::NoInline);
614
615  // (noinline wins over always_inline, and we can't specify both in IR)
616  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
617      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
618                                       llvm::Attribute::NoInline))
619    F->addFnAttr(llvm::Attribute::AlwaysInline);
620
621  // FIXME: Communicate hot and cold attributes to LLVM more directly.
622  if (D->hasAttr<ColdAttr>())
623    F->addFnAttr(llvm::Attribute::OptimizeForSize);
624
625  if (D->hasAttr<MinSizeAttr>())
626    F->addFnAttr(llvm::Attribute::MinSize);
627
628  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
629    F->setUnnamedAddr(true);
630
631  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
632    if (MD->isVirtual())
633      F->setUnnamedAddr(true);
634
635  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
636    F->addFnAttr(llvm::Attribute::StackProtect);
637  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
638    F->addFnAttr(llvm::Attribute::StackProtectReq);
639
640  // Add sanitizer attributes if function is not blacklisted.
641  if (!SanitizerBlacklist.isIn(*F)) {
642    // When AddressSanitizer is enabled, set SanitizeAddress attribute
643    // unless __attribute__((no_sanitize_address)) is used.
644    if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
645      F->addFnAttr(llvm::Attribute::SanitizeAddress);
646    // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
647    if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
648      F->addFnAttr(llvm::Attribute::SanitizeThread);
649    }
650    // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
651    if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
652      F->addFnAttr(llvm::Attribute::SanitizeMemory);
653  }
654
655  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
656  if (alignment)
657    F->setAlignment(alignment);
658
659  // C++ ABI requires 2-byte alignment for member functions.
660  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
661    F->setAlignment(2);
662}
663
664void CodeGenModule::SetCommonAttributes(const Decl *D,
665                                        llvm::GlobalValue *GV) {
666  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
667    setGlobalVisibility(GV, ND);
668  else
669    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
670
671  if (D->hasAttr<UsedAttr>())
672    AddUsedGlobal(GV);
673
674  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
675    GV->setSection(SA->getName());
676
677  // Alias cannot have attributes. Filter them here.
678  if (!isa<llvm::GlobalAlias>(GV))
679    getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
680}
681
682void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
683                                                  llvm::Function *F,
684                                                  const CGFunctionInfo &FI) {
685  SetLLVMFunctionAttributes(D, FI, F);
686  SetLLVMFunctionAttributesForDefinition(D, F);
687
688  F->setLinkage(llvm::Function::InternalLinkage);
689
690  SetCommonAttributes(D, F);
691}
692
693void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
694                                          llvm::Function *F,
695                                          bool IsIncompleteFunction) {
696  if (unsigned IID = F->getIntrinsicID()) {
697    // If this is an intrinsic function, set the function's attributes
698    // to the intrinsic's attributes.
699    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
700                                                    (llvm::Intrinsic::ID)IID));
701    return;
702  }
703
704  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
705
706  if (!IsIncompleteFunction)
707    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
708
709  // Only a few attributes are set on declarations; these may later be
710  // overridden by a definition.
711
712  if (FD->hasAttr<DLLImportAttr>()) {
713    F->setLinkage(llvm::Function::DLLImportLinkage);
714  } else if (FD->hasAttr<WeakAttr>() ||
715             FD->isWeakImported()) {
716    // "extern_weak" is overloaded in LLVM; we probably should have
717    // separate linkage types for this.
718    F->setLinkage(llvm::Function::ExternalWeakLinkage);
719  } else {
720    F->setLinkage(llvm::Function::ExternalLinkage);
721
722    LinkageInfo LV = FD->getLinkageAndVisibility();
723    if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
724      F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
725    }
726  }
727
728  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
729    F->setSection(SA->getName());
730}
731
732void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
733  assert(!GV->isDeclaration() &&
734         "Only globals with definition can force usage.");
735  LLVMUsed.push_back(GV);
736}
737
738void CodeGenModule::EmitLLVMUsed() {
739  // Don't create llvm.used if there is no need.
740  if (LLVMUsed.empty())
741    return;
742
743  // Convert LLVMUsed to what ConstantArray needs.
744  SmallVector<llvm::Constant*, 8> UsedArray;
745  UsedArray.resize(LLVMUsed.size());
746  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
747    UsedArray[i] =
748     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
749                                    Int8PtrTy);
750  }
751
752  if (UsedArray.empty())
753    return;
754  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
755
756  llvm::GlobalVariable *GV =
757    new llvm::GlobalVariable(getModule(), ATy, false,
758                             llvm::GlobalValue::AppendingLinkage,
759                             llvm::ConstantArray::get(ATy, UsedArray),
760                             "llvm.used");
761
762  GV->setSection("llvm.metadata");
763}
764
765/// \brief Add link options implied by the given module, including modules
766/// it depends on, using a postorder walk.
767static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
768                                    Module *Mod,
769                                    SmallVectorImpl<llvm::Value *> &Metadata,
770                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
771  // Import this module's parent.
772  if (Mod->Parent && Visited.insert(Mod->Parent)) {
773    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
774  }
775
776  // Import this module's dependencies.
777  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
778    if (Visited.insert(Mod->Imports[I-1]))
779      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
780  }
781
782  // Add linker options to link against the libraries/frameworks
783  // described by this module.
784  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
785    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
786    // We need to know more about the linker to know how to encode these
787    // options propertly.
788
789    // Link against a framework.
790    if (Mod->LinkLibraries[I-1].IsFramework) {
791      llvm::Value *Args[2] = {
792        llvm::MDString::get(Context, "-framework"),
793        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
794      };
795
796      Metadata.push_back(llvm::MDNode::get(Context, Args));
797      continue;
798    }
799
800    // Link against a library.
801    llvm::Value *OptString
802    = llvm::MDString::get(Context,
803                          "-l" + Mod->LinkLibraries[I-1].Library);
804    Metadata.push_back(llvm::MDNode::get(Context, OptString));
805  }
806}
807
808void CodeGenModule::EmitModuleLinkOptions() {
809  // Collect the set of all of the modules we want to visit to emit link
810  // options, which is essentially the imported modules and all of their
811  // non-explicit child modules.
812  llvm::SetVector<clang::Module *> LinkModules;
813  llvm::SmallPtrSet<clang::Module *, 16> Visited;
814  SmallVector<clang::Module *, 16> Stack;
815
816  // Seed the stack with imported modules.
817  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
818                                               MEnd = ImportedModules.end();
819       M != MEnd; ++M) {
820    if (Visited.insert(*M))
821      Stack.push_back(*M);
822  }
823
824  // Find all of the modules to import, making a little effort to prune
825  // non-leaf modules.
826  while (!Stack.empty()) {
827    clang::Module *Mod = Stack.back();
828    Stack.pop_back();
829
830    bool AnyChildren = false;
831
832    // Visit the submodules of this module.
833    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
834                                        SubEnd = Mod->submodule_end();
835         Sub != SubEnd; ++Sub) {
836      // Skip explicit children; they need to be explicitly imported to be
837      // linked against.
838      if ((*Sub)->IsExplicit)
839        continue;
840
841      if (Visited.insert(*Sub)) {
842        Stack.push_back(*Sub);
843        AnyChildren = true;
844      }
845    }
846
847    // We didn't find any children, so add this module to the list of
848    // modules to link against.
849    if (!AnyChildren) {
850      LinkModules.insert(Mod);
851    }
852  }
853
854  // Add link options for all of the imported modules in reverse topological
855  // order.
856  SmallVector<llvm::Value *, 16> MetadataArgs;
857  Visited.clear();
858  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
859                                               MEnd = LinkModules.end();
860       M != MEnd; ++M) {
861    if (Visited.insert(*M))
862      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
863  }
864  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
865
866  // Add the linker options metadata flag.
867  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
868                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
869}
870
871void CodeGenModule::EmitDeferred() {
872  // Emit code for any potentially referenced deferred decls.  Since a
873  // previously unused static decl may become used during the generation of code
874  // for a static function, iterate until no changes are made.
875
876  while (true) {
877    if (!DeferredVTables.empty()) {
878      EmitDeferredVTables();
879
880      // Emitting a v-table doesn't directly cause more v-tables to
881      // become deferred, although it can cause functions to be
882      // emitted that then need those v-tables.
883      assert(DeferredVTables.empty());
884    }
885
886    // Stop if we're out of both deferred v-tables and deferred declarations.
887    if (DeferredDeclsToEmit.empty()) break;
888
889    GlobalDecl D = DeferredDeclsToEmit.back();
890    DeferredDeclsToEmit.pop_back();
891
892    // Check to see if we've already emitted this.  This is necessary
893    // for a couple of reasons: first, decls can end up in the
894    // deferred-decls queue multiple times, and second, decls can end
895    // up with definitions in unusual ways (e.g. by an extern inline
896    // function acquiring a strong function redefinition).  Just
897    // ignore these cases.
898    //
899    // TODO: That said, looking this up multiple times is very wasteful.
900    StringRef Name = getMangledName(D);
901    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
902    assert(CGRef && "Deferred decl wasn't referenced?");
903
904    if (!CGRef->isDeclaration())
905      continue;
906
907    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
908    // purposes an alias counts as a definition.
909    if (isa<llvm::GlobalAlias>(CGRef))
910      continue;
911
912    // Otherwise, emit the definition and move on to the next one.
913    EmitGlobalDefinition(D);
914  }
915}
916
917void CodeGenModule::EmitGlobalAnnotations() {
918  if (Annotations.empty())
919    return;
920
921  // Create a new global variable for the ConstantStruct in the Module.
922  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
923    Annotations[0]->getType(), Annotations.size()), Annotations);
924  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
925    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
926    "llvm.global.annotations");
927  gv->setSection(AnnotationSection);
928}
929
930llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
931  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
932  if (i != AnnotationStrings.end())
933    return i->second;
934
935  // Not found yet, create a new global.
