1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGValue.h"
20#include "CodeGenModule.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/ABI.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// The kind of evaluation to perform on values of a particular
82/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
83/// CGExprAgg?
84///
85/// TODO: should vectors maybe be split out into their own thing?
86enum TypeEvaluationKind {
87  TEK_Scalar,
88  TEK_Complex,
89  TEK_Aggregate
90};
91
92/// A branch fixup.  These are required when emitting a goto to a
93/// label which hasn't been emitted yet.  The goto is optimistically
94/// emitted as a branch to the basic block for the label, and (if it
95/// occurs in a scope with non-trivial cleanups) a fixup is added to
96/// the innermost cleanup.  When a (normal) cleanup is popped, any
97/// unresolved fixups in that scope are threaded through the cleanup.
98struct BranchFixup {
99  /// The block containing the terminator which needs to be modified
100  /// into a switch if this fixup is resolved into the current scope.
101  /// If null, LatestBranch points directly to the destination.
102  llvm::BasicBlock *OptimisticBranchBlock;
103
104  /// The ultimate destination of the branch.
105  ///
106  /// This can be set to null to indicate that this fixup was
107  /// successfully resolved.
108  llvm::BasicBlock *Destination;
109
110  /// The destination index value.
111  unsigned DestinationIndex;
112
113  /// The initial branch of the fixup.
114  llvm::BranchInst *InitialBranch;
115};
116
117template <class T> struct InvariantValue {
118  typedef T type;
119  typedef T saved_type;
120  static bool needsSaving(type value) { return false; }
121  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
122  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
123};
124
125/// A metaprogramming class for ensuring that a value will dominate an
126/// arbitrary position in a function.
127template <class T> struct DominatingValue : InvariantValue<T> {};
128
129template <class T, bool mightBeInstruction =
130            llvm::is_base_of<llvm::Value, T>::value &&
131            !llvm::is_base_of<llvm::Constant, T>::value &&
132            !llvm::is_base_of<llvm::BasicBlock, T>::value>
133struct DominatingPointer;
134template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
135// template <class T> struct DominatingPointer<T,true> at end of file
136
137template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
138
139enum CleanupKind {
140  EHCleanup = 0x1,
141  NormalCleanup = 0x2,
142  NormalAndEHCleanup = EHCleanup | NormalCleanup,
143
144  InactiveCleanup = 0x4,
145  InactiveEHCleanup = EHCleanup | InactiveCleanup,
146  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
147  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
148};
149
150/// A stack of scopes which respond to exceptions, including cleanups
151/// and catch blocks.
152class EHScopeStack {
153public:
154  /// A saved depth on the scope stack.  This is necessary because
155  /// pushing scopes onto the stack invalidates iterators.
156  class stable_iterator {
157    friend class EHScopeStack;
158
159    /// Offset from StartOfData to EndOfBuffer.
160    ptrdiff_t Size;
161
162    stable_iterator(ptrdiff_t Size) : Size(Size) {}
163
164  public:
165    static stable_iterator invalid() { return stable_iterator(-1); }
166    stable_iterator() : Size(-1) {}
167
168    bool isValid() const { return Size >= 0; }
169
170    /// Returns true if this scope encloses I.
171    /// Returns false if I is invalid.
172    /// This scope must be valid.
173    bool encloses(stable_iterator I) const { return Size <= I.Size; }
174
175    /// Returns true if this scope strictly encloses I: that is,
176    /// if it encloses I and is not I.
177    /// Returns false is I is invalid.
178    /// This scope must be valid.
179    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
180
181    friend bool operator==(stable_iterator A, stable_iterator B) {
182      return A.Size == B.Size;
183    }
184    friend bool operator!=(stable_iterator A, stable_iterator B) {
185      return A.Size != B.Size;
186    }
187  };
188
189  /// Information for lazily generating a cleanup.  Subclasses must be
190  /// POD-like: cleanups will not be destructed, and they will be
191  /// allocated on the cleanup stack and freely copied and moved
192  /// around.
193  ///
194  /// Cleanup implementations should generally be declared in an
195  /// anonymous namespace.
196  class Cleanup {
197    // Anchor the construction vtable.
198    virtual void anchor();
199  public:
200    /// Generation flags.
201    class Flags {
202      enum {
203        F_IsForEH             = 0x1,
204        F_IsNormalCleanupKind = 0x2,
205        F_IsEHCleanupKind     = 0x4
206      };
207      unsigned flags;
208
209    public:
210      Flags() : flags(0) {}
211
212      /// isForEH - true if the current emission is for an EH cleanup.
213      bool isForEHCleanup() const { return flags & F_IsForEH; }
214      bool isForNormalCleanup() const { return !isForEHCleanup(); }
215      void setIsForEHCleanup() { flags |= F_IsForEH; }
216
217      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
218      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
219
220      /// isEHCleanupKind - true if the cleanup was pushed as an EH
221      /// cleanup.
222      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
223      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
224    };
225
226    // Provide a virtual destructor to suppress a very common warning
227    // that unfortunately cannot be suppressed without this.  Cleanups
228    // should not rely on this destructor ever being called.
229    virtual ~Cleanup() {}
230
231    /// Emit the cleanup.  For normal cleanups, this is run in the
232    /// same EH context as when the cleanup was pushed, i.e. the
233    /// immediately-enclosing context of the cleanup scope.  For
234    /// EH cleanups, this is run in a terminate context.
235    ///
236    // \param flags cleanup kind.
237    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
238  };
239
240  /// ConditionalCleanupN stores the saved form of its N parameters,
241  /// then restores them and performs the cleanup.
242  template <class T, class A0>
243  class ConditionalCleanup1 : public Cleanup {
244    typedef typename DominatingValue<A0>::saved_type A0_saved;
245    A0_saved a0_saved;
246
247    void Emit(CodeGenFunction &CGF, Flags flags) {
248      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249      T(a0).Emit(CGF, flags);
250    }
251
252  public:
253    ConditionalCleanup1(A0_saved a0)
254      : a0_saved(a0) {}
255  };
256
257  template <class T, class A0, class A1>
258  class ConditionalCleanup2 : public Cleanup {
259    typedef typename DominatingValue<A0>::saved_type A0_saved;
260    typedef typename DominatingValue<A1>::saved_type A1_saved;
261    A0_saved a0_saved;
262    A1_saved a1_saved;
263
264    void Emit(CodeGenFunction &CGF, Flags flags) {
265      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
266      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
267      T(a0, a1).Emit(CGF, flags);
268    }
269
270  public:
271    ConditionalCleanup2(A0_saved a0, A1_saved a1)
272      : a0_saved(a0), a1_saved(a1) {}
273  };
274
275  template <class T, class A0, class A1, class A2>
276  class ConditionalCleanup3 : public Cleanup {
277    typedef typename DominatingValue<A0>::saved_type A0_saved;
278    typedef typename DominatingValue<A1>::saved_type A1_saved;
279    typedef typename DominatingValue<A2>::saved_type A2_saved;
280    A0_saved a0_saved;
281    A1_saved a1_saved;
282    A2_saved a2_saved;
283
284    void Emit(CodeGenFunction &CGF, Flags flags) {
285      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
286      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
287      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
288      T(a0, a1, a2).Emit(CGF, flags);
289    }
290
291  public:
292    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
293      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
294  };
295
296  template <class T, class A0, class A1, class A2, class A3>
297  class ConditionalCleanup4 : public Cleanup {
298    typedef typename DominatingValue<A0>::saved_type A0_saved;
299    typedef typename DominatingValue<A1>::saved_type A1_saved;
300    typedef typename DominatingValue<A2>::saved_type A2_saved;
301    typedef typename DominatingValue<A3>::saved_type A3_saved;
302    A0_saved a0_saved;
303    A1_saved a1_saved;
304    A2_saved a2_saved;
305    A3_saved a3_saved;
306
307    void Emit(CodeGenFunction &CGF, Flags flags) {
308      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
309      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
310      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
311      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
312      T(a0, a1, a2, a3).Emit(CGF, flags);
313    }
314
315  public:
316    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
317      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
318  };
319
320private:
321  // The implementation for this class is in CGException.h and
322  // CGException.cpp; the definition is here because it's used as a
323  // member of CodeGenFunction.
324
325  /// The start of the scope-stack buffer, i.e. the allocated pointer
326  /// for the buffer.  All of these pointers are either simultaneously
327  /// null or simultaneously valid.
328  char *StartOfBuffer;
329
330  /// The end of the buffer.
331  char *EndOfBuffer;
332
333  /// The first valid entry in the buffer.
334  char *StartOfData;
335
336  /// The innermost normal cleanup on the stack.
337  stable_iterator InnermostNormalCleanup;
338
339  /// The innermost EH scope on the stack.
340  stable_iterator InnermostEHScope;
341
342  /// The current set of branch fixups.  A branch fixup is a jump to
343  /// an as-yet unemitted label, i.e. a label for which we don't yet
344  /// know the EH stack depth.  Whenever we pop a cleanup, we have
345  /// to thread all the current branch fixups through it.
346  ///
347  /// Fixups are recorded as the Use of the respective branch or
348  /// switch statement.  The use points to the final destination.
349  /// When popping out of a cleanup, these uses are threaded through
350  /// the cleanup and adjusted to point to the new cleanup.
351  ///
352  /// Note that branches are allowed to jump into protected scopes
353  /// in certain situations;  e.g. the following code is legal:
354  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
355  ///     goto foo;
356  ///     A a;
357  ///    foo:
358  ///     bar();
359  SmallVector<BranchFixup, 8> BranchFixups;
360
361  char *allocate(size_t Size);
362
363  void *pushCleanup(CleanupKind K, size_t DataSize);
364
365public:
366  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
367                   InnermostNormalCleanup(stable_end()),
368                   InnermostEHScope(stable_end()) {}
369  ~EHScopeStack() { delete[] StartOfBuffer; }
370
371  // Variadic templates would make this not terrible.
372
373  /// Push a lazily-created cleanup on the stack.
374  template <class T>
375  void pushCleanup(CleanupKind Kind) {
376    void *Buffer = pushCleanup(Kind, sizeof(T));
377    Cleanup *Obj = new(Buffer) T();
378    (void) Obj;
379  }
380
381  /// Push a lazily-created cleanup on the stack.
382  template <class T, class A0>
383  void pushCleanup(CleanupKind Kind, A0 a0) {
384    void *Buffer = pushCleanup(Kind, sizeof(T));
385    Cleanup *Obj = new(Buffer) T(a0);
386    (void) Obj;
387  }
388
389  /// Push a lazily-created cleanup on the stack.
390  template <class T, class A0, class A1>
391  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
392    void *Buffer = pushCleanup(Kind, sizeof(T));
393    Cleanup *Obj = new(Buffer) T(a0, a1);
394    (void) Obj;
395  }
396
397  /// Push a lazily-created cleanup on the stack.
398  template <class T, class A0, class A1, class A2>
399  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
400    void *Buffer = pushCleanup(Kind, sizeof(T));
401    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
402    (void) Obj;
403  }
404
405  /// Push a lazily-created cleanup on the stack.
406  template <class T, class A0, class A1, class A2, class A3>
407  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
408    void *Buffer = pushCleanup(Kind, sizeof(T));
409    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
410    (void) Obj;
411  }
412
413  /// Push a lazily-created cleanup on the stack.
414  template <class T, class A0, class A1, class A2, class A3, class A4>
415  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
416    void *Buffer = pushCleanup(Kind, sizeof(T));
417    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
418    (void) Obj;
419  }
420
421  // Feel free to add more variants of the following:
422
423  /// Push a cleanup with non-constant storage requirements on the
424  /// stack.  The cleanup type must provide an additional static method:
425  ///   static size_t getExtraSize(size_t);
426  /// The argument to this method will be the value N, which will also
427  /// be passed as the first argument to the constructor.