936  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
937  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
938    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
939  gv->setSection(AnnotationSection);
940  gv->setUnnamedAddr(true);
941  AnnotationStrings[Str] = gv;
942  return gv;
943}
944
945llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
946  SourceManager &SM = getContext().getSourceManager();
947  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
948  if (PLoc.isValid())
949    return EmitAnnotationString(PLoc.getFilename());
950  return EmitAnnotationString(SM.getBufferName(Loc));
951}
952
953llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
954  SourceManager &SM = getContext().getSourceManager();
955  PresumedLoc PLoc = SM.getPresumedLoc(L);
956  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
957    SM.getExpansionLineNumber(L);
958  return llvm::ConstantInt::get(Int32Ty, LineNo);
959}
960
961llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
962                                                const AnnotateAttr *AA,
963                                                SourceLocation L) {
964  // Get the globals for file name, annotation, and the line number.
965  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
966                 *UnitGV = EmitAnnotationUnit(L),
967                 *LineNoCst = EmitAnnotationLineNo(L);
968
969  // Create the ConstantStruct for the global annotation.
970  llvm::Constant *Fields[4] = {
971    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
972    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
973    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
974    LineNoCst
975  };
976  return llvm::ConstantStruct::getAnon(Fields);
977}
978
979void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
980                                         llvm::GlobalValue *GV) {
981  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
982  // Get the struct elements for these annotations.
983  for (specific_attr_iterator<AnnotateAttr>
984       ai = D->specific_attr_begin<AnnotateAttr>(),
985       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
986    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
987}
988
989bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
990  // Never defer when EmitAllDecls is specified.
991  if (LangOpts.EmitAllDecls)
992    return false;
993
994  return !getContext().DeclMustBeEmitted(Global);
995}
996
997llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
998    const CXXUuidofExpr* E) {
999  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1000  // well-formed.
1001  StringRef Uuid;
1002  if (E->isTypeOperand())
1003    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1004  else {
1005    // Special case: __uuidof(0) means an all-zero GUID.
1006    Expr *Op = E->getExprOperand();
1007    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1008      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1009    else
1010      Uuid = "00000000-0000-0000-0000-000000000000";
1011  }
1012  std::string Name = "__uuid_" + Uuid.str();
1013
1014  // Look for an existing global.
1015  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1016    return GV;
1017
1018  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1019  assert(Init && "failed to initialize as constant");
1020
1021  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1022  // first field is declared as "long", which for many targets is 8 bytes.
1023  // Those architectures are not supported. (With the MS abi, long is always 4
1024  // bytes.)
1025  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1026  if (Init->getType() != GuidType) {
1027    DiagnosticsEngine &Diags = getDiags();
1028    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1029        "__uuidof codegen is not supported on this architecture");
1030    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1031    Init = llvm::UndefValue::get(GuidType);
1032  }
1033
1034  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1035      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1036  GV->setUnnamedAddr(true);
1037  return GV;
1038}
1039
1040llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1041  const AliasAttr *AA = VD->getAttr<AliasAttr>();
1042  assert(AA && "No alias?");
1043
1044  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1045
1046  // See if there is already something with the target's name in the module.
1047  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1048  if (Entry) {
1049    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1050    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1051  }
1052
1053  llvm::Constant *Aliasee;
1054  if (isa<llvm::FunctionType>(DeclTy))
1055    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1056                                      GlobalDecl(cast<FunctionDecl>(VD)),
1057                                      /*ForVTable=*/false);
1058  else
1059    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1060                                    llvm::PointerType::getUnqual(DeclTy), 0);
1061
1062  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1063  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1064  WeakRefReferences.insert(F);
1065
1066  return Aliasee;
1067}
1068
1069void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1070  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1071
1072  // Weak references don't produce any output by themselves.
1073  if (Global->hasAttr<WeakRefAttr>())
1074    return;
1075
1076  // If this is an alias definition (which otherwise looks like a declaration)
1077  // emit it now.
1078  if (Global->hasAttr<AliasAttr>())
1079    return EmitAliasDefinition(GD);
1080
1081  // If this is CUDA, be selective about which declarations we emit.
1082  if (LangOpts.CUDA) {
1083    if (CodeGenOpts.CUDAIsDevice) {
1084      if (!Global->hasAttr<CUDADeviceAttr>() &&
1085          !Global->hasAttr<CUDAGlobalAttr>() &&
1086          !Global->hasAttr<CUDAConstantAttr>() &&
1087          !Global->hasAttr<CUDASharedAttr>())
1088        return;
1089    } else {
1090      if (!Global->hasAttr<CUDAHostAttr>() && (
1091            Global->hasAttr<CUDADeviceAttr>() ||
1092            Global->hasAttr<CUDAConstantAttr>() ||
1093            Global->hasAttr<CUDASharedAttr>()))
1094        return;
1095    }
1096  }
1097
1098  // Ignore declarations, they will be emitted on their first use.
1099  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1100    // Forward declarations are emitted lazily on first use.
1101    if (!FD->doesThisDeclarationHaveABody()) {
1102      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1103        return;
1104
1105      const FunctionDecl *InlineDefinition = 0;
1106      FD->getBody(InlineDefinition);
1107
1108      StringRef MangledName = getMangledName(GD);
1109      DeferredDecls.erase(MangledName);
1110      EmitGlobalDefinition(InlineDefinition);
1111      return;
1112    }
1113  } else {
1114    const VarDecl *VD = cast<VarDecl>(Global);
1115    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1116
1117    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1118      return;
1119  }
1120
1121  // Defer code generation when possible if this is a static definition, inline
1122  // function etc.  These we only want to emit if they are used.
1123  if (!MayDeferGeneration(Global)) {
1124    // Emit the definition if it can't be deferred.
1125    EmitGlobalDefinition(GD);
1126    return;
1127  }
1128
1129  // If we're deferring emission of a C++ variable with an
1130  // initializer, remember the order in which it appeared in the file.
1131  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1132      cast<VarDecl>(Global)->hasInit()) {
1133    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1134    CXXGlobalInits.push_back(0);
1135  }
1136
1137  // If the value has already been used, add it directly to the
1138  // DeferredDeclsToEmit list.
1139  StringRef MangledName = getMangledName(GD);
1140  if (GetGlobalValue(MangledName))
1141    DeferredDeclsToEmit.push_back(GD);
1142  else {
1143    // Otherwise, remember that we saw a deferred decl with this name.  The
1144    // first use of the mangled name will cause it to move into
1145    // DeferredDeclsToEmit.
1146    DeferredDecls[MangledName] = GD;
1147  }
1148}
1149
1150namespace {
1151  struct FunctionIsDirectlyRecursive :
1152    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1153    const StringRef Name;
1154    const Builtin::Context &BI;
1155    bool Result;
1156    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1157      Name(N), BI(C), Result(false) {
1158    }
1159    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1160
1161    bool TraverseCallExpr(CallExpr *E) {
1162      const FunctionDecl *FD = E->getDirectCallee();
1163      if (!FD)
1164        return true;
1165      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1166      if (Attr && Name == Attr->getLabel()) {
1167        Result = true;
1168        return false;
1169      }
1170      unsigned BuiltinID = FD->getBuiltinID();
1171      if (!BuiltinID)
1172        return true;
1173      StringRef BuiltinName = BI.GetName(BuiltinID);
1174      if (BuiltinName.startswith("__builtin_") &&
1175          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1176        Result = true;
1177        return false;
1178      }
1179      return true;
1180    }
1181  };
1182}
1183
1184// isTriviallyRecursive - Check if this function calls another
1185// decl that, because of the asm attribute or the other decl being a builtin,
1186// ends up pointing to itself.
1187bool
1188CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1189  StringRef Name;
1190  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1191    // asm labels are a special kind of mangling we have to support.
1192    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1193    if (!Attr)
1194      return false;
1195    Name = Attr->getLabel();
1196  } else {
1197    Name = FD->getName();
1198  }
1199
1200  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1201  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1202  return Walker.Result;
1203}
1204
1205bool
1206CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1207  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1208    return true;
1209  if (CodeGenOpts.OptimizationLevel == 0 &&
1210      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1211    return false;
1212  // PR9614. Avoid cases where the source code is lying to us. An available
1213  // externally function should have an equivalent function somewhere else,
1214  // but a function that calls itself is clearly not equivalent to the real
1215  // implementation.
1216  // This happens in glibc's btowc and in some configure checks.
1217  return !isTriviallyRecursive(F);
1218}
1219
1220void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1221  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1222
1223  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1224                                 Context.getSourceManager(),
1225                                 "Generating code for declaration");
1226
1227  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1228    // At -O0, don't generate IR for functions with available_externally
1229    // linkage.
1230    if (!shouldEmitFunction(Function))
1231      return;
1232
1233    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1234      // Make sure to emit the definition(s) before we emit the thunks.
1235      // This is necessary for the generation of certain thunks.
1236      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1237        EmitCXXConstructor(CD, GD.getCtorType());
1238      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1239        EmitCXXDestructor(DD, GD.getDtorType());
1240      else
1241        EmitGlobalFunctionDefinition(GD);
1242
1243      if (Method->isVirtual())
1244        getVTables().EmitThunks(GD);
1245
1246      return;
1247    }
1248
1249    return EmitGlobalFunctionDefinition(GD);
1250  }
1251
1252  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1253    return EmitGlobalVarDefinition(VD);
1254
1255  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1256}
1257
1258/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1259/// module, create and return an llvm Function with the specified type. If there
1260/// is something in the module with the specified name, return it potentially
1261/// bitcasted to the right type.
1262///
1263/// If D is non-null, it specifies a decl that correspond to this.  This is used
1264/// to set the attributes on the function when it is first created.
1265llvm::Constant *
1266CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1267                                       llvm::Type *Ty,
1268                                       GlobalDecl D, bool ForVTable,
1269                                       llvm::AttributeSet ExtraAttrs) {
1270  // Lookup the entry, lazily creating it if necessary.
1271  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1272  if (Entry) {
1273    if (WeakRefReferences.erase(Entry)) {
1274      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1275      if (FD && !FD->hasAttr<WeakAttr>())
1276        Entry->setLinkage(llvm::Function::ExternalLinkage);
1277    }
1278
1279    if (Entry->getType()->getElementType() == Ty)
1280      return Entry;
1281
1282    // Make sure the result is of the correct type.
1283    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1284  }
1285
1286  // This function doesn't have a complete type (for example, the return
1287  // type is an incomplete struct). Use a fake type instead, and make
1288  // sure not to try to set attributes.
1289  bool IsIncompleteFunction = false;
1290
1291  llvm::FunctionType *FTy;
1292  if (isa<llvm::FunctionType>(Ty)) {
1293    FTy = cast<llvm::FunctionType>(Ty);
1294  } else {
1295    FTy = llvm::FunctionType::get(VoidTy, false);
1296    IsIncompleteFunction = true;
1297  }
1298
1299  llvm::Function *F = llvm::Function::Create(FTy,
1300                                             llvm::Function::ExternalLinkage,
1301                                             MangledName, &getModule());
1302  assert(F->getName() == MangledName && "name was uniqued!");
1303  if (D.getDecl())
1304    SetFunctionAttributes(D, F, IsIncompleteFunction);
1305  if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1306    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1307    F->addAttributes(llvm::AttributeSet::FunctionIndex,
1308                     llvm::AttributeSet::get(VMContext,
1309                                             llvm::AttributeSet::FunctionIndex,
1310                                             B));
1311  }
1312
1313  // This is the first use or definition of a mangled name.  If there is a
1314  // deferred decl with this name, remember that we need to emit it at the end
1315  // of the file.
1316  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1317  if (DDI != DeferredDecls.end()) {
1318    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1319    // list, and remove it from DeferredDecls (since we don't need it anymore).
1320    DeferredDeclsToEmit.push_back(DDI->second);
1321    DeferredDecls.erase(DDI);
1322
1323  // Otherwise, there are cases we have to worry about where we're
1324  // using a declaration for which we must emit a definition but where
1325  // we might not find a top-level definition:
1326  //   - member functions defined inline in their classes
1327  //   - friend functions defined inline in some class
1328  //   - special member functions with implicit definitions
1329  // If we ever change our AST traversal to walk into class methods,
1330  // this will be unnecessary.
1331  //
1332  // We also don't emit a definition for a function if it's going to be an entry
1333  // in a vtable, unless it's already marked as used.
1334  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1335    // Look for a declaration that's lexically in a record.
1336    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1337    FD = FD->getMostRecentDecl();
1338    do {
1339      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1340        if (FD->isImplicit() && !ForVTable) {
1341          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1342          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1343          break;
1344        } else if (FD->doesThisDeclarationHaveABody()) {
1345          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1346          break;
1347        }
1348      }
1349      FD = FD->getPreviousDecl();
1350    } while (FD);
1351  }
1352
1353  // Make sure the result is of the requested type.
1354  if (!IsIncompleteFunction) {
1355    assert(F->getType()->getElementType() == Ty);
1356    return F;
1357  }
1358
1359  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1360  return llvm::ConstantExpr::getBitCast(F, PTy);
1361}
1362
1363/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1364/// non-null, then this function will use the specified type if it has to
1365/// create it (this occurs when we see a definition of the function).
1366llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1367                                                 llvm::Type *Ty,
1368                                                 bool ForVTable) {
1369  // If there was no specific requested type, just convert it now.
1370  if (!Ty)
1371    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1372
1373  StringRef MangledName = getMangledName(GD);
1374  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1375}
1376
1377/// CreateRuntimeFunction - Create a new runtime function with the specified
1378/// type and name.
1379llvm::Constant *
1380CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1381                                     StringRef Name,
1382                                     llvm::AttributeSet ExtraAttrs) {
1383  llvm::Constant *C
1384    = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1385                              ExtraAttrs);
1386  if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1387    if (F->empty())
1388      F->setCallingConv(getRuntimeCC());
1389  return C;
1390}
1391
1392/// isTypeConstant - Determine whether an object of this type can be emitted
1393/// as a constant.
1394///
1395/// If ExcludeCtor is true, the duration when the object's constructor runs
1396/// will not be considered. The caller will need to verify that the object is
1397/// not written to during its construction.
1398bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1399  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1400    return false;
1401
1402  if (Context.getLangOpts().CPlusPlus) {
1403    if (const CXXRecordDecl *Record
1404          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1405      return ExcludeCtor && !Record->hasMutableFields() &&
1406             Record->hasTrivialDestructor();
1407  }
1408
1409  return true;
1410}
1411
1412/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1413/// create and return an llvm GlobalVariable with the specified type.  If there
1414/// is something in the module with the specified name, return it potentially
1415/// bitcasted to the right type.
1416///
1417/// If D is non-null, it specifies a decl that correspond to this.  This is used
1418/// to set the attributes on the global when it is first created.
1419llvm::Constant *
1420CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1421                                     llvm::PointerType *Ty,
1422                                     const VarDecl *D,
1423                                     bool UnnamedAddr) {
1424  // Lookup the entry, lazily creating it if necessary.
1425  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1426  if (Entry) {
1427    if (WeakRefReferences.erase(Entry)) {
1428      if (D && !D->hasAttr<WeakAttr>())
1429        Entry->setLinkage(llvm::Function::ExternalLinkage);
1430    }
1431
1432    if (UnnamedAddr)
1433      Entry->setUnnamedAddr(true);
1434
1435    if (Entry->getType() == Ty)
1436      return Entry;
1437
1438    // Make sure the result is of the correct type.
1439    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1440  }
1441
1442  // This is the first use or definition of a mangled name.  If there is a
1443  // deferred decl with this name, remember that we need to emit it at the end
1444  // of the file.
1445  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1446  if (DDI != DeferredDecls.end()) {
1447    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1448    // list, and remove it from DeferredDecls (since we don't need it anymore).
1449    DeferredDeclsToEmit.push_back(DDI->second);
1450    DeferredDecls.erase(DDI);
1451  }
1452
1453  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1454  llvm::GlobalVariable *GV =
1455    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1456                             llvm::GlobalValue::ExternalLinkage,
1457                             0, MangledName, 0,
1458                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1459
1460  // Handle things which are present even on external declarations.
1461  if (D) {
1462    // FIXME: This code is overly simple and should be merged with other global
1463    // handling.
1464    GV->setConstant(isTypeConstant(D->getType(), false));
1465
1466    // Set linkage and visibility in case we never see a definition.
1467    LinkageInfo LV = D->getLinkageAndVisibility();
1468    if (LV.getLinkage() != ExternalLinkage) {
1469      // Don't set internal linkage on declarations.
1470    } else {
1471      if (D->hasAttr<DLLImportAttr>())
1472        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1473      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1474        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1475
1476      // Set visibility on a declaration only if it's explicit.
1477      if (LV.isVisibilityExplicit())
1478        GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1479    }
1480
1481    if (D->getTLSKind()) {
1482      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1483        CXXThreadLocals.push_back(std::make_pair(D, GV));
1484      setTLSMode(GV, *D);
1485    }
1486  }
1487
1488  if (AddrSpace != Ty->getAddressSpace())
1489    return llvm::ConstantExpr::getBitCast(GV, Ty);
1490  else
1491    return GV;
1492}
1493
1494
1495llvm::GlobalVariable *
1496CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1497                                      llvm::Type *Ty,
1498                                      llvm::GlobalValue::LinkageTypes Linkage) {
1499  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1500  llvm::GlobalVariable *OldGV = 0;
1501
1502
1503  if (GV) {
1504    // Check if the variable has the right type.
1505    if (GV->getType()->getElementType() == Ty)
1506      return GV;
1507
1508    // Because C++ name mangling, the only way we can end up with an already
1509    // existing global with the same name is if it has been declared extern "C".
1510    assert(GV->isDeclaration() && "Declaration has wrong type!");
1511    OldGV = GV;
1512  }
1513
1514  // Create a new variable.
1515  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1516                                Linkage, 0, Name);
1517
1518  if (OldGV) {
1519    // Replace occurrences of the old variable if needed.
1520    GV->takeName(OldGV);
1521
1522    if (!OldGV->use_empty()) {
1523      llvm::Constant *NewPtrForOldDecl =
1524      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1525      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1526    }
1527
1528    OldGV->eraseFromParent();
1529  }
1530
1531  return GV;
1532}
1533
1534/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1535/// given global variable.  If Ty is non-null and if the global doesn't exist,
1536/// then it will be created with the specified type instead of whatever the
1537/// normal requested type would be.
1538llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1539                                                  llvm::Type *Ty) {
1540  assert(D->hasGlobalStorage() && "Not a global variable");
1541  QualType ASTTy = D->getType();
1542  if (Ty == 0)
1543    Ty = getTypes().ConvertTypeForMem(ASTTy);
1544
1545  llvm::PointerType *PTy =
1546    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1547
1548  StringRef MangledName = getMangledName(D);
1549  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1550}
1551
1552/// CreateRuntimeVariable - Create a new runtime global variable with the
1553/// specified type and name.
1554llvm::Constant *
1555CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1556                                     StringRef Name) {
1557  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1558                               true);
1559}
1560
1561void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1562  assert(!D->getInit() && "Cannot emit definite definitions here!");
1563
1564  if (MayDeferGeneration(D)) {
1565    // If we have not seen a reference to this variable yet, place it
1566    // into the deferred declarations table to be emitted if needed
1567    // later.