428  ///
429  /// The data stored in the extra storage must obey the same
430  /// restrictions as normal cleanup member data.
431  ///
432  /// The pointer returned from this method is valid until the cleanup
433  /// stack is modified.
434  template <class T, class A0, class A1, class A2>
435  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
436    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
437    return new (Buffer) T(N, a0, a1, a2);
438  }
439
440  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
441  void popCleanup();
442
443  /// Push a set of catch handlers on the stack.  The catch is
444  /// uninitialized and will need to have the given number of handlers
445  /// set on it.
446  class EHCatchScope *pushCatch(unsigned NumHandlers);
447
448  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
449  void popCatch();
450
451  /// Push an exceptions filter on the stack.
452  class EHFilterScope *pushFilter(unsigned NumFilters);
453
454  /// Pops an exceptions filter off the stack.
455  void popFilter();
456
457  /// Push a terminate handler on the stack.
458  void pushTerminate();
459
460  /// Pops a terminate handler off the stack.
461  void popTerminate();
462
463  /// Determines whether the exception-scopes stack is empty.
464  bool empty() const { return StartOfData == EndOfBuffer; }
465
466  bool requiresLandingPad() const {
467    return InnermostEHScope != stable_end();
468  }
469
470  /// Determines whether there are any normal cleanups on the stack.
471  bool hasNormalCleanups() const {
472    return InnermostNormalCleanup != stable_end();
473  }
474
475  /// Returns the innermost normal cleanup on the stack, or
476  /// stable_end() if there are no normal cleanups.
477  stable_iterator getInnermostNormalCleanup() const {
478    return InnermostNormalCleanup;
479  }
480  stable_iterator getInnermostActiveNormalCleanup() const;
481
482  stable_iterator getInnermostEHScope() const {
483    return InnermostEHScope;
484  }
485
486  stable_iterator getInnermostActiveEHScope() const;
487
488  /// An unstable reference to a scope-stack depth.  Invalidated by
489  /// pushes but not pops.
490  class iterator;
491
492  /// Returns an iterator pointing to the innermost EH scope.
493  iterator begin() const;
494
495  /// Returns an iterator pointing to the outermost EH scope.
496  iterator end() const;
497
498  /// Create a stable reference to the top of the EH stack.  The
499  /// returned reference is valid until that scope is popped off the
500  /// stack.
501  stable_iterator stable_begin() const {
502    return stable_iterator(EndOfBuffer - StartOfData);
503  }
504
505  /// Create a stable reference to the bottom of the EH stack.
506  static stable_iterator stable_end() {
507    return stable_iterator(0);
508  }
509
510  /// Translates an iterator into a stable_iterator.
511  stable_iterator stabilize(iterator it) const;
512
513  /// Turn a stable reference to a scope depth into a unstable pointer
514  /// to the EH stack.
515  iterator find(stable_iterator save) const;
516
517  /// Removes the cleanup pointed to by the given stable_iterator.
518  void removeCleanup(stable_iterator save);
519
520  /// Add a branch fixup to the current cleanup scope.
521  BranchFixup &addBranchFixup() {
522    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
523    BranchFixups.push_back(BranchFixup());
524    return BranchFixups.back();
525  }
526
527  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
528  BranchFixup &getBranchFixup(unsigned I) {
529    assert(I < getNumBranchFixups());
530    return BranchFixups[I];
531  }
532
533  /// Pops lazily-removed fixups from the end of the list.  This
534  /// should only be called by procedures which have just popped a
535  /// cleanup or resolved one or more fixups.
536  void popNullFixups();
537
538  /// Clears the branch-fixups list.  This should only be called by
539  /// ResolveAllBranchFixups.
540  void clearFixups() { BranchFixups.clear(); }
541};
542
543/// CodeGenFunction - This class organizes the per-function state that is used
544/// while generating LLVM code.
545class CodeGenFunction : public CodeGenTypeCache {
546  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
547  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
548
549  friend class CGCXXABI;
550public:
551  /// A jump destination is an abstract label, branching to which may
552  /// require a jump out through normal cleanups.
553  struct JumpDest {
554    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
555    JumpDest(llvm::BasicBlock *Block,
556             EHScopeStack::stable_iterator Depth,
557             unsigned Index)
558      : Block(Block), ScopeDepth(Depth), Index(Index) {}
559
560    bool isValid() const { return Block != 0; }
561    llvm::BasicBlock *getBlock() const { return Block; }
562    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
563    unsigned getDestIndex() const { return Index; }
564
565    // This should be used cautiously.
566    void setScopeDepth(EHScopeStack::stable_iterator depth) {
567      ScopeDepth = depth;
568    }
569
570  private:
571    llvm::BasicBlock *Block;
572    EHScopeStack::stable_iterator ScopeDepth;
573    unsigned Index;
574  };
575
576  CodeGenModule &CGM;  // Per-module state.
577  const TargetInfo &Target;
578
579  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
580  CGBuilderTy Builder;
581
582  /// CurFuncDecl - Holds the Decl for the current outermost
583  /// non-closure context.
584  const Decl *CurFuncDecl;
585  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
586  const Decl *CurCodeDecl;
587  const CGFunctionInfo *CurFnInfo;
588  QualType FnRetTy;
589  llvm::Function *CurFn;
590
591  /// CurGD - The GlobalDecl for the current function being compiled.
592  GlobalDecl CurGD;
593
594  /// PrologueCleanupDepth - The cleanup depth enclosing all the
595  /// cleanups associated with the parameters.
596  EHScopeStack::stable_iterator PrologueCleanupDepth;
597
598  /// ReturnBlock - Unified return block.
599  JumpDest ReturnBlock;
600
601  /// ReturnValue - The temporary alloca to hold the return value. This is null
602  /// iff the function has no return value.
603  llvm::Value *ReturnValue;
604
605  /// AllocaInsertPoint - This is an instruction in the entry block before which
606  /// we prefer to insert allocas.
607  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
608
609  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
610  /// potentially higher performance penalties.
611  unsigned char BoundsChecking;
612
613  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
614  /// calls to EmitTypeCheck can be skipped.
615  bool SanitizePerformTypeCheck;
616
617  /// \brief Sanitizer options to use for this function.
618  const SanitizerOptions *SanOpts;
619
620  /// In ARC, whether we should autorelease the return value.
621  bool AutoreleaseResult;
622
623  const CodeGen::CGBlockInfo *BlockInfo;
624  llvm::Value *BlockPointer;
625
626  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
627  FieldDecl *LambdaThisCaptureField;
628
629  /// \brief A mapping from NRVO variables to the flags used to indicate
630  /// when the NRVO has been applied to this variable.
631  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
632
633  EHScopeStack EHStack;
634
635  /// i32s containing the indexes of the cleanup destinations.
636  llvm::AllocaInst *NormalCleanupDest;
637
638  unsigned NextCleanupDestIndex;
639
640  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
641  CGBlockInfo *FirstBlockInfo;
642
643  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
644  llvm::BasicBlock *EHResumeBlock;
645
646  /// The exception slot.  All landing pads write the current exception pointer
647  /// into this alloca.
648  llvm::Value *ExceptionSlot;
649
650  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
651  /// write the current selector value into this alloca.
652  llvm::AllocaInst *EHSelectorSlot;
653
654  /// Emits a landing pad for the current EH stack.
655  llvm::BasicBlock *EmitLandingPad();
656
657  llvm::BasicBlock *getInvokeDestImpl();
658
659  template <class T>
660  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
661    return DominatingValue<T>::save(*this, value);
662  }
663
664public:
665  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
666  /// rethrows.
667  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
668
669  /// A class controlling the emission of a finally block.
670  class FinallyInfo {
671    /// Where the catchall's edge through the cleanup should go.
672    JumpDest RethrowDest;
673
674    /// A function to call to enter the catch.
675    llvm::Constant *BeginCatchFn;
676
677    /// An i1 variable indicating whether or not the @finally is
678    /// running for an exception.
679    llvm::AllocaInst *ForEHVar;
680
681    /// An i8* variable into which the exception pointer to rethrow
682    /// has been saved.
683    llvm::AllocaInst *SavedExnVar;
684
685  public:
686    void enter(CodeGenFunction &CGF, const Stmt *Finally,
687               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
688               llvm::Constant *rethrowFn);
689    void exit(CodeGenFunction &CGF);
690  };
691
692  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
693  /// current full-expression.  Safe against the possibility that
694  /// we're currently inside a conditionally-evaluated expression.
695  template <class T, class A0>
696  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
697    // If we're not in a conditional branch, or if none of the
698    // arguments requires saving, then use the unconditional cleanup.
699    if (!isInConditionalBranch())
700      return EHStack.pushCleanup<T>(kind, a0);
701
702    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
703
704    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
705    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
706    initFullExprCleanup();
707  }
708
709  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
710  /// current full-expression.  Safe against the possibility that
711  /// we're currently inside a conditionally-evaluated expression.
712  template <class T, class A0, class A1>
713  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
714    // If we're not in a conditional branch, or if none of the
715    // arguments requires saving, then use the unconditional cleanup.
716    if (!isInConditionalBranch())
717      return EHStack.pushCleanup<T>(kind, a0, a1);
718
719    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721
722    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
723    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
724    initFullExprCleanup();
725  }
726
727  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728  /// current full-expression.  Safe against the possibility that
729  /// we're currently inside a conditionally-evaluated expression.
730  template <class T, class A0, class A1, class A2>
731  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
732    // If we're not in a conditional branch, or if none of the
733    // arguments requires saving, then use the unconditional cleanup.
734    if (!isInConditionalBranch()) {
735      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
736    }
737
738    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741
742    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
743    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
744    initFullExprCleanup();
745  }
746
747  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
748  /// current full-expression.  Safe against the possibility that
749  /// we're currently inside a conditionally-evaluated expression.
750  template <class T, class A0, class A1, class A2, class A3>
751  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
752    // If we're not in a conditional branch, or if none of the
753    // arguments requires saving, then use the unconditional cleanup.
754    if (!isInConditionalBranch()) {
755      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
756    }
757
758    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
759    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
760    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
761    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
762
763    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
764    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
765                                     a2_saved, a3_saved);
766    initFullExprCleanup();
767  }
768
769  /// Set up the last cleaup that was pushed as a conditional
770  /// full-expression cleanup.
771  void initFullExprCleanup();
772
773  /// PushDestructorCleanup - Push a cleanup to call the
774  /// complete-object destructor of an object of the given type at the
775  /// given address.  Does nothing if T is not a C++ class type with a
776  /// non-trivial destructor.
777  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
778
779  /// PushDestructorCleanup - Push a cleanup to call the
780  /// complete-object variant of the given destructor on the object at
781  /// the given address.
782  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
783                             llvm::Value *Addr);
784
785  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
786  /// process all branch fixups.
787  /// \param EHLoc - Optional debug location for EH code.
788  void PopCleanupBlock(bool FallThroughIsBranchThrough = false,
789                       SourceLocation EHLoc=SourceLocation());
790
791  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
792  /// The block cannot be reactivated.  Pops it if it's the top of the
793  /// stack.
794  ///
795  /// \param DominatingIP - An instruction which is known to
796  ///   dominate the current IP (if set) and which lies along
797  ///   all paths of execution between the current IP and the
798  ///   the point at which the cleanup comes into scope.
799  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
800                              llvm::Instruction *DominatingIP);
801
802  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
803  /// Cannot be used to resurrect a deactivated cleanup.
804  ///
805  /// \param DominatingIP - An instruction which is known to
806  ///   dominate the current IP (if set) and which lies along
807  ///   all paths of execution between the current IP and the
808  ///   the point at which the cleanup comes into scope.
809  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
810                            llvm::Instruction *DominatingIP);
811
812  /// \brief Enters a new scope for capturing cleanups, all of which
813  /// will be executed once the scope is exited.
814  class RunCleanupsScope {
815    EHScopeStack::stable_iterator CleanupStackDepth;
816    bool OldDidCallStackSave;
817  protected:
818    bool PerformCleanup;
819  private:
820
821    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
822    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
823
824  protected:
825    CodeGenFunction& CGF;
826
827  public:
828    /// \brief Enter a new cleanup scope.
829    explicit RunCleanupsScope(CodeGenFunction &CGF)
830      : PerformCleanup(true), CGF(CGF)
831    {
832      CleanupStackDepth = CGF.EHStack.stable_begin();
833      OldDidCallStackSave = CGF.DidCallStackSave;
834      CGF.DidCallStackSave = false;
835    }
836
837    /// \brief Exit this cleanup scope, emitting any accumulated
838    /// cleanups.
839    ~RunCleanupsScope() {
840      if (PerformCleanup) {
841        CGF.DidCallStackSave = OldDidCallStackSave;
842        CGF.PopCleanupBlocks(CleanupStackDepth);
843      }
844    }
845
846    /// \brief Determine whether this scope requires any cleanups.
847    bool requiresCleanups() const {
848      return CGF.EHStack.stable_begin() != CleanupStackDepth;
849    }
850
851    /// \brief Force the emission of cleanups now, instead of waiting
852    /// until this object is destroyed.
853    void ForceCleanup() {
854      assert(PerformCleanup && "Already forced cleanup");
855      CGF.DidCallStackSave = OldDidCallStackSave;
856      CGF.PopCleanupBlocks(CleanupStackDepth);
857      PerformCleanup = false;
858    }
859  };
860
861  class LexicalScope: protected RunCleanupsScope {
862    SourceRange Range;
863    SmallVector<const LabelDecl*, 4> Labels;
864    LexicalScope *ParentScope;
865
866    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
867    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
868
869  public:
870    /// \brief Enter a new cleanup scope.
871    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
872      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
873      CGF.CurLexicalScope = this;
874      if (CGDebugInfo *DI = CGF.getDebugInfo())
875        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
876    }
877
878    void addLabel(const LabelDecl *label) {
879      assert(PerformCleanup && "adding label to dead scope?");
880      Labels.push_back(label);
881    }
882
883    /// \brief Exit this cleanup scope, emitting any accumulated
884    /// cleanups.
885    ~LexicalScope() {
886      if (CGDebugInfo *DI = CGF.getDebugInfo())
887        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
888
889      // If we should perform a cleanup, force them now.  Note that
890      // this ends the cleanup scope before rescoping any labels.
891      if (PerformCleanup) ForceCleanup();
892    }
893
894    /// \brief Force the emission of cleanups now, instead of waiting
895    /// until this object is destroyed.
896    void ForceCleanup() {
897      CGF.CurLexicalScope = ParentScope;
898      RunCleanupsScope::ForceCleanup();
899
900      if (!Labels.empty())
901        rescopeLabels();
902    }
903
904    void rescopeLabels();
905  };
906
907
908  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
909  /// the cleanup blocks that have been added.
910  /// \param EHLoc - Optional debug location for EH code.
911  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
912                        SourceLocation EHLoc=SourceLocation());
913
914  void ResolveBranchFixups(llvm::BasicBlock *Target);
915
916  /// The given basic block lies in the current EH scope, but may be a
917  /// target of a potentially scope-crossing jump; get a stable handle
918  /// to which we can perform this jump later.
919  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
920    return JumpDest(Target,
921                    EHStack.getInnermostNormalCleanup(),
922                    NextCleanupDestIndex++);
923  }
924
925  /// The given basic block lies in the current EH scope, but may be a
926  /// target of a potentially scope-crossing jump; get a stable handle
927  /// to which we can perform this jump later.
928  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
929    return getJumpDestInCurrentScope(createBasicBlock(Name));
930  }
931
932  /// EmitBranchThroughCleanup - Emit a branch from the current insert
933  /// block through the normal cleanup handling code (if any) and then
934  /// on to \arg Dest.
935  void EmitBranchThroughCleanup(JumpDest Dest);
936
937  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
938  /// specified destination obviously has no cleanups to run.  'false' is always
939  /// a conservatively correct answer for this method.
940  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
941
942  /// popCatchScope - Pops the catch scope at the top of the EHScope
943  /// stack, emitting any required code (other than the catch handlers
944  /// themselves).
945  void popCatchScope();
946
947  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
948  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
949
950  /// An object to manage conditionally-evaluated expressions.
951  class ConditionalEvaluation {
952    llvm::BasicBlock *StartBB;
953
954  public:
955    ConditionalEvaluation(CodeGenFunction &CGF)
956      : StartBB(CGF.Builder.GetInsertBlock()) {}
957
958    void begin(CodeGenFunction &CGF) {
959      assert(CGF.OutermostConditional != this);
960      if (!CGF.OutermostConditional)
961        CGF.OutermostConditional = this;
962    }
963
964    void end(CodeGenFunction &CGF) {
965      assert(CGF.OutermostConditional != 0);
966      if (CGF.OutermostConditional == this)
967        CGF.OutermostConditional = 0;
968    }
969
970    /// Returns a block which will be executed prior to each
971    /// evaluation of the conditional code.
972    llvm::BasicBlock *getStartingBlock() const {
973      return StartBB;
974    }
975  };
976
977  /// isInConditionalBranch - Return true if we're currently emitting
978  /// one branch or the other of a conditional expression.
979  bool isInConditionalBranch() const { return OutermostConditional != 0; }
980
981  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
982    assert(isInConditionalBranch());
983    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
984    new llvm::StoreInst(value, addr, &block->back());
985  }
986
987  /// An RAII object to record that we're evaluating a statement
988  /// expression.
989  class StmtExprEvaluation {
990    CodeGenFunction &CGF;
991
992    /// We have to save the outermost conditional: cleanups in a
993    /// statement expression aren't conditional just because the
994    /// StmtExpr is.
995    ConditionalEvaluation *SavedOutermostConditional;
996
997  public:
998    StmtExprEvaluation(CodeGenFunction &CGF)
999      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1000      CGF.OutermostConditional = 0;
1001    }
1002
1003    ~StmtExprEvaluation() {
1004      CGF.OutermostConditional = SavedOutermostConditional;
1005      CGF.EnsureInsertPoint();
1006    }
1007  };
1008
1009  /// An object which temporarily prevents a value from being
1010  /// destroyed by aggressive peephole optimizations that assume that
1011  /// all uses of a value have been realized in the IR.
1012  class PeepholeProtection {
1013    llvm::Instruction *Inst;
1014    friend class CodeGenFunction;
1015
1016  public:
1017    PeepholeProtection() : Inst(0) {}
1018  };
1019
1020  /// A non-RAII class containing all the information about a bound
1021  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1022  /// this which makes individual mappings very simple; using this
1023  /// class directly is useful when you have a variable number of
1024  /// opaque values or don't want the RAII functionality for some
1025  /// reason.
1026  class OpaqueValueMappingData {
1027    const OpaqueValueExpr *OpaqueValue;
1028    bool BoundLValue;
1029    CodeGenFunction::PeepholeProtection Protection;
1030
1031    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1032                           bool boundLValue)
1033      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1034  public:
1035    OpaqueValueMappingData() : OpaqueValue(0) {}
1036
1037    static bool shouldBindAsLValue(const Expr *expr) {
1038      // gl-values should be bound as l-values for obvious reasons.
1039      // Records should be bound as l-values because IR generation
1040      // always keeps them in memory.  Expressions of function type
1041      // act exactly like l-values but are formally required to be
1042      // r-values in C.
1043      return expr->isGLValue() ||
1044             expr->getType()->isRecordType() ||
1045             expr->getType()->isFunctionType();
1046    }
1047
1048    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1049                                       const OpaqueValueExpr *ov,
1050                                       const Expr *e) {
1051      if (shouldBindAsLValue(ov))
1052        return bind(CGF, ov, CGF.EmitLValue(e));
1053      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1054    }
1055
1056    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1057                                       const OpaqueValueExpr *ov,
1058                                       const LValue &lv) {
1059      assert(shouldBindAsLValue(ov));
1060      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1061      return OpaqueValueMappingData(ov, true);
1062    }
1063
1064    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1065                                       const OpaqueValueExpr *ov,
1066                                       const RValue &rv) {
1067      assert(!shouldBindAsLValue(ov));
1068      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1069
1070      OpaqueValueMappingData data(ov, false);
1071
1072      // Work around an extremely aggressive peephole optimization in
1073      // EmitScalarConversion which assumes that all other uses of a
1074      // value are extant.
1075      data.Protection = CGF.protectFromPeepholes(rv);
1076
1077      return data;
1078    }
1079
1080    bool isValid() const { return OpaqueValue != 0; }
1081    void clear() { OpaqueValue = 0; }
1082
1083    void unbind(CodeGenFunction &CGF) {
1084      assert(OpaqueValue && "no data to unbind!");
1085
1086      if (BoundLValue) {
1087        CGF.OpaqueLValues.erase(OpaqueValue);
1088      } else {
1089        CGF.OpaqueRValues.erase(OpaqueValue);
1090        CGF.unprotectFromPeepholes(Protection);
1091      }
1092    }
1093  };
1094
1095  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1096  class OpaqueValueMapping {
1097    CodeGenFunction &CGF;
1098    OpaqueValueMappingData Data;
1099
1100  public:
1101    static bool shouldBindAsLValue(const Expr *expr) {
1102      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1103    }
1104
1105    /// Build the opaque value mapping for the given conditional
1106    /// operator if it's the GNU ?: extension.  This is a common
1107    /// enough pattern that the convenience operator is really
1108    /// helpful.
1109    ///
1110    OpaqueValueMapping(CodeGenFunction &CGF,
1111                       const AbstractConditionalOperator *op) : CGF(CGF) {
1112      if (isa<ConditionalOperator>(op))
1113        // Leave Data empty.
1114        return;
1115
1116      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1117      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1118                                          e->getCommon());
1119    }
1120
1121    OpaqueValueMapping(CodeGenFunction &CGF,
1122                       const OpaqueValueExpr *opaqueValue,
1123                       LValue lvalue)
1124      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1125    }
1126
1127    OpaqueValueMapping(CodeGenFunction &CGF,
1128                       const OpaqueValueExpr *opaqueValue,
1129                       RValue rvalue)
1130      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1131    }
1132
1133    void pop() {
1134      Data.unbind(CGF);
1135      Data.clear();
1136    }
1137
1138    ~OpaqueValueMapping() {
1139      if (Data.isValid()) Data.unbind(CGF);
1140    }
1141  };
1142
1143  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1144  /// number that holds the value.
1145  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1146
1147  /// BuildBlockByrefAddress - Computes address location of the
1148  /// variable which is declared as __block.
1149  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1150                                      const VarDecl *V);
1151private:
1152  CGDebugInfo *DebugInfo;
1153  bool DisableDebugInfo;
1154
1155  /// If the current function returns 'this', use the field to keep track of
1156  /// the callee that returns 'this'.
1157  llvm::Value *CalleeWithThisReturn;
1158
1159  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1160  /// calling llvm.stacksave for multiple VLAs in the same scope.
1161  bool DidCallStackSave;
1162
1163  /// IndirectBranch - The first time an indirect goto is seen we create a block
1164  /// with an indirect branch.  Every time we see the address of a label taken,
1165  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1166  /// codegen'd as a jump to the IndirectBranch's basic block.
1167  llvm::IndirectBrInst *IndirectBranch;
1168
1169  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1170  /// decls.
1171  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1172  DeclMapTy LocalDeclMap;
1173
1174  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1175  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1176
1177  // BreakContinueStack - This keeps track of where break and continue
1178  // statements should jump to.