1568    StringRef MangledName = getMangledName(D);
1569    if (!GetGlobalValue(MangledName)) {
1570      DeferredDecls[MangledName] = D;
1571      return;
1572    }
1573  }
1574
1575  // The tentative definition is the only definition.
1576  EmitGlobalVarDefinition(D);
1577}
1578
1579CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1580    return Context.toCharUnitsFromBits(
1581      TheDataLayout.getTypeStoreSizeInBits(Ty));
1582}
1583
1584llvm::Constant *
1585CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1586                                                       const Expr *rawInit) {
1587  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1588  if (const ExprWithCleanups *withCleanups =
1589          dyn_cast<ExprWithCleanups>(rawInit)) {
1590    cleanups = withCleanups->getObjects();
1591    rawInit = withCleanups->getSubExpr();
1592  }
1593
1594  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1595  if (!init || !init->initializesStdInitializerList() ||
1596      init->getNumInits() == 0)
1597    return 0;
1598
1599  ASTContext &ctx = getContext();
1600  unsigned numInits = init->getNumInits();
1601  // FIXME: This check is here because we would otherwise silently miscompile
1602  // nested global std::initializer_lists. Better would be to have a real
1603  // implementation.
1604  for (unsigned i = 0; i < numInits; ++i) {
1605    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1606    if (inner && inner->initializesStdInitializerList()) {
1607      ErrorUnsupported(inner, "nested global std::initializer_list");
1608      return 0;
1609    }
1610  }
1611
1612  // Synthesize a fake VarDecl for the array and initialize that.
1613  QualType elementType = init->getInit(0)->getType();
1614  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1615  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1616                                                ArrayType::Normal, 0);
1617
1618  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1619  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1620                                              arrayType, D->getLocation());
1621  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1622                                                          D->getDeclContext()),
1623                                          D->getLocStart(), D->getLocation(),
1624                                          name, arrayType, sourceInfo,
1625                                          SC_Static);
1626  backingArray->setTSCSpec(D->getTSCSpec());
1627
1628  // Now clone the InitListExpr to initialize the array instead.
1629  // Incredible hack: we want to use the existing InitListExpr here, so we need
1630  // to tell it that it no longer initializes a std::initializer_list.
1631  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1632                        init->getNumInits());
1633  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1634                                           init->getRBraceLoc());
1635  arrayInit->setType(arrayType);
1636
1637  if (!cleanups.empty())
1638    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1639
1640  backingArray->setInit(arrayInit);
1641
1642  // Emit the definition of the array.
1643  EmitGlobalVarDefinition(backingArray);
1644
1645  // Inspect the initializer list to validate it and determine its type.
1646  // FIXME: doing this every time is probably inefficient; caching would be nice
1647  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1648  RecordDecl::field_iterator field = record->field_begin();
1649  if (field == record->field_end()) {
1650    ErrorUnsupported(D, "weird std::initializer_list");
1651    return 0;
1652  }
1653  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1654  // Start pointer.
1655  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1656    ErrorUnsupported(D, "weird std::initializer_list");
1657    return 0;
1658  }
1659  ++field;
1660  if (field == record->field_end()) {
1661    ErrorUnsupported(D, "weird std::initializer_list");
1662    return 0;
1663  }
1664  bool isStartEnd = false;
1665  if (ctx.hasSameType(field->getType(), elementPtr)) {
1666    // End pointer.
1667    isStartEnd = true;
1668  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1669    ErrorUnsupported(D, "weird std::initializer_list");
1670    return 0;
1671  }
1672
1673  // Now build an APValue representing the std::initializer_list.
1674  APValue initListValue(APValue::UninitStruct(), 0, 2);
1675  APValue &startField = initListValue.getStructField(0);
1676  APValue::LValuePathEntry startOffsetPathEntry;
1677  startOffsetPathEntry.ArrayIndex = 0;
1678  startField = APValue(APValue::LValueBase(backingArray),
1679                       CharUnits::fromQuantity(0),
1680                       llvm::makeArrayRef(startOffsetPathEntry),
1681                       /*IsOnePastTheEnd=*/false, 0);
1682
1683  if (isStartEnd) {
1684    APValue &endField = initListValue.getStructField(1);
1685    APValue::LValuePathEntry endOffsetPathEntry;
1686    endOffsetPathEntry.ArrayIndex = numInits;
1687    endField = APValue(APValue::LValueBase(backingArray),
1688                       ctx.getTypeSizeInChars(elementType) * numInits,
1689                       llvm::makeArrayRef(endOffsetPathEntry),
1690                       /*IsOnePastTheEnd=*/true, 0);
1691  } else {
1692    APValue &sizeField = initListValue.getStructField(1);
1693    sizeField = APValue(llvm::APSInt(numElements));
1694  }
1695
1696  // Emit the constant for the initializer_list.
1697  llvm::Constant *llvmInit =
1698      EmitConstantValueForMemory(initListValue, D->getType());
1699  assert(llvmInit && "failed to initialize as constant");
1700  return llvmInit;
1701}
1702
1703unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1704                                                 unsigned AddrSpace) {
1705  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1706    if (D->hasAttr<CUDAConstantAttr>())
1707      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1708    else if (D->hasAttr<CUDASharedAttr>())
1709      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1710    else
1711      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1712  }
1713
1714  return AddrSpace;
1715}
1716
1717template<typename SomeDecl>
1718void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1719                                               llvm::GlobalValue *GV) {
1720  if (!getLangOpts().CPlusPlus)
1721    return;
1722
1723  // Must have 'used' attribute, or else inline assembly can't rely on
1724  // the name existing.
1725  if (!D->template hasAttr<UsedAttr>())
1726    return;
1727
1728  // Must have internal linkage and an ordinary name.
1729  if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1730    return;
1731
1732  // Must be in an extern "C" context. Entities declared directly within
1733  // a record are not extern "C" even if the record is in such a context.
1734  const SomeDecl *First = D->getFirstDeclaration();
1735  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1736    return;
1737
1738  // OK, this is an internal linkage entity inside an extern "C" linkage
1739  // specification. Make a note of that so we can give it the "expected"
1740  // mangled name if nothing else is using that name.
1741  std::pair<StaticExternCMap::iterator, bool> R =
1742      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1743
1744  // If we have multiple internal linkage entities with the same name
1745  // in extern "C" regions, none of them gets that name.
1746  if (!R.second)
1747    R.first->second = 0;
1748}
1749
1750void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1751  llvm::Constant *Init = 0;
1752  QualType ASTTy = D->getType();
1753  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1754  bool NeedsGlobalCtor = false;
1755  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1756
1757  const VarDecl *InitDecl;
1758  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1759
1760  if (!InitExpr) {
1761    // This is a tentative definition; tentative definitions are
1762    // implicitly initialized with { 0 }.
1763    //
1764    // Note that tentative definitions are only emitted at the end of
1765    // a translation unit, so they should never have incomplete
1766    // type. In addition, EmitTentativeDefinition makes sure that we
1767    // never attempt to emit a tentative definition if a real one
1768    // exists. A use may still exists, however, so we still may need
1769    // to do a RAUW.
1770    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1771    Init = EmitNullConstant(D->getType());
1772  } else {
1773    // If this is a std::initializer_list, emit the special initializer.
1774    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1775    // An empty init list will perform zero-initialization, which happens
1776    // to be exactly what we want.
1777    // FIXME: It does so in a global constructor, which is *not* what we
1778    // want.
1779
1780    if (!Init) {
1781      initializedGlobalDecl = GlobalDecl(D);
1782      Init = EmitConstantInit(*InitDecl);
1783    }
1784    if (!Init) {
1785      QualType T = InitExpr->getType();
1786      if (D->getType()->isReferenceType())
1787        T = D->getType();
1788
1789      if (getLangOpts().CPlusPlus) {
1790        Init = EmitNullConstant(T);
1791        NeedsGlobalCtor = true;
1792      } else {
1793        ErrorUnsupported(D, "static initializer");
1794        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1795      }
1796    } else {
1797      // We don't need an initializer, so remove the entry for the delayed
1798      // initializer position (just in case this entry was delayed) if we
1799      // also don't need to register a destructor.
1800      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1801        DelayedCXXInitPosition.erase(D);
1802    }
1803  }
1804
1805  llvm::Type* InitType = Init->getType();
1806  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1807
1808  // Strip off a bitcast if we got one back.
1809  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1810    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1811           // all zero index gep.
1812           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1813    Entry = CE->getOperand(0);
1814  }
1815
1816  // Entry is now either a Function or GlobalVariable.
1817  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1818
1819  // We have a definition after a declaration with the wrong type.
1820  // We must make a new GlobalVariable* and update everything that used OldGV
1821  // (a declaration or tentative definition) with the new GlobalVariable*
1822  // (which will be a definition).
1823  //
1824  // This happens if there is a prototype for a global (e.g.
1825  // "extern int x[];") and then a definition of a different type (e.g.
1826  // "int x[10];"). This also happens when an initializer has a different type
1827  // from the type of the global (this happens with unions).
1828  if (GV == 0 ||
1829      GV->getType()->getElementType() != InitType ||
1830      GV->getType()->getAddressSpace() !=
1831       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1832
1833    // Move the old entry aside so that we'll create a new one.
1834    Entry->setName(StringRef());
1835
1836    // Make a new global with the correct type, this is now guaranteed to work.
1837    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1838
1839    // Replace all uses of the old global with the new global
1840    llvm::Constant *NewPtrForOldDecl =
1841        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1842    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1843
1844    // Erase the old global, since it is no longer used.
1845    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1846  }
1847
1848  MaybeHandleStaticInExternC(D, GV);
1849
1850  if (D->hasAttr<AnnotateAttr>())
1851    AddGlobalAnnotations(D, GV);
1852
1853  GV->setInitializer(Init);
1854
1855  // If it is safe to mark the global 'constant', do so now.