1179  struct BreakContinue {
1180    BreakContinue(JumpDest Break, JumpDest Continue)
1181      : BreakBlock(Break), ContinueBlock(Continue) {}
1182
1183    JumpDest BreakBlock;
1184    JumpDest ContinueBlock;
1185  };
1186  SmallVector<BreakContinue, 8> BreakContinueStack;
1187
1188  /// SwitchInsn - This is nearest current switch instruction. It is null if
1189  /// current context is not in a switch.
1190  llvm::SwitchInst *SwitchInsn;
1191
1192  /// CaseRangeBlock - This block holds if condition check for last case
1193  /// statement range in current switch instruction.
1194  llvm::BasicBlock *CaseRangeBlock;
1195
1196  /// OpaqueLValues - Keeps track of the current set of opaque value
1197  /// expressions.
1198  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1199  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1200
1201  // VLASizeMap - This keeps track of the associated size for each VLA type.
1202  // We track this by the size expression rather than the type itself because
1203  // in certain situations, like a const qualifier applied to an VLA typedef,
1204  // multiple VLA types can share the same size expression.
1205  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1206  // enter/leave scopes.
1207  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1208
1209  /// A block containing a single 'unreachable' instruction.  Created
1210  /// lazily by getUnreachableBlock().
1211  llvm::BasicBlock *UnreachableBlock;
1212
1213  /// Counts of the number return expressions in the function.
1214  unsigned NumReturnExprs;
1215
1216  /// Count the number of simple (constant) return expressions in the function.
1217  unsigned NumSimpleReturnExprs;
1218
1219  /// The last regular (non-return) debug location (breakpoint) in the function.
1220  SourceLocation LastStopPoint;
1221
1222public:
1223  /// A scope within which we are constructing the fields of an object which
1224  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1225  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1226  class FieldConstructionScope {
1227  public:
1228    FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
1229        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1230      CGF.CXXDefaultInitExprThis = This;
1231    }
1232    ~FieldConstructionScope() {
1233      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1234    }
1235
1236  private:
1237    CodeGenFunction &CGF;
1238    llvm::Value *OldCXXDefaultInitExprThis;
1239  };
1240
1241  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1242  /// is overridden to be the object under construction.
1243  class CXXDefaultInitExprScope {
1244  public:
1245    CXXDefaultInitExprScope(CodeGenFunction &CGF)
1246        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
1247      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
1248    }
1249    ~CXXDefaultInitExprScope() {
1250      CGF.CXXThisValue = OldCXXThisValue;
1251    }
1252
1253  public:
1254    CodeGenFunction &CGF;
1255    llvm::Value *OldCXXThisValue;
1256  };
1257
1258private:
1259  /// CXXThisDecl - When generating code for a C++ member function,
1260  /// this will hold the implicit 'this' declaration.
1261  ImplicitParamDecl *CXXABIThisDecl;
1262  llvm::Value *CXXABIThisValue;
1263  llvm::Value *CXXThisValue;
1264
1265  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1266  /// this expression.
1267  llvm::Value *CXXDefaultInitExprThis;
1268
1269  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1270  /// destructor, this will hold the implicit argument (e.g. VTT).
1271  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1272  llvm::Value *CXXStructorImplicitParamValue;
1273
1274  /// OutermostConditional - Points to the outermost active
1275  /// conditional control.  This is used so that we know if a
1276  /// temporary should be destroyed conditionally.
1277  ConditionalEvaluation *OutermostConditional;
1278
1279  /// The current lexical scope.
1280  LexicalScope *CurLexicalScope;
1281
1282  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1283  /// type as well as the field number that contains the actual data.
1284  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1285                                              unsigned> > ByRefValueInfo;
1286
1287  llvm::BasicBlock *TerminateLandingPad;
1288  llvm::BasicBlock *TerminateHandler;
1289  llvm::BasicBlock *TrapBB;
1290
1291  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1292  /// In the kernel metadata node, reference the kernel function and metadata
1293  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1294  /// - A node for the vec_type_hint(<type>) qualifier contains string
1295  ///   "vec_type_hint", an undefined value of the <type> data type,
1296  ///   and a Boolean that is true if the <type> is integer and signed.
1297  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1298  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1299  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1300  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1301  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1302                                llvm::Function *Fn);
1303
1304public:
1305  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1306  ~CodeGenFunction();
1307
1308  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1309  ASTContext &getContext() const { return CGM.getContext(); }
1310  /// Returns true if DebugInfo is actually initialized.
1311  bool maybeInitializeDebugInfo() {
1312    if (CGM.getModuleDebugInfo()) {
1313      DebugInfo = CGM.getModuleDebugInfo();
1314      return true;
1315    }
1316    return false;
1317  }
1318  CGDebugInfo *getDebugInfo() {
1319    if (DisableDebugInfo)
1320      return NULL;
1321    return DebugInfo;
1322  }
1323  void disableDebugInfo() { DisableDebugInfo = true; }
1324  void enableDebugInfo() { DisableDebugInfo = false; }
1325
1326  bool shouldUseFusedARCCalls() {
1327    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1328  }
1329
1330  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1331
1332  /// Returns a pointer to the function's exception object and selector slot,
1333  /// which is assigned in every landing pad.
1334  llvm::Value *getExceptionSlot();
1335  llvm::Value *getEHSelectorSlot();
1336
1337  /// Returns the contents of the function's exception object and selector
1338  /// slots.
1339  llvm::Value *getExceptionFromSlot();
1340  llvm::Value *getSelectorFromSlot();
1341
1342  llvm::Value *getNormalCleanupDestSlot();
1343
1344  llvm::BasicBlock *getUnreachableBlock() {
1345    if (!UnreachableBlock) {
1346      UnreachableBlock = createBasicBlock("unreachable");
1347      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1348    }
1349    return UnreachableBlock;
1350  }
1351
1352  llvm::BasicBlock *getInvokeDest() {
1353    if (!EHStack.requiresLandingPad()) return 0;
1354    return getInvokeDestImpl();
1355  }
1356
1357  const TargetInfo &getTarget() const { return Target; }
1358  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1359
1360  //===--------------------------------------------------------------------===//
1361  //                                  Cleanups
1362  //===--------------------------------------------------------------------===//
1363
1364  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1365
1366  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1367                                        llvm::Value *arrayEndPointer,
1368                                        QualType elementType,
1369                                        Destroyer *destroyer);
1370  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1371                                      llvm::Value *arrayEnd,
1372                                      QualType elementType,
1373                                      Destroyer *destroyer);
1374
1375  void pushDestroy(QualType::DestructionKind dtorKind,
1376                   llvm::Value *addr, QualType type);
1377  void pushEHDestroy(QualType::DestructionKind dtorKind,
1378                     llvm::Value *addr, QualType type);
1379  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1380                   Destroyer *destroyer, bool useEHCleanupForArray);
1381  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1382                   bool useEHCleanupForArray);
1383  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1384                                        QualType type,
1385                                        Destroyer *destroyer,
1386                                        bool useEHCleanupForArray);
1387  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1388                        QualType type, Destroyer *destroyer,
1389                        bool checkZeroLength, bool useEHCleanup);
1390
1391  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1392
1393  /// Determines whether an EH cleanup is required to destroy a type
1394  /// with the given destruction kind.
1395  bool needsEHCleanup(QualType::DestructionKind kind) {
1396    switch (kind) {
1397    case QualType::DK_none:
1398      return false;
1399    case QualType::DK_cxx_destructor:
1400    case QualType::DK_objc_weak_lifetime:
1401      return getLangOpts().Exceptions;
1402    case QualType::DK_objc_strong_lifetime:
1403      return getLangOpts().Exceptions &&
1404             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1405    }
1406    llvm_unreachable("bad destruction kind");
1407  }
1408
1409  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1410    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1411  }
1412
1413  //===--------------------------------------------------------------------===//
1414  //                                  Objective-C
1415  //===--------------------------------------------------------------------===//
1416
1417  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1418
1419  void StartObjCMethod(const ObjCMethodDecl *MD,
1420                       const ObjCContainerDecl *CD,
1421                       SourceLocation StartLoc);
1422
1423  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1424  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1425                          const ObjCPropertyImplDecl *PID);
1426  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1427                              const ObjCPropertyImplDecl *propImpl,
1428                              const ObjCMethodDecl *GetterMothodDecl,
1429                              llvm::Constant *AtomicHelperFn);
1430
1431  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1432                                  ObjCMethodDecl *MD, bool ctor);
1433
1434  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1435  /// for the given property.
1436  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1437                          const ObjCPropertyImplDecl *PID);
1438  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1439                              const ObjCPropertyImplDecl *propImpl,
1440                              llvm::Constant *AtomicHelperFn);
1441  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1442  bool IvarTypeWithAggrGCObjects(QualType Ty);
1443
1444  //===--------------------------------------------------------------------===//
1445  //                                  Block Bits
1446  //===--------------------------------------------------------------------===//
1447
1448  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1449  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1450  static void destroyBlockInfos(CGBlockInfo *info);
1451  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1452                                           const CGBlockInfo &Info,
1453                                           llvm::StructType *,
1454                                           llvm::Constant *BlockVarLayout);
1455
1456  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1457                                        const CGBlockInfo &Info,
1458                                        const DeclMapTy &ldm,
1459                                        bool IsLambdaConversionToBlock);
1460
1461  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1462  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1463  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1464                                             const ObjCPropertyImplDecl *PID);
1465  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1466                                             const ObjCPropertyImplDecl *PID);
1467  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1468
1469  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1470
1471  class AutoVarEmission;
1472
1473  void emitByrefStructureInit(const AutoVarEmission &emission);
1474  void enterByrefCleanup(const AutoVarEmission &emission);
1475
1476  llvm::Value *LoadBlockStruct() {
1477    assert(BlockPointer && "no block pointer set!");
1478    return BlockPointer;
1479  }
1480
1481  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1482  void AllocateBlockDecl(const DeclRefExpr *E);
1483  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1484  llvm::Type *BuildByRefType(const VarDecl *var);
1485
1486  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1487                    const CGFunctionInfo &FnInfo);
1488  void StartFunction(GlobalDecl GD,
1489                     QualType RetTy,
1490                     llvm::Function *Fn,
1491                     const CGFunctionInfo &FnInfo,
1492                     const FunctionArgList &Args,
1493                     SourceLocation StartLoc);
1494
1495  void EmitConstructorBody(FunctionArgList &Args);
1496  void EmitDestructorBody(FunctionArgList &Args);
1497  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1498  void EmitFunctionBody(FunctionArgList &Args);
1499
1500  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1501                                  CallArgList &CallArgs);
1502  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1503  void EmitLambdaBlockInvokeBody();
1504  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1505  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1506
1507  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1508  /// emission when possible.
1509  void EmitReturnBlock();
1510
1511  /// FinishFunction - Complete IR generation of the current function. It is
1512  /// legal to call this function even if there is no current insertion point.
1513  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1514
1515  /// GenerateThunk - Generate a thunk for the given method.
1516  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1517                     GlobalDecl GD, const ThunkInfo &Thunk);
1518
1519  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1520                            GlobalDecl GD, const ThunkInfo &Thunk);
1521
1522  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1523                        FunctionArgList &Args);
1524
1525  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1526                               ArrayRef<VarDecl *> ArrayIndexes);
1527
1528  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1529  /// subobject.
1530  ///
1531  void InitializeVTablePointer(BaseSubobject Base,
1532                               const CXXRecordDecl *NearestVBase,
1533                               CharUnits OffsetFromNearestVBase,
1534                               llvm::Constant *VTable,
1535                               const CXXRecordDecl *VTableClass);
1536
1537  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1538  void InitializeVTablePointers(BaseSubobject Base,
1539                                const CXXRecordDecl *NearestVBase,
1540                                CharUnits OffsetFromNearestVBase,
1541                                bool BaseIsNonVirtualPrimaryBase,
1542                                llvm::Constant *VTable,
1543                                const CXXRecordDecl *VTableClass,
1544                                VisitedVirtualBasesSetTy& VBases);
1545
1546  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1547
1548  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1549  /// to by This.
1550  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1551
1552  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1553  /// given phase of destruction for a destructor.  The end result
1554  /// should call destructors on members and base classes in reverse
1555  /// order of their construction.
1556  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1557
1558  /// ShouldInstrumentFunction - Return true if the current function should be
1559  /// instrumented with __cyg_profile_func_* calls
1560  bool ShouldInstrumentFunction();
1561
1562  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1563  /// instrumentation function with the current function and the call site, if
1564  /// function instrumentation is enabled.
1565  void EmitFunctionInstrumentation(const char *Fn);
1566
1567  /// EmitMCountInstrumentation - Emit call to .mcount.
1568  void EmitMCountInstrumentation();
1569
1570  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1571  /// arguments for the given function. This is also responsible for naming the
1572  /// LLVM function arguments.
1573  void EmitFunctionProlog(const CGFunctionInfo &FI,
1574                          llvm::Function *Fn,
1575                          const FunctionArgList &Args);
1576
1577  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1578  /// given temporary.
1579  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc);
1580
1581  /// EmitStartEHSpec - Emit the start of the exception spec.
1582  void EmitStartEHSpec(const Decl *D);
1583
1584  /// EmitEndEHSpec - Emit the end of the exception spec.
1585  void EmitEndEHSpec(const Decl *D);
1586
1587  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1588  llvm::BasicBlock *getTerminateLandingPad();
1589
1590  /// getTerminateHandler - Return a handler (not a landing pad, just
1591  /// a catch handler) that just calls terminate.  This is used when
1592  /// a terminate scope encloses a try.
1593  llvm::BasicBlock *getTerminateHandler();
1594
1595  llvm::Type *ConvertTypeForMem(QualType T);
1596  llvm::Type *ConvertType(QualType T);
1597  llvm::Type *ConvertType(const TypeDecl *T) {
1598    return ConvertType(getContext().getTypeDeclType(T));
1599  }
1600
1601  /// LoadObjCSelf - Load the value of self. This function is only valid while
1602  /// generating code for an Objective-C method.
1603  llvm::Value *LoadObjCSelf();
1604
1605  /// TypeOfSelfObject - Return type of object that this self represents.
1606  QualType TypeOfSelfObject();
1607
1608  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1609  /// an aggregate LLVM type or is void.
1610  static TypeEvaluationKind getEvaluationKind(QualType T);
1611
1612  static bool hasScalarEvaluationKind(QualType T) {
1613    return getEvaluationKind(T) == TEK_Scalar;
1614  }
1615
1616  static bool hasAggregateEvaluationKind(QualType T) {
1617    return getEvaluationKind(T) == TEK_Aggregate;
1618  }
1619
1620  /// createBasicBlock - Create an LLVM basic block.
1621  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1622                                     llvm::Function *parent = 0,
1623                                     llvm::BasicBlock *before = 0) {
1624#ifdef NDEBUG
1625    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1626#else
1627    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1628#endif
1629  }
1630
1631  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1632  /// label maps to.
1633  JumpDest getJumpDestForLabel(const LabelDecl *S);
1634
1635  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1636  /// another basic block, simplify it. This assumes that no other code could
1637  /// potentially reference the basic block.
1638  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1639
1640  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1641  /// adding a fall-through branch from the current insert block if
1642  /// necessary. It is legal to call this function even if there is no current
1643  /// insertion point.
1644  ///
1645  /// IsFinished - If true, indicates that the caller has finished emitting
1646  /// branches to the given block and does not expect to emit code into it. This
1647  /// means the block can be ignored if it is unreachable.
1648  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1649
1650  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1651  /// near its uses, and leave the insertion point in it.
1652  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1653
1654  /// EmitBranch - Emit a branch to the specified basic block from the current
1655  /// insert block, taking care to avoid creation of branches from dummy
1656  /// blocks. It is legal to call this function even if there is no current
1657  /// insertion point.
1658  ///
1659  /// This function clears the current insertion point. The caller should follow
1660  /// calls to this function with calls to Emit*Block prior to generation new
1661  /// code.
1662  void EmitBranch(llvm::BasicBlock *Block);
1663
1664  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1665  /// indicates that the current code being emitted is unreachable.
1666  bool HaveInsertPoint() const {
1667    return Builder.GetInsertBlock() != 0;
1668  }
1669
1670  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1671  /// emitted IR has a place to go. Note that by definition, if this function
1672  /// creates a block then that block is unreachable; callers may do better to
1673  /// detect when no insertion point is defined and simply skip IR generation.
1674  void EnsureInsertPoint() {
1675    if (!HaveInsertPoint())
1676      EmitBlock(createBasicBlock());
1677  }
1678
1679  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1680  /// specified stmt yet.
1681  void ErrorUnsupported(const Stmt *S, const char *Type,
1682                        bool OmitOnError=false);
1683
1684  //===--------------------------------------------------------------------===//
1685  //                                  Helpers
1686  //===--------------------------------------------------------------------===//
1687
1688  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1689                        CharUnits Alignment = CharUnits()) {
1690    return LValue::MakeAddr(V, T, Alignment, getContext(),
1691                            CGM.getTBAAInfo(T));
1692  }
1693
1694  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1695    CharUnits Alignment;
1696    if (!T->isIncompleteType())
1697      Alignment = getContext().getTypeAlignInChars(T);
1698    return LValue::MakeAddr(V, T, Alignment, getContext(),
1699                            CGM.getTBAAInfo(T));
1700  }
1701
1702  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1703  /// block. The caller is responsible for setting an appropriate alignment on
1704  /// the alloca.
1705  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1706                                     const Twine &Name = "tmp");
1707
1708  /// InitTempAlloca - Provide an initial value for the given alloca.
1709  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1710
1711  /// CreateIRTemp - Create a temporary IR object of the given type, with
1712  /// appropriate alignment. This routine should only be used when an temporary
1713  /// value needs to be stored into an alloca (for example, to avoid explicit
1714  /// PHI construction), but the type is the IR type, not the type appropriate
1715  /// for storing in memory.
1716  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1717
1718  /// CreateMemTemp - Create a temporary memory object of the given type, with
1719  /// appropriate alignment.
1720  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1721
1722  /// CreateAggTemp - Create a temporary memory object for the given
1723  /// aggregate type.
1724  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1725    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1726    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1727                                 T.getQualifiers(),
1728                                 AggValueSlot::IsNotDestructed,
1729                                 AggValueSlot::DoesNotNeedGCBarriers,
1730                                 AggValueSlot::IsNotAliased);
1731  }
1732
1733  /// Emit a cast to void* in the appropriate address space.
1734  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1735
1736  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1737  /// expression and compare the result against zero, returning an Int1Ty value.
1738  llvm::Value *EvaluateExprAsBool(const Expr *E);
1739
1740  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1741  void EmitIgnoredExpr(const Expr *E);
1742
1743  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1744  /// any type.  The result is returned as an RValue struct.  If this is an
1745  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1746  /// the result should be returned.
1747  ///
1748  /// \param ignoreResult True if the resulting value isn't used.
1749  RValue EmitAnyExpr(const Expr *E,
1750                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1751                     bool ignoreResult = false);
1752
1753  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1754  // or the value of the expression, depending on how va_list is defined.
1755  llvm::Value *EmitVAListRef(const Expr *E);
1756
1757  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1758  /// always be accessible even if no aggregate location is provided.
1759  RValue EmitAnyExprToTemp(const Expr *E);
1760
1761  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1762  /// arbitrary expression into the given memory location.
1763  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1764                        Qualifiers Quals, bool IsInitializer);
1765
1766  /// EmitExprAsInit - Emits the code necessary to initialize a
1767  /// location in memory with the given initializer.
1768  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1769                      LValue lvalue, bool capturedByInit);
1770
1771  /// hasVolatileMember - returns true if aggregate type has a volatile
1772  /// member.
1773  bool hasVolatileMember(QualType T) {
1774    if (const RecordType *RT = T->getAs<RecordType>()) {
1775      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1776      return RD->hasVolatileMember();
1777    }
1778    return false;
1779  }
1780  /// EmitAggregateCopy - Emit an aggregate assignment.
1781  ///
1782  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1783  /// This is required for correctness when assigning non-POD structures in C++.
1784  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1785                           QualType EltTy) {
1786    bool IsVolatile = hasVolatileMember(EltTy);
1787    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1788                      true);
1789  }
1790
1791  /// EmitAggregateCopy - Emit an aggregate copy.
1792  ///
1793  /// \param isVolatile - True iff either the source or the destination is
1794  /// volatile.
1795  /// \param isAssignment - If false, allow padding to be copied.  This often
1796  /// yields more efficient.
1797  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1798                         QualType EltTy, bool isVolatile=false,
1799                         CharUnits Alignment = CharUnits::Zero(),
1800                         bool isAssignment = false);
1801
1802  /// StartBlock - Start new block named N. If insert block is a dummy block
1803  /// then reuse it.
1804  void StartBlock(const char *N);
1805
1806  /// GetAddrOfLocalVar - Return the address of a local variable.
1807  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1808    llvm::Value *Res = LocalDeclMap[VD];
1809    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1810    return Res;
1811  }
1812
1813  /// getOpaqueLValueMapping - Given an opaque value expression (which
1814  /// must be mapped to an l-value), return its mapping.
1815  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1816    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1817
1818    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1819      it = OpaqueLValues.find(e);
1820    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1821    return it->second;
1822  }
1823
1824  /// getOpaqueRValueMapping - Given an opaque value expression (which
1825  /// must be mapped to an r-value), return its mapping.
1826  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1827    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1828
1829    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1830      it = OpaqueRValues.find(e);
1831    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1832    return it->second;
1833  }
1834
1835  /// getAccessedFieldNo - Given an encoded value and a result number, return
1836  /// the input field number being accessed.
1837  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1838
1839  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1840  llvm::BasicBlock *GetIndirectGotoBlock();
1841
1842  /// EmitNullInitialization - Generate code to set a value of the given type to
1843  /// null, If the type contains data member pointers, they will be initialized
1844  /// to -1 in accordance with the Itanium C++ ABI.
1845  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1846
1847  // EmitVAArg - Generate code to get an argument from the passed in pointer
1848  // and update it accordingly. The return value is a pointer to the argument.
1849  // FIXME: We should be able to get rid of this method and use the va_arg
1850  // instruction in LLVM instead once it works well enough.
1851  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1852
1853  /// emitArrayLength - Compute the length of an array, even if it's a
1854  /// VLA, and drill down to the base element type.
1855  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1856                               QualType &baseType,
1857                               llvm::Value *&addr);
1858
1859  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1860  /// the given variably-modified type and store them in the VLASizeMap.
1861  ///
1862  /// This function can be called with a null (unreachable) insert point.
1863  void EmitVariablyModifiedType(QualType Ty);
1864
1865  /// getVLASize - Returns an LLVM value that corresponds to the size,
1866  /// in non-variably-sized elements, of a variable length array type,
1867  /// plus that largest non-variably-sized element type.  Assumes that
1868  /// the type has already been emitted with EmitVariablyModifiedType.
1869  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1870  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1871
1872  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1873  /// generating code for an C++ member function.
1874  llvm::Value *LoadCXXThis() {
1875    assert(CXXThisValue && "no 'this' value for this function");
1876    return CXXThisValue;
1877  }
1878
1879  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1880  /// virtual bases.
1881  // FIXME: Every place that calls LoadCXXVTT is something
1882  // that needs to be abstracted properly.