1856  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1857                  isTypeConstant(D->getType(), true));
1858
1859  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1860
1861  // Set the llvm linkage type as appropriate.
1862  llvm::GlobalValue::LinkageTypes Linkage =
1863    GetLLVMLinkageVarDefinition(D, GV);
1864  GV->setLinkage(Linkage);
1865  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1866    // common vars aren't constant even if declared const.
1867    GV->setConstant(false);
1868
1869  SetCommonAttributes(D, GV);
1870
1871  // Emit the initializer function if necessary.
1872  if (NeedsGlobalCtor || NeedsGlobalDtor)
1873    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1874
1875  // If we are compiling with ASan, add metadata indicating dynamically
1876  // initialized globals.
1877  if (SanOpts.Address && NeedsGlobalCtor) {
1878    llvm::Module &M = getModule();
1879
1880    llvm::NamedMDNode *DynamicInitializers =
1881        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1882    llvm::Value *GlobalToAdd[] = { GV };
1883    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1884    DynamicInitializers->addOperand(ThisGlobal);
1885  }
1886
1887  // Emit global variable debug information.
1888  if (CGDebugInfo *DI = getModuleDebugInfo())
1889    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1890      DI->EmitGlobalVariable(GV, D);
1891}
1892
1893llvm::GlobalValue::LinkageTypes
1894CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1895                                           llvm::GlobalVariable *GV) {
1896  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1897  if (Linkage == GVA_Internal)
1898    return llvm::Function::InternalLinkage;
1899  else if (D->hasAttr<DLLImportAttr>())
1900    return llvm::Function::DLLImportLinkage;
1901  else if (D->hasAttr<DLLExportAttr>())
1902    return llvm::Function::DLLExportLinkage;
1903  else if (D->hasAttr<WeakAttr>()) {
1904    if (GV->isConstant())
1905      return llvm::GlobalVariable::WeakODRLinkage;
1906    else
1907      return llvm::GlobalVariable::WeakAnyLinkage;
1908  } else if (Linkage == GVA_TemplateInstantiation ||
1909             Linkage == GVA_ExplicitTemplateInstantiation)
1910    return llvm::GlobalVariable::WeakODRLinkage;
1911  else if (!getLangOpts().CPlusPlus &&
1912           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1913             D->getAttr<CommonAttr>()) &&
1914           !D->hasExternalStorage() && !D->getInit() &&
1915           !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1916           !D->getAttr<WeakImportAttr>()) {
1917    // Thread local vars aren't considered common linkage.
1918    return llvm::GlobalVariable::CommonLinkage;
1919  } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1920             getTarget().getTriple().isMacOSX())
1921    // On Darwin, the backing variable for a C++11 thread_local variable always
1922    // has internal linkage; all accesses should just be calls to the
1923    // Itanium-specified entry point, which has the normal linkage of the
1924    // variable.
1925    return llvm::GlobalValue::InternalLinkage;
1926  return llvm::GlobalVariable::ExternalLinkage;
1927}
1928
1929/// Replace the uses of a function that was declared with a non-proto type.
1930/// We want to silently drop extra arguments from call sites
1931static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1932                                          llvm::Function *newFn) {
1933  // Fast path.
1934  if (old->use_empty()) return;
1935
1936  llvm::Type *newRetTy = newFn->getReturnType();
1937  SmallVector<llvm::Value*, 4> newArgs;
1938
1939  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1940         ui != ue; ) {
1941    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1942    llvm::User *user = *use;
1943
1944    // Recognize and replace uses of bitcasts.  Most calls to
1945    // unprototyped functions will use bitcasts.
1946    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1947      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1948        replaceUsesOfNonProtoConstant(bitcast, newFn);
1949      continue;
1950    }
1951
1952    // Recognize calls to the function.
1953    llvm::CallSite callSite(user);
1954    if (!callSite) continue;
1955    if (!callSite.isCallee(use)) continue;
1956
1957    // If the return types don't match exactly, then we can't
1958    // transform this call unless it's dead.
1959    if (callSite->getType() != newRetTy && !callSite->use_empty())
1960      continue;
1961
1962    // Get the call site's attribute list.
1963    SmallVector<llvm::AttributeSet, 8> newAttrs;
1964    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1965
1966    // Collect any return attributes from the call.
1967    if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1968      newAttrs.push_back(
1969        llvm::AttributeSet::get(newFn->getContext(),
1970                                oldAttrs.getRetAttributes()));
1971
1972    // If the function was passed too few arguments, don't transform.
1973    unsigned newNumArgs = newFn->arg_size();
1974    if (callSite.arg_size() < newNumArgs) continue;
1975
1976    // If extra arguments were passed, we silently drop them.
1977    // If any of the types mismatch, we don't transform.
1978    unsigned argNo = 0;
1979    bool dontTransform = false;
1980    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1981           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1982      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1983        dontTransform = true;
1984        break;
1985      }
1986
1987      // Add any parameter attributes.
1988      if (oldAttrs.hasAttributes(argNo + 1))
1989        newAttrs.
1990          push_back(llvm::
1991                    AttributeSet::get(newFn->getContext(),
1992                                      oldAttrs.getParamAttributes(argNo + 1)));
1993    }
1994    if (dontTransform)
1995      continue;
1996
1997    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1998      newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1999                                                 oldAttrs.getFnAttributes()));
2000
2001    // Okay, we can transform this.  Create the new call instruction and copy
2002    // over the required information.
2003    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2004
2005    llvm::CallSite newCall;
2006    if (callSite.isCall()) {
2007      newCall = llvm::CallInst::Create(newFn, newArgs, "",
2008                                       callSite.getInstruction());
2009    } else {
2010      llvm::InvokeInst *oldInvoke =
2011        cast<llvm::InvokeInst>(callSite.getInstruction());
2012      newCall = llvm::InvokeInst::Create(newFn,
2013                                         oldInvoke->getNormalDest(),
2014                                         oldInvoke->getUnwindDest(),
2015                                         newArgs, "",
2016                                         callSite.getInstruction());
2017    }
2018    newArgs.clear(); // for the next iteration
2019
2020    if (!newCall->getType()->isVoidTy())
2021      newCall->takeName(callSite.getInstruction());
2022    newCall.setAttributes(
2023                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2024    newCall.setCallingConv(callSite.getCallingConv());
2025
2026    // Finally, remove the old call, replacing any uses with the new one.
2027    if (!callSite->use_empty())
2028      callSite->replaceAllUsesWith(newCall.getInstruction());
2029
2030    // Copy debug location attached to CI.
2031    if (!callSite->getDebugLoc().isUnknown())
2032      newCall->setDebugLoc(callSite->getDebugLoc());
2033    callSite->eraseFromParent();
2034  }
2035}
2036
2037/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2038/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2039/// existing call uses of the old function in the module, this adjusts them to
2040/// call the new function directly.
2041///
2042/// This is not just a cleanup: the always_inline pass requires direct calls to
2043/// functions to be able to inline them.  If there is a bitcast in the way, it
2044/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2045/// run at -O0.
2046static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2047                                                      llvm::Function *NewFn) {
2048  // If we're redefining a global as a function, don't transform it.
2049  if (!isa<llvm::Function>(Old)) return;
2050
2051  replaceUsesOfNonProtoConstant(Old, NewFn);
2052}
2053
2054void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2055  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2056  // If we have a definition, this might be a deferred decl. If the
2057  // instantiation is explicit, make sure we emit it at the end.
2058  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2059    GetAddrOfGlobalVar(VD);
2060
2061  EmitTopLevelDecl(VD);
2062}
2063
2064void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2065  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2066
2067  // Compute the function info and LLVM type.
2068  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2069  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2070
2071  // Get or create the prototype for the function.
2072  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2073
2074  // Strip off a bitcast if we got one back.
2075  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2076    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2077    Entry = CE->getOperand(0);
2078  }
2079
2080
2081  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2082    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2083
2084    // If the types mismatch then we have to rewrite the definition.
2085    assert(OldFn->isDeclaration() &&
2086           "Shouldn't replace non-declaration");
2087
2088    // F is the Function* for the one with the wrong type, we must make a new
2089    // Function* and update everything that used F (a declaration) with the new
2090    // Function* (which will be a definition).
2091    //
2092    // This happens if there is a prototype for a function
2093    // (e.g. "int f()") and then a definition of a different type
2094    // (e.g. "int f(int x)").  Move the old function aside so that it
2095    // doesn't interfere with GetAddrOfFunction.
2096    OldFn->setName(StringRef());
2097    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2098
2099    // This might be an implementation of a function without a
2100    // prototype, in which case, try to do special replacement of
2101    // calls which match the new prototype.  The really key thing here
2102    // is that we also potentially drop arguments from the call site
2103    // so as to make a direct call, which makes the inliner happier
2104    // and suppresses a number of optimizer warnings (!) about
2105    // dropping arguments.
2106    if (!OldFn->use_empty()) {
2107      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2108      OldFn->removeDeadConstantUsers();
2109    }
2110
2111    // Replace uses of F with the Function we will endow with a body.
2112    if (!Entry->use_empty()) {
2113      llvm::Constant *NewPtrForOldDecl =
2114        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2115      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2116    }
2117
2118    // Ok, delete the old function now, which is dead.
2119    OldFn->eraseFromParent();
2120
2121    Entry = NewFn;
2122  }
2123
2124  // We need to set linkage and visibility on the function before
2125  // generating code for it because various parts of IR generation
2126  // want to propagate this information down (e.g. to local static
2127  // declarations).