1883  llvm::Value *LoadCXXVTT() {
1884    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1885    return CXXStructorImplicitParamValue;
1886  }
1887
1888  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1889  /// for a constructor/destructor.
1890  llvm::Value *LoadCXXStructorImplicitParam() {
1891    assert(CXXStructorImplicitParamValue &&
1892           "no implicit argument value for this function");
1893    return CXXStructorImplicitParamValue;
1894  }
1895
1896  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1897  /// complete class to the given direct base.
1898  llvm::Value *
1899  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1900                                        const CXXRecordDecl *Derived,
1901                                        const CXXRecordDecl *Base,
1902                                        bool BaseIsVirtual);
1903
1904  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1905  /// load of 'this' and returns address of the base class.
1906  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1907                                     const CXXRecordDecl *Derived,
1908                                     CastExpr::path_const_iterator PathBegin,
1909                                     CastExpr::path_const_iterator PathEnd,
1910                                     bool NullCheckValue);
1911
1912  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1913                                        const CXXRecordDecl *Derived,
1914                                        CastExpr::path_const_iterator PathBegin,
1915                                        CastExpr::path_const_iterator PathEnd,
1916                                        bool NullCheckValue);
1917
1918  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1919                                         const CXXRecordDecl *ClassDecl,
1920                                         const CXXRecordDecl *BaseClassDecl);
1921
1922  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1923  /// base constructor/destructor with virtual bases.
1924  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1925  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1926  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1927                               bool Delegating);
1928
1929  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1930                                      CXXCtorType CtorType,
1931                                      const FunctionArgList &Args);
1932  // It's important not to confuse this and the previous function. Delegating
1933  // constructors are the C++0x feature. The constructor delegate optimization
1934  // is used to reduce duplication in the base and complete consturctors where
1935  // they are substantially the same.
1936  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1937                                        const FunctionArgList &Args);
1938  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1939                              bool ForVirtualBase, bool Delegating,
1940                              llvm::Value *This,
1941                              CallExpr::const_arg_iterator ArgBeg,
1942                              CallExpr::const_arg_iterator ArgEnd);
1943
1944  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1945                              llvm::Value *This, llvm::Value *Src,
1946                              CallExpr::const_arg_iterator ArgBeg,
1947                              CallExpr::const_arg_iterator ArgEnd);
1948
1949  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1950                                  const ConstantArrayType *ArrayTy,
1951                                  llvm::Value *ArrayPtr,
1952                                  CallExpr::const_arg_iterator ArgBeg,
1953                                  CallExpr::const_arg_iterator ArgEnd,
1954                                  bool ZeroInitialization = false);
1955
1956  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1957                                  llvm::Value *NumElements,
1958                                  llvm::Value *ArrayPtr,
1959                                  CallExpr::const_arg_iterator ArgBeg,
1960                                  CallExpr::const_arg_iterator ArgEnd,
1961                                  bool ZeroInitialization = false);
1962
1963  static Destroyer destroyCXXObject;
1964
1965  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1966                             bool ForVirtualBase, bool Delegating,
1967                             llvm::Value *This);
1968
1969  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1970                               llvm::Value *NewPtr, llvm::Value *NumElements);
1971
1972  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1973                        llvm::Value *Ptr);
1974
1975  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1976  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1977
1978  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1979                      QualType DeleteTy);
1980
1981  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1982  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1983  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1984
1985  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1986  void EmitStdInitializerListCleanup(llvm::Value *loc,
1987                                     const InitListExpr *init);
1988
1989  /// \brief Situations in which we might emit a check for the suitability of a
1990  ///        pointer or glvalue.
1991  enum TypeCheckKind {
1992    /// Checking the operand of a load. Must be suitably sized and aligned.
1993    TCK_Load,
1994    /// Checking the destination of a store. Must be suitably sized and aligned.
1995    TCK_Store,
1996    /// Checking the bound value in a reference binding. Must be suitably sized
1997    /// and aligned, but is not required to refer to an object (until the
1998    /// reference is used), per core issue 453.
1999    TCK_ReferenceBinding,
2000    /// Checking the object expression in a non-static data member access. Must
2001    /// be an object within its lifetime.
2002    TCK_MemberAccess,
2003    /// Checking the 'this' pointer for a call to a non-static member function.
2004    /// Must be an object within its lifetime.
2005    TCK_MemberCall,
2006    /// Checking the 'this' pointer for a constructor call.
2007    TCK_ConstructorCall,
2008    /// Checking the operand of a static_cast to a derived pointer type. Must be
2009    /// null or an object within its lifetime.
2010    TCK_DowncastPointer,
2011    /// Checking the operand of a static_cast to a derived reference type. Must
2012    /// be an object within its lifetime.
2013    TCK_DowncastReference
2014  };
2015
2016  /// \brief Emit a check that \p V is the address of storage of the
2017  /// appropriate size and alignment for an object of type \p Type.
2018  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2019                     QualType Type, CharUnits Alignment = CharUnits::Zero());
2020
2021  /// \brief Emit a check that \p Base points into an array object, which
2022  /// we can access at index \p Index. \p Accessed should be \c false if we
2023  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2024  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2025                       QualType IndexType, bool Accessed);
2026
2027  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2028                                       bool isInc, bool isPre);
2029  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2030                                         bool isInc, bool isPre);
2031  //===--------------------------------------------------------------------===//
2032  //                            Declaration Emission
2033  //===--------------------------------------------------------------------===//
2034
2035  /// EmitDecl - Emit a declaration.
2036  ///
2037  /// This function can be called with a null (unreachable) insert point.
2038  void EmitDecl(const Decl &D);
2039
2040  /// EmitVarDecl - Emit a local variable declaration.
2041  ///
2042  /// This function can be called with a null (unreachable) insert point.
2043  void EmitVarDecl(const VarDecl &D);
2044
2045  void EmitScalarInit(const Expr *init, const ValueDecl *D,
2046                      LValue lvalue, bool capturedByInit);
2047  void EmitScalarInit(llvm::Value *init, LValue lvalue);
2048
2049  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2050                             llvm::Value *Address);
2051
2052  /// EmitAutoVarDecl - Emit an auto variable declaration.
2053  ///
2054  /// This function can be called with a null (unreachable) insert point.
2055  void EmitAutoVarDecl(const VarDecl &D);
2056
2057  class AutoVarEmission {
2058    friend class CodeGenFunction;
2059
2060    const VarDecl *Variable;
2061
2062    /// The alignment of the variable.
2063    CharUnits Alignment;
2064
2065    /// The address of the alloca.  Null if the variable was emitted
2066    /// as a global constant.
2067    llvm::Value *Address;
2068
2069    llvm::Value *NRVOFlag;
2070
2071    /// True if the variable is a __block variable.
2072    bool IsByRef;
2073
2074    /// True if the variable is of aggregate type and has a constant
2075    /// initializer.
2076    bool IsConstantAggregate;
2077
2078    /// Non-null if we should use lifetime annotations.
2079    llvm::Value *SizeForLifetimeMarkers;
2080
2081    struct Invalid {};
2082    AutoVarEmission(Invalid) : Variable(0) {}
2083
2084    AutoVarEmission(const VarDecl &variable)
2085      : Variable(&variable), Address(0), NRVOFlag(0),
2086        IsByRef(false), IsConstantAggregate(false),
2087        SizeForLifetimeMarkers(0) {}
2088
2089    bool wasEmittedAsGlobal() const { return Address == 0; }
2090
2091  public:
2092    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2093
2094    bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
2095    llvm::Value *getSizeForLifetimeMarkers() const {
2096      assert(useLifetimeMarkers());
2097      return SizeForLifetimeMarkers;
2098    }
2099
2100    /// Returns the raw, allocated address, which is not necessarily
2101    /// the address of the object itself.
2102    llvm::Value *getAllocatedAddress() const {
2103      return Address;
2104    }
2105
2106    /// Returns the address of the object within this declaration.
2107    /// Note that this does not chase the forwarding pointer for
2108    /// __block decls.
2109    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
2110      if (!IsByRef) return Address;
2111
2112      return CGF.Builder.CreateStructGEP(Address,
2113                                         CGF.getByRefValueLLVMField(Variable),
2114                                         Variable->getNameAsString());
2115    }
2116  };
2117  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2118  void EmitAutoVarInit(const AutoVarEmission &emission);
2119  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2120  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2121                              QualType::DestructionKind dtorKind);
2122
2123  void EmitStaticVarDecl(const VarDecl &D,
2124                         llvm::GlobalValue::LinkageTypes Linkage);
2125
2126  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2127  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2128
2129  /// protectFromPeepholes - Protect a value that we're intending to
2130  /// store to the side, but which will probably be used later, from
2131  /// aggressive peepholing optimizations that might delete it.
2132  ///
2133  /// Pass the result to unprotectFromPeepholes to declare that
2134  /// protection is no longer required.
2135  ///
2136  /// There's no particular reason why this shouldn't apply to
2137  /// l-values, it's just that no existing peepholes work on pointers.
2138  PeepholeProtection protectFromPeepholes(RValue rvalue);
2139  void unprotectFromPeepholes(PeepholeProtection protection);
2140
2141  //===--------------------------------------------------------------------===//
2142  //                             Statement Emission
2143  //===--------------------------------------------------------------------===//
2144
2145  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2146  void EmitStopPoint(const Stmt *S);
2147
2148  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2149  /// this function even if there is no current insertion point.
2150  ///
2151  /// This function may clear the current insertion point; callers should use
2152  /// EnsureInsertPoint if they wish to subsequently generate code without first
2153  /// calling EmitBlock, EmitBranch, or EmitStmt.
2154  void EmitStmt(const Stmt *S);
2155
2156  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2157  /// necessarily require an insertion point or debug information; typically
2158  /// because the statement amounts to a jump or a container of other
2159  /// statements.
2160  ///
2161  /// \return True if the statement was handled.
2162  bool EmitSimpleStmt(const Stmt *S);
2163
2164  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2165                          AggValueSlot AVS = AggValueSlot::ignored());
2166  RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2167                                      bool GetLast = false, AggValueSlot AVS =
2168                                          AggValueSlot::ignored());
2169
2170  /// EmitLabel - Emit the block for the given label. It is legal to call this
2171  /// function even if there is no current insertion point.
2172  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2173
2174  void EmitLabelStmt(const LabelStmt &S);
2175  void EmitAttributedStmt(const AttributedStmt &S);
2176  void EmitGotoStmt(const GotoStmt &S);
2177  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2178  void EmitIfStmt(const IfStmt &S);
2179  void EmitWhileStmt(const WhileStmt &S);
2180  void EmitDoStmt(const DoStmt &S);
2181  void EmitForStmt(const ForStmt &S);
2182  void EmitReturnStmt(const ReturnStmt &S);
2183  void EmitDeclStmt(const DeclStmt &S);
2184  void EmitBreakStmt(const BreakStmt &S);
2185  void EmitContinueStmt(const ContinueStmt &S);
2186  void EmitSwitchStmt(const SwitchStmt &S);
2187  void EmitDefaultStmt(const DefaultStmt &S);
2188  void EmitCaseStmt(const CaseStmt &S);
2189  void EmitCaseStmtRange(const CaseStmt &S);
2190  void EmitAsmStmt(const AsmStmt &S);
2191  void EmitCapturedStmt(const CapturedStmt &S);
2192
2193  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2194  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2195  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2196  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2197  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2198
2199  llvm::Constant *getUnwindResumeFn();
2200  llvm::Constant *getUnwindResumeOrRethrowFn();
2201  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2202  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2203
2204  void EmitCXXTryStmt(const CXXTryStmt &S);
2205  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2206
2207  //===--------------------------------------------------------------------===//
2208  //                         LValue Expression Emission
2209  //===--------------------------------------------------------------------===//
2210
2211  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2212  RValue GetUndefRValue(QualType Ty);
2213
2214  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2215  /// and issue an ErrorUnsupported style diagnostic (using the
2216  /// provided Name).
2217  RValue EmitUnsupportedRValue(const Expr *E,
2218                               const char *Name);
2219
2220  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2221  /// an ErrorUnsupported style diagnostic (using the provided Name).
2222  LValue EmitUnsupportedLValue(const Expr *E,
2223                               const char *Name);
2224
2225  /// EmitLValue - Emit code to compute a designator that specifies the location
2226  /// of the expression.
2227  ///
2228  /// This can return one of two things: a simple address or a bitfield
2229  /// reference.  In either case, the LLVM Value* in the LValue structure is
2230  /// guaranteed to be an LLVM pointer type.
2231  ///
2232  /// If this returns a bitfield reference, nothing about the pointee type of
2233  /// the LLVM value is known: For example, it may not be a pointer to an
2234  /// integer.
2235  ///
2236  /// If this returns a normal address, and if the lvalue's C type is fixed
2237  /// size, this method guarantees that the returned pointer type will point to
2238  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2239  /// variable length type, this is not possible.
2240  ///
2241  LValue EmitLValue(const Expr *E);
2242
2243  /// \brief Same as EmitLValue but additionally we generate checking code to
2244  /// guard against undefined behavior.  This is only suitable when we know
2245  /// that the address will be used to access the object.
2246  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2247
2248  RValue convertTempToRValue(llvm::Value *addr, QualType type);
2249
2250  void EmitAtomicInit(Expr *E, LValue lvalue);
2251
2252  RValue EmitAtomicLoad(LValue lvalue,
2253                        AggValueSlot slot = AggValueSlot::ignored());
2254
2255  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2256
2257  /// EmitToMemory - Change a scalar value from its value
2258  /// representation to its in-memory representation.
2259  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2260
2261  /// EmitFromMemory - Change a scalar value from its memory
2262  /// representation to its value representation.
2263  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2264
2265  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2266  /// care to appropriately convert from the memory representation to
2267  /// the LLVM value representation.
2268  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2269                                unsigned Alignment, QualType Ty,
2270                                llvm::MDNode *TBAAInfo = 0,
2271                                QualType TBAABaseTy = QualType(),
2272                                uint64_t TBAAOffset = 0);
2273
2274  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2275  /// care to appropriately convert from the memory representation to
2276  /// the LLVM value representation.  The l-value must be a simple
2277  /// l-value.
2278  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2279
2280  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2281  /// care to appropriately convert from the memory representation to
2282  /// the LLVM value representation.
2283  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2284                         bool Volatile, unsigned Alignment, QualType Ty,
2285                         llvm::MDNode *TBAAInfo = 0, bool isInit = false,
2286                         QualType TBAABaseTy = QualType(),
2287                         uint64_t TBAAOffset = 0);
2288
2289  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2290  /// care to appropriately convert from the memory representation to
2291  /// the LLVM value representation.  The l-value must be a simple
2292  /// l-value.  The isInit flag indicates whether this is an initialization.
2293  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2294  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2295
2296  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2297  /// this method emits the address of the lvalue, then loads the result as an
2298  /// rvalue, returning the rvalue.
2299  RValue EmitLoadOfLValue(LValue V);
2300  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2301  RValue EmitLoadOfBitfieldLValue(LValue LV);
2302
2303  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2304  /// lvalue, where both are guaranteed to the have the same type, and that type
2305  /// is 'Ty'.
2306  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2307  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2308
2309  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2310  /// EmitStoreThroughLValue.
2311  ///
2312  /// \param Result [out] - If non-null, this will be set to a Value* for the
2313  /// bit-field contents after the store, appropriate for use as the result of
2314  /// an assignment to the bit-field.
2315  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2316                                      llvm::Value **Result=0);
2317
2318  /// Emit an l-value for an assignment (simple or compound) of complex type.
2319  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2320  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2321
2322  // Note: only available for agg return types
2323  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2324  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2325  // Note: only available for agg return types
2326  LValue EmitCallExprLValue(const CallExpr *E);
2327  // Note: only available for agg return types
2328  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2329  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2330  LValue EmitStringLiteralLValue(const StringLiteral *E);
2331  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2332  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2333  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2334  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2335                                bool Accessed = false);
2336  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2337  LValue EmitMemberExpr(const MemberExpr *E);
2338  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2339  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2340  LValue EmitInitListLValue(const InitListExpr *E);
2341  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2342  LValue EmitCastLValue(const CastExpr *E);
2343  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2344  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2345  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2346
2347  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2348
2349  class ConstantEmission {
2350    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2351    ConstantEmission(llvm::Constant *C, bool isReference)
2352      : ValueAndIsReference(C, isReference) {}
2353  public:
2354    ConstantEmission() {}
2355    static ConstantEmission forReference(llvm::Constant *C) {
2356      return ConstantEmission(C, true);
2357    }
2358    static ConstantEmission forValue(llvm::Constant *C) {
2359      return ConstantEmission(C, false);
2360    }
2361
2362    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2363
2364    bool isReference() const { return ValueAndIsReference.getInt(); }
2365    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2366      assert(isReference());
2367      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2368                                            refExpr->getType());
2369    }
2370
2371    llvm::Constant *getValue() const {
2372      assert(!isReference());
2373      return ValueAndIsReference.getPointer();
2374    }
2375  };
2376
2377  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2378
2379  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2380                                AggValueSlot slot = AggValueSlot::ignored());
2381  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2382
2383  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2384                              const ObjCIvarDecl *Ivar);
2385  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2386  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2387
2388  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2389  /// if the Field is a reference, this will return the address of the reference
2390  /// and not the address of the value stored in the reference.
2391  LValue EmitLValueForFieldInitialization(LValue Base,
2392                                          const FieldDecl* Field);
2393
2394  LValue EmitLValueForIvar(QualType ObjectTy,
2395                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2396                           unsigned CVRQualifiers);
2397
2398  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2399  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2400  LValue EmitLambdaLValue(const LambdaExpr *E);
2401  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2402  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2403
2404  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2405  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2406  LValue EmitStmtExprLValue(const StmtExpr *E);
2407  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2408  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2409  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2410
2411  //===--------------------------------------------------------------------===//
2412  //                         Scalar Expression Emission
2413  //===--------------------------------------------------------------------===//
2414
2415  /// EmitCall - Generate a call of the given function, expecting the given
2416  /// result type, and using the given argument list which specifies both the
2417  /// LLVM arguments and the types they were derived from.
2418  ///
2419  /// \param TargetDecl - If given, the decl of the function in a direct call;
2420  /// used to set attributes on the call (noreturn, etc.).
2421  RValue EmitCall(const CGFunctionInfo &FnInfo,
2422                  llvm::Value *Callee,
2423                  ReturnValueSlot ReturnValue,
2424                  const CallArgList &Args,
2425                  const Decl *TargetDecl = 0,
2426                  llvm::Instruction **callOrInvoke = 0);
2427
2428  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2429                  ReturnValueSlot ReturnValue,
2430                  CallExpr::const_arg_iterator ArgBeg,
2431                  CallExpr::const_arg_iterator ArgEnd,
2432                  const Decl *TargetDecl = 0);
2433  RValue EmitCallExpr(const CallExpr *E,
2434                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2435
2436  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2437                                  const Twine &name = "");
2438  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2439                                  ArrayRef<llvm::Value*> args,
2440                                  const Twine &name = "");
2441  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2442                                          const Twine &name = "");
2443  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2444                                          ArrayRef<llvm::Value*> args,
2445                                          const Twine &name = "");
2446
2447  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2448                                  ArrayRef<llvm::Value *> Args,
2449                                  const Twine &Name = "");
2450  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2451                                  const Twine &Name = "");
2452  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2453                                         ArrayRef<llvm::Value*> args,
2454                                         const Twine &name = "");
2455  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2456                                         const Twine &name = "");
2457  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2458                                       ArrayRef<llvm::Value*> args);
2459
2460  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2461                                llvm::Type *Ty);
2462  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2463                                llvm::Value *This, llvm::Type *Ty);
2464  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2465                                         NestedNameSpecifier *Qual,
2466                                         llvm::Type *Ty);
2467
2468  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2469                                                   CXXDtorType Type,
2470                                                   const CXXRecordDecl *RD);
2471
2472  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2473                           SourceLocation CallLoc,
2474                           llvm::Value *Callee,
2475                           ReturnValueSlot ReturnValue,
2476                           llvm::Value *This,
2477                           llvm::Value *ImplicitParam,
2478                           QualType ImplicitParamTy,
2479                           CallExpr::const_arg_iterator ArgBeg,
2480                           CallExpr::const_arg_iterator ArgEnd);
2481  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2482                               ReturnValueSlot ReturnValue);
2483  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2484                                      ReturnValueSlot ReturnValue);
2485
2486  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2487                                           const CXXMethodDecl *MD,
2488                                           llvm::Value *This);
2489  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2490                                       const CXXMethodDecl *MD,
2491                                       ReturnValueSlot ReturnValue);
2492
2493  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2494                                ReturnValueSlot ReturnValue);
2495
2496
2497  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2498                         unsigned BuiltinID, const CallExpr *E);
2499
2500  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2501
2502  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2503  /// is unhandled by the current target.
2504  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2505
2506  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2507  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2508  llvm::Value *EmitNeonCall(llvm::Function *F,
2509                            SmallVectorImpl<llvm::Value*> &O,
2510                            const char *name,
2511                            unsigned shift = 0, bool rightshift = false);
2512  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2513  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2514                                   bool negateForRightShift);
2515
2516  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2517  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2518  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2519
2520  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2521  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2522  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2523  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2524  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2525  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2526                                const ObjCMethodDecl *MethodWithObjects);
2527  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2528  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2529                             ReturnValueSlot Return = ReturnValueSlot());
2530
2531  /// Retrieves the default cleanup kind for an ARC cleanup.
2532  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2533  CleanupKind getARCCleanupKind() {
2534    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2535             ? NormalAndEHCleanup : NormalCleanup;
2536  }
2537
2538  // ARC primitives.
2539  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2540  void EmitARCDestroyWeak(llvm::Value *addr);
2541  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2542  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2543  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2544                                bool ignored);
2545  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2546  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2547  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2548  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2549  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2550                                  bool resultIgnored);
2551  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2552                                      bool resultIgnored);
2553  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2554  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2555  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2556  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2557  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2558  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2559  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2560  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2561  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2562
2563  std::pair<LValue,llvm::Value*>
2564  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2565  std::pair<LValue,llvm::Value*>
2566  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2567
2568  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2569
2570  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2571  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2572  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2573
2574  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2575  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2576  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2577
2578  void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2579
2580  static Destroyer destroyARCStrongImprecise;
2581  static Destroyer destroyARCStrongPrecise;
2582  static Destroyer destroyARCWeak;
2583
2584  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2585  llvm::Value *EmitObjCAutoreleasePoolPush();
2586  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2587  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2588  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2589
2590  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2591  /// expression. Will emit a temporary variable if E is not an LValue.
2592  RValue EmitReferenceBindingToExpr(const Expr* E,
2593                                    const NamedDecl *InitializedDecl);
2594
2595  //===--------------------------------------------------------------------===//
2596  //                           Expression Emission
2597  //===--------------------------------------------------------------------===//
2598
2599  // Expressions are broken into three classes: scalar, complex, aggregate.
2600
2601  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2602  /// scalar type, returning the result.
2603  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2604
2605  /// EmitScalarConversion - Emit a conversion from the specified type to the
2606  /// specified destination type, both of which are LLVM scalar types.