2128  llvm::Function *Fn = cast<llvm::Function>(Entry);
2129  setFunctionLinkage(D, Fn);
2130
2131  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2132  setGlobalVisibility(Fn, D);
2133
2134  MaybeHandleStaticInExternC(D, Fn);
2135
2136  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2137
2138  SetFunctionDefinitionAttributes(D, Fn);
2139  SetLLVMFunctionAttributesForDefinition(D, Fn);
2140
2141  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2142    AddGlobalCtor(Fn, CA->getPriority());
2143  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2144    AddGlobalDtor(Fn, DA->getPriority());
2145  if (D->hasAttr<AnnotateAttr>())
2146    AddGlobalAnnotations(D, Fn);
2147}
2148
2149void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2150  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2151  const AliasAttr *AA = D->getAttr<AliasAttr>();
2152  assert(AA && "Not an alias?");
2153
2154  StringRef MangledName = getMangledName(GD);
2155
2156  // If there is a definition in the module, then it wins over the alias.
2157  // This is dubious, but allow it to be safe.  Just ignore the alias.
2158  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2159  if (Entry && !Entry->isDeclaration())
2160    return;
2161
2162  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2163
2164  // Create a reference to the named value.  This ensures that it is emitted
2165  // if a deferred decl.
2166  llvm::Constant *Aliasee;
2167  if (isa<llvm::FunctionType>(DeclTy))
2168    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2169                                      /*ForVTable=*/false);
2170  else
2171    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2172                                    llvm::PointerType::getUnqual(DeclTy), 0);
2173
2174  // Create the new alias itself, but don't set a name yet.
2175  llvm::GlobalValue *GA =
2176    new llvm::GlobalAlias(Aliasee->getType(),
2177                          llvm::Function::ExternalLinkage,
2178                          "", Aliasee, &getModule());
2179
2180  if (Entry) {
2181    assert(Entry->isDeclaration());
2182
2183    // If there is a declaration in the module, then we had an extern followed
2184    // by the alias, as in:
2185    //   extern int test6();
2186    //   ...
2187    //   int test6() __attribute__((alias("test7")));
2188    //
2189    // Remove it and replace uses of it with the alias.
2190    GA->takeName(Entry);
2191
2192    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2193                                                          Entry->getType()));
2194    Entry->eraseFromParent();
2195  } else {
2196    GA->setName(MangledName);
2197  }
2198
2199  // Set attributes which are particular to an alias; this is a
2200  // specialization of the attributes which may be set on a global
2201  // variable/function.
2202  if (D->hasAttr<DLLExportAttr>()) {
2203    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2204      // The dllexport attribute is ignored for undefined symbols.
2205      if (FD->hasBody())
2206        GA->setLinkage(llvm::Function::DLLExportLinkage);
2207    } else {
2208      GA->setLinkage(llvm::Function::DLLExportLinkage);
2209    }
2210  } else if (D->hasAttr<WeakAttr>() ||
2211             D->hasAttr<WeakRefAttr>() ||
2212             D->isWeakImported()) {
2213    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2214  }
2215
2216  SetCommonAttributes(D, GA);
2217}
2218
2219llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2220                                            ArrayRef<llvm::Type*> Tys) {
2221  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2222                                         Tys);
2223}
2224
2225static llvm::StringMapEntry<llvm::Constant*> &
2226GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2227                         const StringLiteral *Literal,
2228                         bool TargetIsLSB,
2229                         bool &IsUTF16,
2230                         unsigned &StringLength) {
2231  StringRef String = Literal->getString();
2232  unsigned NumBytes = String.size();
2233
2234  // Check for simple case.
2235  if (!Literal->containsNonAsciiOrNull()) {
2236    StringLength = NumBytes;
2237    return Map.GetOrCreateValue(String);
2238  }
2239
2240  // Otherwise, convert the UTF8 literals into a string of shorts.
2241  IsUTF16 = true;
2242
2243  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2244  const UTF8 *FromPtr = (const UTF8 *)String.data();
2245  UTF16 *ToPtr = &ToBuf[0];
2246
2247  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2248                           &ToPtr, ToPtr + NumBytes,
2249                           strictConversion);
2250
2251  // ConvertUTF8toUTF16 returns the length in ToPtr.
2252  StringLength = ToPtr - &ToBuf[0];
2253
2254  // Add an explicit null.
2255  *ToPtr = 0;
2256  return Map.
2257    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2258                               (StringLength + 1) * 2));
2259}
2260
2261static llvm::StringMapEntry<llvm::Constant*> &
2262GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2263                       const StringLiteral *Literal,
2264                       unsigned &StringLength) {
2265  StringRef String = Literal->getString();
2266  StringLength = String.size();
2267  return Map.GetOrCreateValue(String);
2268}
2269
2270llvm::Constant *
2271CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2272  unsigned StringLength = 0;
2273  bool isUTF16 = false;
2274  llvm::StringMapEntry<llvm::Constant*> &Entry =
2275    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2276                             getDataLayout().isLittleEndian(),
2277                             isUTF16, StringLength);
2278
2279  if (llvm::Constant *C = Entry.getValue())
2280    return C;
2281
2282  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2283  llvm::Constant *Zeros[] = { Zero, Zero };
2284  llvm::Value *V;
2285
2286  // If we don't already have it, get __CFConstantStringClassReference.
2287  if (!CFConstantStringClassRef) {
2288    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2289    Ty = llvm::ArrayType::get(Ty, 0);
2290    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2291                                           "__CFConstantStringClassReference");
2292    // Decay array -> ptr
2293    V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2294    CFConstantStringClassRef = V;
2295  }
2296  else
2297    V = CFConstantStringClassRef;
2298
2299  QualType CFTy = getContext().getCFConstantStringType();
2300
2301  llvm::StructType *STy =
2302    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2303
2304  llvm::Constant *Fields[4];
2305
2306  // Class pointer.
2307  Fields[0] = cast<llvm::ConstantExpr>(V);
2308
2309  // Flags.
2310  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2311  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2312    llvm::ConstantInt::get(Ty, 0x07C8);
2313
2314  // String pointer.
2315  llvm::Constant *C = 0;
2316  if (isUTF16) {
2317    ArrayRef<uint16_t> Arr =
2318      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2319                                     const_cast<char *>(Entry.getKey().data())),
2320                                   Entry.getKey().size() / 2);
2321    C = llvm::ConstantDataArray::get(VMContext, Arr);
2322  } else {
2323    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2324  }
2325
2326  llvm::GlobalValue::LinkageTypes Linkage;
2327  if (isUTF16)
2328    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2329    Linkage = llvm::GlobalValue::InternalLinkage;
2330  else
2331    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2332    // when using private linkage. It is not clear if this is a bug in ld
2333    // or a reasonable new restriction.
2334    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2335
2336  // Note: -fwritable-strings doesn't make the backing store strings of
2337  // CFStrings writable. (See <rdar://problem/10657500>)
2338  llvm::GlobalVariable *GV =
2339    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2340                             Linkage, C, ".str");
2341  GV->setUnnamedAddr(true);
2342  // Don't enforce the target's minimum global alignment, since the only use
2343  // of the string is via this class initializer.
2344  if (isUTF16) {
2345    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2346    GV->setAlignment(Align.getQuantity());
2347  } else {
2348    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2349    GV->setAlignment(Align.getQuantity());
2350  }
2351
2352  // String.
2353  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2354
2355  if (isUTF16)
2356    // Cast the UTF16 string to the correct type.
2357    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2358
2359  // String length.
2360  Ty = getTypes().ConvertType(getContext().LongTy);
2361  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2362
2363  // The struct.
2364  C = llvm::ConstantStruct::get(STy, Fields);
2365  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2366                                llvm::GlobalVariable::PrivateLinkage, C,
2367                                "_unnamed_cfstring_");
2368  if (const char *Sect = getTarget().getCFStringSection())
2369    GV->setSection(Sect);
2370  Entry.setValue(GV);
2371
2372  return GV;
2373}
2374
2375static RecordDecl *
2376CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2377                 DeclContext *DC, IdentifierInfo *Id) {
2378  SourceLocation Loc;
2379  if (Ctx.getLangOpts().CPlusPlus)
2380    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2381  else
2382    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2383}
2384
2385llvm::Constant *
2386CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2387  unsigned StringLength = 0;
2388  llvm::StringMapEntry<llvm::Constant*> &Entry =
2389    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2390
2391  if (llvm::Constant *C = Entry.getValue())
2392    return C;
2393
2394  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2395  llvm::Constant *Zeros[] = { Zero, Zero };
2396  llvm::Value *V;
2397  // If we don't already have it, get _NSConstantStringClassReference.
2398  if (!ConstantStringClassRef) {
2399    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2400    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2401    llvm::Constant *GV;
2402    if (LangOpts.ObjCRuntime.isNonFragile()) {
2403      std::string str =
2404        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2405                            : "OBJC_CLASS_$_" + StringClass;
2406      GV = getObjCRuntime().GetClassGlobal(str);
2407      // Make sure the result is of the correct type.
2408      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2409      V = llvm::ConstantExpr::getBitCast(GV, PTy);
2410      ConstantStringClassRef = V;
2411    } else {
2412      std::string str =
2413        StringClass.empty() ? "_NSConstantStringClassReference"
2414                            : "_" + StringClass + "ClassReference";
2415      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2416      GV = CreateRuntimeVariable(PTy, str);
2417      // Decay array -> ptr
2418      V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2419      ConstantStringClassRef = V;
2420    }
2421  }
2422  else
2423    V = ConstantStringClassRef;
2424
2425  if (!NSConstantStringType) {
2426    // Construct the type for a constant NSString.
2427    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2428                                     Context.getTranslationUnitDecl(),
2429                                   &Context.Idents.get("__builtin_NSString"));
2430    D->startDefinition();
2431
2432    QualType FieldTypes[3];
2433
2434    // const int *isa;
2435    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2436    // const char *str;
2437    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2438    // unsigned int length;
2439    FieldTypes[2] = Context.UnsignedIntTy;
2440
2441    // Create fields
2442    for (unsigned i = 0; i < 3; ++i) {
2443      FieldDecl *Field = FieldDecl::Create(Context, D,
2444                                           SourceLocation(),
2445                                           SourceLocation(), 0,
2446                                           FieldTypes[i], /*TInfo=*/0,
2447                                           /*BitWidth=*/0,
2448                                           /*Mutable=*/false,
2449                                           ICIS_NoInit);
2450      Field->setAccess(AS_public);
2451      D->addDecl(Field);
2452    }
2453
2454    D->completeDefinition();
2455    QualType NSTy = Context.getTagDeclType(D);
2456    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2457  }
2458
2459  llvm::Constant *Fields[3];
2460
2461  // Class pointer.
2462  Fields[0] = cast<llvm::ConstantExpr>(V);
2463
2464  // String pointer.
2465  llvm::Constant *C =
2466    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2467
2468  llvm::GlobalValue::LinkageTypes Linkage;
2469  bool isConstant;
2470  Linkage = llvm::GlobalValue::PrivateLinkage;
2471  isConstant = !LangOpts.WritableStrings;
2472
2473  llvm::GlobalVariable *GV =
2474  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2475                           ".str");
2476  GV->setUnnamedAddr(true);
2477  // Don't enforce the target's minimum global alignment, since the only use
2478  // of the string is via this class initializer.
2479  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2480  GV->setAlignment(Align.getQuantity());
2481  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2482
2483  // String length.
2484  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2485  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2486
2487  // The struct.
2488  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2489  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2490                                llvm::GlobalVariable::PrivateLinkage, C,
2491                                "_unnamed_nsstring_");
2492  // FIXME. Fix section.
2493  if (const char *Sect =
2494        LangOpts.ObjCRuntime.isNonFragile()
2495          ? getTarget().getNSStringNonFragileABISection()
2496          : getTarget().getNSStringSection())
2497    GV->setSection(Sect);
2498  Entry.setValue(GV);
2499
2500  return GV;
2501}
2502
2503QualType CodeGenModule::getObjCFastEnumerationStateType() {
2504  if (ObjCFastEnumerationStateType.isNull()) {
2505    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2506                                     Context.getTranslationUnitDecl(),
2507                      &Context.Idents.get("__objcFastEnumerationState"));
2508    D->startDefinition();
2509
2510    QualType FieldTypes[] = {
2511      Context.UnsignedLongTy,
2512      Context.getPointerType(Context.getObjCIdType()),
2513      Context.getPointerType(Context.UnsignedLongTy),
2514      Context.getConstantArrayType(Context.UnsignedLongTy,
2515                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2516    };
2517
2518    for (size_t i = 0; i < 4; ++i) {
2519      FieldDecl *Field = FieldDecl::Create(Context,
2520                                           D,
2521                                           SourceLocation(),
2522                                           SourceLocation(), 0,
2523                                           FieldTypes[i], /*TInfo=*/0,
2524                                           /*BitWidth=*/0,
2525                                           /*Mutable=*/false,
2526                                           ICIS_NoInit);
2527      Field->setAccess(AS_public);
2528      D->addDecl(Field);
2529    }
2530
2531    D->completeDefinition();
2532    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2533  }
2534
2535  return ObjCFastEnumerationStateType;
2536}
2537
2538llvm::Constant *
2539CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2540  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2541
2542  // Don't emit it as the address of the string, emit the string data itself
2543  // as an inline array.
2544  if (E->getCharByteWidth() == 1) {
2545    SmallString<64> Str(E->getString());
2546
2547    // Resize the string to the right size, which is indicated by its type.
2548    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2549    Str.resize(CAT->getSize().getZExtValue());
2550    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2551  }
2552
2553  llvm::ArrayType *AType =
2554    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2555  llvm::Type *ElemTy = AType->getElementType();
2556  unsigned NumElements = AType->getNumElements();
2557
2558  // Wide strings have either 2-byte or 4-byte elements.
2559  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2560    SmallVector<uint16_t, 32> Elements;
2561    Elements.reserve(NumElements);
2562
2563    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2564      Elements.push_back(E->getCodeUnit(i));
2565    Elements.resize(NumElements);
2566    return llvm::ConstantDataArray::get(VMContext, Elements);
2567  }
2568
2569  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2570  SmallVector<uint32_t, 32> Elements;
2571  Elements.reserve(NumElements);
2572
2573  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2574    Elements.push_back(E->getCodeUnit(i));
2575  Elements.resize(NumElements);
2576  return llvm::ConstantDataArray::get(VMContext, Elements);
2577}
2578
2579/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2580/// constant array for the given string literal.
2581llvm::Constant *
2582CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2583  CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2584  if (S->isAscii() || S->isUTF8()) {
2585    SmallString<64> Str(S->getString());
2586
2587    // Resize the string to the right size, which is indicated by its type.
2588    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2589    Str.resize(CAT->getSize().getZExtValue());
2590    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2591  }
2592
2593  // FIXME: the following does not memoize wide strings.
2594  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2595  llvm::GlobalVariable *GV =
2596    new llvm::GlobalVariable(getModule(),C->getType(),
2597                             !LangOpts.WritableStrings,
2598                             llvm::GlobalValue::PrivateLinkage,
2599                             C,".str");
2600
2601  GV->setAlignment(Align.getQuantity());
2602  GV->setUnnamedAddr(true);
2603  return GV;
2604}
2605
2606/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2607/// array for the given ObjCEncodeExpr node.
2608llvm::Constant *
2609CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2610  std::string Str;
2611  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2612
2613  return GetAddrOfConstantCString(Str);
2614}
2615
2616
2617/// GenerateWritableString -- Creates storage for a string literal.
2618static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2619                                             bool constant,
2620                                             CodeGenModule &CGM,
2621                                             const char *GlobalName,
2622                                             unsigned Alignment) {
2623  // Create Constant for this string literal. Don't add a '\0'.
2624  llvm::Constant *C =
2625      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2626
2627  // Create a global variable for this string
2628  llvm::GlobalVariable *GV =
2629    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2630                             llvm::GlobalValue::PrivateLinkage,
2631                             C, GlobalName);
2632  GV->setAlignment(Alignment);
2633  GV->setUnnamedAddr(true);
2634  return GV;
2635}
2636
2637/// GetAddrOfConstantString - Returns a pointer to a character array
2638/// containing the literal. This contents are exactly that of the
2639/// given string, i.e. it will not be null terminated automatically;
2640/// see GetAddrOfConstantCString. Note that whether the result is
2641/// actually a pointer to an LLVM constant depends on
2642/// Feature.WriteableStrings.
2643///
2644/// The result has pointer to array type.
2645llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2646                                                       const char *GlobalName,
2647                                                       unsigned Alignment) {
2648  // Get the default prefix if a name wasn't specified.
2649  if (!GlobalName)
2650    GlobalName = ".str";
2651
2652  if (Alignment == 0)
2653    Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2654      .getQuantity();
2655
2656  // Don't share any string literals if strings aren't constant.
2657  if (LangOpts.WritableStrings)
2658    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2659
2660  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2661    ConstantStringMap.GetOrCreateValue(Str);
2662
2663  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2664    if (Alignment > GV->getAlignment()) {
2665      GV->setAlignment(Alignment);
2666    }
2667    return GV;
2668  }
2669
2670  // Create a global variable for this.
2671  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2672                                                   Alignment);
2673  Entry.setValue(GV);
2674  return GV;
2675}
2676
2677/// GetAddrOfConstantCString - Returns a pointer to a character
2678/// array containing the literal and a terminating '\0'
2679/// character. The result has pointer to array type.
2680llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2681                                                        const char *GlobalName,
2682                                                        unsigned Alignment) {
2683  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2684  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2685}
2686
2687/// EmitObjCPropertyImplementations - Emit information for synthesized
2688/// properties for an implementation.
2689void CodeGenModule::EmitObjCPropertyImplementations(const
2690                                                    ObjCImplementationDecl *D) {
2691  for (ObjCImplementationDecl::propimpl_iterator
2692         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2693    ObjCPropertyImplDecl *PID = *i;
2694
2695    // Dynamic is just for type-checking.
2696    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2697      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2698
2699      // Determine which methods need to be implemented, some may have
2700      // been overridden. Note that ::isPropertyAccessor is not the method
2701      // we want, that just indicates if the decl came from a
2702      // property. What we want to know is if the method is defined in
2703      // this implementation.
2704      if (!D->getInstanceMethod(PD->getGetterName()))
2705        CodeGenFunction(*this).GenerateObjCGetter(
2706                                 const_cast<ObjCImplementationDecl *>(D), PID);
2707      if (!PD->isReadOnly() &&
2708          !D->getInstanceMethod(PD->getSetterName()))
2709        CodeGenFunction(*this).GenerateObjCSetter(
2710                                 const_cast<ObjCImplementationDecl *>(D), PID);
2711    }
2712  }
2713}
2714
2715static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2716  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2717  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2718       ivar; ivar = ivar->getNextIvar())
2719    if (ivar->getType().isDestructedType())
2720      return true;
2721
2722  return false;
2723}
2724
2725/// EmitObjCIvarInitializations - Emit information for ivar initialization
2726/// for an implementation.
2727void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2728  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2729  if (needsDestructMethod(D)) {
2730    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2731    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2732    ObjCMethodDecl *DTORMethod =
2733      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2734                             cxxSelector, getContext().VoidTy, 0, D,
2735                             /*isInstance=*/true, /*isVariadic=*/false,
2736                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2737                             /*isDefined=*/false, ObjCMethodDecl::Required);
2738    D->addInstanceMethod(DTORMethod);
2739    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2740    D->setHasDestructors(true);
2741  }
2742
2743  // If the implementation doesn't have any ivar initializers, we don't need
2744  // a .cxx_construct.
2745  if (D->getNumIvarInitializers() == 0)
2746    return;
2747
2748  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2749  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2750  // The constructor returns 'self'.