2607  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2608                                    QualType DstTy);
2609
2610  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2611  /// complex type to the specified destination type, where the destination type
2612  /// is an LLVM scalar type.
2613  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2614                                             QualType DstTy);
2615
2616
2617  /// EmitAggExpr - Emit the computation of the specified expression
2618  /// of aggregate type.  The result is computed into the given slot,
2619  /// which may be null to indicate that the value is not needed.
2620  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2621
2622  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2623  /// aggregate type into a temporary LValue.
2624  LValue EmitAggExprToLValue(const Expr *E);
2625
2626  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2627  /// pointers.
2628  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2629                                QualType Ty);
2630
2631  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2632  /// make sure it survives garbage collection until this point.
2633  void EmitExtendGCLifetime(llvm::Value *object);
2634
2635  /// EmitComplexExpr - Emit the computation of the specified expression of
2636  /// complex type, returning the result.
2637  ComplexPairTy EmitComplexExpr(const Expr *E,
2638                                bool IgnoreReal = false,
2639                                bool IgnoreImag = false);
2640
2641  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2642  /// type and place its result into the specified l-value.
2643  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2644
2645  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2646  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2647
2648  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2649  ComplexPairTy EmitLoadOfComplex(LValue src);
2650
2651  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2652  /// a static local variable.
2653  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2654                                            const char *Separator,
2655                                       llvm::GlobalValue::LinkageTypes Linkage);
2656
2657  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2658  /// global variable that has already been created for it.  If the initializer
2659  /// has a different type than GV does, this may free GV and return a different
2660  /// one.  Otherwise it just returns GV.
2661  llvm::GlobalVariable *
2662  AddInitializerToStaticVarDecl(const VarDecl &D,
2663                                llvm::GlobalVariable *GV);
2664
2665
2666  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2667  /// variable with global storage.
2668  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2669                                bool PerformInit);
2670
2671  /// Call atexit() with a function that passes the given argument to
2672  /// the given function.
2673  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2674
2675  /// Emit code in this function to perform a guarded variable
2676  /// initialization.  Guarded initializations are used when it's not
2677  /// possible to prove that an initialization will be done exactly
2678  /// once, e.g. with a static local variable or a static data member
2679  /// of a class template.
2680  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2681                          bool PerformInit);
2682
2683  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2684  /// variables.
2685  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2686                                 ArrayRef<llvm::Constant *> Decls,
2687                                 llvm::GlobalVariable *Guard = 0);
2688
2689  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2690  /// variables.
2691  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2692                                  const std::vector<std::pair<llvm::WeakVH,
2693                                  llvm::Constant*> > &DtorsAndObjects);
2694
2695  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2696                                        const VarDecl *D,
2697                                        llvm::GlobalVariable *Addr,
2698                                        bool PerformInit);
2699
2700  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2701
2702  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2703                                  const Expr *Exp);
2704
2705  void enterFullExpression(const ExprWithCleanups *E) {
2706    if (E->getNumObjects() == 0) return;
2707    enterNonTrivialFullExpression(E);
2708  }
2709  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2710
2711  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2712
2713  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2714
2715  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2716
2717  //===--------------------------------------------------------------------===//
2718  //                         Annotations Emission
2719  //===--------------------------------------------------------------------===//
2720
2721  /// Emit an annotation call (intrinsic or builtin).
2722  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2723                                  llvm::Value *AnnotatedVal,
2724                                  StringRef AnnotationStr,
2725                                  SourceLocation Location);
2726
2727  /// Emit local annotations for the local variable V, declared by D.
2728  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2729
2730  /// Emit field annotations for the given field & value. Returns the
2731  /// annotation result.
2732  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2733
2734  //===--------------------------------------------------------------------===//
2735  //                             Internal Helpers
2736  //===--------------------------------------------------------------------===//
2737
2738  /// ContainsLabel - Return true if the statement contains a label in it.  If
2739  /// this statement is not executed normally, it not containing a label means
2740  /// that we can just remove the code.
2741  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2742
2743  /// containsBreak - Return true if the statement contains a break out of it.
2744  /// If the statement (recursively) contains a switch or loop with a break
2745  /// inside of it, this is fine.
2746  static bool containsBreak(const Stmt *S);
2747
2748  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2749  /// to a constant, or if it does but contains a label, return false.  If it
2750  /// constant folds return true and set the boolean result in Result.
2751  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2752
2753  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2754  /// to a constant, or if it does but contains a label, return false.  If it
2755  /// constant folds return true and set the folded value.
2756  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2757
2758  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2759  /// if statement) to the specified blocks.  Based on the condition, this might
2760  /// try to simplify the codegen of the conditional based on the branch.
2761  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2762                            llvm::BasicBlock *FalseBlock);
2763
2764  /// \brief Emit a description of a type in a format suitable for passing to
2765  /// a runtime sanitizer handler.
2766  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2767
2768  /// \brief Convert a value into a format suitable for passing to a runtime
2769  /// sanitizer handler.
2770  llvm::Value *EmitCheckValue(llvm::Value *V);
2771
2772  /// \brief Emit a description of a source location in a format suitable for
2773  /// passing to a runtime sanitizer handler.
2774  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2775
2776  /// \brief Specify under what conditions this check can be recovered
2777  enum CheckRecoverableKind {
2778    /// Always terminate program execution if this check fails
2779    CRK_Unrecoverable,
2780    /// Check supports recovering, allows user to specify which
2781    CRK_Recoverable,
2782    /// Runtime conditionally aborts, always need to support recovery.
2783    CRK_AlwaysRecoverable
2784  };
2785
2786  /// \brief Create a basic block that will call a handler function in a
2787  /// sanitizer runtime with the provided arguments, and create a conditional
2788  /// branch to it.
2789  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2790                 ArrayRef<llvm::Constant *> StaticArgs,
2791                 ArrayRef<llvm::Value *> DynamicArgs,
2792                 CheckRecoverableKind Recoverable);
2793
2794  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2795  /// conditional branch to it, for the -ftrapv checks.
2796  void EmitTrapCheck(llvm::Value *Checked);
2797
2798  /// EmitCallArg - Emit a single call argument.
2799  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2800
2801  /// EmitDelegateCallArg - We are performing a delegate call; that
2802  /// is, the current function is delegating to another one.  Produce
2803  /// a r-value suitable for passing the given parameter.
2804  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2805
2806  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2807  /// point operation, expressed as the maximum relative error in ulp.
2808  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2809
2810private:
2811  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2812  void EmitReturnOfRValue(RValue RV, QualType Ty);
2813
2814  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2815  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2816  ///
2817  /// \param AI - The first function argument of the expansion.
2818  /// \return The argument following the last expanded function
2819  /// argument.
2820  llvm::Function::arg_iterator
2821  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2822                     llvm::Function::arg_iterator AI);
2823
2824  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2825  /// Ty, into individual arguments on the provided vector \arg Args. See
2826  /// ABIArgInfo::Expand.
2827  void ExpandTypeToArgs(QualType Ty, RValue Src,
2828                        SmallVector<llvm::Value*, 16> &Args,
2829                        llvm::FunctionType *IRFuncTy);
2830
2831  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2832                            const Expr *InputExpr, std::string &ConstraintStr);
2833
2834  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2835                                  LValue InputValue, QualType InputType,
2836                                  std::string &ConstraintStr);
2837
2838  /// EmitCallArgs - Emit call arguments for a function.
2839  /// The CallArgTypeInfo parameter is used for iterating over the known
2840  /// argument types of the function being called.
2841  template<typename T>
2842  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2843                    CallExpr::const_arg_iterator ArgBeg,
2844                    CallExpr::const_arg_iterator ArgEnd) {
2845      CallExpr::const_arg_iterator Arg = ArgBeg;
2846
2847    // First, use the argument types that the type info knows about
2848    if (CallArgTypeInfo) {
2849      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2850           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2851        assert(Arg != ArgEnd && "Running over edge of argument list!");
2852        QualType ArgType = *I;
2853#ifndef NDEBUG
2854        QualType ActualArgType = Arg->getType();
2855        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2856          QualType ActualBaseType =
2857            ActualArgType->getAs<PointerType>()->getPointeeType();
2858          QualType ArgBaseType =
2859            ArgType->getAs<PointerType>()->getPointeeType();
2860          if (ArgBaseType->isVariableArrayType()) {
2861            if (const VariableArrayType *VAT =
2862                getContext().getAsVariableArrayType(ActualBaseType)) {
2863              if (!VAT->getSizeExpr())
2864                ActualArgType = ArgType;
2865            }
2866          }
2867        }
2868        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2869               getTypePtr() ==
2870               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2871               "type mismatch in call argument!");
2872#endif
2873        EmitCallArg(Args, *Arg, ArgType);
2874      }
2875
2876      // Either we've emitted all the call args, or we have a call to a
2877      // variadic function.
2878      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2879             "Extra arguments in non-variadic function!");
2880
2881    }
2882
2883    // If we still have any arguments, emit them using the type of the argument.
2884    for (; Arg != ArgEnd; ++Arg)
2885      EmitCallArg(Args, *Arg, Arg->getType());
2886  }
2887
2888  const TargetCodeGenInfo &getTargetHooks() const {
2889    return CGM.getTargetCodeGenInfo();
2890  }
2891
2892  void EmitDeclMetadata();
2893
2894  CodeGenModule::ByrefHelpers *
2895  buildByrefHelpers(llvm::StructType &byrefType,
2896                    const AutoVarEmission &emission);
2897
2898  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2899
2900  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2901  /// value and compute our best estimate of the alignment of the pointee.
2902  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2903};
2904
2905/// Helper class with most of the code for saving a value for a
2906/// conditional expression cleanup.
2907struct DominatingLLVMValue {
2908  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2909
2910  /// Answer whether the given value needs extra work to be saved.
2911  static bool needsSaving(llvm::Value *value) {
2912    // If it's not an instruction, we don't need to save.
2913    if (!isa<llvm::Instruction>(value)) return false;
2914
2915    // If it's an instruction in the entry block, we don't need to save.
2916    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2917    return (block != &block->getParent()->getEntryBlock());
2918  }
2919
2920  /// Try to save the given value.
2921  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2922    if (!needsSaving(value)) return saved_type(value, false);
2923
2924    // Otherwise we need an alloca.
2925    llvm::Value *alloca =
2926      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2927    CGF.Builder.CreateStore(value, alloca);
2928
2929    return saved_type(alloca, true);
2930  }
2931
2932  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2933    if (!value.getInt()) return value.getPointer();
2934    return CGF.Builder.CreateLoad(value.getPointer());
2935  }
2936};
2937
2938/// A partial specialization of DominatingValue for llvm::Values that
2939/// might be llvm::Instructions.
2940template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2941  typedef T *type;
2942  static type restore(CodeGenFunction &CGF, saved_type value) {
2943    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2944  }
2945};
2946
2947/// A specialization of DominatingValue for RValue.
2948template <> struct DominatingValue<RValue> {
2949  typedef RValue type;
2950  class saved_type {
2951    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2952                AggregateAddress, ComplexAddress };
2953
2954    llvm::Value *Value;
2955    Kind K;
2956    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2957
2958  public:
2959    static bool needsSaving(RValue value);
2960    static saved_type save(CodeGenFunction &CGF, RValue value);
2961    RValue restore(CodeGenFunction &CGF);
2962
2963    // implementations in CGExprCXX.cpp
2964  };
2965
2966  static bool needsSaving(type value) {
2967    return saved_type::needsSaving(value);
2968  }
2969  static saved_type save(CodeGenFunction &CGF, type value) {
2970    return saved_type::save(CGF, value);
2971  }
2972  static type restore(CodeGenFunction &CGF, saved_type value) {
2973    return value.restore(CGF);
2974  }
2975};
2976
2977}  // end namespace CodeGen
2978}  // end namespace clang
2979
2980#endif
2981