2751  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2752                                                D->getLocation(),
2753                                                D->getLocation(),
2754                                                cxxSelector,
2755                                                getContext().getObjCIdType(), 0,
2756                                                D, /*isInstance=*/true,
2757                                                /*isVariadic=*/false,
2758                                                /*isPropertyAccessor=*/true,
2759                                                /*isImplicitlyDeclared=*/true,
2760                                                /*isDefined=*/false,
2761                                                ObjCMethodDecl::Required);
2762  D->addInstanceMethod(CTORMethod);
2763  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2764  D->setHasNonZeroConstructors(true);
2765}
2766
2767/// EmitNamespace - Emit all declarations in a namespace.
2768void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2769  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2770       I != E; ++I)
2771    EmitTopLevelDecl(*I);
2772}
2773
2774// EmitLinkageSpec - Emit all declarations in a linkage spec.
2775void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2776  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2777      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2778    ErrorUnsupported(LSD, "linkage spec");
2779    return;
2780  }
2781
2782  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2783       I != E; ++I) {
2784    // Meta-data for ObjC class includes references to implemented methods.
2785    // Generate class's method definitions first.
2786    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2787      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2788           MEnd = OID->meth_end();
2789           M != MEnd; ++M)
2790        EmitTopLevelDecl(*M);
2791    }
2792    EmitTopLevelDecl(*I);
2793  }
2794}
2795
2796/// EmitTopLevelDecl - Emit code for a single top level declaration.
2797void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2798  // If an error has occurred, stop code generation, but continue
2799  // parsing and semantic analysis (to ensure all warnings and errors
2800  // are emitted).
2801  if (Diags.hasErrorOccurred())
2802    return;
2803
2804  // Ignore dependent declarations.
2805  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2806    return;
2807
2808  switch (D->getKind()) {
2809  case Decl::CXXConversion:
2810  case Decl::CXXMethod:
2811  case Decl::Function:
2812    // Skip function templates
2813    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2814        cast<FunctionDecl>(D)->isLateTemplateParsed())
2815      return;
2816
2817    EmitGlobal(cast<FunctionDecl>(D));
2818    break;
2819
2820  case Decl::Var:
2821    EmitGlobal(cast<VarDecl>(D));
2822    break;
2823
2824  // Indirect fields from global anonymous structs and unions can be
2825  // ignored; only the actual variable requires IR gen support.
2826  case Decl::IndirectField:
2827    break;
2828
2829  // C++ Decls
2830  case Decl::Namespace:
2831    EmitNamespace(cast<NamespaceDecl>(D));
2832    break;
2833    // No code generation needed.
2834  case Decl::UsingShadow:
2835  case Decl::Using:
2836  case Decl::ClassTemplate:
2837  case Decl::FunctionTemplate:
2838  case Decl::TypeAliasTemplate:
2839  case Decl::NamespaceAlias:
2840  case Decl::Block:
2841  case Decl::Empty:
2842    break;
2843  case Decl::UsingDirective: // using namespace X; [C++]
2844    if (CGDebugInfo *DI = getModuleDebugInfo())
2845      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2846    return;
2847  case Decl::CXXConstructor:
2848    // Skip function templates
2849    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2850        cast<FunctionDecl>(D)->isLateTemplateParsed())
2851      return;
2852
2853    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2854    break;
2855  case Decl::CXXDestructor:
2856    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2857      return;
2858    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2859    break;
2860
2861  case Decl::StaticAssert:
2862    // Nothing to do.
2863    break;
2864
2865  // Objective-C Decls
2866
2867  // Forward declarations, no (immediate) code generation.
2868  case Decl::ObjCInterface:
2869  case Decl::ObjCCategory:
2870    break;
2871
2872  case Decl::ObjCProtocol: {
2873    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2874    if (Proto->isThisDeclarationADefinition())
2875      ObjCRuntime->GenerateProtocol(Proto);
2876    break;
2877  }
2878
2879  case Decl::ObjCCategoryImpl:
2880    // Categories have properties but don't support synthesize so we
2881    // can ignore them here.
2882    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2883    break;
2884
2885  case Decl::ObjCImplementation: {
2886    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2887    EmitObjCPropertyImplementations(OMD);
2888    EmitObjCIvarInitializations(OMD);
2889    ObjCRuntime->GenerateClass(OMD);
2890    // Emit global variable debug information.
2891    if (CGDebugInfo *DI = getModuleDebugInfo())
2892      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2893        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2894            OMD->getClassInterface()), OMD->getLocation());
2895    break;
2896  }
2897  case Decl::ObjCMethod: {
2898    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2899    // If this is not a prototype, emit the body.
2900    if (OMD->getBody())
2901      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2902    break;
2903  }
2904  case Decl::ObjCCompatibleAlias:
2905    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2906    break;
2907
2908  case Decl::LinkageSpec:
2909    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2910    break;
2911
2912  case Decl::FileScopeAsm: {
2913    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2914    StringRef AsmString = AD->getAsmString()->getString();
2915
2916    const std::string &S = getModule().getModuleInlineAsm();
2917    if (S.empty())
2918      getModule().setModuleInlineAsm(AsmString);
2919    else if (S.end()[-1] == '\n')
2920      getModule().setModuleInlineAsm(S + AsmString.str());
2921    else
2922      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2923    break;
2924  }
2925
2926  case Decl::Import: {
2927    ImportDecl *Import = cast<ImportDecl>(D);
2928
2929    // Ignore import declarations that come from imported modules.
2930    if (clang::Module *Owner = Import->getOwningModule()) {
2931      if (getLangOpts().CurrentModule.empty() ||
2932          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2933        break;
2934    }
2935
2936    ImportedModules.insert(Import->getImportedModule());
2937    break;
2938 }
2939
2940  default:
2941    // Make sure we handled everything we should, every other kind is a
2942    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2943    // function. Need to recode Decl::Kind to do that easily.
2944    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2945  }
2946}
2947
2948/// Turns the given pointer into a constant.
2949static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2950                                          const void *Ptr) {
2951  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2952  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2953  return llvm::ConstantInt::get(i64, PtrInt);
2954}
2955
2956static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2957                                   llvm::NamedMDNode *&GlobalMetadata,
2958                                   GlobalDecl D,
2959                                   llvm::GlobalValue *Addr) {
2960  if (!GlobalMetadata)
2961    GlobalMetadata =
2962      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2963
2964  // TODO: should we report variant information for ctors/dtors?
2965  llvm::Value *Ops[] = {
2966    Addr,
2967    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2968  };
2969  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2970}
2971
2972/// For each function which is declared within an extern "C" region and marked
2973/// as 'used', but has internal linkage, create an alias from the unmangled
2974/// name to the mangled name if possible. People expect to be able to refer
2975/// to such functions with an unmangled name from inline assembly within the
2976/// same translation unit.
2977void CodeGenModule::EmitStaticExternCAliases() {
2978  for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2979                                  E = StaticExternCValues.end();
2980       I != E; ++I) {
2981    IdentifierInfo *Name = I->first;
2982    llvm::GlobalValue *Val = I->second;
2983    if (Val && !getModule().getNamedValue(Name->getName()))
2984      AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2985                                          Name->getName(), Val, &getModule()));
2986  }
2987}
2988
2989/// Emits metadata nodes associating all the global values in the
2990/// current module with the Decls they came from.  This is useful for
2991/// projects using IR gen as a subroutine.
2992///
2993/// Since there's currently no way to associate an MDNode directly
2994/// with an llvm::GlobalValue, we create a global named metadata
2995/// with the name 'clang.global.decl.ptrs'.
2996void CodeGenModule::EmitDeclMetadata() {
2997  llvm::NamedMDNode *GlobalMetadata = 0;
2998
2999  // StaticLocalDeclMap
3000  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3001         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3002       I != E; ++I) {
3003    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3004    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3005  }
3006}
3007
3008/// Emits metadata nodes for all the local variables in the current
3009/// function.
3010void CodeGenFunction::EmitDeclMetadata() {
3011  if (LocalDeclMap.empty()) return;
3012
3013  llvm::LLVMContext &Context = getLLVMContext();
3014
3015  // Find the unique metadata ID for this name.
3016  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3017
3018  llvm::NamedMDNode *GlobalMetadata = 0;
3019
3020  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3021         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3022    const Decl *D = I->first;
3023    llvm::Value *Addr = I->second;
3024
3025    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3026      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3027      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3028    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3029      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3030      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3031    }
3032  }
3033}
3034
3035void CodeGenModule::EmitCoverageFile() {
3036  if (!getCodeGenOpts().CoverageFile.empty()) {
3037    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3038      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3039      llvm::LLVMContext &Ctx = TheModule.getContext();
3040      llvm::MDString *CoverageFile =
3041          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3042      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3043        llvm::MDNode *CU = CUNode->getOperand(i);
3044        llvm::Value *node[] = { CoverageFile, CU };
3045        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3046        GCov->addOperand(N);
3047      }
3048    }
3049  }
3050}
3051
3052llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3053                                                     QualType GuidType) {
3054  // Sema has checked that all uuid strings are of the form
3055  // "12345678-1234-1234-1234-1234567890ab".
3056  assert(Uuid.size() == 36);
3057  const char *Uuidstr = Uuid.data();
3058  for (int i = 0; i < 36; ++i) {
3059    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3060    else                                         assert(isHexDigit(Uuidstr[i]));
3061  }
3062
3063  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3064  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3065  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3066  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3067
3068  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3069  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3070  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3071  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3072  APValue& Arr = InitStruct.getStructField(3);
3073  Arr = APValue(APValue::UninitArray(), 8, 8);
3074  for (int t = 0; t < 8; ++t)
3075    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3076          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3077
3078  return EmitConstantValue(InitStruct, GuidType);
3079}
3080